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Abstract 

 

 

Each year in Italy approximately 2-5 people are killed due to wave action on wave wall and 

similar constructions. Wave overtopping occcurs because of wave running up the face of a 

wave wall and is affected by many factors. Small modification of geometry of the structure 

may drastically change the amount of overtopping. Generally, most of the overtopping waves 

are fairly small, but a small number can give significantly larger wave-by-wave overtopping 

volumes. More accurate estimation of overtopping rates should be determined by hydraulic 

model tests. This thesis is part of the international ERASMUS exchange between University 

of Ljubljana and University of Florence aimed to study the process of wave overtopping and 

wave pressure of impact at harbour breakwater models in the wave flume. This research gives 

an overview of the main topic wave overtopping discharges, for a large number of wave and 

design conditions. Due to this fact two level analysis was deployed. I. level analysis estimated 

whether working of measuring instruments was properly and investigated the wave 

performance, by calculating its characteristic parameters, wave-by-wave overtopping volumes 

and pressure stresses. Furthermore, II. level analysis made a comparison between mean 

overtopping discharges and maximum wave-by-wave overtopping volumes and continued by 

analysing maximum pressures of impact and reflection parameters for each wave attack and 

design of construction. The analysis and results were obtained by Matlab program. After eight 

wave types were executed on six different model constructions the most effective harbour 

breakwater was assessed. 
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Izvleček 

 

 

Pojav prelivanja valov preko valobranov v pristaniščih predstavlja enega izmed glavnih 

vzrokov pri povzročanju škode na privezanih plovilih v pristaniščih. Vsako leto v Italiji umre 

približno 2 do 5 ljudi zaradi nevarnih prelivanj valov čez stene valobranov in druge 

konstrukcije. Proces prelivanja valov je odvisen od številnih dejavnikov in že majhne 

spremembe geometrije konstrukcije močno spremenijo obnašanje in količino prelitih valov. V 

splošnem je količina prelitih valov majhna, nekaj valov pa lahko povzroči izdatnejše prelive. 

Laboratorijski eksperimenti na fizičnem hidravličnem modelu so nujno potrebni za 

natančnejšo oceno obnašanja prelivajočih se valov, saj je proces slučajen. Ta diplomska 

naloga je bila narejena v sodelovanju med Univerzo v Ljubljani in Univerzo v Firencah v 

okviru mednarodne študijske izmenjave ERASMUS, z namenom preučevanja procesa 

prelivanja in tlakov valov na hidravličnem modelu pristaniškega valobrana. S preizkušanjem 

velikega števila valovnih in geometrijskih pogojev smo dobili širok pregled nad obnašanjem 

prelivanja valov. V ta namen smo razvili dvostopenjsko analizo. Z analizo I. stopnje smo 

ocenili ali so merilni instrumenti delovali pravilno in izračunali karakteristike valov, velikost 

pljuskov in tlakov. V drugostopenjski analizi pa smo primerjali rezultate med srednjimi 

pretoki prelivanja in maksimalnimi volumni pljuskov, nato pa analizirali še maksimalne tlake 

in odboj valov na vgrajeno steno za posamezen tip konstrukcije in valovanja. Obdelava 

podatkov iz meritev na hidravličnem modelu se je izvedla s pomočjo računalniškega 

programa Matlab. Po testiranju šestih različnih konstrukcij modela valobrana z osmimi 

nevihtnimi stanji morja smo določili najvarnejšo konstrukcijo valobrana. 
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1 INTRODUCTION 

 

 

Wave overtopping is of principal concern for structures constructed primarily to defend 

against flooding or against coastal erosion, sometimes termed coast protection. Such 

structures may be built also to protect areas of water for ship navigation or mooring: ports, 

harbours or marinas; these are often formed as breakwaters or moles. On average, 

approximately 2-5 people are killed each year of Italy and UK through wave action, chiefly 

on seawalls and similar structures. Overtopping discharge occurs because of waves running 

up the face of a seawall (Pullen et al., 2007). 

 

 
 

Figure 1: Violent wave overtopping occurs when waves break against sea walls throwing 

water and spray over the top. 

Source: http://www.vows.ac.uk/, 12. 07. 2012. 

 

Overtopping is not a continuous process but an intermittent occurrence at times of attack of 

individual high waves varying from one wave to another. Wave overtopping is affected by 

many factors which will be studied in this research; even a small modification of the geometry 

of a structure may change the amount of overtopping (Wai et al. 2003). Longer storm duration 

gives more overtopping waves, but statistically, also a larger maximum volume. Many small 

overtopping waves (like for river dikes or embankments) may create the same mean 

overtopping discharge as a few large waves for rough sea conditions. The maximum volume 

are however, much larger for rough sea conditions with large waves (Pullen et al., 2007). 

Generally, most of the overtopping waves are fairly small, but a small number can give 

significantly larger overtopping volumes. More accurate estimate of the overtopping rate 

should be determined through hydraulic model tests (Wai et al., 2003) as in this research was 

done. 

 

http://www.vows.ac.uk/
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This thesis is part of the international exchange ERASMUS between University of Ljubljana 

and University of Florence aimed to study the process of wave overtopping and wave pressure 

of impact at harbour breakwaters on physical model in the wave flume. 

 

An overview of the main thesis topic wave overtopping for a large number of wave conditions 

(in Ligurian Sea) and geometries tested will be presented. The main objective of this research 

is to study the differences between various constructions and to find the most effective 

harbour breakwater construction with no or less possible harmful consequences of 

overtopping waves. The analysis and results will be obtained with Matlab program. Activities 

conducted in this laboratory research will be design of experiments, realization of a physical 

model with its configurations, conducting experiments (with measurements) and post 

processing of analysis. 

 

The thesis is organized in 7 chapters, as follows: In Chapter 2, important theoretical 

backgrounds on wave and wave parameters, standard techniques for defining random waves, 

harbour hydrodynamics, breakwaters and overtopping phenomenon are presented. In Chapter 

3 overview of hydraulic physical models, scale effects in laboratory, used materials and 

measurement equipment is described. In Chapter 4 testing procedure with laboratory 

description, design of harbour breakwater and wave condition is presented and continues in 

Chapter 5, where analysis and results are found. Finally, Chapter 6 concludes the thesis 

research about wave overtopping and is followed by Slovenian summary of thesis research. 
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2 THEORETICAL BACKGROUNDS 

 

 

2.1 Basic definition of wave and wave parameters 

 

2.1.1 Monochromatic waves 

 

Monochromatic waves may be generated in the laboratory but are rare in nature. These are the 

waves, which has the same wave length and period. The model is of certain help for definition 

of basic wave parameters and, as such is introduced as follow while the random nature of 

wind generated waves and the related wave characteristic parameters are discussed in the next 

paragraph. 

 

 
 

Figure 2: Definition of terms of the wave. 

Source: Coastal Engineering Manual, 2002. 

 

As shown in Fig. 2, the highest point of the wave is the crest and the lowest point is the 

trough. For regular waves, the height of the crest above the still-water level (SWL) and the 

distance of the trough below the SWL are each equal to the wave amplitude a. Therefore a = 
H/2, where H = the wave height. The time interval between the passage of two successive 

wave crests or troughs at a given point is the wave period T. The wavelength L is the 

horizontal distance between two identical points on two successive wave crests or two 

successive wave troughs.  

 

Other wave parameters include: 

 

 ω= 2π/T  the angular or radian frequency, 
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 k =2π /L the wave number, 

 

 C = L/T = ω /k  the phase velocity or wave celerity,  

 

 ϵ = H/L the wave steepness,  

 

 d/L  the relative depth,  

 

 and H/d  the relative wave height. 
 

These are the most common parameters encountered in coastal practice. Wave motion can be 

defined in terms of dimensionless parameters H/L, H/d, and d/L; these are often used in 

practice (Coastal Engineering Manual, 2002). 

 

2.1.1.1 Linear wave theory 

 

The most elementary wave theory for monochromatic waves is the small-amplitude or linear 

wave theory. This theory, is easy to apply, and gives a reasonable approximation of wave 

characteristics for a wide range of wave parameters. A more complete theoretical description 

of waves may be obtained as the sum of many successive approximations, where each 

additional term in the series is a correction to preceding terms. For some situations, waves are 

better described by these higher-order theories, which are usually referred to as finite-

amplitude wave theories. Although there are limitations to its applicability, linear theory can 

still be useful provided the assumptions made in developing this simple theory are not grossly 

violated.  

 

The assumptions made in developing the linear wave theory are: 

 

 The fluid is homogeneous and incompressible; therefore, the density D is a constant. 

 

 Surface tension can be neglected. 

 

 Coriolis effect due to the earth's rotation can be neglected. 

 

 Pressure at the free surface is uniform and constant. 

 

 The fluid is ideal or inviscid (lacks viscosity). 

 

 The particular wave being considered does not interact with any other water motions. 

The flow is irrotational (only normal forces are important and shearing forces are 

negligible). 

 

 The bed is a horizontal, fixed, impermeable boundary, which implies that the vertical 

velocity at the bed is zero. 
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 The wave amplitude is infinitesimal and the waveform is invariant in time and space. 

 

 Waves are plane or long-crested (two-dimensional) (Coastal Engineering Manual, 

2002). 

 

Another important aspect of linear wave theory deals with the displacement of individual 

water particles within the wave. Water particles generally move in elliptical paths in shallow 

or transitional depth water and in circular paths in deep water. 

 

 
 

Figure 3: Water particle displacements from mean position in deep water, intermediate-depth 

water and very shallow-water. 

 Source: Holthuijsen, 2007. 

 

Table 1: Classification of water waves based on the relative depth criterion d/L after Coastal 

Engineering Manual, 2002. 

 

 
 

2.1.2 Irregular (random) waves 

 

The term irregular waves is used to denote natural sea states in which the wave characteristics 

are expected to have a statistical variability in contrast to monochromatic waves, where the 

properties may be assumed constant. 

 

Classification d/L kd tanh(kd)

Deep water 1/2 to ∞ π to ∞ ≈ 1

Transitional 1/20 to 1/2 π/10 to π tanh (kd)

Shallow water 0 to 1/20 0 to π/10 ≈ kd

Classification of Water Waves
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Figure 4: A bird’s eye view of ocean waves, as recorded with stereo-photography with 

cameras looking down from two helicopters, i.e., the sea-surface elevation as a function of 

horizontal co-ordinates at one moment in time (the contour line interval is 0.20 m, shaded 

areas are below mean sea level). 

Source: Holthuijsen, 2007. 

 

2.1.2.1 Observation techniques 

 

1) Visual observations 

 

They are often the only source of information and can be subjective 

 

2) Measurement techniques 

 

a) In situ techniques 

 

Instrument may be located at the sea surface (e.g., a floating surface buoy), or below the sea 

surface (e.g., a pressure transducer mounted on a frame at the sea bottom), or it may be 

surface-piercing (e.g., a wire mounted on a platform from above the sea surface, extending to 

some point below the sea surface). Most of these instruments are used to acquire time records 

of the up-and-down motion of the surface at one (horizontal) location. 

 

 Wave buoys 

 

They follow the 3-dimensional motion of the water particles at the sea surface. It measures its 

vertical acceleration with an onboard accelerometer. The buoys are usually provided with 

radio communication to send their signals to a land- or platform-based receiving station, new 
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buoys are often supplemented with satellite communication and position detection by the 

Global Positioning System (GPS). 

          

 
 

Figure 5: Left: The WAVERIDER buoy at sea. The buoy measures its own vertical 

acceleration to estimate the sea-surface motion. Right: The up-and-down motion of the sea 

surface in a storm by a buoy, i.e., the sea-surface elevation at one location as a function of 

time. 

Source: Holthuijsen, 2007. 

  

b) Remote – sensing techniques 

 

They are usually better, because they are objective, but the instruments have their own 

peculiarities too. The two most important are (a) limitations of the basic principle of the 

instrument (e.g., a buoy floating at the sea surface may swerve around or capsize in a very 

steep wave) and (b) sensitivity to the aggressive marine environment (e.g., mechanical 

impacts, marine fouling and corrosion). 

 

The alternative of remote sensing, which relies on instruments that are positioned above the 

water, is generally not sensitive to the marine environment but it may be sensitive to the 

atmospheric environment (e.g., rain, clouds, water vapour) (Holthuijsen, 2007). 

 

2.2 Types of the waves 

 

 Trans – tidal waves 

 

Are the longest waves. Are generated by low-frequency fluctuations in the Earth's crust and 

atmosphere. 

 

 Tides 

 

Are slightly shorter waves than the first ones. Are being generated by the interaction between 

the oceans on the one hand and the Moon and the Sun on the other. Their periods range from 

a few hours to somewhat more than a day, wave lengths vary between a few hundred and a 

few thousand kilometres. 
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 Storm surges 

 

The wave length and period are slightly shorter from that ones from the tides. They are large-

scale elevation of the ocean surface in a severe storm, being generated by the (low) 

atmospheric pressure and the high wind speeds in the storm. The space and time scales are 

roughly equal to those of the generating storm (typically a few hundred kilometres and one or 

two days). It can cause severe flooding when it approaches to the coast and the water piles up 

(e.g., the flooding in New Orleans by hurricane Katrina in August 2005, or the annual 

flooding in Bangladesh by cyclones). 

 

 Tsunamis 

 

Are generated by a submarine 'land' slide or earthquake. They are difficult to predict and 

barely noticeable in the open ocean (due to their low amplitude there) but they wreak havoc 

on unsuspecting coastal regions as they increase their amplitude considerably on approaching 

the coast. 

 

 Seiches 

 

Are even more difficult to predict in comparison to tsunamis. These are standing waves, with 

a frequency equal to the resonance frequency of the basin in which they occur (in harbours 

and bays or even at sea, for instance in the Adriatic Sea). Usually are generated from the open 

sea (storms). 

 

 Infra-gravity waves 

 

They are being generated by groups of wind-generated waves, for instance in the surf zone at 

the beach (surf beat), with periods of typically a few minutes. 

 

 Wind-generated waves 

 

Their period is shorter than 30 s. 

 

 Surface gravity waves 

 

Are waves dominated by gravity, periods longer than ¼ s. 

 

 Wind sea 

 

Are waves generated by local wind, irregular and short crested. 

 

 Swell 

 

Are regular, long – crested appearance, and are generated when they leave the generation 

area. Swell describes the natural waves that appear most like monochromatic waves in deep 

water, but swell, too, is fundamentally irregular in nature. 
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 Capillary waves 

 

Their periods are shorter than ¼ s, wave lengths shorter than 10 cm and affected by surface 

tension. 

 

 
 

Figure 6: Frequencies and periods of the vertical motions of the ocean surface. 

Source: Holthuijsen, 2007. 

 

2.2.1 Types of scales 

 

Ocean waves are wind-generated surface gravity waves. We can describe them: 

 

 At several spatial scales (ranging from hundreds of meters or less to thousands of 

kilometres). 

 

 Several time scales (ranging from seconds (i.e. one wave period) to thousands of 

years). 

 

Scales are used for describing variation in space and time of these waves. 

 

 Small scales have dimensions about 10 – 100 s and 10 – 1000 m, 

 

 Larger scales have dimensions of about 100 – 1000 s and 100 – 10 000 m, 

 

 Scales of coastal waters. 

 

We can easily describe waves with the variance density spectrum of the waves, which is 

followed by the linear theory of surface gravity waves. This theory gives the interrelation 
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amongst physical characteristics as the surface motion, the wave-induced pressure in the 

water and the motion of water particles.  Although several theories for these processes have 

been developed, the actual formulations in numerical wave models are still very much 

empirical and therefore relatively simple and descriptive (Holthuijsen, 2007). 

 

2.3 Standard techniques for defining random waves 

 

2.3.1 Zero-crossing method 

 

This is method defines a wave when the surface elevation crosses the zero-line or the mean 

water level (MWL) upward and continues until the next crossing point. This is the zero-

upcrossing method. When a wave is defined by the downward crossing of the zero-line by the 

surface elevation, the method is the zero-downcrossing.  There can be differences between the 

definitions of wave parameters obtained by the zero up- and down-crossing methods for 

description of irregular sea states (Goda, 2000). 

 

 
 

Figure 7: The definition of wave parameters for a random sea state. 

Source: Coastal Engineering Manual, 2002. 

 

In coastal projects, engineers are faced with designing for the maximum expected, the highest 

possible waves, or some other equivalent wave height. From one wave record measured at a 

point, these heights may be estimated by ordering waves from the largest to the smallest and 

assigning to them a number from 1 to N. Wave period is the time interval between successive 

crossings of the MWL by the water surface in a downward direction called zero down-

crossing period or zero up-crossing period for the period deduced from successive up-

crossings (see Fig. 7). Wave height is the vertical distance between the highest and lowest 

surface elevation in wave (see Fig. 7). Even though there are so many heights the wave will 

thus have only one wave height.  

 

Nowadays almost all data are recorded in digital form, based on this we can get: 
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1) Highest wave is wave with the maximum wave height and largest wave period in the 

record Hmax, Tmax. 

 

2) Highest one - tenth wave is the mean height of the highest one-tenth waves. Waves in 

the record are counted and selected in descending order of wave height from the 

highest wave, until one-tenth of total number of waves is reached T1/10, H1/10.  

 

  /  =
 

 /  
   

 /  
                 (2.1) 

 

  /  =
 

 /  
   

 /  
                (2.2) 

 

3) Significant wave or highest one - third wave with T1/3, H1/3 is the average of the first 

(highest) one-third (N/3) waves. 
 

  / =
 

 / 
   

 / 
               (2.3) 

 

  / =
 

 / 
     

 / 
               (2.4) 

 

4) Mean wave is the wave specified by the means T ,    of the heights and periods of all 

waves in a record. 

 

   =
 

 
     

 
               (2.5) 

 

     =
 

 
     

 
              (2.6) 

 

The most frequently used is the significant wave with T1/3 and H1/3.  

 

2.3.2 Wave height distribution 

 

The histogram of wave heights containing about 100 waves, usually exhibits a rather jagged 

shape, because of the relatively small sample size. We can obtain smoother distribution of 

wave heights by assembly many wave records and by counting the relative frequencies of the 

normalized wave heights in their respective classes.  

 

In Fig. 8 ordinate the relative frequency n/N0 (N0 is the total number of the waves) is divided 

by the class interval of the normalized wave height    /  ), so that the area under the 

histogram is equal to unity. Relative frequency tells us how often each value occurs (Goda, 

2000). 
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Figure 8: Left: Example of a histogram of wave heights. Right: Normalized histogram of 

wave heights. 

Source: Goda, 2000. 

 

Rayleigh distribution (The middle graph in Fig. 8) is proposed for the distribution of 

individual wave heights, which is given by the Eq. 2.7: 

 

    =
 

 
      

 

 
     =

 

  
          (2.7) 

 

Function p(x) represents the probability density; that is, the probability of a normalized wave 

height taking an arbitrary value between x and x+dx is given by the product p(x)dx. The 

ordinate of the middle plot in Fig. 8 is an approximation to p(x). 

 

The function P(x) gives the probability of a particular wave height exceeding a prescribed 

value. 

 

    =        =       
 

 
   

 

 
          (2.8) 

 

Rayleigh distribution provides a good approximation to the distribution of individual wave 

heights which are defined by the zero-upcrossing and zero-downcrossing wave methods. 

 

2.3.2.1 Relations between representative wave heights 

 

H1/3 and H1/10 can be evaluated by manipulating of the probability density function.  

Thus we have (theoretical prediction): 

 

  /  =   2   / = 2        / =                (2.9) 

 

These results represent the mean values of a number of wave records ensembled together. 

Individual wave records containing only 100 waves or so may give noticeable departures from 

these mean relations. The most probable value, or the mode of distribution, is a function of 

the number of waves in a wave train or a wave record, which is given by (Goda, 2000): 
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      /  /                                    (2.10) 

 

The arithmetic mean of is greater than the most probable value, as seen from the skewed 

shape of the curves: 

 

     /  /                    / 2                       (2.11) 

 

The height (Hmax)μ is given by: 

 

       /  

 

           
  

     /     
                   (2.12) 

 

The value Hmax should be estimated based upon consideration of the duration of storm waves 

and the number of waves, and by allowing some tolerance for a range of deviation. The 

prediction generally employed falls within the range: 

 

    =      2     /                     (2.13) 

 

    =      /                                             (2.14) 

 

    = 2    /                                           (2.15) 

 

The particular final value is chosen by consideration of the reliability of the estimation of the 

design storm waves, the accuracy of the design formula, the importance of the structure, the 

type and nature of the possible structural failure, and others factors. 

 

2.3.3 Distribution of wave period 

 

A distribution of wave period is narrower than that of wave heights; the spread lies mainly in 

the range of 0.5 to 2.0 times the mean wave period. When wind waves and swell coexists, the 

period distribution becomes broader, sometimes can be also bi-modal (with 2 peaks). The 

wave period does not exhibit a universal distribution law such as the Rayleigh distribution in 

the case of wave heights. The average values for many wave records can be summarized as: 

 

       /     /    2                     (2.16) 

 

Waves of smaller heights often have shorter periods in a wave record, whereas waves of 

greater heights than the mean height do not show a correlation with the wave period. Visual 

estimated significant wave heights Hν and periods Tν VS measures values. 
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Figure 9: The relationship between the visually estimated significant wave height and period 

and the measured significant wave height and period. The standard deviation of the measured 

values is about 15% of the mean of the measurements at every value of Hν or Tν. 

Source: Holthuijsen, 2007. 

 

Fig. 9 represents relationship between the visually estimated significant wave height Hν and 

the measured significant wave height H1/3. The best-fit power law for these data: 

 

  / =       
                     /                     (2.17) 

 

In contrast to this, the visually estimated significant wave period does not agree well with the 

instrumental measurements. The best-fit power-law relationship in the same study is: 

 

  / = 2     
               /     (Holthuijsen, 2007).                 (2.18) 

 

2.3.4 Wave spectrum 

 

2.3.4.1 Introduction 

 

Wave spectrum serves to describe sea surface as a stochastic process (i.e. to characterise all 

possible observations, like time records, etc.). Wave spectrum is the most important form in 

which ocean waves are described and random-phase/amplitude model, which leads us to the 

final result. Basic concept of the wave spectrum can be explained on the essence on a wave 

record.  Amplitude spectrum characterise the wave record. 
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Figure 10: The observed surface elevation and its amplitude and phase spectrum. 

 Source: Holthuijsen, 2007. 

 

The basic concept of the wave spectrum is simple and can be explained on a wave record, i.e., 

the surface elevation η(t) at one location as a function of time, with duration D, obtained at 

sea with a wave buoy or a wave pole. We can exactly reproduce that record as the sum of a 

large number of harmonic wave components (a Fourier series): 

 

    =        2        
 
                      (2.19) 

 

Where ai and αi are the amplitude and phase, respectively, of each frequency fi=i/D (i = 1, 2, 

3,  . . ; the frequency interval is therefore  f = 1/D).With a Fourier analysis, we can determine 

the values of the amplitude and phase for each frequency and this would give us the amplitude 

and phase spectrum for this record as seen in Figure 2.9. Average amplitude spectrum:  

 

  =      
 
                        (2.20) 

 

For all frequencies fi, where ai,m is the value of ai in the experiment with sequence number m. 

For large values of M the value of ai converges (approaches a constant value as we increase 

M), thus solving the sampling problem. It is more meaningful to distribute the variance of 

each wave component ½*ai
2
. There are two reasons; first, the variance is a more relevant 

(statistical) quantity than the amplitude. Second, the linear theory for surface gravity waves 

shows that the energy of the waves is proportional to the variance. This implies that, through 

the variance, a link is available to such physical properties as wave energy, but also wave - 

induced particle velocity and pressure variations. The variance spectrum ½*ai
2
 is discrete, i.e., 

only the frequencies fi=i/D are present, whereas in fact all frequencies are present at sea. The 

definition of the variance density spectrum thus becomes (Holthuijsen, 2007): 

 

    =        
 

  

 

 
         =        

 

  
  

 

 
                   (2.21) 

 

2.3.5 Random – phase/amplitude model (RPAM) 

 

Is the basic model for describing the moving surface elevation η(t). Surface elevation in that 

case is considered to be the sum of a large number of harmonic waves (each with constant 

amplitude and a phase randomly chosen for each realisation). 
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     =    
 
       2                             (2.22) 

 

Where N is large number of frequencies, a  amplitude and αᵢ is a phase. In this model phase at 

each frequency fᵢ (in this model) is uniformly distributed between 0 and 2π  
 

     =
 

  
          2                    (2.23) 

 

And amplitude a  is at each frequency Rayleigh distributed. 

 

 
 

Figure 11: The summation of many harmonic waves, with constant but randomly chosen 

amplitudes and phases, creates a random sea surface. 

Source: Holthuijsen, 2007. 

   

 
 

Figure 12: The RPAM: at every frequency there is one uniform distribution for the random 

phase and one Rayleigh distribution for the random amplitude (characterized by the expected 

value E{ aᵢ }).Top panels: for a series of frequencies, fᵢ ( i = 1, 2, 3, 4, 5 etc.). Bottom panel: 

the expected value of the amplitude as a function of frequency, i.e., the amplitude spectrum. 

Source: Holthuijsen, 2007. 

 

A wave record at sea can be seen as one such realisation. For each new realisation of η(t), the 

sample values of ai and αi are again randomly drawn from these probability density functions. 
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It is thus (hypothetically) possible to create a (large) set of realisations of the sea surface (this 

is called an ensemble). 

 

The following remarks should be made in applicability of the RPAM to real ocean waves: 

 

 Because conditions at sea are never really stationary, a wave record needs to be 

divided into segments that are each deemed to be approximately stationary (a duration 

of 15–30 min is commonly used for wave records obtained at sea);  

 

 The RPAM is a summation of wave components at discrete frequencies fi, whereas, in 

fact, a continuum of frequencies is present at sea. 

 

2.3.6 The variance density spectrum 

 

The amplitude spectrum provides enough information to describe the sea-surface elevation 

realistically as a stationary, Gaussian process. The variance density spectrum gives a complete 

description of the surface elevation of ocean waves in a statistical sense (all statistical 

characteristics of the wave field can be expressed in terms of this spectrum). Both the 

amplitude and the variance spectrum are based on discrete frequencies. All frequencies are 

present at sea.  
The RPMA needs therefore to be modified. This is done by distributing the variance 

E{1/2*ā
2
} over the frequency interval ∆fᵢ at frequency fᵢ. The resulting variance density 

spectrum E*( fᵢ) is then:  

             

 
 

Figure 13: The transformation of the discrete amplitude spectrum of the RPAM to the final 

function E(f) which is called the (continuous) variance density spectrum. 

Source: Holthuijsen, 2007. 

 

2.3.6.1 Interpretation of the variance density spectrum 

 

If we multiply the spectrum by    we obtain the energy density spectrum. This spectrum 

shows how the wave energy is distributed over the frequencies, which seems to be easier to 

comprehend. Energy density spectrum is used to describe the physical aspects of waves 
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(within the limitations of the stationary, Gaussian model and the linear theory of surface 

gravity waves). The overall appearance of the waves can be inferred from the shape of the 

spectrum: the narrower the spectrum, the more regular the waves are. 

 

 
 

Figure 14: The (ir)regular character of the waves for three different widths of the spectrum. 
 Source: Holthuijsen, 2007. 

 

The total energy (i.e. summed over all components; per unit horizontal ocean surface area) is: 

 

      =                          (2.24) 

 

Energy density spectrum is: 

 

          =                                  (2.25) 

 

2.3.6.2 Relationship between wave spectra and wave heights 

 

Estimation of the heights of representative waves from the wave spectrum is possible, first by 

obtaining representative value of the total wave energy m0 and integrating the directional 

wave spectrum in the full frequency from (Goda, 2000): 

 

  =              
 / 

  / 

 

 
                    (2.26) 

 

This integral is by definition of the wave spectrum equal to the variance of the surface 

elevation. Thus, 

 

  =    =        
 

  
     

 
                     (2.27) 
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Where: m0 is zeroth-order moment of the variance density spectrum E(f) or total wave energy 

in [m
2
, cm

2
]. Value rms bears relationship to the heights of the representative waves when the 

wave height follows the Rayleigh distribution. 

 

    =     =                          (2.28) 

 

Where: root-mean-square (rms) is value of the surface elevation.  

In particular: 

 

  / =          =                            (2.29) 

 

                                             (2.30) 

 

Wave heights observed in the sea tend to indicate a distribution slightly narrower than 

Rayleighan.  

 

In the case of JONSWAP-type spectrum, the wave height ratios gradually increase toward 

those of the Rayleight distribution as the peak enhancement factor   becomes large. 

 

Inversely, the estimation of significant wave height based on a given wave spectrum is always 

possible by evaluating the integral m0 with Eq. 2.26. Such operations for the wave height 

estimation form spectral information become necessary in the analysis of wave refraction, 

diffraction, etc., in which the transformation of the directional wave spectrum is principally 

computed (Goda, 2000). 

 

2.3.6.3 Relationship between wave spectra and wave periods 

 

The mean wave period defined by the zero-upcrossing method is given by the zeroth and 

second moments of the frequency spectrum as follows (Goda, 2000): 

 

   =  
  

  
 ,                                 (2.31) 

 

Where:   =          
 

 
                    (2.32) 

 

This relation is used when period is required from data of the wave spectrum. The main 

period parameter obtainable from a spectrum is the peak period Tp defined as the inverse of 

the peak frequency fp. The period parameters defined by the zero-upcrossing (or zero-

downcrossing) method such as   /  cannot be derived from a wave spectrum theoretically. 

Their relationship with Tp must be established on the basis of many field data or by means of 

numerical simulations. Spectral peak becomes sharper, the differences between various wave 

period parameters become small and these period approach the peak period Tp (Goda, 2000). 
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2.3.7 Analytical parametric frequency spectra functions 

 

The characteristics of the frequency spectra of sea waves have been well established through 

analysis of a large number of wave records taken into various waters of the world. The spectra 

of fully developed wind waves, for example, can be approximated by the following standard 

formula:  

 

    =   2    / 
   / 

                  /                       (2.33) 

 

Other formula of frequency spectrum is for example Pierson and Moskowitz (PM) formula. 

The PM spectrum describes a fully-developed sea with one principal parameter, the wind 

speed, and assumes that both the fetch and duration are infinite. This idealization is justified 

when wind blows over a large area at a constant speed without substantial change in its 

direction for tens of hours (Coastal Engineering Manual, 2002).  

 

    =   2    / 
   / 

                  /                       (2.34) 

                                                                               

Eq. 2.33 and 2.34 are applied for the wind waves fully developed in the ocean.  

 
 

Spectrum, which we used in the wave flume is called the JONSWAP spectrum. It is for fetch-

limited seas and was obtained from the Joint North Sea Wave Project - JONSWAP 

(Hasselmann et al. 1973) and includes the wind speed as the parameter for the purpose of 

wave forecasting, but it can be rewritten in approximate form in terms of the parameters of 

wave height and period as follows: 

 

    =     / 
   

             2          
     

        

    
                (2.35) 

                                                                                                                                                                   

In which: 

 

  =
      

                                                             (2.36) 

 

   
  / 

                      
                    (2.37) 

 

 = 
       

        
                      (2.38) 

 

  =                                                                                 (2.39) 

   

The JONSWAP spectrum is characterized by a parameter γ which is called the peak 

enhancement factor; this controls the sharpness of the spectral peak. For γ=3.3, (this is the 

mean value determined for the North Sea), the peak value of the spectral density function 

becomes 2.1 times higher than of Eq. 2.34 for the same significant wave height and period. 
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Figure 15: Comparison of the PM and JONSWAP spectrum. 

Source: Coastal Engineering Manual, 2002. 

 

JONSWAP spectrum is an extension of the PM spectra (Hasselmann et al., 1973), because 

PM did not consider the influence of nonlinear interactions between waves in their formula. 

The sea surface is never definitely formed, even if we say the wind is blowing steadily.  

 

Actual wave spectra usually exhibit some deviations from these standard forms. In particular, 

when swell coexists with wind waves, a secondary peak appears at the frequency 

corresponding to the representative period of swell or wind waves, depending on their relative 

magnitudes. In some cases, not only bi-modal but also tri-modal frequency spectra can be 

observed.  

 

2.4 Harbour hydrodynamics 

 

2.4.1 Definition of harbour 

 

Harbour is a sheltered part of a body of water deep enough to provide anchorage for ships or a 

place of shelter; refuge. The purpose of a harbour is to provide safety for boats and ships at 

mooring or anchor and to provide a place where upland activities can interface with 

waterborne activities. Harbours range in complexity from the basic harbour of refuge, 

consisting of minimal or no upland support and only moderate protective anchorage from 

storm waves to the most complex, consisting of commercial port facilities, recreational 

marinas, and fuel docks linked to the sea through extensive navigation channels and 

protective navigation structures (Coastal Engineering Manual, 2002). 
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Figure 16: Harbour of Rotterdam. 

Source: http://www.rnw.nl/africa/bulletin/new-rotterdam-docks-change-dutch-coastline, 16. 

06. 2012. 

 

 
 

Figure 17: Harbour sitting classifications. 

Source: Coastal Engineering Manual, 2002. 

Protection and harbour breakwater 

Harbour entrance 

Soft coastal protection 

http://www.rnw.nl/africa/bulletin/new-rotterdam-docks-change-dutch-coastline
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2.4.2 Wave transmission, reflection and breaking waves 

 

2.4.2.1 Wave transmission 

 

When waves interact with a structure, a portion of their energy will be dissipated, a portion 

will be reflected and, depending on the geometry of the structure, a portion of the energy may 

be transmitted past the structure.  

 

In case of wave overtopping, large overtopping waves cause new waves behind the structure. 

It is usual for breakwaters and low-crested structures along the shore, where water is behind 

the structure and it is defined by the wave transmission coefficient: 

 

  =
  

  
                      (2.40) 

 

Where Ht and Hi are the transmitted and incident wave heights. The limits of wave 

transmission are Kt = 0 (no transmission, high crest and impermeable breakwater) and 1 (no 

reduction in wave height, conditions of missing breakwater). If a structure has its crest above 

water the transmission coefficient will never be larger than about 0.4 - 0.5. Kt represents the 

amount of incident wave energy transferred above and through the breakwater. 

 

 
 

Figure 18: Parameters involved in wave transmission. 

 

2.4.2.2 Wave reflection 

 

If there is a change in water depth as a wave propagates forward, a portion of the wave’s 

energy will be reflected. When a wave hits a vertical, impermeable, rigid surface-piercing 

wall, essentially all of the wave energy will reflect from the wall. On the other hand, when a 

wave propagates over a small bottom slope, only a very small portion of the energy will be 

reflected. The degree of wave reflection is defined by the reflection coefficient: 

 

  =
  

  
                      (2.41) 
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Where Hr and Hi  are the reflected and incident wave heights. 

Wave energy that enters a harbour must eventually be dissipated. This dissipation primarily 

occurs at the harbour interior boundaries (Coastal Engineering Manual, 2002). 

 

 
 

Figure 19: Complete and partial reflection and effects on overtopping. 

Source: Coastal Engineering Manual, 2002. 

 

Figure 19 is a profile view of the water surface envelope positions for a wave reflecting from 

a wall that has a reflection coefficient equal to unity (i.e., Hi = Hr). The figure also shows the 

water particle paths at key points. At nodal points, water particle motions are horizontal and at 

antinodes, water particle motions are vertical.  

 

2.4.2.3 Wave steepness and breaker parameter 
 

Wave steepness is defined as the ratio of wave height Hm0 to wave length L0: 

 

  =
   

  
                      (2.42) 

 

This will tell us something about the wave’s history and characteristics. Generally a steepness 

of s0=0.01 indicates a typical swell sea and a steepness of s0=0.04 to 0.06 a typical wind sea. 

Swell sea are often associated with long period waves, where it is the period that becomes the 

main parameter that affects overtopping. The breaker parameter, Surf Similarity Parameter or 

Iribarren Number is defined as: 

 

      =
    

 
   

      
  / 

                     (2.43) 

 

Where α is the slope of the front face of the structure and Lm-1,0 being the deep water wave 

length gT
2

m-1,0/2π and Hm0 is wave height. The combination of structure slope and wave 

stepness gives a certain type of wave breaking.  
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Figure 20: The four main types of breaking waves. 

 Source: Pullen et al., 2007. 

 

For ξm-1.0 2    waves are considered not to be breaking (surging waves), although they 

there may still be some breaking, and for ξm-1.0 2    waves are breaking. Waves on a gentle 

foreshore break as spilling waves and more than one breaker line can be found on such a 

foreshore. Plunging waves break with steep and overhanging fronts and the wave tongue will 

hit the structure or back washing water; an example is shown in Fig. 21 (left).  

 

 
 

Figure 21: Plunging waves; for ξm-1.0 < 2.0 (left) and spilling waves on a beach; for ξm-1.0 < 0.2 

(right). 

 Source: Pullen et al., 2007. 

 

The transition between plunging waves and surging waves is known as collapsing. The wave 

front becomes almost vertical and the water excursion on the slope (wave run-up + run down) 

is often largest for this kind of breaking.  

 

2.5 Breakwaters 

 

Breakwater is a structure that protects the area in its lee from wave attack.  
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Purpose of breakwaters: 

 To provide shelter from the waves; 

 

 Through this shelter, to manipulate the littoral transport conditions and thereby to trap 

some sand. 

 

Types of breakwaters: 

 Detached breakwaters  

Breakwaters are completely isolated from the shoreline. 

 Headland breakwaters 

 Nearshore breakwaters 

 

 Attached Breakwaters 

Breakwaters can be connected to the shoreline. 

 Low crested structure 

 High crested structure 

 Rubble mound structure 

 Composite structure 

 

 
 

Figure 22: Detached and attached breakwaters (up), headland breakwaters (left) and nearshore 

breakwaters (right). 

Source: http://coastal.wru.edu.vn/Thu_vien/Mon_hoc/CTBVB/Chuong12%20-

%20de%20chan%20song.pdf, 20. 08. 2012. 

 

 Using mass (caissons) 

 

 Using a revetment slope (e.g. with rock or concrete armour units) 

 

 Emerged breakwaters 

 

 Submerged breakwaters 

 

 Floating breakwaters. 

http://coastal.wru.edu.vn/Thu_vien/Mon_hoc/CTBVB/Chuong12%20-%20de%20chan%20song.pdf
http://coastal.wru.edu.vn/Thu_vien/Mon_hoc/CTBVB/Chuong12%20-%20de%20chan%20song.pdf
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2.5.1 Rubble mound breakwaters 

 

The principal function of a rubble mound breakwater is to protect a coastal area from 

excessive wave action. The term “rubble” as used here includes rock, riprap and precast 

concrete armour units. Similarly, “armour unit” includes both rock and precast concrete units. 

 

2.5.1.1 Cross section design 

 

Rubble mound breakwaters are built up like filters. They consist of layers of stone. The center 

core of the breakwater is made up of quarry run rock of the most economically available size. 

The outside layer consists of large armour units that can be either rock or specially designed 

concrete units. This primary armour layer is intended to be statically stable with respect to the 

environmental conditions imposed on it (the waves and currents do not move the armour 

stones under design conditions). It is usual to build the primary armour layer roughly two unit 

diameters thick and to place the units randomly, meaning that they are not especially fitted 

together. If the armour units were placed directly over the core, the finer core material would 

be removed by the waves through the openings of the armour layer. It is therefore necessary 

to construct the breakwater as a filter of three or four layers so that the material from any 

layer is not removed through the layer above it. A typical example filter relationship to 

prevent removal of the lower material through the upper layer is:  

 

D15 (upper layer)   5D85 (lower layer)                                                                                (2.44) 

         

Where D is the nominal size and D85 means that the nominal size of the sample is less than 

D85.   

For rock, the nominal armour unit diameter is defined as: 

 

  =    =  
  

  
  / 

                             (2.45) 

         

Where Ma is the armour unit mass and ρa is the armour density.  

 

When a breakwater is built on erodible material, the toe filter is of particular interest. It is 

located where the largest stone (the primary armour) and the base on which the breakwater is 

built (often fine material such as sand) are adjacent to each other. To prevent removal of the 

base material through the armour, this toe filter also needs to be built up to several layers, but 

the layers must be compact so that the total depth of the filter remains small. 

 

The toe filter is crucial to the operation of the breakwater. If it fails, the base material will be 

removed and the lowest armour stones will drop down into the resulting cavity and endanger 

the stability of the whole primary armour layer. If the breakwater is located in shallow water 

under breaking waves, the toe filter must be completely protected by the primary armour. It is 

also customary to use geotextiles in the toe filter and to dig down into the base material to 

make room for a toe filter of appropriate thickness. 
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Figure 23: Rubble mound breakwater in deep water (left) and in shallow water (right). 

Source: Kamphuis, 2000. 

 

2.5.2 Construction materials 

 

2.5.2.1 Rock and concrete armour 

 

Stable rock armour mass has traditionally been calculated with the Hudson formula 

(Kamphuis, 2000). 

 

  =
      

 

   
  
 

        
=

      
 

    
     

                   (2.46) 

        

Where ρa is armour unit density, ρ is the fluid density, θ is the angle of the front slope of the 

structure with respect to horizontal and  a is the relative underwater density of the armour. 

 

  =
    

 
=

  

 
                       (2.47) 

 

KD is an empirically determined damage coefficient. It is a function of all the variables 

involved in armour stability that are not included in Eq. 2.46, but primarily, it is a function of 

the type of armour, its shape, its location along the breakwater and the amount of damage 

considered to be acceptable. 

 

Table 2: Published damage coefficients KD (for rough angular armour stone rock, zero 

damage (Kamphuis, 2000). 

 

 
 

The term »zero damage« means that there is nominally no removal of the armour units from 

the face of the breakwater. We use KD = 4 for armour stone on a breakwater trunk. The same 

stone will be less stable on the head of a breakwater than on its trunk that is why we use the 

20% decrease in KD shown in Table 2. The uncertainties and hence the final construction 

costs, particularly for large and costly projects are usually reduced through physical model 

studies. Equation (2.46) can be rearranged as (Kamphuis, 2000): 
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  =
    

    
=                                       (2.48) 

 

Where Ns is known as the stability number.  

 

Armour units need not be rock. They can be manufactured out of concrete and a whole gallery 

of different units is available.  

 

 
 

Figure 24: Sample concrete armour units. 

Source: Kamphuis, 2000. 

 

Sample published values of KD for zero damage on a breakwater trunk are given in Table 2. 

The units still must primarily depend on their mass for stability. Prototype units with 

relatively thin members (such as Dolos) can break under the stresses imposed upon them. 

Armour unit strength was initially not simulated in hydraulic model tests and results showed 

Dolos to be very stable (KD=32) because of their interlocking. Conservative practice, based on 

field experience and additional model testing with Dolos that were scaled for strength, now 

recommended KD= 16 for Dolos. 

 

Table 3: Damage coefficients concrete units, zero damage (Kamphuis, 2000). 

 

 
 

Van der Meer presents a different expression for concrete units that he tested. For tests, which 

were limited to  =     and for zero damage: 

 

  =     
                        (2.49) 

 

Where c1 and c2 are constants that depend on the type of unit as shown in Table 4.  

Armour unit KD

Rock 4

Tetrapods 8

Tribars 10

Dolos 32(16)

Modified Cubes 7,5
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Table 4:Van der Meer's coefficients (Kamphuis, 2000). 

 

 
 

Table 5: Shape factor and porosity (Kamphuis, 2000). 

 

 
 

2.5.2.1.1 Armour unit density 

 

Armour unit size Da varies inversely with underwater relative armour density  a in both the 

Hudson equation and the Van Meer equations. If concrete is used, it is possible to increase ρa 

substantially through to use of heavy aggregate, such as blast furnace slag. This is an effective 

method to reduce the required armour unit mass. For example, a relatively small increase in 

concrete density from a normal concrete (ρa1=2200 kg/m
3
) to a heavier concrete (ρa2=2600 

kg/m
3
) results in a  a1=1.2, and therefore Da2=0.75 Da1 or Ma2=0.42 Ma1, a reduction in 

armouur mass of more than 50%. 

 

2.5.2.2 Primary armour layer 

 

On the seaward side, it is customary to extend the armour layer from the breakwater crest 

down to about 1.5 Hs below the lowest water level. Because the wave action is less at greater 

depth, smaller armour units can be placed below – 1.5 Hs. Figure 23 (left) indicates a 

preliminary size (Ma/2). Preliminary armour is placed on the back of the structure down to the 

lowest water level, because overtopping waves will put severe down-slope stress on any 

armour covers the complete structure, including the toe filter. 

 

The primary armour layer is usually placed in a double layer. Since the nominal armour unit 

size as defined in Eq. 2.45 is the size of a cube, a shape factor ka is introduced to account for 

the shape of the unit as well as for its random placement. The armour layer thickness is 

therefore: 

 

  =                             (2.50) 

 

Usually na=2.  Typical values of ka are given in Table 6. The number of armour units required 

per unit length of the structure is: 
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  =
           

  
                      (2.51) 

Where Aa is the surface area (per unit length of the breakwater) to be covered by the armour 

units and e is the porosity of the armour layer. The values in Eq. 2.51 are approximate. They 

depend heavily on the rock that comes out of the quarry and the methods and care of 

placement. Their values have a major influence on both the armour layer thickness and the 

number of units required (the cost of the armour layer). As a result it is virtually impossible to 

estimate numbers of armour units accurately, and this can cause major differences between 

estimated and real costs of armour in a design. 

 

Table 6: Shape factor and porosity. 

 

 

2.5.2.3 Breakwater crest 

 

The crest of a rock armour breakwater is usually made up of the same rock as the rest of the 

armour layer and it is normally about three stones wide. The crest of a breakwater with 

concrete units is usually a monolithic cap unit, which provides support for the armour units 

(Fig. 25). This cap can carry traffic and infrastructure. Because the cap is impermeable, there 

is often concentrated damage at the interface between the cap and the concrete armour units. 

Since the uprush of the water cannot pass through the cap, it can only go up through the 

topmost primary armour units. The resulting high vertical fluid velocities will decrease the 

stability of the units near the cap so that they are easily displaced or broken. 

 

 
 

Figure 25: Artificial armour units with concrete cap. 

Source: Kamphuis, 2000. 

 

The first estimate of the design crest elevation of a rubble mound breakwater is the limit of 

run-up of the largest waves, superimposed on the highest water level. Such a crest height 

ka E

Rock 1 0,37

Modified Cubes 1,1 0,47

Tetrapods 1,04 0,5

Tribars 1,02 0,54

Dolos 0,94 0,56
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would prevent all wave overtopping and as a result prevent any generation of waves behind 

the structure by overtopping and as a result prevent any generation of waves behind the 

structure by overtopping waves. The combination of safety in the harbour, negative esthetical 

impact and cost of the structure combine to determine the actual breakwater crest elevation. 

Wave run-up is the vertical distance above SWL reached by the waves. A relatively simple 

estimate of run-up (Kamphuis, 2000) is: 

 
   

  
=                2                     (2.52) 

 
   

  
=            2                     (2.53) 

 

Where R2% is the runup exceeded by 2% of the waves, rf is a factor which takes into account 

friction, any horizontal berm sections in the front face, the angle of approach and whether the 

waves are short crested. The surf similarity parameter ξp, is based on the peak period of the 

wave spectrum. For a simple rock breakwater and with waves coming normal to the front 

face, rf=0.5. For Dolos rf=0.45 and for a smooth slope, rf=1.0. This factor rf is reduced by 

incident wave angle. For the usual short crested waves rf may be multiplied by a factor, which 

reduces linearly with a wave angle from 0  to 0.8 at 90 . A rubble mound breakwater will 

settle after its construction. If the base under the structure is solid (sand, gravel or rock), it is 

usual to add 0.3 m to the design crest elevation. For softer bases, the breakwater base is 

sometimes widened to decrease the stresses in the soil. Sometimes the soil directly below is 

expected to settle substantially, accurate settlement calculations are necessary to determine 

the design crest elevation with a little damage. Generally, Ns is less than 4. 

 

2.6 Overtopping 

 

2.6.1 Introduction of the phenomena  

 

Wave overtopping is of principal concern for structures constructed primarily to defend 

against flooding or providing against coastal erosion, sometimes termed coast protection. 

Such structures may be built also to protect areas of water for ship navigation or mooring: 

ports, harbours or marinas; these are often formed as breakwaters or moles (Pullen et al., 

2007). 

 

Overtopping discharge occurs because of waves running up the face of a seawall. There are: 

 

 “Green water” overtopping  

In this case the wave run-up levels are high enough and water will reach and pass 

continuously over the crest of the wall. In cases where the structure is vertical, the wave 

impact against the wall and send a vertical plume of water over the crest. 

 

 “White water” overtopping or spray 
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Occurs when waves break on the seaward face of the structure and produce non-continuous 

significant volumes of splash. These droplets may then be carried over the wall either under 

their own momentum or as a consequence of an onshore wind. It reduces visibility for 

driving, important on coastal highways, and will extend the spatial extent of salt spray effects 

such as damage to crops/vegetation, or deterioration of the building. 

 

  “Light spray” is third less important form of overtopping   

Is a method by which water may be carried over the crest in the form of spray generated by 

the action of wind on the wave crests immediately offshore of the wall. Even with strong 

wind the volume is not large and this spray will not contribute to any significant overtopping 

volume, however onshore winds may increase discharges under 1 l/s/m. 

 

Defending against overtopping by rubble mound structures tend to be more common in areas 

where harder rock is available. Along urban frontages, especially close to ports, erosion or 

flooding defence structures may include vertical (or battered/steep) walls.  Such walls may be 

composed of stone or concrete blocks, mass concrete, or sheet steel piles. 

 

 

 
 

Figure 26: Examples of overtopping in Italy. 

Source: Cappietti, 2011. 
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2.6.2 Overtopping parameters 

 

Wave overtopping is affected by many factors; even a small modification of the geometry of 

a structure may change the amount of overtopping. Although there is no reliable conclusion, 

the increase of wave overtopping by an onshore wind is large when the quantity of 

overtopping is small and the wind effect decreases gradually as the overtopping rates 

increases. More accurate estimate of the overtopping rate should be determined through 

hydraulic model tests. 

 

2.6.2.1 The wave height 

 

The wave height in the wave run-up and wave overtopping formulae is the incident significant 

wave height Hm0 at the toe of the structure, calls the spectral wave height: 

 

   =       /                      (2.54) 

 

2.6.2.2 The wave period 

 

The wave period used for some wave run-up and overtopping formulae is the spectral period: 

 

 Tm-1.0 (=m-1/m0)                      (2.55) 

 

This period gives more weight to the longer periods in the spectrum than an average period 

and, independent of the type of spectrum, gives similar wave run-up or overtopping for the 

same values of Tm-1.0 and the same wave heights. In this way, wave run-up and overtopping 

can be easily determined for double-peaked and ‘flattened’ spectra, without the need for other 

difficult procedures. Vertical and steep seawalls often use the Tm0,1 or Tm wave period. 

 

2.6.2.3 Permeability, porosity and roughness 

 

 Roughness,  

on the slope dissipates wave energy during wave run-up and will therefore reduce wave 

overtopping. Roughness is created by irregularly shaped block revetments or artificial ribs or 

blocks on a smooth slope. 

 

 Porosity, 

 is defined as the percentage of voids between the units or particles. For rock, concrete armour 

an also sand the porosity may range roughly between 30 – 55%. But regarding this, still the 

behaviour of waves on a sand beach or a rubble mound slope is different. 

 

 Permeability, 

Run-up and wave overtopping are dependent on the permeability of the core. The armour of 

rubble mound slopes is very permeable and waves will easily penetrate between the armour 
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units and dissipate energy. This becomes more difficult for the underlayer and certainly for 

the core of the structure. Difference is made between “impermeable under layers or core” and 

a “permeable core”. In both cases the same armour layer is present, but the structure and 

underlayers differ. A structure with a “permeable core” has an under layer or large rock 

(about one tenth of the weight of the armour), sometimes a second under layer of smaller rock 

and then the core of still smaller rock. Here the up-rushing waves can penetrate into armour 

layer and will then sink into the under layers and core. A structure with an “impermeable 

core” can be covered by armour layer of rock. The under layer is often small and thin and 

placed on a geotextile. Underneath the geotextile sand or clay may be present, which is 

impermeable for up-rushing waves. 

 

 
 

Figure 27: Effect of permeability.  

Source: Hughes, 2002. 

 

2.6.2.4 Toe of structure 

 

Mostly, the toe of structure lies where the foreshore meets the front slope of the structure or if 

present, at the rubble mound toe in front of it. 

 

It is possible that a sandy foreshore varies with season and even under severe wave attack. 

Toe levels may therefore vary during a storm, with maximum levels of erosion occurring 

during the peak of the tidal/surge cycle. The wave height that is always used in wave 

overtopping calculations is the incident wave height at the toe.  
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Figure 28: Toe of structure. 

 Source: Hughes, 2002. 

2.6.2.5 The foreshore  

 

The foreshore is the section in front of the dike and can be horizontal or up to a maximum 

slope of 1:10. The foreshore can be deep, shallow or very shallow. If the water is shallow or 

very shallow then shoaling and depth limiting effects will need to be considered so that the 

wave height at the toe; or end of the foreshore; can be considered. A foreshore is defined as 

having a minimum length of one wavelength Lo. In cases where a foreshore lies in very 

shallow depths and is relatively short, then the methods outlined should be used. Waves break 

and the wave height decreases (by 50 % or more) at the shallow foreshore, but the wave 

spectrum retain more or less the shape of the incident wave spectrum. At a very shallow 

foreshore the spectral shape changes drastically and hardly any peak can be detected (flat 

spectrum). As the waves become very small due to breaking many different wave periods 

arise. 

 

2.6.2.6 Slope 

 

Part of a structure is defined as a slope if the slope of that part lies between 1:1 and 1:8. These 

limits are also valid for an average slope, which is the slope that occurs when a line is drawn 

between – 1.5 Hmo and +Ru2% in relation to the still water line and berms are not included.  

 

2.6.2.7 Berm 

 

A berm is a part of a structure profile in which the slope varies between horizontal and 1:15. 

The position of the berm in relation to the SWL is determined by the depth, dh, the vertical 

distance between the middle of the berm and the SWL. The width of a berm, B, may not be 

greater than one-quarter of a wavelength, i.e., B    2  Lo.  
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2.6.2.8 Crest freeboard and armour freeboard and width 

 

The crest height of a structure is defined as the crest freeboard, Rc, and has to be used for 

wave overtopping calculations. It is actually the point on the structure where overtopping 

water can no longer flow back to the seaside. The height (freeboard) is related to SWL. For 

rubble mound structures, it is often the top of a crest element and not the height of the rubble 

mound armour.  

 

 
 

Figure 29: Definition of freeboard for different constructions. 

Source: Hughes, 2002. 

2.6.3 Wave overtopping discharge 

 

Wave overtopping is the mean discharge per linear meter of width, q, for example in m
3
/s/m 

or in l/s/m.  Usually overtopping discharges are calculated in m
3
/s/m, unless otherwise stated; 

it is more convenient to multiply by 1000 and quote the discharge in l/s/m. In reality, there is 

no constant discharge over the crest of a structure during overtopping. The process of wave 

overtopping is very random in time and volume. The highest wall will push a large amount of 

water over the crest in a short period of time, less than a wave period. Lower waves will not 

produce any overtopping. 

 

 
 

Figure 30: Example of wave overtopping measurements (left: Cumulative overtopping in time 

history (l/m), right: Overtopping volumes distribution), showing the random behavior. 

 

Fig. 30 shows an example of our wave overtopping measurements. The graph shows 1hour 

(55.5 min for tests with wave height H1 and 51 min for tests with H2) long measurements. 

The graph on the right clearly shows the irregularity of wave overtopping volumes. The right 
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graph gives the cumulative overtopping as it was measured in the overtopping tank. 

Individual overtopping volumes can be distinguished, unless a few overtopping waves come 

in one wave group.  

 

Still a mean overtopping discharge is widely used as it can easily be measures and also 

classified: 

q   0,1l/s per m: Insignificant with respect to strength of crest and rear of structure. 

q = 1 l/s per m: On crest and inner slopes grass and/or clay may start to erode. 

q = 10 l/s per m: Significant overtopping for dikes and embankments. Some overtoppings for 

rubble mound breakwaters. 

q = 100 l/s per m: Crest and inner slopes of dikes have to be protected by asphalt or concrete; 

for rubble mound breakwaters transmitted waves may be generated. 

 

2.6.4 Wave overtopping volumes 

 

A mean discharge does not yet describe how many waves will overtop and how much water 

will be overtopped in each wave. The volume of water, V, which comes over the crest of a 

structure, is given in m
3
 per wave per m width. Generally, most of the overtopping waves are 

fairly small, but a small number gives significantly larger overtopping volumes (see Fig. 30).  

The maximum volume overtopped in a sea state depends on the mean discharge q, on the 

storm duration and the percentage of overtopping waves. Longer storm duration gives more 

overtopping waves, but statistically, also a larger maximum volume. Many small overtopping 

waves (like for river dikes or embankments) may create the same mean overtopping discharge 

as a few large waves for rough sea conditions. The maximum volume are however, much 

larger for rough sea conditions with large waves. Traditionally, for a designing, it is used 

"Average capacity overflow" [m
3
/s/m] and its tolerable limits. More recently, in research, the 

interest is on "Single volumes overflow or wave-by-wave overtopping volume" [m
3
/m] and its 

tolerable limits. 

 

2.6.5 Tolerable discharges 

 

Most sea defence structures are constructed primarily to limit overtopping volumes that might 

cause flooding. But there are also sea defences that protect people living, working or enjoying 

themselves, designers and owners of these defences must, however, also deal with potential 

hazards from overtopping. On average, approximately 2-5 people are killed each year of Italy 

and UK through wave action, chiefly on seawalls and similar structures. It is often helpful to 

analyse direct wave and overtopping effects, and their consequences under four general 

categories: 

a) Direct hazard of injury or death to people immediately behind the defence; 

 

b) Damage to property, operation and/or infrastructure in the area defended, including 

loss of economic, environmental or other resource, or disruption to an economic 

activity or process. 
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c) Damage to defence structure(s), either short-term or longer-term, with the possibility 

of breaching and flooding. 

 

d) Low depth flooding (inconvenient but not dangerous). 

The character of overtopping flows or jets, and the hazards they cause, also depend upon the 

geometry of the structure and of the immediate hinterland behind the seawall crest, and the 

form of overtopping. 

 

2.6.5.1 Wave overtopping processes and hazards 

 

Under most forms of wave attack, waves tend to break before or onto sloping embankments 

with the overtopping process being relatively gentle. Relatively few water levels and wave 

conditions may cause “impulsive” breaking where the overtopping flows are sudden and 

violent. Conversely, steeper, vertical or compound structures are more likely to experience 

intense local impulsive breaking, and may overtop violently and with greater velocities. The 

form of breaking will therefore influence the distribution of overtopping volumes and their 

velocities, both of which will impact on the hazards that they cause. 

 

 
 

Figure 31: Left: Harbour Rapallo during wave attack on the 6th Nov 2000. Right: Damaged 

harbour Rapallo after the wave attack. 

Source: Cappietti, 2000. 

 

2.6.5.2 Return periods of overtopping hazards 

 

Return periods at which overtopping hazards are analysed, and against which a defence might 

be designed, may be set by national regulation or guidelines. As with any area of risk 

management, different levels of hazard are likely to be tolerated at inverse levels of 

probability or return period. Guidance on example return periods used in evaluating levels of 

protection suggest example protection levels versus return periods as shown in Table 7. In 

practice, some of these return periods may be regarded as to short. National guidelines have 

recommended lower risk, e.g. a low probability of flooding in UK is now taken as <0.1 % 

probability (1:1000 year return) and medium probability of sea flooding as between 0.5 and 

0.1 % (1:200 to 1:1000 year return). Many existing sea defences in the UK however offer 

levels of protection far lower than these. 

   BEFORE   AFTER 
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Table 7: Hazard type (Pullen et al., 2007). 

 

 
 

2.6.5.3 Tolerable mean discharges of overtopping 

 

Tests on the effects of overtopping on people suggest that information on mean discharges 

alone may not give reliable indicators of safety for some circumstances, and that maximum 

individual volumes may be better indicators of hazard than average discharges. 

 

The volume (and velocity) of the largest overtopping event can vary significantly with wave 

condition and structure type, even for a given mean discharge. Hazardous effect on 

overtopping waters reduces with the distance away from the defence line, so effective 

overtopping discharge at x (over a range 5-25 m), qeffective is given by: 

 

          =                              (2.56) 

 

The overtopping limits suggested in Table 8 to Table 11 therefore derive from a generally 

precautionary principle informed by previous guidance and by observations and 

measurements made by the CLASH partners and other researchers.  

 

Table 8: Limits for overtopping for pedestrians (Pullen et al., 2007). 
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Limits for pedestrians in Table 8 show a logical sequence, with allowable discharges reducing 

steadily as the recipient’s ability or willingness to anticipate or receive the hazard reduces.  

 

Table 9: Limits for overtopping for vehicle (Pullen et al., 2007). 

 

 
 

Table 10: Limits for overtopping for property behind the defence (Pullen et al., 2007). 

 

 
 

Table 11: Limits for overtopping for damage to the defence crest or rear slope (Pullen et al., 

2007). 
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Figure 32: Criteria for critical overtopping discharges. 

Source: Kofoed, 2002. 

 

2.6.6 Prediction of overtopping 

 

Prediction of water levels is extremely important for prediction of wave run-up levels or wave 

overtopping, which are often used to design the required crest level of a flood defence 

structure or breakwater. Moreover, in shallow areas the extreme water level often determines 

the water depth and thereby the upper limit for wave heights.  

 

Extreme water levels in design or assessment of structures may have the following 

components:  
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 Mean sea level (increasing due to global warming + 0.2 m to more than + 1.0 m by 

2050), 

 Astronomical tide, 

 

 Surges related to (extreme) weather conditions and  

 

 High river discharges (Pullen et al., 2007). 

 

2.6.6.1Analytical models 

 

Analytical methods use a simplified representation of the physics of the process presented in 

(usually dimensionless) equations to relate the main response parameters (overtopping 

discharge etc.) to key wave and structure parameters. The form and coefficients of the 

equations are adjusted to reproduce results from physical model (or field) measurements of 

waves and overtopping (Pullen et al., 2007). 

 

The main parameter in the overtopping process is the mean overtopping discharge q (m
3
/s per 

m width or in practical applications l/s per m width), which is easy to measure in a laboratory 

wave flume or basin. Most of the other parameters are in some way related to this overtopping 

discharge. Very often the empirical methods or formulae are applicable for typical structures 

only, like smooth slopes (dikes, sloping seawalls), rubble mound structures or vertical 

structures (caissons) or walls.  

 

The principal formula used for wave overtopping is (Pullen et al., 2007):  

 
 

     
 

=       
   

   
                     (2.57) 

 

It is an exponential function with the dimensionless overtopping discharge q/(Hm0
3
)
1/2 

and the 

relative crest freeboard Rc/Hm0. This type of equation shown in a log-linear graph gives a 

straight line, which makes it easy to compare the formulae for various structures. For easy 

comparison of different structures, like smooth and rubble mound sloping structures and 

vertical structures for pulsating and impulsive waves, some simplifications will be assumed. 

 

In order to simplify the smooth structure no berm is considered (γb=1), only perpendicular 

wave attack is present (γβ=1), and no vertical wall on top of the structure is present (γv=1). As 

a smooth structure is considered also, γf = 1. This limits the structure to a smooth and straight 

slope with a perpendicular wave attack. The slope angles considered for a smooth slopes are 

cotα = 1 to 8, which means from very steep to very gentle. If relevant a wave stepness of so = 

0.04 (steep storm waves) and 0.01 (long waves due to swell or wave beraking) will be 

considered. The same equation as for smooth sloping structures is applicable for rubble 

mound slopes, but now with a roughness factor of γf = 0.5, simulating a rock structure. Rubble 

mound structures are often steep, but rock slopes may aslo be gentle. Therefore slope angles 

with cotα = 1.5 and 4.0 are considered. 
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Figure 33: Comparison of wave overtopping formulae for various kinds of structures. 

 Source: Pullen et al., 2007. 

 

 
 

Figure 34: Comparison of wave overtopping as function of slope angle. 

Source: Pullen et al., 2007. 

 

Fig. 34 shows the influence of the slope angle on wave overtopping by comparing various 

structures. A vertical structure means cotα = 0. Steep smooth structures can roughly be 

described by 1        3. Battered walls have freeboards 0        1. Gentle slopes have 

roughly       2 or 3. Fig. 34 shows curves for two relative freeboards: Rc/ Hm0 =1.5 & 3.0. 

Steep slopes give the largest overtopping, which reduces for gentler slopes; for a given wave 

condition and water level. Vertical slopes give less overtopping than steep smooth slopes, 

except for a high vertical structure under impulsive conditions.  
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A number of different methods may be available to predict of particular structures (usually 

simplified sections) under given wave conditions and water levels. In theory, an analytical 

method can be used to relate the driving process (waves) and the structure to the response 

through equations based directly on a knowledge of the physics of the process. It is however 

extremely rare for the structure, the waves and the overtopping process to all be so simple and 

well-controlled that an analytical method on its own can give reliable predictions. The 

primary predictions methods are therefore based in empirical methods that relate the 

overtopping response (usually mean overtopping discharge) to the main wave and structure 

parameters.  

 

 
 

Figure 35: Waves characterized by Hs and Tp.  

Source: Pullen et al., 2007. 

 

Experimental evidence has led to the definition of two different "analytical models" one for 

surging and one for plunging waves. 

 
 

     
 

=
     

     
                 

  

                 
  : plunging                         (2.58) 

 

With a maximum of: 

 
 

     
 

=0,2 exp(-2,3
  

       
  : surging                  (2.59) 

 

γb=influence factor for a berm [-], 

γf=influence factor for a roughness elements on a slope [-], 

γβ=influence factor for oblique wave attack [-]. 

 

Furthermore it was observed a dependence of intensity of overtopping depending on the 

conditions of wave breaking on the seabed in front of the breakwater. Two formulations are 

applicable only to ξm-1,0 < 5. 

 

In case of very intense breaking in the seabed in front of the breakwater, wave spectrum is 

relatively flat and without a significant peak. In this case the long waves influence the 

breaking parameter, which is calculated as ξm-1, 0. Overtopping is much more abundant and the 

formula changes as following: 
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For very shallow seabed: ξm-1,0 >5-7   

 
 

     
 

=   2       
  

                        
                  (2.60) 

 

2.6.6.2 Wave-by-wave overtopping volumes  

 

2.6.6.2.1 Wave run-up and number of overtopping waves 

 

This method gives a formula for the run-up distribution as a function of wave conditions, 

slope angle and permeability of the structure. The easiest way to calculate run-up (or 

overtopping percentage) different from 2 % is to take the 2 %-value and assume a Rayleigh 

distribution. The probability of overtopping Pov = Now/Nw (the percentage is simply 100 times 

larger) can be calculated by: 

 

   =
   

  
=               2

  

     
                    (2.61) 

 

Equation 2.61 can be used to calculate the probability of overtopping, given a crest freeboard 

Rc or to calculate the required crest freeboard, given an allowable probability or percentage of 

overtopping waves. The percentage is not the same as the number of overtopping waves or 

overtopping percentage.  The run-up is always a point on a straight slope, where for a rock 

slope or armoured mound the overtopping is measured some distance away from the seaward 

slope and on the crest, often behind a crown wall, Fig. 36 gives the difference. This means 

that Equation 2.61 gives an over estimation of the number of overtopping waves. 

 

 
 

Figure 36: Run-up level and location for overtopping differ. 

Source: Pullen et al., 2007. 
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Fig. 36 shows measured data for rubble mound breakwaters armoured with Terapods, 

Acropode
TM

 or a single layer of cubes (Pullen et al., 2007) for tests performed at Delft 

Hydraulics.Equation 2.61 can be used to predict the number or percentage of overtopping 

waves or to establish the armour crest level for an allowable percentage of overtopping waves. 

 

   =
   

  
=        

    

       
                                   (2.62) 

 

Equation 2.61 will come to more overtopping waves than 2.62. Both estimations together give 

a designer enough information to establish the required crest height of a structure given an 

allowable overtopping percentage.  

 

 
 

Figure 37: Percentage of overtopping waves for rubble mound breakwaters as a function of 

relative (Armour) crest height and armour size (Rc≤Ac). 

 Source: Pullen et al., 2007. 

 

 
 

Figure 38: Mean overtopping discharge for 1:15 smooth and rubble mound slopes. 

Source: Pullen et al., 2007. 
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2.6.6.2.2 Wave-by-wave overtopping volume and Vmax 

 

Wave overtopping is a dynamic and irregular process and the mean overtopping discharge, q, 

does not cover this aspect. But by knowing the storm duration, t, and the number of 

overtopping waves in that period, Now, it is easy to describe this irregular and dynamic 

overtopping, if the overtopping discharge, q, is known.  

Each overtopping wave gives a certain overtopping volume of water, V and this can be given 

as a distribution (see Fig. 30). Equation with two-parameter Weibull distribution describes the 

behaviour quite well.  It has shape parameter, b (based on different and limited data sets), and 

a scale parameter, a. The shape parameter gives a lot of information on the type of 

distributions. Figure 39 gives an overall view of some well-known distributions. The 

horizontal axis gives the probability of exceedance and has been plotted according to the 

Rayleigh distribution. The reason for this is that waves at deep water have Rayleigh 

distribution and every parameter related to the deep water wave conditions, like shallow water 

waves or wave overtopping, directly show the deviation from such a Rayleigh distribution in 

the graph. A Rayleigh distribution should be a straight line in Fig. 39 and a deviation from a 

straight line means a deviation from the Rayleigh distribution. 

  

 
 

Figure 39: Various distributions of overtopping volumes on a Rayleigh scale graph. A straight 

line (b=2) is a Rayleigh distribution. 

Source: Pullen et al., 2007. 

 

The wave distribution can change in Weibull distribution with b > 2, when waves approach 

shallow water and the highest waves break. If  b = 3 this indicates that there are more large 

waves of similar height. The exponential distribution (often found for extreme wave climates) 

has b = 1 and shows that extremes become larger compared to most of the data. Such an 

exponential distribution would give a straight line in a log-linear graph. The average value b 

is equal to 0.75 and has been used for rubble mound structures, which make smooth and 

rubble mound structures easy comparable and distribution very steep. This characterize the 

process with a lot of small wave-by-wave overtopping events and few overflows of large 
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amount (in contrast in physical model we need long measurements, otherwise the 

measurement are underestimate!). 

 

The exceedance probability, PV of an overtopping volume per wave is then similar to: 

 

  =        =         
 

 
     ]                 (2.63) 

 

with: 

 =       
 

   
=        

  

   
=      

 

   
                            (2.64)

  

Equation 2.62 shows that the scale parameter a, depends on the overtopping discharge, q, but 

also on the mean period, Tm, and probability of overtopping, Now/Nw, or which is similar, on 

the storm duration, t, and the actual number of overtopping waves Nw. 

 

Equations for calculating the overtopping volume per wave for a given probability of 

exceedance, is given by Eq. 2.63. The maximum overtopping during a certain event is fairly 

uncertain, as most maximum, but depends on the duration of the event. In a 6 hours period 

one may expect a larger maximum than only during 15 minutes.  

 

The maximum overtopping volume Vmax by only one wave during an event depends on the 

actual number of overtopping waves, N0w, and can be calculated by: 

 

    =             /                               (2.65) 

 

 
 

Figure 40: Relationship between mean discharge q and maximum overtopping volume Vmax in 

one wave for smooth, rubble mound and vertical structures for wave heights of 1.0 and 2.5 m. 

Source: Pullen et al., 2007. 
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3 PHYSICAL MODEL 

 

 

3.1 Overview of hydraulic physical models 

 

3.1.1 What is a physical model? 

 

“A physical model is a physical system reproduced (usually at a reduced size) so that the 

major dominant forces acting on the system are represented in the model in correct proportion 

to the actual physical system”. (Hughes, 1993, 10) 

 

Physical model tests are required where the importance of the assets or the structure is being 

defended is high or when the stability of the structure is not assured by analytical models/semi 

empirical formulas and numerical models. 

 

 They are also employed when: 

 Designs have to be optimised. 

 

 Overtopping is a major parameter of the study (in case of our study). 

 

 Complex phenomena such as wave breaking and wave transmission are analyzed. 

 

 The bathymetry or the structure geometry is complex. 

 

 Transitions between structures / structure sections are to be studied. 

 

 Concrete armour units are employed as primary armour (especially those with 

potentially more brittle failure mechanisms and if a reliable quantification of small 

armour movements is important). 

 

In practice physical modelling procedures in various laboratories vary so far e.g. in wave 

generation  techniques, typically used model storm sequences, wave calibration techniques, 

scaling of short duration loadings, scaling of permeable materials, monitoring of damage, 

quantifying of small armour movements and damage, overtopping analysis, analysis and 

verification procedures, factors of safety etc. That is why the comparison of model results 

between varying laboratories is very difficult (Wolters, 2007). 

 

3.1.2 Types of physical models  

 

There are two fundamental types of physical models used in coastal engineering practice to 

study near shore coastal processes: 

 

1) Fixed - bed models 
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Have solid boundaries that cannot be modified by the hydrodynamic processes outgoing in 

the model. Fixed-bed models are used to study waves, currents or similar hydrodynamic 

phenomena in the laboratory under controlled circumstances. The scaling effects associated 

with fixed-bed models are reasonably well understood and much confidence can be given to 

the results of carefully-conducted fixed-bed model studies. 

 

2) Movable – bed models 

Have a bed composed of material that can react to the applied hydrodynamic forces 

(hopefully in a similar manner as the prototype response). The scaling effects inherent in 

movable-bed physical models used for studying sedimentary problems are not as well 

understood as they are for fixed-bed models. 

 

Both fixed-bed and movable-bed can be whether “short-term” or “long-term”. Short-term 

models examine response of the project or physical system to short duration (hours to days), 

high intensity events, such as storms. Those are far more practical to conduct. Long-term 

models determine system changes that occur over extended time periods (days to years) 

(Hughes, 1993.) 

 

Wave motions can be separated into two logical divisions of physical model: 

a) Short- wave models 

Short waves have wave period between 1 - 20 seconds. Are used to study wind wave and 

swell effects on coastal projects, beaches, and navigation. Gravity waves are defined as short 

waves when: 

 

kh 
 

  
 or 

 

 
  

 

  
          (3.1) 

 

k is a wave number, h is a water depth, L is a wave length, and k and L are related by the 

expression k=
  

 
. 

 

Physical models of short waves are considered to be non-dissipative or fully turbulent. That 

means that wave experience negligible loss due to friction prior to wave breaking; and when 

energy is lost, it is lost entirely trough turbulent dissipation processes, such as associated with 

the breaking mechanism. Studies of such wave models can be conducted in laboratory wave 

tanks with the understanding that the model presents a two-dimensional (2D) viewpoint of the 

wave process, or they can be conducted in wave basins where width is large enough that wave 

can have an oblique approach to the beach and three-dimensional (3D) processes can be 

studied. One of the most important uses of short-wave physical models is in support of 

harbour design (Hughes, 1993). 
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Figure 41: Typical laboratory wave tank, which enables less expensive examination of 

problems. 

Source: Hughes, 1993. 

 

b) Long–wave models 

Long waves have periods ranging between minutes and days and are used to study the effects 

of tides, tsunamis, and other long-period waves on harbours, ports, estuaries and tidal inlets. 

Some coastal engineering projects such as design of a harbour, must evaluate both short and 

long-wave impacts. Generally, both types of wave motion cannot be investigated in the same 

physical model unless the harbour is quite small. 

 

We can divide physical models also by dimensional optimizing: 

 

1) 2D models 

Are used to optimize breakwater cross section(s), usually a typical cross section of the 

investigated structure at the point of maximum wave exposure respectively for the most 

important wave direction. These models are sufficient for the analysis of the interaction 

between waves and the trunk of structures. 

 

 
 

Figure 42: Typical two-dimensional coastal structure model. 

Source: Hughes, 1993. 
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2) 3D models  

This model is used to verify/optimize the roundhead and other 3D features of the breakwater.  

3D physical models are required whenever the structure is three-dimensional or the wave 

action at the structure is significantly oblique (say β> 30°, where β is the angle from the 

perpendicular), short-crested or focussed and in situations with very irregular seaward 

bathymetry. 

 

 
 

Figure 43: Typical three-dimensional coastal structure model in wave basin. 

 Source: http://www.wrl.unsw.edu.au/site/projects/3d-physical-modelling-of-dalrymple-bay-

coal-terminal-apron-widening-queensland/, 20. 06. 2012. 

 

2D and 3D models are often also combined so that the weak interactions (refraction, 

diffraction) are modelled with the 3D model and the strong interactions between waves and 

structure with a 2D model at a larger scale (Wolters, 2007). 

 

3.1.3 Advantages and disadvantages of physical models 

 

In general the advantages of physical models are that they: 

 

 Allow insight into phenomena not yet described or understood. 

 

 Integrate the governing physical processes without simplifying assumptions that have 

to be made for analytical or numerical models. 

 

 Can be used to obtain measurements to verify or disprove theoretical results. 

 

 Can be used to obtain measurements for phenomena so complicated that so far they 

have not been accessible for theoretical approaches. 

 

 Can be used to obtain measurements for extreme conditions not measured in the field. 

 

http://www.wrl.unsw.edu.au/site/projects/3d-physical-modelling-of-dalrymple-bay-coal-terminal-apron-widening-queensland/
http://www.wrl.unsw.edu.au/site/projects/3d-physical-modelling-of-dalrymple-bay-coal-terminal-apron-widening-queensland/
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  High degree of experimental control that allows simulation of varied or sometimes 

rare environmental conditions at the convenience of the researcher. 

 

 Ability to get a visual feedback from the model. 

 

The physical model provides an immediate qualitative impression of the physical processes 

which in turn can help to focus the study and reduce the planned testing (Hughes, 1993).                                                                                                                                                                                                                           

 

Disadvantages of physical model testing: 

 

 Scale effects occur in models that are smaller than the prototype if it is not possible to 

simulate all relevant variables in correct relationship to each other. 

 

 Laboratory effects induced by model boundaries and unrealistic forcing conditions can 

influence the process being simulated (Wolters, 2007). 

 

 Sometimes all forcing functions and boundary conditions acting in nature are not 

included in the physical model, and the missing functions and conditions need to be 

assessed and accounted for in evaluation of model results (e.g. wind shear stresses 

acting on the free surface may generate significant near shore circulation in nature that 

would be absent in any model which included only mechanical wave generation) 

(Hughes, 1993). 

 

 Physical models are undeniably more expensive to operate than numerical models; and 

in situations where the numerical model gives reliable results with engineering 

accuracy, the numerical model is the tool of choice (Hughes, 1993). 

 

3.2 Scaling requirements (for short-wave models) 

 

3.2.1 Scaling laws 

 

 The scale of the model is determined by geometric, dynamic and kinematic similarity.  

 Geometric similarity of a model is given when all geometric lengths Lp in prototype 

have a constant relation to the corresponding lengths in the model Lm: 

 

nL = Lp/Lm                               (3.2) 

 

 Kinematic similarity says that time-dependent processes in the model tm have a 

constant time relation to the processes in nature tp: 

 

nt = tp/tm                              (3.3) 

 

 Dynamic similarity entails that the forces in nature Fp and model Fm have a constant 

relation: 
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 nF = Fp/Fm             (3.4) 

 

Dynamic similarity is the premise that in geometrically similar models time dependent 

processes have kinematic similarity. 

 

Thus for a geometrically similar model the key to a correct representation is dynamic 

similarity. This leads to the typically used scaling laws. Dependent on the importance of the 

individual attacking forces various scaling numbers have been introduced, e.g. Froude (Fr), 

Reynolds (Re), Weber (We), Cauchy (Ca). 

 

  =
 

   
=  

              

             
=  

     

    
                  (3.5) 

 

  =
  

 
       =

      

 
                                             (3.6) 

 

  =
     

 
             (3.7) 

 

  =
    

 
            (3.8) 

 

In which, u is particle velocity (m/s), g gravitational acceleration (m/s²),   kinematic viscosity 

of water (        /      /  ,    density of water (kg/m³),   surface tension (N/m), L 

characteristic length (m),    significant wave height (m),    nominal diameter of the armour 

units (m), E modulus of elasticity (N/m²). 

 

A physical interpretation of the Froude number is that it gives the relative importance of 

inertial forces acting on a fluid particle to the weight of the particle. Requiring that the Froude 

number be the same in the model as in the prototype, i.e., 

 

 
 

   
 

 

=  
 

   
 

 

           (3.9) 

      

Reynolds number is the condition given also by eq.: 

 

 
    

 /  
 

 
=  

    

 /  
 

 
                    (3.10) 

 

Where μ is dynamic viscosity of water in vicinity of breakwater, uw water velocity in the 

vicinity of the cover layer, la characteristic linear dimension of armour unit, ρw mass density 

of water in vicinity of breakwater. 

 

It is based on the characteristic linear dimension of the armour units (usually the mean 

diameter for quarry stone). It is impossible to satisfy completely this criterion at reduced 

scale. However, if the model is conducted at a large enough scale to assure that the flow 

through the primary armour layer remains turbulent, and then this criterion is reasonably well 

satisfied.  However if the flow velocities and the size of the units are small, viscous forces 
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may be greater in the model resulting in a scale effect; therefore, it is the best to operate at 

larger scales when possible. Effects of surface roughness of the armour units in the prototype 

must be the same in the model.  

 

 
  

  
 

 
=  

  

  
 

 
                    (3.11) 

 

Where ξa is characteristic linear dimension of armour unit surface roughness and la 

characteristic linear dimension of armour unit. 

 

The resistance to movement offered by surface roughness in prototype – scale quarry stone or 

armour units is considered negligible. In the model, attempts are made to decrease the relative 

roughness of the structural units by making their surfaces as smooth as possible. If there is 

appreciable friction between armour units in the model, then the model will show higher 

stability than its prototype equivalent. This could lead to potentially unsafe design. 

The condition that states that the relative mass density relationship between armour unit 

material and the prototype must be maintained in the scale model is: 

 

 
  

     
 

 
=  

  

     
 

 
                   (3.12) 

 

Or more simply:  

 

 
  

  
 

 
=  

  

  
 

 
                               (3.13) 

 

This Eq. 3.13 is useful for determining model armour unit mass density requirements to 

represent prototype salt-water breakwaters being tested in fresh-water model facilities.  

 

The armour unit weight scale is obtained simply by taking the prototype-to-model ratio of the 

expression. 

 

    =                                   (3.14) 

 

Where    is armour unit specific weight (=g*ρa), υ armour unit volume and    armour unit 

weight. 

 

For true dynamic similarity the Fr, Re and We numbers must then be the same in model and 

prototype, but this is not always possible. The importance of friction is however often small 

since waves must propagate long distances before bottom friction seriously affects them and 

in the case of drag forces there are ranges of Reynolds numbers where the drag coefficient is 

constant (Wolters, 2007). 

 

Commonly employed scales for physical breakwater models: 

 Breakwater stability: 1:5 – 1:80 (typical 2D: 1:30 – 1:60, 3D: 1:30 – 1:80). 

 

 Forces on solid bodies: 1:10 – 1:50. 
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3.2.1.1 Scaling laws for rubble mound breakwaters 

 

For rubble mound breakwaters the following scaling criteria have to be fulfilled: 

 

a) Overall structural dimensions must be scaled geometrically undistorted in length-

scale. 

 

b) Flow hydrodynamics (waves) need to conform to the Froude criterion. 

The Froude criterion states that inertial forces relative to gravity forces scale, form drag 

relative to gravity forces scale nearly correctly (depends on the form of armour unit, its 

weight, and the size of wave). 

 

c) Turbulent flow conditions have to exist throughout the primary armour layer (satisfied 

reasonably by the     >30000).  

 

d) It is best to operate at larger scales when possible (since viscous forces can be greater 

if flow velocities and units are small). 

 

e) The geometric scaling of the model extends to providing a reasonable approximation 

of the shape and size distribution of the primary and underlayer armour units (Wolters, 

2007). 

 

From the Froude law the following typically used scaling relationships, expressed in terms of 

the length scale factor nL, can be derived: 

 

Table 11: Typically used scaling relationships (Wolters, 2007). 

 

 
 

3.2.1.2 Permeability scaling 

 

In the underlayers and core of model breakwaters, geometric scaling of the material sizes may 

lead to viscous effects because these layers can become less permeable (in our case core 

layer), thus limiting wave-driven flows into the inner layers and increasing the flow effects in 

the armour. Geometric scaling of underlayers and core material could thus be regarded as a 

conservative estimate of armour stability (larger damage and overtopping in the model). 

However, geometric scaling of the material sizes will lead to different values of transmission 

Wave height [m] nH=nL

Time [s] nT=nL
0.5

Velocity [m/s] nu=nL

Acceleration [m/s2] na=1

Mass [kg] nM=np*nL
3

Pressure [kN/m2] np=np*nL

Force [kN] nF=np*nL
3

Discharge [l/s/m] nq=nL
1.5
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and reflection from what occurs at prototype scale (more energy reflected and less 

transmitted). 

 

Where the size grading of the underlayer and core materials are not well-established and 

cannot be assured in the construction, a distorted material size might give over-optimistic 

results for the stability analysis, so that it may be unsafe to apply such a permeability 

correction (Wolters, 2007). 

 

3.2.1.3 Relative densities 

 

When strict geometrical scaling is applied to the armour, the ratio of fluid mass density to the 

immersed mass density of the armour unit mass should be the same both in model and 

prototype. 

 

 =  
  

  
                                              (3.15) 

 

Where ρa is armour unit density and ρw is water density. 

 

A method for compensating for the increased buoyancy of the salt water relative to the fresh 

water used in most scale models is to adjust the weight of the model armour units. The scaling 

requirement is based on preserving the value of a ‘stability parameter’ between prototype and 

model (Hughes, 1993).  
 

3.2.1.4 Stability scaling 

 
In stability scaling, it is ensured that the stability number Ns (Hudson) is the same in model 

and in nature. Stability scaling is of relevance for the toe material and the armour layers. The 

differences in water density (salt water in nature and fresh water in the model) and in the 

armour unit density are accounted for in this parameter. The stability number is defined as: 

 

  =
  

      
                     (3.16) 

 

Where   is relative mass density (Eq. 3.15),    density of armour units (kg/m
3
),    density of 

water (kg/m
3
), Dn,50 nominal diameter of the armour units, based on M50 (m), Hs significant 

wave height (m). Thus the stability of the armour units is modelled correctly when the 

stability number in the model is the same as the stability number in prototype. This is the case 

when: 
  

  =
  

  
=   

      

          
                            (scaling relationship for armour diameter D)                  (3.17) 

 

  =     
 =    

  

  
  

                          (scaling relationship for armour weight W)                    (3.18) 
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Absolute geometric similarity of the dimensions (diameter) of the model armour units is not 

necessarily maintained. Small differences do not significantly affect the results of the model 

experiments (effects on stability and overtopping are generally less than 5-10%) if care is 

taken that the armour geometry is correctly reproduced e.g. the crest elevation should be 

correctly modelled to insure similarity in overtopping. It is however important to ensure that 

the outer envelope of the armour is at the correct level. This may require that the underlayer 

level is adjusted in the model to accommodate (slightly) thicker or thinner armour. 

 

3.2.1.5 Wave overtopping 

 
Model and scale effects in wave overtopping at model scale are induced e.g. by varying slope 

roughness, structure permeability and by wind effects. For smaller armour units and low 

overtopping volumes (q < 1 l/s/m) the combination of model, scale and wind effects can 

increase (Wolters, 2007). 

 

3.2.1.6 Modelling limits 

 
Modelling limits are defined on the one hand by the (maximum) size of the available 

modelling facility and on the other hand by the similarity laws (minimum size). The lower 

limit for the model size is determined for example by the Reynolds number, which must 

always be large enough to guarantee fully turbulent conditions in the model if these are also 

found in prototype. Also the Weber number must be large enough to guarantee no influence 

of surface tension (wave damping) in the model. 

 

3.3 Scale effects in laboratory 

 

Scale effects occur when the employed scaling law does not correctly reproduce the physical 

conditions from prototype at model scale. This can be due to an oversimplification or 

omission of the governing forces in the physical process. The most obvious effect is that 

boundaries in wave tanks constrain the hydrodynamics to be essentially two-dimensional. The 

nonsimilitude of viscous forces and surface tension forces in Froude scaled models can lead to 

scale effects involving wave reflection, wave transmission, wave energy frictional dissipation, 

and wave breaking dissipation. Therefore it is very important to clearly define the study 

objective and to recognize important scale effects to allow an intelligent analysis of a 

particular modelling problem. 

 

To prevent model effects the following provisions should be taken in the layout of the model: 

 

 The model positioning in the wave channel/basin should be such that boundary effects 

are minimized and that the given wave conditions are achieved over the appropriate 

test section(s) and produce the appropriately scaled responses. 

 Wave walls can be applied where appropriate to control energy spreading/diffraction 

effects (due to insufficient wave crest length in the model). A minimum distance 
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between (the end of the) wave walls and the test sections should be guaranteed so that 

no adverse effects due to the wall are experienced on the test section. 

 

 Wave dampers should be used to prevent that (re-) reflections from model boundaries 

distort the incident wave conditions at the structure. 

 

 Structure and measurement equipment should be appropriately fixed to prevent that 

structural oscillations influence the test results. 

 

 The model scale should be as large as possible (Wolters, 2007). 
 

3.3.1 Wave reflection 

 

A not-so-obvious boundary effect is caused by reflection of waves by the wave board. Waves 

are generated and propagate down the wave tank until they reach either a structure or beach 

on the far end. Some wave energy is reflected seaward (toward the board), just as happens in 

nature. But in nature reflected waves continue out into the ocean, whereas in the wave tank, 

they are again reflected (Hughes, 1993). 

 

3.3.2 Wave separation, wave transmission 

 

Incident waves are usually assessed by separating (spectrally) the incoming waves into 

incident and reflected waves. They are based on measuring the incoming waves at several 

closely spaced locations by wave gauges. Typically employed techniques for a near-

horizontal bottom and waves in one direction are three-point for 2D models or more point 

techniques (5-9 points) for 3D models.  

 

3.3.3 Wave breaking 

 

Typically, scale effects due to wave breaking are not specifically considered in physical 

stability modelling. They seem to be low for sufficiently sized models. Scale effects are due to 

the fact that in breaking waves entrained air bubbles are larger in the model because the size is 

determined by surface tension. Also the depth of air entrainment will be greater in the model. 

The total energy budget remains however in similitude (Wolters, 2007). 

 

3.4 Model set-up and model operation 

 

3.4.1 Layout of model 

 

Independent of the chosen model scale is the physical model affected by the artificially 

introduced partitioning of the prototype situation in the model. Often only a section of the 
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prototype situation is modelled. In general the model positioning in the wave channel/basin 

should minimize boundary effects and that the given wave conditions are achieved over the 

appropriate test section(s) and produce the appropriately scaled responses (Wolters, 2007). 

 

3.4.2 Bathymetry (fixed bed) 

 
A correctly reproduced bathymetry ensures realistic wave conditions, i.e. wave dispersion, 

wave refraction/diffraction, shoaling and wave breaking are correctly simulated. The 

bathymetry is usually not modelled in every detail; rather the main bottom contours (isobaths) 

are represented. Special attention should be paid to the bottom contours within 1-2 

wavelengths (1L - 2L) from the structure toe, since those have a paramount influence on the 

wave climate and loading conditions at the structure.  

 

 
 

Figure 44: Bathymetry layout. 

Source: Wolters, 2007. 

 

Bathymetry changes can be expected during storms. Thus an alternative to the use of 

measured profiles in physical modelling could be the use of an adapted profile, based on scour 

and sediment transport estimations, which could present the bathymetry during a storm more 

accurately. Alternatively, as a conservative estimate, a larger water depth could be used 

(Wolters, 2007). 

 

3.4.3 Structure 

 

Rubble mounds are made of sieved or weighed quarry rock. Structural elements (e.g. when 

loading of crest elements is investigated) should be rigid enough to prevent or minimize 

unwanted structural oscillations. If unwanted structural oscillation cannot be prevented it 

should be in a frequency band outside the typical wave spectrum (usually f < 0.01 Hz or f >10 

Hz). 

 

3.4.3.1 Crown walls 

 

The modelling of breakwater crown wall stability (sliding or overturning failure) can be done 

by various methods: 

 

1) Whole body forces can be measured on a section of crown wall using a force table or 

array of force elements. 
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2) Wave pressures on the front face and underside can be summed to determine the 

whole body forces and moments (as we did in our case). 

 

3) The crown wall section can be reproduced at a reduced weight so that the friction 

forces between armour and crown wall are in similitude with the prototype forces. 

 

3.4.4 Waves condition 

 

Extreme water levels are not always the most critical design condition in stability testing. 

Design wave conditions are usually provided for different return periods (typically between 1 

and 100 years return periods) including the significant wave height, the peak or mean wave 

period, the peak or mean wave direction and the duration of the storm (or a number of waves). 

Typically between 500-3000 waves are made to come up with a statistical reliable result test 

durations. Usually applied storm durations of 3-6 hours (in prototype) satisfy this condition. 

Storms are often also simulated as a series of test runs with fixed wave conditions, increasing 

in severity, depending on the likely storm profile. 

 

Wave energy spectra in physical models are usually characterized by their spectral 

parameters. The most commonly used are the significant wave height     and the peak 

period   . The most commonly employed wave spectra are JONSWAP (confined young seas) 

and Pierson- Moskowitz (PM, fully-developed open seas). 

 

3.4.4.1 Long and short crested waves 

 
Both long and short crested waves are employed in physical modelling. Long crested waves 

are generally believed to give conservative results (larger energy input) for damage and wave 

overtopping. Short-crested waves are important if local wave characteristics/phenomena 

around the breakwater are to be investigated and may give more severe local effects.  

 

3.5 Used materials 

 

 Fluid 

 

Fresh water is commonly used in most physical models. 

 

 Armour 

 

The rock gradation is usually provided by the designer. Otherwise, rock gradation and 

established rock sieving curves can be taken from the Rock Manual (CIRIA, CUR, CETMEF, 

2007). Before the model testing the available rock material needs to be checked against the 

required grading curves using typical sieving/screening techniques or by weighing of the 

stone material. If hydraulic stability considerations dictate larger armour units, often 

surpassing the maximum stone sizes the quarry can produce, artificial concrete armour units 
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are used. These exist in various sizes and geometric configurations. Examples include 

Dolosse, Tribars, Tetrapods, CORE-LOCTM, ACCROPODETM, Xbloc®, hollow cube 

blocks (SHEDs or COBs), solid cubes and rectangular blocks etc. 

Structural elements are often constructed of wood, metal, concrete or plastic. Stiff Perspex is 

used when it is important to get a view of current/wave behaviour inside the structure. 

 

3.6 Measurement equipment and measurement procedure 

 

3.6.1 Instrumentation 

 
The employed instrumentation should provide adequate resolution, should be unsusceptible to 

soiling/dirt and be stable under varying temperatures. Current/wave induced structural 

oscillations should not affect the output of the instruments. 

 

Employed instruments are: 

 Wave probes (resistance or capacitance type). 

 

 Directional wave gauges (to determine the wave direction; e.g. composed of a coupled 

velocity (u,v) and wave gauge (η). 

 

 Velocity meters (e.g. electromagnetic gauges, LDV, acoustic Doppler techniques or 

simple step/wave gauges). 

 

 Pressure/force sensors (strain gauges, dynamometer). 

 

 Profilers (for damage assessment; used are profilers of wheel type, acoustic type and 

3D laser scanners). 

 

 Photographic and video equipment. 

 

Among the specified instrumentation, the photographic equipment is the most widely used 

and most versatile. It is used throughout the modelling process to document the model set-up, 

the model operation, the recording of damage and the assessment of wave conditions etc. 

 

3.6.2 Assessment techniques 

 

Depending on the area of instrument application the following assessment techniques are 

used: 

 

 Damage  

Is usually assessed using profilers and/or photographic techniques. Digital overlay techniques 

are employed to assess rock and concrete unit movement. Photographs (taken before and after 

the test) and videos are also used to assess structural/toe stability. 
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 Wave overtopping 

Is usually assessed by collecting the overtopping water in overtopping trays or tanks and 

measuring the overtopped water volume or mass. The number of overtopping events can be 

assessed by a wave gauge at the crest of the breakwater or by continuous water level 

measurements (volume or mass) within the overtopping tray or tank. 

 

 
 

Figure 45: Measurement of wave overtopping using an overtopping tank. 

Source: Wolters, 2007. 

 

 Wave run-up 

Is usually assessed using resistance type wave gauges or step-gauges (pressure sensors 

embedded in the mound slope) and photographic techniques. 

 

 Wave loading 

Pressures are usually measured using pressure sensors installed within the structure. Force 

measurements (and moments) are usually conducted by strain gauges or by averaging 

pressure sensor readings over the given area. For force measurements it is often necessary to 

use suspended/independently anchored sensors or sensor arrays (force frames) to produce 

reliable force estimates. Force sensors are usually only able to resolve global or quasi-static 

forces. Peak loads arising from wave impacts are not measured with this system, as the force 

frame cannot respond quickly enough to peaks of very short durations. Information on wave 

impact loads can generally only be obtained by detailed pressure measurements on the front 

face of the structure (e.g. caisson). Particular attention needs to be taken when uplift 

forces/pressures are measured. Pressure and force sensors can be fragile and are often 

restricted in their applicability (pressure range, temperature, eigen frequency range). 
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Figure 46: Pressure sensors installed inside the wave wall. 

 

 Velocity 

Velocities can be measured by propeller, electromagnetically or using standard wave gauge 

techniques. The entrained air often causes unreliable measurements. In these cases 

conventional techniques, e.g. a series of wave gauges, is a better solution to determine the 

wave celerity. 

 

3.7 Analysis procedures 

 

3.7.1 Data handling 

 

 Usually test results are presented in dimensional form and prototype values in design 

studies. Dimensionless analysis of the most important parameters as basis for 

interpretation of results and their presentation can however give valuable insights into 

the model behaviour. This is especially useful if compared with other relevant tests or 

design guidelines or if data is exchanged between varying partners/facilities. 

 

 Depending on the analysis requirements, filtering of data after acquisition can 

facilitate correct data interpretation. For example, short waves can thus be separated 

from long ones or turbulent fluctuations in the surf zone can be filtered out. 

 

 Statistic/probabilistic analyses are rarely used in physical modelling practice, partly 

due to the limited number of tests performed (and generally no repeat tests). However, 

they become constantly more important in research since many hydraulic (random) 

processes can be best described in this fashion. 

 

3.7.2 Removal of spurious data 

 
The removal of spurious data is an important prerequisite for an accurate data 

analysis/interpretation. This includes the removal from the data of the following: 

 ‘Spikes’ due to instrument problems or data acquisition methods. 
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 Offsets due to the instrument or analogue/digital conversion. 

 

 Slowly varying trends due to instrument drift and changes in water level. 

 

3.7.3 Damage assessment 

 

Two methods are commonly used for quantifying damage in rubble-mound structure models: 

 Counting the number of individual armour units that have been dislodged, or 

 

  Determining the volumetric change in areas where armour units have been displaced. 

 

The method of counting displaced armour units requires some way of identifying those 

armour units that have moved. A common technique is to construct the model structure with 

differently coloured (painted) armour units placed in patterns. Dislodged units will then move 

into a region of a different colour and be easily recognized. The movement can be observed 

and noted, or more conveniently, video and photographic documentation can be used to 

record test results. 

 

Quantifying damage by volumetric change requires that pre-test and post-test profiles of the 

armour slope be measured in a consistent manner for comparison. The test section should be 

surveyed over a set grid with sufficient resolution to determine profile change with reasonable 

accuracy. A ‘damage’ percentage can be defined in a number of different ways. For example, 

damage is defined as the percentage of dislodged armour units to the total number of armour 

units: 

 

  =
          

      
                         (3.19) 

 

In which:  

           (-) is the number of displaced stones and        (-) is the total number of stones in 

that layer (section).  

 

The damage percentage is typically calculated for individual sections. Typically displaced 

stones are stones which are displaced by more than one unit diameter (    ). 

 

3.7.4 Overtopping and wave transmission 

 

The maximum permissible values for wave overtopping and wave transmission depend on 

structure type and the requirements of the designer. They vary with use of the structure, 

exposure etc. The Rock Manual (CIRIA, CUR, CETMEF, 2007), the Coastal Engineering 

Manual (CEM 2006) and the British Standards (BS 6349, 1991) provide possible guideline 

values. For dikes also the TAW (2002) guidelines can be recommended (see Chapter 2.6.5.3). 
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4 LABORATORY TESTING PROCEDURES  

 

 

4.1 Introduction and Motivations 

 

The use of physical model is particularly useful when assessing wave overtopping, as 

overtopping is affected by several factors whose individual and combined influences are still 

largely unknown and difficult to predict.  

 

Wave overtopping at harbour breakwaters transfers wave energy into supposedly protected 

waters, causing larger waves and possible damage or loss of moored boats. Wave walls are 

areas frequently used by people/vehicles and overtopping waves may present a significant 

safety hazard. Many coastal wave walls are designed for a (tolerable) mean discharge to 

overtop the structure over a storm event. Prediction of mean overtopping discharge rates are 

based on empirical formulae fitted to laboratory measurements.  

 

4.1.1 Main objectives  

 

The main objectives of this laboratory research are as follows: 

 To measure the WO (Wave Overtopping) and wave-induced pressures on the wave 

wall.  

 

 To study the influence of various design parameters, crest freeboard (Rc) and length of 

overspill basin (OB) on overtopping discharges. 

 

 To study the influence of various wave parameters (Hm0, T0, γ) on overtopping 

discharges; 

 

The activities conducted in preparation for this thesis were: 

1. Design of experiments. 

 

2. Realization of a physical model and its configurations to be tested. 

 

3. Conducting experiments aimed at measuring the wave overtopping and wave-induced 

pressures. 

 

4. Post processing analysis and reporting. 
 

4.2  Laboratory description  

 

Physical model was installed and tested in the wave flume at the Maritime Engineering 

Laboratory (CoastLab, www.unifi.it/labima) at the Department of Civil and Environmental 

Engineering of Florence University in Italy. The laboratory is operating since 1980 in the field 
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of Maritime and Coastal Engineering. The present work was conducted during the spring 

2012 (Fig. 47). 

 

       
 

Figure 47: Left: Firenze situated on a map. Right: Top view at the Faculty of Engineering of 

Florence. 
Source: www.googlemap.com, 25. 06. 2012. 

 

4.2.1 Wave flume 

 

Wave flume is made entirely of steel and glass with dimensions 47.0 m * 0.8 m * 0.8 m 

(length * width * height). It consists of 39 sectors of size 1.2 m * 0.8 m * 0.8 m (the first 37 

made in glass and steel, the last two in concrete). The bottom, lifted from the floor for 0.5 m, 

is made up of fiber-reinforced prestressed concrete panels with dimensions 1.2 m * 0.8 m * 

0.02 m, one for each sector, easily modifiable in order to reconstruct different profiles of the 

bottom (Fig. 49).  

 

 

 

Figure 48: CoastLab wave flume at the Maritime Engineering Laboratory of Florence 

University. 

 

At one end of the wave flume the wave generator is placed, which consists of a metal 

structure which supports and assists the movement of a wave paddle area, with dimensions 

equal to the internal section of the channel. At the other side a diffuser which performs a 

http://www.googlemap.com/
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curve at 180 ° and collects the water from the last sector is installed, sending it to a pipe 

below the channel which contains the water in the head to it. 

 

       
 

Figure 49: Left: Diffuser at the bottom of the flume. Right: The bottom of the channel. 
 

The wave flume is equipped with a system of generation of waves able to simulate real sea 

states with assigned spectral characteristics and a recirculation bi-directional system, with a 

maximum range of 25 l/s. A butterfly valve and an axial pump allow the operations of 

filling and emptying without any wastage of water due to the presence of an underground 

storage tank in the area in adjacent to the laboratory connected to the flume by means of a 

steel pipe. 

 

4.2.2 Wave generator 

 

The generator consists of a mechanical paddle whose movement is controlled by electronic 

hydraulic system connected by a servo-hydraulic valve and used to assist the movement 

according to a principle of feedback. It reproduces waves with wave heights up to 0.35 m. The 

wave motion is controlled by software based on the technique Deterministic Spectral 

Amplitude Method which allows generating both the sine waves, with time period and 

altitude, which are assigned with wave motion energy spectrum equal to theoretical selected 

e.g.: JONSWAP, Pierson-Moskowitz, Scott-Neuman, Bretschneider, Ochi-Hubble. 

 

The generated signal from digital to analogue conversion is sent to the hydraulic system that 

controls the generator, while the analog capture in real time the level of the free surface is 

performed through the provision of resistive probes along the channel. Random signal 

generated by the generator of the wave motion can be stored and reused to reproduce the same 

state of the sea more than once; once acquired, the signal is analyzed both in the frequency 

domain (spectral analysis) as in the time domain (zero-crossing analysis) to obtain all the 

wave’s characteristic parameters including: Hm0, H1/3, T1/10, Hmax, Hrms, Tm, T1/3, Tp, Tm0,-1, Tm-

1,0. 
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Figure 50: Front prospective of the mechanical part of the wave maker. 

      

4.2.3 Recirculation pump 

 

The wave flume is equipped with a bidirectional recirculation system. A centrifugal pump is 

connected to the pipe located under the channel and four open/closed valves allow to govern 

the system in terms to flow direction and magnitude.  

 

 

Figure 51: Recirculation pump. 
 

4.2.4 Back paddle pump 

 

To allow emptying the portion of the water positioned behind the wave maker in wave flume, 

a centrifugal pump is used, which sucks the water from the back blade putting it in front of it. 

The pump suction discharge can be adjusted by a valve in order to fix the aquatic swing 

behind the blade. 
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Figure 52: Back paddle pump effects. 

 

4.2.5 Wave flume refilling pump  

 

Wave flume is connected by steel pipe to an underground storage tank in the area next to the 

laboratory: a gate valve and an axial pump allow the operations of filling and emptying 

without any waste of water.  

 

4.3 Used instruments 

 

4.3.1 Wave gauges (WG) 

 

Water level measurements through wave flume are defined by resistive wave gauges (WG). 

These instruments are mounted so that their wires are vertical and piercing the water surface 

downward to the lowest wave trough point (i.e. some part of the wire must remain submerged 

at all times). WG are constituted by a current generator, whose ends are connected to two 

wires, not in contact with each other (the circuit is open); when the WG is immersed in water, 

the closure of the circuit and the establishment of a potential difference occurs (ΔV = R∙i) 

proportional to the water level in the flume, measured by a voltmeter placed in the top box of 

the WG (see Fig. 53). Together with the water level variations due to the wave motion also 

the potential difference of the WG varies, which reveals with sampling frequency equal to 20 

Hz, i.e. every five hundredths of a second; the value acquired and provided by the WG in 

Volts must be converted to metric units using the calibration procedure. 

 

Technical notes:  

 Parallel wire: ø = 0.3 mm, 

 

 Oscillator of 4 kHz, 

 

 Output 0 to 10 V, 

 

 Power: ± 15 V, 
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 Support insulator. 

Five capacitive wave gauges are used to measure water surface elevation in the presented 

wave flume. They were used in ascending numerical order starting from the wave maker. The 

first wave gauge (WG 1) has been positioned at a distance 7.72 m from the wave generator, at 

the depth 56 cm (in model scale) to calculate the generated wave, while the remaining four 

WG (WG 2, 3, 4 and 5) were placed in front of the breakwater, at the distance of 28.6 m  to 

28.91 m from the wave maker and at the depth from 23 cm to 21 cm (in model scale) to 

calculate characteristic parameters of the incident wave and measurements of reflection 

parameters (see Table 12). 

 

WG measures of wave motion provide a measure in Volts, which are converted to metric 

units through a linear relationship of the type:  

 

kVV  0
             (4.1) 

 

Where η is measure of the oscillation of the free surface [cm], V is the measure of the 

oscillation of the free surface [Volt], V0 is the intercept of the linear relationship of conversion 

[Volt], and k is the angular coefficient of the linear relationship of conversion. The calibration 

of the wave gauges was checked daily, before starting the tests, using always the same 

calibration. Wave gauges linearity is ascertainable by calibration of the same operation 

performed daily for the whole duration of the tests and described by the following phases: 

 Bring the water level at the SWL in advance for the test. 

 

 Set your PC GANIMEDE for the calibration for each sensor input channel and 

associated acquisition parameters: acquisition range, depth and distance from wave 

maker (see Table 12). 

 

 Bring the WG to the maximum level, wait until the water level has stabilized and 

acquire data.  

 

 Bring WG to a minimum level, wait until the water level has stabilized and acquire 

data.  

 

 Center WG, allow the water level has stabilized and acquire data. 

 

The instruments acquire the level of the free surface with a nominal resolution of 0.1 mm. So 

the calibration of the WG must be repeated if the average error is greater than 0.2 cm, and the 

correlation coefficient of the interpolating straight line is not 1, converting the acquired signal 

from centimetres to volts for three noted levels, we obtain slightly different values from those 

expected. The average of the three differences between expected and calculated values, taken 

in absolute value, is defined as the average error. The immersion depth of WG was 

determined according to the depth of the flume at each gauge and so that the higher wave also 

fits into its range of acquisition and prevent the water level would not be acquired. In fact, if 

the maximum wave is too large a partial signal would be acquired. After setting the range of 

optimum calibration for each WG, these parameters were maintained for all the tests. After 

obtaining the calibration parameters for each WG, the conversion coefficients Volt-cm for the 
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signal acquired by the WG were processed with Matlab software into signals in cm, with a 

frequency of 20 Hz. 

 

  
 

Figure 53: Wave gauges and their electric scheme. 

 

Table 12 : Correspondence between WG and channel, calibration range, depth and distance 

from wave maker (in model scale). 

 

Wave gauges Channel 
Range 

[mm] 

Distance from 

wave maker 

 [mm] 

Depth (in the first calm 30'') 

[mm] 

1 9 200 7718 560 

2 2 100 28062 231 

3 3 100 28362 226 

4 4 100 28662 219 

5 10 100 28912 212 

 

4.3.2 Load cells 

  

Average flow rate of overflow and single wave-by-wave overtopping volumes behind the 

wave wall are measured by collecting the water in a special overtopping tank suspended in 4 

load cells, which acquire the weight of the individual volume of overflow wave, with a total 

resolution of 4 g (500 kg in the prototype). They are type of model TCA load cells, 

manufactured by AEP transducers SRL, of Cognento, Modena, Italy. Overtopping tank has 

been emptied after each launched wave test. 
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Figure 54: Load cell. 

 

4.3.3 Pressure transducers 

 

The measurement of pressures acting along the center line section of the wave wall were 

carried out using five pressure transducers placed inside the wave wall (Fig. 55), which 

acquire with the nominal resolution of 0,01 kg/cm² (10 g/cm
2
, in prototype 0,5 kg/cm

2
) to 

measure the pressures frontally. They are type of the model series 46 X, manufactured by 

Keller, Winterthur, Germany. Metal frame connects the cable with the outside pressure 

transducer surface, where pressures are determined due to wave attacks caused by wave 

maker. Measurement values were acquired and reprogrammed by a PC. 

 

 
 

Figure 55: Pressure transducer. 

    

    
 

Figure 56: Disposition of the pressure transducers on the wave wall (in model scale, cm). 
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4.3.4 Hydrometric tip at nonius  

 

The water levels during the charging and emptying wave flume were determined using a 

hydrometric tip, located at the end of wave flume, at the distance 39.06 m from the wave 

maker (see Fig. 66). The tip is connected to nonius, which guarantees that measured water 

level has error less than 0.05 mm. The measures of water levels were made by sliding 

hydrometric tip along the vertical until the surface of water was not touching the tip, without 

penetrating the surface.  

 

The accuracy of the water level in a wave flume with respect to the target level is important 

for two factors:  

 Correspondence between the model project geometry and the one actually tested. 

 

 Wave attack repetitions at different water levels, may lead to various wave 

characteristics of wave motion, even though we generate always the same wave (input 

signal). 

 

During the calibration phase the water surface must be motionless, and this is possible only 

when the pumping system of back blade is turn off. The back blade pump, in fact, serves for 

emptying the tank at the back of the generator of wave motion; the water sucked is introduced 

forward into the flume and this creates a parasite wave and an increase of water level in the 

flume. Tests were conducted to estimate the magnitude of this parasite wave and increased 

water level in the preliminary phase that proceeded the first session of tests. A signal (of wave 

motion) lasting 20 or 10 minutes was acquired first with the back blade pump turned off, and 

then turned on. This type of test was repeated several times and has allowed us to estimate the 

average differences in level, united with a spectral analysis that has enabled us to evaluate the 

maximum frequency obtained with the various WG and the peak of time period of the 

unwanted wave. 

 

 

 

Figure 57: Hydrometric tip at the nonius. 
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4.3.5 Overtopping tank 

 

Capture system of overtopping water, consists of a tank made out of a yellow rectangular 

plastic tank, with dimensions 40.0 * 35.0 * 10.0 cm (length * width * height) and thickness of 

0.2 cm, hanged on 4 wires which connect overtopping tank with 4 load cells (see Fig. 58).  

Overtopping tank has been positioned as a continuation of the sampler (side), at the back of 

the wave wall. At the installation it was important that the overtopping tank did not touched 

the water surface, as this would contribute to wrong overtopping graphs, as a consequence of 

Archimed force, which could push up the tank and so the exact measurements would be 

smaller than the real one. Overtopping graphs made by Matlab software are summing each 

wave-by-wave overtopping volume and if the tank is acted by Archimed force, this force 

counteracts the sum.   

 

 
 

  
 

 

Figure 58: Overtopping tank for overtopping measurement. 

 

4.3.6 Photo, video 

 

For the realization of photos and video recordings during the execution of tests the following 

equipment was used: 

a)  Compact digital camera, Canon Powershot G9  

 

Technical notes:  

 12.1 megapixel sensor 1/1, 7 "  

 

 6x optical zoom with optical Image Stabilizer  

 

 RAW image recording  

 

 DIGIC III and iSAPS  
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 Face Detection AF / AE / FE 

 

 9-point AiAF and FlexiZone AF / AE  

 

 PureColor LCD II 3.0 "  

 

 ISO 1600 and Auto ISO Shift  

 

 25 shooting modes  

 

 Canon Waterproof Case WP-DC21 

 

b) Video camera,  JVC GZ-MG77E 

 

Technical notes:  

 Dimensions: (W x H x D): 68.0 mm * 69.0 mm * 109.0 mm 

 

 Weight: ~ 370 g (without battery) 

 

 Motorized zoom lens with F 1.2 to 2.0, f = 3.8 to 38.0 mm, with a 10:1 zoom factor 

 

 Filter diameter 30.5 mm 

 

 CCD sensor 1/3.9 "(2.18 million pixels) 

 

 Panel LCD TFT 2.7 "measured diagonally 

 

 Monaural Speaker 

 

 Flash within 2 m 

 

 11 V DC power supply (using the AC adapter), DC 7.2 V (using battery) 

 

 Consumption 4.6 W 

     

 

Figure 59: a) Camera (left); b) Video camera (right). 
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4.4 Scaling requirements 

 

4.4.1 Froude similarity 

 

A geometrical undistorted scale was adopted for the model nL (nL=λm/λp, where λm and λp are 

respectively the linear dimensions of the model and prototype) of:  

 

50
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p

m
Ln





                                           (4.2) 

 

Consequently, the time scale, according to Froude, nT = Tm/Tp and the velocities nV=Vm/Vp 

are equal to: 
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         (4.3) 

 

According to dimensional analysis, assuming the valid Froude similarity, there are valid scale 

relations for the other variables that intervene in the studied phenomenon. Table 13 lists the 

various steps taken to reduce in the physical model.  

 

Table 13: Scales used for reducing the model. 

 

 

4.4.2 Dimensioning breakwater layers 

 

Two-dimensional coastal structure model was constructed in wave flume respect to Froude 

scale law. The blade of wave maker with a water level of 56.3 cm (with a pump on), in front 

of it, can generate a regular wave with maximum height, equal to 30 cm, which is propagating 

on the other side of the flume, dissipates its energy, thus decreasing its wave height to the 

friction with the walls of glass and with the bottom of the channel. 

  

To calculate the maximum height, where the waves are breaking on themselves in relation to 

water depth in front of the structure we use a simplified formula with a general validity: 

 

  =                             (4.4) 
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Where hb is the average depth at wave breaking, γ is the wave breaking index and Hb is the 

breaking height; approximating to first order using the value of γ = 0.78, when the ratio 

between height and depth exceeds this index, the wave breaks. 

 

The choice of the scaling factor has been performed taking into account the constraints of the 

laboratory wave flume and wave characteristics relating to wave motion found in Ligurian 

sea, as follows: 

 

 The scale factor for optimal construction of the model has been identified in 1:50. 

 

 The maximum water level in the flume in front of the generator is 56.3 cm. 

 

 The maximum significant wave height that was generated with wave maker is equal to 

15 cm (H2), with time periods from 1.20 to 1.77 seconds (in model scale). 

 

 Toe of harbour breakwater was located at the depth of -16.06 cm (in model scale). 

 

 Sea bed with a slope 1:38 in front of the harbour breakwater, it changes from a depth 

of approximately -16.06 to - 41.59 cm on a distance of 9.7 m.  

 

 Harbour breakwater berm with a slope of 1:2. 

 

This value is well represented also in guidelines given for international measures to ensure 

technically actual values that would occur in prototype.  

4.4.2.1 Selection parameters 

 

For realization of the harbour breakwater model several materials found in the laboratory 

were used. For material selection and definition of following characteristic parameters of 

rocks granulometric analysis was carried out. 

 

 Nominal diameter is defined as the diameter of a cube that has the same volume as the 

particle and gives us an idea of the physical size of the particle. 

 

 Mean (average), is defined as the average size of the grains of a granulometric 

distribution. 

 

     =    
 
                          (4.5) 

 

 Standard deviation shows how much variation or "dispersion" exists from the average 

(mean, or expected value). A low standard deviation indicates that the data points tend 

to be very close to the mean, whereas high standard deviation indicates that the data 

points are spread out over a large range of values. 

 

http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean
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 =  
     

 
   

   
     where M2 is Moment 2°                             (4.6) 

 

 Skewness, is a measure of the asymmetry of the probability distribution of a real- 

valued random variable. It is sensitive to the presence of queues of finer or bigger 

material. 

 

 
         

 
   

   
   where M3 is Moment 3°                  (4.7) 

 

 Kurtosis, is a descriptor of the shape, compares ranges of extremes of the distribution 

with the central part. 

 

         
 
   

   
   where M4 is Moment 4°                (4.8) 

 

 Characteristic diameters (Dx) are defined as the values of the diameter on the abscissa 

axis, corresponding to the weight percentage (x). E.g. D10 is characteristic diameter for 

the weight equal to 10%. 

 

 Coefficient of uniformity (U) is defined as the ratio between the characteristic 

diameters D60 and D10. Particle sizes are defined monotone for U <2 and variable for 

U> 2. 

 

 =
   

   
                                (4.9) 

 V coefficient is defined as the ratio between the difference of the characteristic 

diameters D85 and D15 and divided with D85. 

 =
         

   
                                (4.10) 

 

The specific gravity of the available material in the laboratory has been preliminary 

determined, which has the same mineralogical characteristics as the rocks, which are (could) 

be actually used for the construction of the breakwater, using the following procedure: 

 

Specific weight: 

 Weighting individual rocks. 

 

 Placing them in a graduated container with a known volume of water. 
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 Placing single rocks in graduated container and measuring the final registered volume: 

 

Vfinal = VH2O + Vrock                      (4.11) 

 

 Evaluating variation of volumes:  

 

ΔV = Vstart – Vfinal                      (4.12) 

 

 Density of the material (mass per unit volume), is defined as the ratio between weight 

(W) and volume change: 

  =  
              

  
                                              (4.13) 

 

Average (mean) of all individual weights (see Table 14). 

 

Table 14: Average of ρs for all rocks. 

 

 
 

For each type of material the porosity with laboratory measurements has also been defined. 

Hereinafter used procedure is reported: 

 

Porosity: 

 Tank with given volume Vtot. 

 

 Fill the container with rocks until the border line. 

 

 Determination of the voids volume Vv by measuring required volume of water, which 

reaches to the level of the border line. 

1 120 0,120 400 445 45 0,045 0,000045 2667

2 175 0,175 400 475 75 0,075 0,000075 2333

3 168 0,168 400 455 55 0,055 0,000055 3055

4 189 0,189 400 470 70 0,070 0,000070 2700

5 128 0,128 400 450 50 0,050 0,000050 2560

6 203 0,203 400 475 75 0,075 0,000075 2707

7 174 0,174 400 465 65 0,065 0,000065 2677

8 239 0,239 400 490 90 0,090 0,000090 2656

9 225 0,225 400 480 80 0,080 0,000080 2813

10 182 0,182 400 470 70 0,070 0,000070 2600

11 263 0,263 400 500 100 0,100 0,000100 2630

12 155 0,155 400 460 60 0,060 0,000060 2583

13 180 0,180 400 470 70 0,070 0,000070 2571

14 235 0,235 400 485 85 0,085 0,000085 2765

15 201 0,201 400 475 75 0,075 0,000075 2680

16 215 0,215 400 475 75 0,075 0,000075 2867

17 205 0,205 400 475 75 0,075 0,000075 2733

18 190 0,190 400 465 65 0,065 0,000065 2923

19 175 0,175 400 470 70 0,070 0,000070 2500

20 197 0,197 400 475 75 0,075 0,000075 2627

Initial Vol. [ml]

AVERAGE 2682

Rocks Weight [gr] Weight [Kg] ρs [Kg/m3]∆V [m3]∆V [l]∆V [ml]Final Vol. [ml]
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 Determination of porosity with the relation: 

 

 =
  

    
                        (4.14) 

 

4.4.2.2 Recommended scaling procedure of core material in rubble mound breakwater 

model test 

 

For the tests on the breakwater section, with the necessity to measure the under stresses on the 

up – structure, the characteristic diameter of the core material in models (d50) is chosen in 

such a way that the Froude scale law holds for a characteristic pore velocity. According to the 

criterion used by Burcharth et al. (1999), this velocity can be chosen as the average velocity 

of the 6 points (see Figure 60). It is important to note that the characteristic pore velocity is 

averaged with respect to time (one wave period) and space (6 points). 

 

 
 

Figure 60: Location for characteristic velocity in the core. 

Source: Burcharth et al., 1999. 

 

For the average diameter of the core material in model scale 1:50, we calculated the filter 

velocity characteristic of the prototype from the following data. 

 

Table 15: Prototype data of the model. 

 

IN PROTOTYPE 

Hs=  7.5 m maximum significant wave 

height on the seabed in front of the 

harbour (about 8 m) 

Tp= 11.5 s period 

Lp= 98 m incident wavelength 

d50= 0.58 m nominal diameter of the 

core 

n= 0.36 core porosity 
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From the equations 4.15 and 4.16 the reference pressure p0,max at the interface filter-core 

and the damping coefficient δ were calculated. 

 

      =    
  

 
                    (4.15) 

 

 =       
  /   

 

   
                    (4.16) 

 

Where n is the porosity of the core material, Lp is the wave length in the vicinity of the 

structure and ρw is the sea water density, the vertical distance below the mean sea level is 

denoted by y. 

 

Table 16: Vertical distances from MWL (in prototype scale). 

 

 
 

For the researching model that does not have any existing prototype we used 

coefficients α = 0 and β = 3.6 seconds Burchart et al. (1999).  

 

The wavelength within the nucleus is: 

 

 L = L   /     L' = 81.38 m                   (4.17) 

 

The pressure gradient and the filtration rate at different points and at different times were 

calculated from the equations 4.18 and 4.19. 

 

  =
 

  

       

  
=  

   

  
 

  
  

        
  

  
  

  

  
        

  

  
  

  

  
                           (4.18) 

    

  =   
   

 
 

  

    
  

 

 
   

   

 
 

 

    
  

 

 
 

 

                   (4.19) 

     

 

 

 

 

 

 

 

 

 

 

 

 

y [m] b[m] P0max [kPa] δ

0 11 38,00 0,98

7,5 33,00 38,00 0,33
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Table 17: Characteristic pore velocity in the prototype. 
 

 

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,285 -0,401 -0,363 -0,187 0,060 0,285 AVERAGE

|U1|[m/s] 0,181 0,215 0,205 0,147 0,083 0,181 0,169

|U2|[m/s] -0,181 -0,215 -0,205 -0,147 -0,083 -0,181 -0,169

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b 0,000

a 8,68

D -9,894 -13,908 -12,615 -6,509 2,082 9,878

sqrt D 3,145 3,729 3,552 2,551 1,443 3,143

c=-Ix 0,285 0,401 0,363 0,187 -0,060 -0,285

At the point  x=0,055,  y =0

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,276 -0,329 -0,257 -0,087 0,116 0,275 AVERAGE

|U1|[m/s] 0,178 0,195 0,172 0,100 0,116 0,178 0,157

|U2|[m/s] -0,178 -0,195 -0,172 -0,100 -0,116 -0,178 -0,157

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b 0,000

a 8,68

D -9,564 -11,428 -8,931 -3,025 4,034 9,554

sqrt D 3,093 3,381 2,988 1,739 2,009 3,091

c=-Ix 0,276 0,329 0,257 0,087 -0,116 -0,275

At the point  x=0,11,  y =0

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,249 -0,258 -0,169 -0,015 0,145 0,249 AVERAGE

|U1|[m/s] 0,170 0,173 0,139 0,041 0,129 0,169 0,137

|U2|[m/s] -0,17 -0,17 -0,14 -0,04 -0,13 -0,17 -0,14

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b -6,509

a 2,55

D -8,659 -8,972 -5,862 -0,514 5,030 8,654

sqrt D 2,943 2,995 2,421 0,717 2,243 2,942

c=-Ix 0,249 0,258 0,169 0,015 -0,145 -0,249

At the point  x=0,  y =0, delta1
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So the average characteristic pore velocity in the prototype is:    p = 0.144 m/s and the 

Reynolds number, which is given by : 

 

   =
     

 
=       

                              (4.20) 

 

The Reynolds number justifies the choice of the coefficients α and β. In accordance with the 

Froude scale law, the characteristic speed in the filter of the model will be given by: 

At the point  x=0,  y =0,15

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,094 -0,246 -0,304 -0,246 -0,094 0,094 AVERAGE

|U1|[m/s] 0,104 0,168 0,187 0,168 0,104 0,104 0,139

|U2|[m/s] -0,10 -0,17 -0,19 -0,17 -0,10 -0,10 -0,14

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b 0,000

a 8,68

D -3,274 -8,552 -10,566 -8,548 -3,268 3,258

sqrt D 1,810 2,924 3,251 2,924 1,808 1,805

c=-Ix 0,094 0,246 0,304 0,246 0,094 -0,094

At the point  x=0,165,  y =0,15

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,201 -0,247 -0,199 -0,074 0,078 0,201 AVERAGE

|U1|[m/s] 0,152 0,169 0,151 0,093 0,095 0,152 0,135

|U2|[m/s] -0,15 -0,17 -0,15 -0,09 -0,09 -0,15 -0,14

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b 0,000

a 8,68

D -6,993 -8,586 -6,903 -2,586 2,718 6,985

sqrt D 2,644 2,930 2,627 1,608 1,649 2,643

c=-Ix 0,201 0,247 0,199 0,074 -0,078 -0,201

At the point  x=0,33,  y =0,15

t 0 0,1Tp 0,2Tp 0,3Tp 0,4Tp 0,5Tp

t 0 1,150 2,300 3,450 4,600 5,750

Ix -0,201 -0,161 -0,059 0,065 0,164 0,201 AVERAGE

|U1|[m/s] 0,152 0,136 0,082 0,087 0,138 0,152 0,125

|U2|[m/s] -0,15 -0,14 -0,08 -0,09 -0,14 -0,15 -0,12

Solution of equation  - Ix+bU+aU^2=0 ax^2+bx+c=0

b 0,000

a 8,68

D -6,976 -5,573 -2,044 2,266 5,710 6,976

sqrt D 2,641 2,361 1,430 1,505 2,390 2,641

c=-Ix 0,201 0,161 0,059 -0,065 -0,164 -0,201

AVERAGE 0,144

Re 75698,88
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  m 
=   p

/   = 0.020 m/s                              (4.21)

         

Trying to use d50 = 0.0116 m, for the core material in the model, by performing the same 

calculations for the prototype, and using the correct coefficients α and β estimated by 

Burchart et al. (1999), the filtration velocity was found to   m 
= 0.013 m / s, which is smaller 

than the previously obtained target by using the similarity of Froude, i.e. 0.020 m/s. Finally, the 

iterative method obtain the value of the characteristic diameter of the 

core components boulders, which respects the Froude similarity, and this value is equal to a 

diameter of d50= 0.016 m, i.e. elements from about 11 g. Thus the ratio of scale to be used 

for the core material will be given by: d50
m

/ d50
p 

= 0.016/0.580 =1:36.3, which results to 

be larger than the ratio 1:50 used for the scale of the lengths in the model. 

Table 18: Results from iterative method to obtain the characteristic core diameter (in model 

scale). 

 
 

4.4.3 Used materials 

 

The materials used for the reproduction of various layers constituting the breakwater have 

been selected as a function of the respective scale factors used. 

 

4.4.3.1 Armour layer  

 

The armour layer of the berm is constituted of natural rocks of IV category, with a weight 

variation from 7 to 12 tons (in prototype scale), arranged in two layers with a porosity of 37% 

and thickness of 6.6 cm. 

 

Data for scaling rocks in smaller scale factor were taken from a port in Liguria, more 

precisely Pietra Ligure port (Cappietti et. al, 2012). And so the following procedure was 

necessary: 

 

            =  
  

  
    

         

       
                                  (4.22) 

 

            =  
 

    
   

           

           
         = 57.12 g   60 g                             (4.23) 

 

 d50
m [m] 0,0116 Characteristic pore velocity in model [m/s] 0,013 Re 133,72

 d50
m [m] 0,012 Characteristic pore velocity in model [m/s] 0,014 Re 147,54

 d50
m [m] 0,014 Characteristic pore velocity in model [m/s] 0,017 Re 218,77

 d50
m [m] 0,017 Characteristic pore velocity in model [m/s] 0,022 Re 334,78

 d50
m 

[m] 0,016 Characteristic pore velocity in model [m/s] 0,020 Re 249,19
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            =  
 

    
   

           

           
   2       = 97.92 g  100 g                          (4.24) 

 

Where ρr rock density, ρw water density, ρw,s density of sea water. 

 

For chosen scale factor 1:50 selected material is included in the range 60 ÷ 100 gr, which 

corresponds to rocks characterized by Dn,50 between 27 ÷ 34 mm. 

 

 
 

Figure 61: Rocks used for armour layer. 

 

Table 19: Calculations for granulometric analysis - Armour Layer. 

 

 
 

Table 20: Characteristic parameters determined by granulometric analysis - Armour layer. 

 

 
 

 

[27 ÷ 28] [28 ÷ 29] [29 ÷ 30] [30 ÷ 31] [31 ÷ 32] [32 ÷ 33] [33 ÷ 34]

27,5 28,5 29,5 30,5 31,5 32,5 33,5

-4,78 -4,83 -4,88 -4,93 -4,98 -5,02 -5,07

1 70 86 107 121 120 66

0,2 12,3 15,1 18,7 21,2 21,0 11,6

0,2 12,4 27,5 46,2 67,4 88,4 100,0

-0,84 -59,25 -73,54 -92,40 -105,47 -105,55 -58,56

0,005 0,186 0,081 0,012 0,010 0,093 0,140

9,3E-04 2,3E-02 5,9E-03 3,0E-04 -2,0E-04 -6,1E-03 -1,5E-02

1,6E-04 2,8E-03 4,4E-04 7,6E-06 4,3E-06 4,1E-04 1,7E-03

Moment 2°

Moment 3°

Moment 4°

Cumulative Freq. 

Moment 1°

Ranges of the classes - Armour Layer

φ

Frequency

Frequency %

D [mm]

Mean  φ Mean  [mm]

-5,0 31,0

Standard Dev. Skewness Kurtosis

0,0726 0,217 1,997

 D10 [mm] D15 [mm] D60 [mm] D85 [mm] D50 [mm] U = D60/D10 [mm] V = D85-D15/D85 [mm]

28,5 28,7 31,1 32,3 31 1,09 0,11
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Hereinafter are reported graphs of granulometric analysis, performed on a sample of 

approximately 1051 random taken stones, which were used in the model. 

 

 
 

 
 

Graph 1: Granulometric analysis for the material constructing the armour layer. 

 

4.4.3.2 Filter layer 

 

The filter layer of the berm is constituted under the main armour layer of smaller natural rocks 

of II category, with a weight variation from 1 to 3 tons (in prototype scale), size between 0.7 

and 1.0 m (in prototype scale) formed in two layers of stones with a porosity of 37% and 

thickness of 4.0 cm (in model scale). This layer builds also berm toe, which is established on -

13.84 cm deep. 

 

            =  
 

    
   

           

           
         = 8.16 g   9 g             (4.25) 
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            =  
 

    
   

           

           
         = 24.48 g    25 g                            (4.26) 

 

For chosen scale factor 1:50 selected material is included in the range 9 ÷ 25 g, which 

corresponds to rocks characterized by Dn,50 between 14 ÷ 22 mm. 

 

 
 

Figure 62: Rocks used for filter layer. 

 

Table 21: Calculations for granulometric analysis - Filter Layer. 

 

 
 

Table 22: Characteristic parameters determined by granulometric analysis – Filter layer. 

 

 
 

Hereinafter graphs of granulometric analysis are reported, performed on a sample of 

approximately 1000 random taken stones from among those used. 

 

[14 ÷ 15] [15 ÷ 16] [16 ÷ 17] [17 ÷ 18] [18 ÷ 19] [19 ÷ 20] [20 ÷ 21] [21 ÷ 22]

14,5 15,5 16,5 17,5 18,5 19,5 20,5 21,5

-3,86 -3,95 -4,04 -4,13 -4,21 -4,29 -4,36 -4,43

352 189 402 155 99 33 24 7

27,9 15,0 31,9 12,3 7,9 2,6 1,9 0,6

27,9 42,9 74,8 87,1 94,9 97,5 99,4 100,0

-107,69 -59,27 -128,93 -50,76 -33,05 -11,21 -8,29 -2,46

0,702 0,058 0,025 0,156 0,292 0,189 0,221 0,093

1,1E-01 3,6E-03 -6,8E-04 -1,8E-02 -5,6E-02 -5,1E-02 -7,5E-02 -3,8E-02

1,8E-02 2,3E-04 1,9E-05 2,0E-03 1,1E-02 1,4E-02 2,6E-02 1,6E-02

Ranges of the classes - Armour Layer

D[mm]

φ

Frequency

Frequency %

Cumulative Freq. 

Moment 1°

Moment 2°

Moment 3°

Moment 4°

Mean  φ Mean  [mm]

-4,0 16,2

Standard Dev. Skewness Kurtosis

0,1318 -0,541 2,843
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Graph 2: Granulometric analysis for material constructing the filter. 

 

4.4.3.3 Core  

 

For chosen scale factor 1:36.3 selected material is included in the range 9 ÷ 13 gr, which 

corresponds to rocks characterized by Dn,50 between 15 ÷ 17 mm. 

 

 
 

Figure 63: Rocks used for core. 
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Table 23: Calculations for granulometric analysis – Core. 

 

 
 

Table 24: Characteristic parameters determined by granulometric analysis – Core. 

 

 
 

Hereinafter are reported graphs of granulometric analysis, performed on a sample of 

approximately 1000 random taken stones from among those used. 

 

 

 

 
 

[15 ÷ 15.5] [15.5 ÷ 16] [16 ÷ 16.5] [16.5 ÷ 17]

15,25 15,75 16,25 16,75

-3,93 -3,98 -4,02 -4,07

294 277 393 156

26,3 24,7 35,1 13,9

26,3 51,0 86,1 100,0

-103,18 -98,37 -141,14 -56,63

0,103 0,006 0,030 0,074

6,4E-03 1,0E-04 -8,7E-04 -5,4E-03

4,0E-04 1,6E-06 2,5E-05 3,9E-04Moment 4°

Ranges of the classes -Core

Frequency %

Cumulative Freq. 

Moment 1°

Moment 2°

Moment 3°

D[mm]

φ

Frequency

Mean  φ Mean  [mm]

-3,99 15,93 0,0461 0,027 1,815

Standard Dev. Skewness Kurtosis
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Graph 3: Granulometric analysis for the material constructing core. 

 

4.4.3.4 Overspill basin (OB) 

 

For chosen scale factor 1:50 selected tetrapods with all dimensions equal to 7 cm are 

included. Tetrapod is a four-legged concrete structure used as armour unit. We used them to 

stabilize OB. The Tetrapod's shape is designed to dissipate the force of incoming waves by 

allowing water to flow around rather than against it, and to reduce displacement. We place 

them into two lines (see Fig. 64), in the first line tetrapods were placed standing with three 

legs leaning down on a filter layer and in the second line, three-legs were in front of wave 

wall to ensure the stability of rocks form armour layer behind. Of course in nature it would be 

difficult to place them exactly like this, due to their weight and sea bed conditions. 

 

 
 

 
 

Figure 64: Placing tetrapods into the model. 

http://en.wikipedia.org/wiki/Concrete
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4.4.3.5 Wave wall 

 

For configurations C4 and C5 we used sticks with dimensions 2.0 cm * 80.0 cm * 3.0 cm 

(height * length * width) in C4 and 1.1 cm * 80.0 cm * 0.4 cm (height * length * width) in C5 

made out of plexiglass to raise the wave wall. 

 

  

 

 
 

Figure 65: Raising the wave wall in configurations C4 and C5. 

 

4.5 Harbour breakwater design and construction 

 

After establishing the scale factor and selection of the material, we proceeded to the 

construction of the physical model in the wave flume. A principal design objective is to 

determine the size and layout of the components of the cross-section. Special attention was 

paid to the construction of the model sections in order to ensure the highest possible accuracy, 

especially by positioning the right elevation of the wave wall crest, from which the number 

and amount of overflowing waves depends in a decisive way. 

 

Harbour breakwater berm toe (see Fig. 66) has been positioned at the distance 32.63 m from 

the wave maker. We have tested 6 different configurations of a model, from those; all have 

been subjected on a single range of sea state.  

 

 
 

Figure 66: Side view of the wave flume with locations of analysed structures (in model scale). 
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4.5.1 Slope angle 

 

Side slopes are generally as steep as possible to minimise the volume of core material and to 

reduce the reach of cranes working from the crest (Palmer at al. 1998). However it may be 

possible to develop a less steep slope if the cranes operate from a barge. In our case the slope 

angle for all the configurations was 2:1 facing to the sea side. 

 

4.5.2 Layer thickness 

 

Armour stability generally increases with an increase in armour layer thickness. Also the 

energy dissipation is better on thicker layer, so overtopping phenomenon would be less 

frequent. Values of thickness remain the same during the tests and are represented in the table 

below. 

 

Table 25: Layer thickness in the model. 

 

 
 

4.5.3 Configuration of cross sections 

 

The configurations (C0, C1, C2, C3, C4 and C5) of the harbour breakwater provided for this 

thesis research have a concrete wave wall with 3 different crown heights and 3 different 

overspill basin widths. For the first 4 configurations C0, C1, C2 and C3 the crown height was 

constant + 9.60 cm, crown height for C4 was 11.6 cm and for C5 10.7 cm (in model scale) 

above the sea level. Overspill basin was added to configurations C1, C2 and C3, with lengths 

form 6.0 cm, 12.0 cm to 18.0 cm. 

 

 
 

Figure 67: Schematic illustration of experiment (in model scale). 

Layer thickness ( in cm, model scale) C0 C1 C2 C3 C4 C5

Armour layer 6,6 6,6 6,6 6,6 6,6 6,6

Filter 4,0 4,0 4,0 4,0 4,0 4,0

Core 15,0 15,0 15,0 15,0 15,0 15,0

Berm toe 2,0 2,0 2,0 2,0 2,0 2,0



 Oset, U. 2012. Laboratory experiments on wave overtopping in harbour breakwaters.  95 
Grad. Th. – University studies. Ljubljana, UL FGG, Department of Civil Engineering 

 

Table 26: Cross section heights at all configurations. 

 

 
 

The heights of the wave wall crest emerged and submerged berm and berm toe were measured 

by bringing the surface of the water in the wave flume tangential. We have made this in four 

points (as shown in upper Table 26) and measured them by the tip to nonius, with the 0.05 

mm accuracy. It is possible to note that the height measurements in the model are affected by 

strong surface irregularities due to rock setting and shapes.  

 

Hereinafter the photographic documentation during phases of model is shown and is so 

representing different stages for constructing starting configuration C0.  

 

 

1) MODEL SEABED 

 

2) PLACING THE CORE 

 
3) PLACING THE SEAWALL 

 

4) PLACING THE FILTER 

 

Height (m.a.s.l. in model scale) C0 C1 C2 C3 C4 C5

Berm fullfilment to a wave wall 9,6 9,6 9,6 9,6 9,6 9,6

Wave wall crest 9,6 9,6 9,6 9,6 11,6 10,7

Toe of the structure from SWL -13,84 -13,84 -13,84 -13,84 -13,84 -13,84

Flume (sea) bottom from SWL -16,06 -16,06 -16,06 -16,06 -16,06 -16,06

Overspill basin (OB) added 0 6,0 12,0 18,0 0,0 0,0
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5) PLACING THE UNDERLAYER OF 

MAIN ARMOUR LAYER 

 

6) PLACING THE SECOND LAYER 

OF MAIN ARMOUR LAYER 

 

 

Figure 68: Construction phases of the harbour breakwater in the wave flume. 

 

All conducted model configurations are presented below in continuous order, like they were 

carried out in our research during spring 2012. 

 

 

 

 

 

 

Figure 69: Configuration C0. 
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Figure 70: Configuration C1. 

 

 

 

 

 

 

Figure 71: Configuration C2. 
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Figure 72: Configuration C3. 

 

 

 

 

 

 

Figure 73: Configuration C4. 
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Figure 74: Configuration C5. 

4.6 Water levels and wave conditions 

 

4.6.1 Water levels 

 

During the tests water level in wave flume (SWL) remained the same. It was 0.8 cm higher 

respect to the initial level with the pump off. SWL on the upper schemes (from Fig. 69 to Fig. 

74) regards to calibrated water level at the beginning of each test, which could sometimes be 

lower than actual SWL, because of the possible loss of the wave flume. 

 

Table 27: Water levels in the wave flume at back blade pump on or off. 

 

 
 

4.6.2 Wave conditions 

 

Wave attacks were chosen in particular to those wave characteristics found in Ligurian sea, 

since University of Florence is often involved in designing Ligurian ports, which are found in 

Italian region Liguria. Wave attacks were random and characterized by a JONSWAP 

Back blade pump WL at the nonius tip [cm] Depth at the wave maker blade  [cm]

On 14,4 56,3

Off 15,2 55,5

Water levels (WL) in the wave flume



100   Oset, U. 2012. Laboratory experiments on wave overtopping in harbour breakwaters.   
Grad. Th. – University studies. Ljubljana, UL FGG, Department of Civil Engineering 

 

 
 

spectrum, with peak incremental factor gamma of 2 or 5. We tested 8 types of different waves 

on 5 different constructions. In total we have performed 40 tests. 

 

The breaker parameter is defined as: 

 

ξm-1.0= 
    

 
   

      
  / 

                     (4.29) 

 

Where α is the slope of the front face of the structure and        being the deep water wave 

length  T     /  
  and Hm0 is wave height.  

 

In first approximation the values of ξm-1, 0 <= 3 are linked to the plunging waves. But we can 

note that attacks in the waves shown are both plunging and surging. Breaking process is 

influenced by the porosity and friction of the wave flume bottom. 

 

4.6.2.1 Preliminary tests 

 

The preliminary tests were carried out between 28
th

 and 30
th

 of March 2012, in order to 

identify and evaluate behaviour of selected waves and improve them if necessary for further 

definitive tests. 

 

 

The most important objectives of preliminary tests are: 

 To assess functioning of laboratory instruments, particularly overtopping 

measurements. 

 

 To evaluate and define wave parameters (and their transformation) from preliminary 

tests for the main tests to execute. 

 

 Identification of main phases of work in order to prepare Check-List that will be 

followed during definite tests. 

 

Experiments carried out during preliminary tests were not the same as definitive tests, there 

are differences as follow: 

 Tests had a duration of 5 minutes. 

 

 Between two followed tests there was not a pause of 20 min completed, to stabilize the 

water level in the flume. 

 

 There were not data of the first 2 minutes of standing water level acquired. 

 

 Only starting configuration, called C0 of a model has been tested. 
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After execution of tests was done, registered data (from WG) was analyzed by Matlab 

program. By analysing each of them, assessment of optimal characteristic parameters (Hm0, 

H1/3, Hmax, Tm0, T1/3, Tp …) for the definitive tests has been done. 

 

Hereinafter the preliminary wave attack parameters are shown, as they were assumed and 

actually measured by WG1 on the starting configuration C0. 

 

Table 28: Assumed and generated parameters of preliminary wave attacks, registered by the 

WG1, for the starting configuration C0. 

 

 
 

Waves attacks marked in orange were selected for the final definitive tests.  

Date Wave Repetition
H_generated 

 [cm]

T_generated 

 [s]

γ  

JONSWAP

Duration 

[min]

H_target 

[cm]

T_target 

[s]

28.3.2012 H10T99G2 A 7,68 0,90 2 5 10 0,99

28.3.2012 H11T99G2 A 7,77 1,00 2 5 11 0,99

28.3.2012 H12T99G2 A 10,16 1,10 2 5 12 0,99

28.3.2012 H12T99G2 B 9,54 1,00 2 5 12 0,99

28.3.2012 H12T99G2 C 10,49 1,00 2 5 12 0,99

28.3.2012 H115T9G2 A 10,41 1,00 2 5 11,5 0,9

28.3.2012 H115T9G2 B 9,83 1,10 2 5 11,5 0,9

29.3.2012 H115T127G2 A 9,30 1,20 2 5 11,5 1,27

29.3.2012 H115T156G2 A 9,62 1,60 2 5 11,5 1,56

29.3.2012 H18T163G5 A 17,04 1,60 5 5 18 1,63

29.3.2012 H17T163G5 A 15,15 1,60 5 5 17 1,63

29.3.2012 H17T163G5 B 15,44 1,60 5 5 17 1,63

29.3.2012 H17T163G5 C 15,48 1,60 5 5 17 1,63

29.3.2012 H17T163G5 A1 15,38 1,60 5 5 17 1,63

29.3.2012 H17T163G5 A2 15,41 1,60 5 5 17 1,63

29.3.2012 H17T163G5 A3 14,99 1,60 5 5 17 1,63

29.3.2012 H12T99G2 A 10,42 1,00 2 5 12 0,99

29.3.2012 H13T99G2 A 10,53 0,90 2 5 13 0,99

29.3.2012 H14T99G2 A 10,63 1,00 2 5 14 0,99

29.3.2012 H16T99G2 A 12,47 1,00 2 5 16 0,99

29.3.2012 H15T106G2 A 11,30 1,10 2 5 15 1,06

29.3.2012 H145T106G2 A 11,30 1,00 2 5 14,5 1,06

29.3.2012 H14T106G2 A 11,77 1,00 2 5 14 1,06

29.3.2012 H14T127G2 A 13,08 1,20 2 5 14 1,27

29.3.2012 H14T156G2 A 14,09 1,60 2 5 14 1,56

30.3.2012 H13T113G2 A 10,20 1,10 2 5 13 1,13

30.3.2012 H14T113G2 A 9,65 1,10 2 5 14 1,13

30.3.2012 H145T12G2 A 13,00 1,20 2 5 14,5 1,2

30.3.2012 H14T12G2 A 12,07 1,20 2 5 14 1,2

30.3.2012 H14T148G2 A 12,59 1,60 2 5 14 1,48

30.3.2012 H135T148G2 A 12,10 1,50 2 5 13,5 1,48

30.3.2012 H14T177G2 A 13,50 1,80 2 5 14 1,77

30.3.2012 H13T177G2 A 12,03 1,70 2 5 13 1,77

30.3.2012 H17T163G5 A 15,06 1,60 5 5 17 1,63
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Table 29: Assumed wave attacks for definitive tests. 

 

 

4.7 Instrument placement 

 

Instrumentation used along the flume for the execution of the tests is as follows:  

 1 tip with nonius, with precision of 1/10 of a millimetre, 

 

 5 resistive wave gauges with the sampling frequency of 20 Hz, 

 

 1 overtopping tank, 

 

 2 samplers (chute) which lead each wave-by-wave overtopping volume to the 

overtopping tank, 

 

 5 pressure transducers for measuring the pressures inside the wave wall, 

 

 1 measuring cylinder for measuring volume from overtopping tank, 

 

 4 load cells. 

 

Table 30: Distances of single tools from the wave maker. 

 

 

Please refer this Table 30 also together with an Attachment A which represents wave flume 

dimensions and instrumentation used. 

 

Hmo  [cm] Tp [sec] Gamma

H1T85G2 12 1,2 2

H1T85G5 12 1,2 5

H1T105G2 12 1,48 2

H1T105G5 12 1,48 5

H1T125G2 12 1,77 2

H1T125G5 12 1,77 5

H2T115G2 15 1,63 2

H2T115G5 15 1,63 5

Model

Tool
Distance from 

wave maker [m] 

WG 1 7,02

WG 2 28,06

WG 3 28,36

WG 4 28,66

WG 5 28,91

Pressure tran. 33,43

Sampler 33,43

Overtopping tank 33,7

Load cells 1 and 2 33,9

Load cells 3 and 4 34,43

Tip at nonius 39,06
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4.8 Test conditions 

 

4.8.1 Definition of wave attacks 

 

Test conditions for the research are characterized by an irregular wave motion, 

representing the sea state with a return period of fifty-years, which must be reproduced for a 

single value of the sea state (water level F1). Definition of the waves (W1, W2, W3 ... W8) 

reported in the previous chapter, has served us to generate wave attacks in the tests. 

 

Each wave attack lasted for an hour, which in nature (in prototype scale) would mean 7 hours, 

since the time in the wave flume is 7 times faster (Froude law). Further on wave attacks 

differed for waves with wave height H1 from those with wave height of H2. So each wave 

attack with a wave height H1 has been divided into 3 wave attacks with the duration of 20.5 

minute, while wave attacks with a wave height H2 has been divided into 6, 10.5 minute long 

attacks. All repetitions of wave attacks have duration of 30 additional seconds, as in the first 

half a minute wave motion is stopped by generator and WG record the zero levels of the free 

surface. In both cases there was always a wave attack with a total duration of about 1 hour, 

characterized by a JONSWAP spectrum with the peak elevation factor gamma 2 or 5 for all 

the waves.  

 

Table 31: Definition of wave attacks. 

 

 

 

Wave Repetition H [cm] T [s] γ JONSWAP Duration [s]

A 12 8,5 2 20 + 0,5

B 12 8,5 2 20 + 0,5

C 12 8,5 2 20 + 0,5

A 12 8,5 5 20 + 0,5

B 12 8,5 5 20 + 0,5

C 12 8,5 5 20 + 0,5

A 12 10,5 2 20 + 0,5

B 12 10,5 2 20 + 0,5

C 12 10,5 2 20 + 0,5

A 12 10,5 5 20 + 0,5

B 12 10,5 5 20 + 0,5

C 12 10,5 5 20 + 0,5

A 12 12,5 2 20 + 0,5

B 12 12,5 2 20 + 0,5

C 12 12,5 2 20 + 0,5

A 12 12,5 5 20 + 0,5

B 12 12,5 5 20 + 0,5

C 12 12,5 5 20 + 0,5

A 15 11,5 2 10 + 0,5

B 15 11,5 2 10 + 0,5

C 15 11,5 2 10 + 0,5

D 15 11,5 2 10 + 0,5

E 15 11,5 2 10 + 0,5

F 15 11,5 2 10 + 0,5

A 15 11,5 5 10 + 0,5

B 15 11,5 5 10 + 0,5

C 15 11,5 5 10 + 0,5

D 15 11,5 5 10 + 0,5

E 15 11,5 5 10 + 0,5

F 15 11,5 5 10 + 0,5

W7

W8

W1

W2

W3

W4

W5

W6
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4.8.2 Test methodology 

 

There were special types of waves tested in order to get better knowledge about parameters in 

which we were interested: 

1. Wave overtopping 

Wave overtopping is affected by many factors: geometry of a structure (model), model 

position in the flume, wave parameters (wave heights, wave periods...). For a good statistical 

analysis it is necessary to have number of events (wave-by-wave overtopping) big enough.  It 

is recommended to extend tests to have minimum of 2000 wave periods (Esposito, 2011). The 

wave period which is provided in the experiments is about 2 s (in model scale) which means 

that the measures of WO must be conducted for at least about 4000 s. Therefore tests duration 

of 60 min = 3600 s is suitable for our purposes. Wave overtopping flow rate is captured by the 

overtopping tank connected to the wave wall by sampler (slide). 

 

Sampler had 2 different entrance widths, 30 cm width for tests with wave height H1 and 

width of 20 cm for tests with wave height H2. The reason to do this were preliminary tests, 

which showed us, that in case of higher waves (H2) the quantity of water that overflowed the 

wave wall crown was too big for load cells capacity and overtopping tank to receive it. The 

same argument explain us also decision why have we chosen 2 different durations of the tests, 

20 and 10 min. Preliminary tests lasted for 5 min and were made on C0 configuration, which 

in comparison to the others should be the least harmful, so when dimensioning the others we 

consider this fact very carefully. 

 

2. Pressures at the surface of wave wall 

The measurement of pressures installed along the center line section of the wave wall were 

carried out using five pressure transducers placed inside the wave wall, which acquire with 

the nominal resolution of 0,01 kg/cm² (10 g/cm
2
, in prototype 0,5 kg/cm

2
) to measure the 

pressures frontally in different points.  Graphs recorded distribution of pressures at each 

pressure transducer (in bar) during the test. Measures are in bars, 1 bar is 100000 Pa, which is 

100000 N/m
2
, a measure of force (load) per unit area. 

 

3. Reflection  

Wave gauge data with the sampling frequency of 20Hz have calculated wave reflection 

coefficients (Hi, Hr, Kr), which are important measures of the effectiveness of wave wall 

protection.  

4.8.3 Test nomenclature 

 

Each test done was identified with a code constructed according to different variables of the 

test. 

 

For example: H1T085G2AF1C0 

 

http://en.wikipedia.org/wiki/Force
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Where: 

 H1 indicates wave height (H1 > Hm0 = 12.0 cm, H2 > Hm0 = 15.0 cm), 

 

 T085 indicates wave period (Tp,085 = 1.2 s, Tp,105 = 1.48 s, Tp,115 = 1.63 s Tp,125 = 1.77 

s), 

 

 G2 peak elevation factor of JONSWAP spectrum (γG2 = 2.0, γG5 = 5.0), 

 

 A repetition of the test (A, B, C or A, B, C, D, E, F), 

 

 F1 water level in the wave flume at the nonius tip equal to 14.4 cm (pump on), 

 

 C0 configuration of the model (C0, C1, C2, C3, C4, C5). 
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5 ANALYSIS AND RESULTS 

 

 

5.1 Analysis structure  

 

Table 32: Analysis procedure. 

 
Structure of the experimental data 

1. Experimental 

Launch wave attacks, check whether experiments 

were accurate. In case of correct experiment, 

continue with analysis as shown bellow, 

otherwise repeat the experiment. 

 

2.  I. Level analysis 

Put testing data in chronological order in 

“Esperimenti” in subfolder of the day: “11-04-

12”, “12-04-12”... “02-05-12”. 

                       INPUT 

 

Run Matlab from 

 “FileMatLabPerAnalisiDati”: FILE.mat 

 

                                              OUTPUT 

 

OUTPUT data saved again in Folder of the day 

in Subfolders: “Figure” and “Dati Calibrati”  

 

 

 

OUTPUT Analysis 

3.  II. Level analysis 

 Study of processes 

“INPUT” folder: All data taken from I. Level 

Analysis from Folder of the day: 

“H1T085G2AF1C0.dat”, 

“H1T085G2BF1C0.dat” (for Cells, Pressure 

transducer and Calibration dates) ... 

 

 
                                             

                                            INPUT 

 

Run Matlab from 

 “FileMatLabPerAnalisiDati”: FILE.mat 

                                              

                                            OUTPUT 

 

OUTPUT data saved in Subfolder “Figure”, 

“H1T085G2F1C0-Riflessione”.dat, 

“H1T085G2F1C0Overtopping”.dat and 

“H1T085G2F1C0ParametriCaratteristici”.dat 

 

 

 

OUTPUT Analysis 

 

A series of tests were executed in a wave flume (described in Chapter 4.2.1) after water level 

stabilization in the flume and calibration of wave gauges were made. Sample of Check-list 

(see Attachment C) with a special procedure for executing tests has been followed each day. 

 

Brief description of test procedure:  

 Turn on computers (PC GENERATORE and GANIMEDE), load cells and pressure 

transducers. 

 

 Create the folder of the day, folders figures and calibrated data on computer 

GANIMEDE, while on PC GENERATORE create only folder of the day. 
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 Place the nonius hydrometric tip on the depth position F1 with the pump off, wait and 

check that the free surface in the channel is tangent to the hydrometric tip, otherwise 

input or output the water. 

 

 Calibration procedure of wave gauges. 

 

 Turn on the pump at the back blade, connect overtopping tank to the load cells, put 

500 ml of water inside and wait for the time necessary for the stabilization of the water 

level in the flume.  

 

 Start the program of load cells and pressure transducers then perform calibration for 

both. 

 

 Launch wave attack, start the acquisition of load cells and pressure transducers, turn 

on the spotlight and start filming the video. 

 

 At the end of each repetition: stop recording the video, stop load cells and pressure 

transducers program,  register accumulated  overtopping volume from overtopping 

tank, and transfer the file that has just been acquired.  

 

 Analyze transferred file by Matlab software and complete data base and report (see 

Attachment E) in the meantime. 

 

 Analyze the graph of overtopping volume and create a table showing corresponding 

cumulative wave-by-wave overtopping volumes. 

 

 Wait for stabilization of the water level inside the wave flume before launching the 

next wave attack.  

 

 Always control the water level, in case of any changes repeat the calibration. 
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Table 33: Scheme of wave attacks performed in laboratory from 03.04. – 02.05.2012. 

 

 
 

5.2 I. level analysis 

 

I. level analysis was carried out to investigate the wave performance, by calculating its 

characteristic parameters, wave-by-wave overtopping volumes and pressure stresses through 

analysis of data acquired with different instruments immediately after each test execution. 

Due to this fact, three measuring systems have been deployed: 

1. Wave measuring system, 

 

2. Overtopping measuring system and 

Date Wave Rep. Structure Date Wave Rep. Structure

3.4.2012 H1T85G2 A, B, C C0 17.4.2012 H2T115G5 B, C, D, E, F C3

3.4.2012 H1T105G2 A, B, C C0 17.4.2012 H1T125G2 A, B, C C3

4.4.2012 H1T85G2 A C0 17.4.2012 H1T125G5 A, B, C C3

4.4.2012 H1T125G2 A, B, C C0 17.4.2012 H1T105G2 A C3

4.4.2012 H1T85G5 A, B, C C0 18.4.2012 H1T105G2 B, C C3

4.4.2012 H1T105G5 A, B, C C0 18.4.2012 H1T105G5 A, B, C C3

4.4.2012 H1T125G5 A, B, C C0 19.4.2012 H1T85G2 A, B, C C3

5.4.2012 H2T115G2 A, B, C, D, E, F C0 19.4.2012 H1T85G5 A, B, C C3

5.4.2012 H2T115G5 A, B, C, D, E, F C0 19.4.2012 H1T85G2 A, B, C C4

10.4.2012 H2T115G2 A, B, C, D, E, F C1 19.4.2012 H1T85G5 A, B C4

10.4.2012 H2T115G5 A, B, C, D, E, F C1 20.4.2012 H1T85G5 C C4

10.4.2012 H1T125G5 A, B, C C1 20.4.2012 H1T105G2 A, B, C C4

10.4.2012 H1T125G2 A C1 20.4.2012 H1T105G5 A, B, C C4

11.4.2012 H1T125G2 B, C C1 23.4.2012 H1T125G2 A, B, C C4

11.4.2012 H1T105G5 A, B, C C1 23.4.2012 H1T125G2 A, B, C C4

11.4.2012 H1T105G2 A, B, C C1 23.4.2012 H1T125G5 A, B, C C4

11.4.2012 H1T85G5 A, B, C C1 23.4.2012 H2T115G2 A, B, C, D C4

11.4.2012 H1T85G2 A, B, C C1 24.4.2012 H2T115G2 E, F C4

12.4.2012 H1T85G2 A, B, C C2 24.4.2012 H2T115G5 A, B, C, D, E, F C4

12.4.2012 H1T85G5 A, B, C C2 24.4.2012 H2T115G2 A, B C5

12.4.2012 H1T105G2 A, B, C C2 26.4.2012 H2T115G2 C, D, E, F C5

12.4.2012 H1T105G5 A, B, C C2 26.4.2012 H2T115G5 A, B, C, D, E, F C5

12.4.2012 H1T125G2 A, B C2 26.4.2012 H1T125G2 A, B C5

13.4.2012 H1T125G2 C C2 27.4.2012 H1T125G2 C C5

13.4.2012 H1T125G5 A, B, C C2 27.4.2012 H1T125G5 A, B, C C5

13.4.2012 H2T115G2 A, B, C, D, E, F C2 27.4.2012 H1T105G2 A, B, C C5

13.4.2012 H2T115G5 A, B, C C2 27.4.2012 H1T105G5 A, B, C C5

16.4.2012 H2T115G5  D, E, F C2 27.4.2012 H1T85G2 A C5

16.4.2012 H2T115G2 A, B, C, D, E, F C3 2.5.2012 H1T85G2  B, C C5

16.4.2012 H2T115G5 A C3 2.5.2012 H1T85G5 A, B, C C5
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3. Pressure measuring system. 

 

I. level analysis estimated also whether working of measuring instruments is properly. The 

results of this analysis were summarized in the Daily report of the tests. 

 

Results of one daily report from 18
th

 April 2012 of the test H1T105G2CF1C3 will be 

represented in the following subchapters (see Attachment E). 

 

5.2.1 Calibration procedure  

 

At the beginning of daily experiments, calibration procedure of WG has been made. Water 

level depth at the back blade (with the pump switched off) must be 55.50 cm (15.20 cm at the 

nonius tip) before calibration procedure can be started. This procedure allows verifying both 

the accuracy of the calibration and the existence of any possible error in measuring 

instruments. Detailed WG calibration process is described in Check list in Attachment C.  

 

Brief description of calibration procedure:  

 Run the calibration program from PC GENERATOR. 

 

 Select corresponding wave gauges channels to calibrate from 1 to10. 

 

 Enter range of calibration, distance from back blade and depth for each of five WG. 

 

 Bring WG to maximum level, minimum level and finally centre them, after each 

movement wait for stabilization of the water level and then register levels. 

 

 Analyze the calibration file by Matlab’s program and note possible deviations found 

during calibration.  
 

 Matlab program “VerificaCalibrazione” loads the file of calibration levels in 

correspondence between wave gauges and channels, than execute calibration of each 

WG and turns results as seen in Table 34 and graphs in Graph 4 and 5. 

 

Hereinafter results obtained from calibration of wave gauges for the day 18
th

 of April 2012 is 

shown.  

 

Table 34: Calibration parameters for each wave gauge [cm] = [Volt] A + B. 
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Five wave gauges have been set up to return the same tension value corresponding to equal 

water level. With this procedure the linearity should also be ensured throughout all acquisition 

range. Calibration of the WG must be repeated if the average error is greater than 0.2 cm. 

Since the correlation coefficient of the interpolation line is not 1(in centimeters), acquired 

signal is converted in Volts for three known levels then slightly different values from those 

expected are obtained. Average of three differences between expected and calculated values, 

taken in absolute value, is defined as an average error. 

 

 
 

Graph 4: Results for WG1, WG2 and WG3 calibrations on 18
th

 of April 2012. 
 

 
 

Graph 5: Results for WG4 and WG5 calibrations on 18
th

 of April 2012. 
 

5.2.2 Wave gauges registration  

 

Wave gauges immersion depth was determined according to the wave flume depth, at each 

WG location and in such a way that the wave heights fall within the acquisition range. 

 

5.2.2.1Time level series 

 

Program “Labview” has been set during experimental session to acquire water level in the 

wave flume for the first 30 sec of the test (10 + 0.5 min or 20 + 0.5 min) with a stopped wave 

maker. That is how water level elevation respect to previously determined water level from 

calibration was recorded. Water level elevation appeared due to ignition of the back blade 

pump. The signal acquired during the first 30 seconds was analyzed by Matlab program, 
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which returned a string with values of “new” zero and a string with the standard deviation of 

the recorded signal during the acquisition for the first 30 seconds for each WG. These data 

reveal both proper functioning of WG and the actual calm sea state in the wave flume, which 

is necessary to perform accurately desired wave attacks. 

 

Hereinafter examples of graphs relating to acquired time - elevation signals by each WG for 

test H1T105G2CF1C3 are reported. 

 

 
 

Graph 6: Time level series at WG1, WG2 and WG3 for the test H1T105G2CF1C3. 
 

 
 

Graph 7: Time level series at WG4 and WG5 for the test H1T105G2CF1C3. 
 

5.2.2.2 Amplitude spectrum 

 

Spectral analysis was conducted by mean spectral measurements of 21 samples with 1024 

elements and frequency resolution equal to 0.0010 Hz. 

 

Hereinafter examples of graphs for amplitude spectrums at each WG for test 

H1T105G2CF1C3 are reported. 
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Graph 8: Amplitude spectrum at WG1, WG2 and WG3 for the test H1T105G2CF1C3. 

 

 

 

Graph 5.6: Amplitude spectrum at WG4 and WG5 for the test H1T105G2CF1C3. 

 

Wave spectrums with a second smaller peak are characteristic for breaking waves. Some 

values of S(f) for amplitude spectrum graphs were bigger than the limit 60 cm
2
*s, so in the II. 

level analysis the axis S(f) has been extended. 

 

5.2.2.3 Wave heights zero crossing distribution  

 

 
 

Graph 9: Wave heights distribution at WG1, WG2 and WG3 for the test H1T105G2CF1C3. 
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Graph 10: Wave heights distribution at WG4 and WG5 for the test H1T105G2CF1C3. 

 

5.2.2.4 Reflection analysis 

 

Parameters used in reflection analysis: 

 Kr - reflection coefficient of the incident wave at the harbour breakwater’s toe, 

measured by WG2, WG3, WG4 and WG5, 

 

 Hi – incident wave height [cm] measured by WG2, WG3, WG4 and WG5, 

 

 Hr – reflected wave height [cm] measured by WG2, WG3, WG4 and WG5. 

 

Hereinafter examples of reflection parameters, graphs of total effective spectrum, incident 

spectrum and the reflected spectrum extracted from wave attack H1T105G2CF1C3 are 

shown.  

 

Reflection parameters were obtained between pairs of WG2 – WG3, WG3 – WG4 and WG4 

– WG5. 

 

Table 35: Reflection coefficients analysis according to Goda and Suzuki (1976). 
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Graph 11: Graphs for total effective spectrum, incident spectrum and the reflected spectrum 

extracted from the wave attack H1T105G2CF1C3. 
 

5.2.2.5 Wave characteristic parameters  

 

Wave characteristic parameters: 

 Hm0 – incident wave height at harbour breakwater’s toe, measured by WG2, WG3, 

WG4 and WG5 [cm], 

 

 Tp – peak wave period recorded in front of harbour breakwater, measured by WG2, 

WG3, WG4 and WG5 [s], 

 

 H1-3 – significant wave height [cm], 

 

 Hmax – maximum wave height [cm], 

 

 Hm – mean wave height [cm], 

 

 Tm – mean wave period recorded in front of harbour breakwater, measured by WG2, 

WG3, WG4 and WG5 [s], 

 

 N – number of zero crossing waves. 

 

Table 36: Characteristic wave parameters for 20 + 0.5 min long wave attack 

H1T105G2CF1C3. 
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 5.2.3 Wave overtopping analysis 

 

For accurate measurements of overtopping volumes 500 ml of water inside the overtopping 

tank before calibration of the load cells at the beginning of each test was put, that meant the 

zero value for load signal acquisition. Load signal has been acquired with a precision of 0.02 

g. When test was finished accumulated overtopping volume from overtopping tank (in litres), 

without the starting 500 ml has been measured and registered in Data base and Daily report 

(see Attachment E). 

 

Furthermore Matlab’s program “Overtopping” has been launched and then overtopping graph 

in time history has been analysed by creating a table with 2 columns, one showing serial 

number of overtopping events and the other corresponding accumulated volumes read from 

the graph. Finally accumulated volume measured from overtopping tank was transformed into 

discharge in prototype scale and mean discharge was calculated.  

 

      
 

Graph 12: Graph Overtopping time history for the test H1T105G2CF1C3 (left). Table of 

wave-by-wave overtopping volumes for the same wave attack (right). 

 

Overtopping graph has some irregularities, such as long vertical lines, which occur due to fast 

and big wave-by-wave overtopping events and are caused by Archimedes force on 

overtopping tank, which leans on the water surface.  

 

Measured accumulated overtopping volume from overtopping tank without the starting 500 

ml for this wave attack was 0.67 l with approximately 20 wave-by-wave overtopping events. 

With the following formula prototype discharge has been calculated: 

 

                       /  =
                                   

                                   
            

 

        (5.1) 

 

Where: 

 Sampler width has values of 0.3 or 0.2 m. 

n.° Session
Steps wave by wave 

o. v. [l/m]

Single wave by 

wave o. v.  [l/m]

1 0,01 0,01

2 0,27 0,26

3 0,36 0,09

4 0,47 0,11

5 0,54 0,07

6 0,58 0,04

7 0,79 0,21

8 0,84 0,05

9 0,97 0,13

10 1,01 0,04

11 1,15 0,14

12 1,18 0,03

13 1,19 0,01

14 1,31 0,12

15 1,56 0,25

16 1,63 0,07

17 1,73 0,10

18 1,87 0,14

19 1,94 0,07

20 2,08 0,14

C
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 Test duration is 20 or 10 min. 

 

 Model scale is 1:50.  

 

Table 37: Accumulated overtopping volume in model and prototype scale for 

H1T105G2F1C3. 

 

 
 

Accumulated volume recorded by load cells was always smaller than the one measured. The 

reason for this is that the load cells time acquisition finishes before waves stop attacking the 

harbour, since even after back blade stops, waves are still travelling towards the construction. 

In this example overtopping volume measured from overtopping tank was 0.67 l and volume 

measured by load cells was 0.64 l.  

 

Table 38: Overtopping discharges with mean values measured directly from overtopping tank 

(in prototype scale). 

 

 

Volume model 

(from overtopping 

tank) [l]

Prototype 

capacity 

[l/s/m]

Volume 

model (from 

cells) [l]

0,67 0,71 0,64

C0 C1 C2 C3 C4 C5

A 0,36 0,38 0,21 0,23 0,19 0,29

B 0,32 0,41 0,37 0,36 0,18 0,22

C 0,40 0,39 0,28 0,29 0,22 0,23

Mean 0,36 0,39 0,28 0,29 0,19 0,25

A 0,32 0,34 0,16 0,27 0,14 0,23

B 0,34 0,45 0,33 0,24 0,19 0,18

C 0,42 0,51 0,44 0,40 0,18 0,34

Mean 0,36 0,43 0,31 0,30 0,17 0,25

A 1,53 1,26 1,26 0,88 0,50 0,88

B 0,69 0,64 0,72 0,38 0,45 0,56

C 0,75 0,91 0,88 0,71 0,59 0,67

Mean 0,99 0,94 0,95 0,65 0,51 0,70

A 1,71 1,30 1,14 0,94 0,56 0,82

B 1,25 0,86 0,86 1,01 0,79 1,05

C 1,42 0,72 1,04 0,77 0,53 0,81

Mean 1,46 0,96 1,01 0,91 0,63 0,89

A 1,80 0,99 1,43 1,09 0,78 1,29

B 2,01 0,74 1,55 1,11 1,11 1,49

C 2,05 1,25 1,68 1,11 1,57 1,02

Mean 1,95 0,99 1,56 1,11 1,15 1,27

A 2,38 1,32 1,95 1,30 1,66 1,61

B 2,39 1,18 1,25 0,84 1,51 1,18

C 3,25 1,51 1,69 1,69 2,07 3,32

Mean 2,67 1,33 1,63 1,28 1,75 2,04

A 2,29 2,25 2,32 1,30 2,74 4,02

B 3,78 1,91 2,37 1,56 1,92 2,32

C 2,60 1,28 1,27 0,90 2,11 1,91

D 2,70 2,34 1,84 1,25 2,34 1,73

E 3,85 3,43 3,90 2,77 1,98 2,06

F 6,24 2,98 2,39 1,33 2,39 2,25

Mean 3,58 2,37 2,35 1,52 2,25 2,38

A 3,60 2,51 2,08 1,04 2,69 2,95

B 4,89 2,25 1,73 1,66 3,29 3,90

C 3,33 1,20 2,70 1,79 0,97 1,99

D 5,06 2,69 2,32 2,08 3,80 6,85

E 4,94 1,32 1,59 1,91 2,36 3,21

F 2,53 1,77 1,09 1,39 1,33 1,46

Mean 4,06 1,96 1,92 1,64 2,41 3,39

Wave
Discharge 

prototype [l/s/m]

Configuration

H1T85G2

H1T85G5

H2T115G5

H1T105G2

H1T105G5

H1T125G2

H1T125G5

H2T115G2
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Graph 13: Mean overtopping discharges for all tests depending on configuration type in 

prototype scale. 

 

In general, larger wave-by-wave overtopping discharges for all wave attacks are typical for 

the starting configuration C0, regarding to the graph legend, which is defining the highest 

values of overtopping discharges there. The most effective for wave attacks H1T125G5F1, 

H2T115G2F1 and H2T115G5F1 is configuration C3, with overspill basin of 18.0 cm width 

(in model scale) before the wave wall, where energy dissipates and so smaller quantity of 

water overflow the wall crown. On the other hand for wave attacks H1T085G2F1, 

H1T085G5F1, H1T105G2F1 and H1T105G5F1the most effective configuration is C4 with an 

elevated wave wall of 2 cm (in model scale) respect to starting configuration and full berm, 

which has positive effect on reducing overtopping discharges. For wave attack H1T125G2F1 

the most effective construction is C1 with overspill basin of 6 cm (in model scale). 

 

5.2.4 Wave pressure of impact 

 

The pressures acting along the centre of wave wall were measured by five pressure 

transducers with  a nominal resolution of 0.2 g/cm (0.01 kg/cm
2
 in prototype scale) on an 

impact area of 4.5 cm² (1.13 m
2
 in prototype scale). The frequency of acquisition for all tests 

was set to be equal 1 kHz. 

 

Pressure stresses have been analysed by Matlab program “Trasduttori”. Mean value of the 

frequency (fs) acquired in the first 30 sec was set for zero starting value on the graph Time – 

Pressure. In order to get clearer graph there were not pressure less than 0.0002 bar considered. 

C0

C1

C2

C3

C4

C5

H1T085G2F1

H1T085G5F1

H1T105G2F1

H1T105G5F1

H1T125G2F1

H1T125G5F1

H2T115G2F1

H2T115G5F1

0

1

2

3

4

5

 

Configurations

Mean overtopping discharge for wave attacks in relation to configuration type
p
rototype type [l/s/m]

Wave attack

 

M
e
a
n
 o

v
e
rt

o
p
p
in

g
 d

is
c
h
a
rg

e
 [

l/
s
/m

]

0.5

1

1.5

2

2.5

3

3.5

4



118   Oset, U. 2012. Laboratory experiments on wave overtopping in harbour breakwaters.   
Grad. Th. – University studies. Ljubljana, UL FGG, Department of Civil Engineering 

 

 
 

 

 

Graph 14: Wave pressures acquired by pressure transducers 1, 2 and 3 (top). Pressure 

distribution in frequency of occurrence for transducers 1, 2 and 3 (bottom). 
 

 

 

Graph 15: Wave pressure stresses acquired by pressure transducers 4 and 5 (top). Pressure 

distribution in frequency of occurrence for transducers 4 and 5 (bottom). 
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Pressure transducers 1, 2 and 3 were positioned on the left centre side, in a descending order 

from a wave wall crown, while pressure transducers 4 and 5 were positioned on the right 

centre side in an increasing order. In general and also for example H1T105G2F1C3, bigger 

pressures are found on transducers positioned at the bottom 5 and 1, since wave forces 

increase with water depth (hydrostatic pressure) and effect of overspill basin is obvious and 

are smaller for other transducers lying above. 

 

In some cases malfunctioning of pressure transducers was noted, due to moving of stones in 

front of them or electric shock and therefore bad measurements were acquired. Hereinafter 

example of malfunctioning of pressure transducers can be seen.  

 

 
 

Graph 16: Different types of malfunctioning of pressure transducers offset. 

 

5.2.5 Effective and target values of wave parameters 

 

When the experimental part was done a table with mean effective values of wave parameters 

was made in order to estimate deviations between target and effective values of wave 

parameters. 

 

Table 39: Effective values of Hm0 and Tp for configurations C0, C1 and C3. 

 

 

Hmo,eff  [cm] Tp,eff [sec] Hmo,eff  [cm] Tp,eff [sec] Hmo,eff  [cm] Tp,eff [sec]

2 9,80 1,27 10,80 1,27 10,00 1,25

5 10,68 1,23 11,17 1,24 10,75 1,23

2 11,08 1,50 11,73 1,50 11,51 1,50

5 11,54 1,49 11,72 1,49 11,67 1,49

2 11,47 1,74 11,24 1,74 11,60 1,75

5 11,60 1,75 12,05 1,75 11,45 1,75

2 13,09 1,68 13,16 1,68 13,00 1,70

5 13,33 1,65 13,37 1,65 12,97 1,65

H1T85

H1T105

H1T125

H2T115

Name Gamma
Effective Effective Effective

C0 C1 C2
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Table 40: Effective values of Hm0 and Tp for configurations C4, C5 and C6. 

 

 
 

Effective values of wave height read from WG 2, 3, 4 and 5 are always smaller than target 

one. Assumed value for wave height H1 was 12.0 cm and for H2 was 15.0 cm. On the other 

hand the differences between target and effective values for time period are smaller, in most 

cases effective wave period is bigger or the same as assumed value.  Assumed values for time 

period T85 was 1.2 s, T105 was 1.48 s, T125 1.77s and for T115 was1.63 s. 

 

5.2.6 Problems at I. level analysis 

 

 During I. level analysis one subtest H1T105G2BF1C4 from the day 20
th

 April 2012 

has been lost after already executed analysis. 

 

 As previously mentioned some axes in graphs were too short and therefore all values 

were not included into the graph (Amplitude spectrum, Wave heights distribution and 

Pressure). 

 

 Wave gauges have suffered offset upwards or downwards in some cases (see 

Attachment D – Diary). 

 

 Malfunctioning of pressure transducers was noted, due to moving of stones in front of 

them or electric shock and therefore bad measurements were acquired.  

 

 During executing wave attacks on configurations C1, C2 and C3 with an overspill 

basin, deepening and dislodging of filter stones was noted, since they were directly 

exposed to loads of the waves. 

 

5.3 II. Level analysis  

 

II. level analysis is based on I. level analysis, since parameters obtained in I. level analysis are 

used in developing this one. II. level analysis aims on a research and representation of data 

acquired during the experimental session of wave overtopping phenomenon, pressure 

measurements and reflection. 

 

Hmo,eff  [cm] Tp,eff [sec] Hmo,eff  [cm] Tp,eff [sec] Hmo,eff  [cm] Tp,eff [sec]

2 10,39 1,25 10,55 1,26 10,48 1,26

5 10,97 1,25 10,91 1,24 10,85 1,24

2 11,17 1,50 11,65 1,50 11,41 1,50

5 11,66 1,49 11,95 1,48 11,70 1,48

2 11,67 1,74 11,61 1,78 11,66 1,78

5 11,76 1,77 11,82 1,76 11,80 1,77

2 13,00 1,67 13,17 1,71 13,27 1,70

5 13,04 1,66 13,33 1,66 13,14 1,65

H1T85

H1T105

H1T125

H2T115

Effective

C5

Name Gamma
EffectiveEffective

C3 C4
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For this analysis following procedure has been used:  

 Output data taken from I. level analysis for cells, pressure transducers and calibration 

parameters and put into folder “Input”. 

 

 Prepare folder “Output” and subfolder “Figure”.  

 

 Development of Matlab program (from I. level analysis) by joining all wave attack 

sessions (3 or 6) into one completed unit for each wave attack. 

 

 Running of Matlab program.  

 

 Analysing output data. 

 

Before launching Matlab program there were some problems regarding to lost file for the test 

H1T105G2BF1C4 from the day 20
th

 April 2012. In order to be able to run the program 

without report of an error, I replaced it with a copy of data from section A and rename it by B. 

Doing this kind of analysis of course is not allowed, since sea wave attacks are random 

processes and as so this kind of data in nature is not possible. 

 

Some axes of the graphs were extended: 

 Pressure - Time, pressure axis was extended from 4 to 8 mbar, 

 

 Amplitude spectrum, axis S(f) has been extended from -15 to -20 cm
2
*s.   

 

5.3.1 Overtopping analysis 

 

Wave-by-wave overtopping masses achieved with this laboratory experiments are analyzed in 

order to:  

 To determine the distribution of individual wave-by-wave overtopping masses for 

different configurations and wave attacks. 

 

 To set up the relationship between continuously sampled signal of the overtopping 

detection system and measures taken directly from overtopping tank. 

 

Second level overtopping analysis was carried out in the following steps: 

 Definition of strings names for all tests.  

 

 Data files to be analyzed for each test were created or simply a joining combination of 

measurements for sub tests was made.  

 

 Combination of 3 (or 6) sub tests was made by adding second (and forward) sub test to 

the last value (summed) of the preliminary sub test and so on. In addition first 2 

minutes of acquisition in the second and all subsequent sub tests forward were taken 

away since no overtopping events were present there (waves at that time are still 
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arriving towards the harbour breakwater). New overtopping graphs have duration of 

55.5 min for tests with wave height H1 and 51.0 min for H2. 

 

 Filtration of an overtopping graph was made in order to get a smooth curve with steps 

that will indicate overtopping events. 

 

Result of overtopping analysis is three graphs:  

 Overtopping time history, 

 

 Wave-by-wave overtopping volumes, 

 

 Overtopping volumes distribution.  

 

For easier comparison between volumes in “Overtopping volumes distribution” the same 

number and range of intervals was used, that is 20 classes of range 1/20* Vmax. A study of 

maximum overtopping volume from I. level analysis has been made in order to decide ranges 

of intervals and length of x axis in “Overtopping volumes distribution” and “Wave-by-wave 

overtopping volumes”. Maximum value of 3 l/m for single wave-by-wave overtopping 

volume has been established. 

 

 
 

 
 

Graph 17: Typical output of overtopping analysis for the test H2T115G5F1C4 (up) and 

H1T085G2F1C5 (down) is showed. 
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5.3.1.1 Mean overtopping discharges 

 

Table 41: Mean overtopping discharges q_m calculated by Matlab program (in prototype 

scale).  

 

 
 

Values in green squares represent minimum of mean overtopping discharge q_m for each 

wave attack. 

 

 
 

Graph 18: Mean overtopping discharge qm for all wave attacks in relation to configurations. 

 

%q_m [l/s/m] C0 C1 C2 C3 C4 C5

H1T085G2F1 0.0010 0.0009 0.0007 0.0008 0.0005 0.0006

H1T085G5F1 0.0009 0.0010 0.0008 0.0008 0.0004 0.0006

H1T105G2F1 0.0026 0.0024 0.0025 0.0018 0.0014 0.0019

H1T105G5F1 0.0038 0.0025 0.0026 0.0024 0.0016 0.0023

H1T125G2F1 0.0051 0.0026 0.0042 0.0030 0.0033 0.0038

H1T125G5F1 0.0070 0.0036 0.0043 0.0034 0.0048 0.0061

H2T115G2F1 0.0096 0.0060 0.0063 0.0040 0.0058 0.0063

H2T115G5F1 0.0105 0.0053 0.0051 0.0040 0.0064 0.0086
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Graph 19: Ground plan of mean overtopping discharge graph. 

 

It can be observed that for a smaller wave height H1 where wave periods are increasing from 

T085 to T125 mean overtopping discharges are increasing too.  The relationship between 

peak elevation factors of JONSWAP spectrum γG2 and γG5 in most of the cases, for wave 

attack with the same wave height and period but different peak elevation factor, there is 

bigger mean overtopping discharge for bigger peak elevation factor, for example in wave 

attack H2T115G2F1C0 q_m is 0.0096 l/s/m and in H2T115G5F1C0 q_m is 0.0105 l/s/m. 

 

Table 42: Mean wave-by-wave overtopping volumes calculated by Matlab program (in 

prototype scale). 

 

 
 

Values in green squares represent minimum value of mean wave-by-wave overtopping 

volume for each wave attack. 
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MEAN Wave-

by-wave o.v. 

[l/m]

C0 C1 C2 C3 C4 C5

H1T085G2F1 0,114 0,102 0,112 0,106 0,087 0,089

H1T085G5F1 0,105 0,106 0,108 0,111 0,081 0,090

H1T105G2F1 0,172 0,163 0,183 0,160 0,156 0,148

H1T105G5F1 0,236 0,173 0,194 0,177 0,158 0,159

H1T125G2F1 0,267 0,180 0,244 0,231 0,219 0,215

H1T125G5F1 0,355 0,212 0,247 0,241 0,233 0,315

H2T115G2F1 0,489 0,353 0,435 0,368 0,372 0,364

H2T115G5F1 0,598 0,329 0,374 0,563 0,439 0,497
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Graph 20: Mean wave-by-wave overtopping volume. 

 

Different wave attacks show many similarities in mean wave-by-wave overtopping volumes. 

In general, bigger wave-by-wave overtopping volumes for all wave attacks are typical for the 

starting configuration C0. 

 

The biggest mean values of overtopping at configuration C0 were acquired for wave attacks 

H1T105G5F1, H1T125G2F1, H1T125G5F1, H2T115G2F1 and H2T115G5F1, which means 

that in most cases configuration C0 does not represent the most appropriate harbour 

breakwater. The most effective for wave attacks H1T085G2F1, H1T085G5F1, H1T105G2F1 

and H1T105G5F1 is configuration C4, with an elevated wave wall of 2 cm (in model scale), 

which often stop the stream of water that would continue the path across the wall crest. The 

most effective for wave attacks H1T125G2F1, H1T125G5F1, H2T115G2F1 and 

H2T115G5F1 is configuration C1, with overspill basin of 9.0 cm width (in model scale) 

before the wave wall, where energy dissipates and so smaller quantity of water overtop the 

wall crown. 

 

There are differences between mean overtopping values from I. level analysis and II. level 

analysis noted. In case of wave attacks H1T125G5F1, H2T115G2F1 and H2T115G5F1 the 

most effective in I. level analysis was configuration C3, here as mentioned before for the 

same wave attacks the most effective is configuration C1. Still both configurations have 

overspill basin which is the reason for reduction of overtopping discharge into the tank, due to 

dissipation of wave energy.  Results regarding to configurations C1, C2 and C3 (all with OB) 

demonstrate that the less efficient is configuration C2 with an OB of 12 cm. For all wave 

attacks, except for H2T115G5F, the biggest mean wave-by-wave overtopping discharge is 

acquired for C2 configuration. Differences in mean overtopping discharge between 

configurations C4 and C5 (both with extended wall crest) in wave attacks with smaller wave 

heights are almost negligible (except in case of H1T125G5F1), which brings us to conclusion 
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that when there are small founds, smaller wave wall could be realised. The difference between 

C4 and C5 for H1T125G5F1 is 0.082 l/m, where configuration C4 is more efficient. 

5.3.1.2 Maximum overtopping discharge 

 

Table 43: Max wave-by-wave overtopping volume calculated by Matlab program (in 

prototype scale). 

 

 
 

Values in orange squares represent extreme value of max wave-by-wave overtopping volume 

for each wave attack. 

 

 
 

Graph 21: Max wave-by-wave overtopping volume. 

 

In general, maximum wave-by-wave overtopping discharges for different wave attacks are 

achieved on different configurations.  Maximum wave-by-wave overtopping volume was 

acquired for wave attack H2T115G5F1 at C5 configuration and has a value of 3.27 l/m. 

MAX Wave-

by-wave o.v. 

[l/m]

C0 C1 C2 C3 C4 C5

H1T085G2F1 0,598 0,253 0,225 0,271 0,132 0,172

H1T085G5F1 0,193 0,210 0,258 0,505 0,121 0,129

H1T105G2F1 0,393 0,393 0,448 0,537 0,529 0,428

H1T105G5F1 0,650 0,381 0,492 0,681 0,584 0,536

H1T125G2F1 0,809 0,645 0,754 0,892 0,935 0,750

H1T125G5F1 1,427 0,914 0,817 0,636 0,942 1,646

H2T115G2F1 1,539 1,544 1,664 1,174 1,401 1,157

H2T115G5F1 2,380 1,389 1,331 1,684 2,085 3,27
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Maximum overtopping volume for this wave attack was assumed in advance ,since it has the 

biggest wave height. There is also another wave attack H1T125G5F1 that acquire its 

maximum value on the same configuration C5, with a value of 1.65 l/m. Wave attacks 

H1T085G5F1, H1T105G2F1 and H1T105G5F1 reach their maximum on breakwater 

configuration C3 with an overspill basin of 18.0 cm (in model scale). Wave attacks 

H1T085G2F1 acquire its maximum wave-by-wave overtopping volume at C0 configuration 

and H2T115G2F1 on configuration C1. 

 

Since sea waves follow random behaviour at the next execution of the same wave attacks at 

the same laboratory conditions, there could be maximum values of overtopping for wave 

attacks (with smaller wave heights) reached on any other configurations.  

 

5.3.2 Maximum wave pressure of impact 

 

After review of first level analysis was done, we noticed all pressure data were not included in 

the graph window, so we extended y axis for pressures from 4 to 8 mbar, since most of the 

values are smaller than 8 mbar. 

 

Combination of 3 (or 6) sub tests was made by putting second (and forward) sub test to the 

last value of the preliminary sub test and so on. In addition first 2 minutes of acquisition in the 

second and all subsequent sub test forward were taken away, since waves at that time are still 

arriving towards the breakwater and no wave pressure are present. New graph for single 

pressure transducer has duration of 55.5 min for tests with wave height H1 and 51.0 min for 

H2. 

 

   
 

 

 
 

 

 

 

 
 

 

 
 

Graph 22: Typical output results after joining all sub tests of wave pressures for the test 

H2T115G5F1C0 at transducers 1 and 4 is showed. 
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There are still gaps between sub tests data after joining in some cases. Since the time for 

waves to arrive to the wave wall sometimes is still bigger than 2 minutes.  

 

 
 

Figure 75: Maximum pressure stresses for each pressure transducer, attacked by wave 

H1T085G5F1. 

 

Table 44: Maximum pressures for each wave attack at all configurations. 

 

 
 

Maximum pressures were achieved for wave attacks H1T125G2F1 and H2T115G2F1 as seen 

from the Table 44 above.  

 

 
 

Graph 23: Maximum pressures for each wave attack. 

For all 

configurations
Trasd. 1 [bar] Trasd. 2 [bar] Trasd. 3  [bar] Trasd. 4  [bar] Trasd. 5  [bar]

H1T085G2F1 0.0054 0.0055 0.0043 0.0051 0.0148
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H1T105G2F1 0.0108 0.0098 0.0047 0.0068 0.0083

H1T105G5F1 0.0093 0.0089 0.0114 0.0108 0.0128

H1T125G2F1 0.0106 0.0111 0.0188 0.192 0.0107

H1T125G5F1 0.0136 0.0143 0.0112 0.0086 0.0122

H2T115G2F1 0.1088 0.1089 0.1094 0.1092 0.1090
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The biggest wave force has acted on lower lying pressure transducers 1 and 5. These values 

were achieved for configurations (C3 and C1) with an overspill basin, since wave wall there is 

less protected from direct waves.  There are extremely high pressures seen from results for 

wave attack H2T115G2F1 and max pressure at transducer n. 4 for wave attack H1T125G2F1. 

Maximum value for H2T115G2F1 was achieved at transducer n. 3 of 0.1094 bar, it is not 

excluded the possibility that the transducers did not work properly. 

 

Furthermore maximum pressures for each wave attack and all model constructions are being 

represented. 

 

Table 45: Maximum pressure values for wave attack H1T085G2F1. 

 

 
 

 
 

Graph 24: Max pressures for wave attack H1T085G2F1. 

 

Table 46: Maximum pressure values for wave attack H1T085G5F1. 

 

 

Trasd. 1 [bar] Trasd. 2 [bar] Trasd. 3 [bar] Trasd. 4 [bar] Trasd. 5 [bar]

CO 0.0032 0.0010 0.0025 0.0012 0.0030

C1 0.0050 0.0040 0.0027 0.0051 0.0048

C2 0.0054 0.0029 0.0043 0.0032 0.0062

C3 0.0052 0.0055 0.0030 0.0022 0.0148

C4 0.0030 0.0014 0.0012 0.0010 0.0031

C5 0.0032 0.0010 0.0024 0.0021 0.0027
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Trasd. 1 [bar] Trasd. 2 [bar] Trasd. 3 [bar] Trasd. 4 [bar] Trasd. 5 [bar]

CO 0.0028 0.0007 0.0022 0.0009 0.0025

C1 0.0060 0.0024 0.0012 0.0013 0.0040

C2 0.0059 0.0019 0.0015 0.0021 0.0066

C3 0.0045 0.0037 0.0027 0.0021 0.0077

C4 0.0029 0.0011 0.0020 0.0008 0.0031

C5 0.0045 0.0011 0.0021 0.001 0.0029

H1T085G5F1
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Graph 25: Max pressures for wave attack H1T085G5F. 

 

Table 47: Maximum pressure values for wave attack H1T105G2F1. 

 

 
 

 
 

Graph 26: Max pressures for wave attack H1T105G2F1. 
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Table 48: Maximum pressure values for wave attack H1T105G5F1. 

 

 
 

 

 
 

Graph 27: Max pressures for wave attack H1T105G5F1. 

 

 

Table 49: Maximum pressure values for wave attack H1T125G2F1. 

 

 
 

Trasd. 1 [bar] Trasd. 2 [bar] Trasd. 3 [bar] Trasd. 4 [bar] Trasd. 5 [bar]

CO 0.0051 0.0027 0.0047 0.0029 0.0046

C1 0.0093 0.0089 0.0114 0.0040 0.0072

C2 0.0076 0.0089 0.0038 0.0040 0.0096

C3 0.0057 0.0080 0.0046 0.0108 0.0128

C4 0.0045 0.0031 0.0037 0.0021 0.0051

C5 0.0046 0.0037 0.0012 0.0023 0.0056
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CO 0.0060 0.0039 0.0063 0.0024 0.0054

C1 0.0099 0.0111 0.0090 0.0043 0.0084

C2 0.0106 0.0088 0.0056 0.0069 0.0079

C3 0.0077 0.0067 0.0188 0.1092 0.0107

C4 0.0052 0.0046 0.0042 0.0030 0.0066
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Graph 28: Max pressures for wave attack H1T125G2F1. 

 

Table 50: Maximum pressure values for wave attack H1T125G5F1. 

 

 
 

 
 

Graph 29: Max pressures for wave attack H1T125G5F1. 
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Table 51: Maximum pressure values for wave attack H2T115G2F1. 

 

 
 

 

 
 

Graph 30: Max pressures for wave attack H2T115G2F1. 

 

 

Table 52: Maximum pressure values for wave attack H2T115G5F1. 

 

 
 

Trasd. 1 [bar] Trasd. 2 [bar] Trasd. 3 [bar] Trasd. 4 [bar] Trasd. 5 [bar]

CO 0.0062 0.0043 0.0074 0.0041 0.0057

C1 0.0157 0.0107 0.0053 0.0078 0.0091

C2 0.0083 0.0086 0.0100 0.0088 0.0098

C3 0.1088 0.1089 0.1094 0.1092 0.1090

C4 0.0055 0.0054 0.0057 0.0040 0.0069

C5 0.0059 0.0057 0.0044 0.0034 0.0074
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CO 0.0074 0.0051 0.0080 0.0054 0.0073

C1 0.0136 0.0122 0.0135 0.0089 0.0100

C2 0.0114 0.0140 0.0060 0.0147 0.0136

C3 0.0105 0.0149 0.0059 0.0094 0.0139

C4 0.0066 0.0065 0.0050 0.0046 0.0082

C5 0.0063 0.0067 0.0105 0.0045 0.0085

H2T115G5F1



134   Oset, U. 2012. Laboratory experiments on wave overtopping in harbour breakwaters.   
Grad. Th. – University studies. Ljubljana, UL FGG, Department of Civil Engineering 

 

 
 

 
 

Graph 31: Max pressures for wave attack H2T115G5F1. 

 

Values in orange squares in tables above are representing max value for each pressure 

transducer.  In general, extreme wave impact pressures are achieved on transducers 1 and 5 

for configurations with an overspill basin (C1, C2 and C3) and the smallest on transducer 3 

for C4 and C5 configurations in most of the cases. Seeing on graphs above, configuration C3 

with the largest overspill basin of 18.0 cm (in model scale) causes in comparison with the 

others ,the highest wave pressures on wave wall, due to “missing” material in berm and small 

dissipation of wave energy. Extreme wave impact pressures were achieved on most of 

constructions for wave attack H2T115G5F1. 

 

It can be observed that for wave height H1 where wave periods are increasing from T085 to 

T125 maximum pressure together with wave periods are increasing too.  The relationship 

between peak elevation factors of JONSWAP spectrum (γG2 and γG5) in most of the cases is 

similar than for wave heights and periods. For wave attacks with the same wave height and 

period but different peak elevation factors, bigger wave pressure impacts are found for bigger 

peak elevation factor, for example in wave attack H1T105G2F1C3 at transducer n. 5 pressure 

is 0.0073 bar and in H1T105G5F1C3 at the same transducer, pressure is 0.0128 bar. The 

smallest wave impact pressures regarding to all wave attacks are found to be on C4 and C5 

model configuration, which were proved to be the most effective also for wave-by-wave 

overtopping analysis. 

 

5.3.3 Reflection analysis 

 

Reflection analysis provides the components of the incident and reflected wave heights by 

Goda and Suzuki method, which is based on measurements carried out with the wave gauges 

in position 2, 3, 4 and 5 (see Attachment A). 
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Table 53: Results from reflection analysis.  

 

 
 

Wave Config.
%Hi_23 

[cm]

Hr_23   

[cm]
kr_23

Hi_34 

[cm]

Hr_34 

[cm]
kr_34

Hi_45 

[cm]

Hr_45 

[cm]
kr_45

C0 9,17 2,85 0,31 9,06 2,79 0,31 9,78 2,58 0,26

C1 10,64 2,44 0,23 10,50 2,57 0,25 10,38 2,91 0,28

C2 9,82 2,15 0,22 9,69 2,24 0,23 9,56 2,56 0,27

C3 10,21 2,38 0,23 10,06 2,50 0,25 9,92 2,80 0,28

C4 10,39 2,37 0,23 10,26 2,49 0,24 10,10 2,82 0,28

C5 10,32 2,24 0,22 10,14 2,43 0,24 10,05 2,63 0,26

C0 10,42 2,90 0,28 10,27 2,79 0,27 10,18 2,98 0,29

C1 10,85 3,20 0,29 10,77 2,90 0,27 10,,64 3,30 0,31

C2 10,44 3,23 0,31 10,39 2,83 0,27 10,22 3,20 0,31

C3 10,73 2,86 0,27 10,64 2,53 0,24 10,45 3,12 0,30

C4 10,58 3,27 0,31 10,54 2,85 0,27 10,31 3,49 0,34

C5 10,54 3,25 0,31 10,47 2,73 0,26 10,27 3,18 0,31

C0 10,87 2,52 0,23 10,80 2,41 0,22 10,80 2,56 0,24

C1 11,64 2,78 0,24 11,51 2,86 0,25 11,57 2,90 0,25

C2 11,45 2,73 0,24 11,39 2,62 0,23 11,37 2,83 0,25

C3 11,13 2,69 0,24 11,04 2,71 0,24 11,01 3,01 0,27

C4 11,54 2,89 0,25 11,44 2,84 0,25 11,48 2,96 0,26

C5 11,40 2,75 0,24 11,23 2,69 0,24 11,26 2,90 0,26

C0 11,40 3,03 0,27 11,24 2,97 0,26 11,21 2,86 0,26

C1 11,56 3,06 0,27 11,41 2,93 0,26 11,38 2,85 0,25

C2 11,56 3,05 0,26 11,43 2,87 0,25 11,28 3,05 0,27

C3 11,54 3,14 0,27 11,39 2,99 0,26 11,28 3,06 0,27

C4 11,77 3,37 0,29 11,68 2,96 0,25 11,60 2,98 0,26

C5 11,58 3,25 0,28 11,32 3,15 0,28 11,33 2,98 0,26

C0 11,27 2,62 0,23 11,25 2,46 0,22 11,08 2,93 0,26

C1 11,05 2,90 0,26 11,04 2,68 0,24 10,91 2,84 0,26

C2 11,36 2,73 0,24 11,35 2,63 0,23 11,22 2,85 0,25

C3 11,47 2,76 0,24 11,45 2,59 0,23 11,29 2,85 0,25

C4 11,58 2,81 0,24 11,52 2,69 0,23 11,40 2,98 0,26

C5 11,47 2,77 0,24 11,40 2,64 0,23 11,26 2,87 0,26

C0 11,29 2,87 0,25 11,22 2,94 0,26 10,99 3,39 0,31

C1 11,76 3,11 0,26 11,67 3,05 0,26 11,36 3,46 0,30

C2 11,04 3,08 0,28 11,05 2,95 0,27 10,89 3,26 0,30

C3 11,33 3,31 0,29 11,35 3,04 0,27 11,12 3,50 0,31

C4 11,40 3,18 0,28 11,39 2,95 0,26 11,21 3,42 0,31

C5 11,40 3,23 0,28 11,34 2,98 0,26 11,19 3,39 0,30

C0 12,84 3,54 0,28 12,56 3,67 0,29 12,48 3,47 0,28

C1 13,09 3,59 0,27 12,84 3,57 0,28 12,61 3,55 0,28

C2 12,72 3,57 0,28 12,50 3,74 0,30 12,38 3,76 0,30

C3 12,77 3,66 0,29 12,52 3,74 0,30 12,36 3,70 0,30

C4 12,89 3,73 0,29 12,61 3,87 0,31 12,50 3,83 0,31

C5 12,99 3,77 0,29 12,72 3,89 0,31 12,59 3,92 0,31

C0 12,93 3,52 0,27 12,72 3,79 0,30 12,56 3,87 0,31

C1 13,05 3,54 0,27 12,82 3,78 0,29 12,56 3,68 0,29

C2 12,55 3,44 0,27 12,42 3,63 0,29 12,15 3,93 0,32

C3 12,46 3,64 0,29 12,28 3,89 0,32 12,16 3,67 0,30

C4 12,80 3,89 0,30 12,63 3,86 0,31 12,46 4,01 0,32

C5 12,70 3,78 0,30 12,51 3,79 0,30 12,30 3,90 0,32

H1T125G5F1

H2T115G2F1

H2T115G5F1

H1T085G2F1

H1T085G5F1

H1T105G2F1

H1T105G5F1

H1T125G2F1
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Graph 32: Typical output results for reflection analysis for two wave attacks H1T085G5F1C4 

and H2T115G5F1C4. 

 

It can be observed that reflected wave heights and reflection coefficients (kr) increase together 

with increasing wave height, wave period and peak elevation factor in most of the cases. 
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6 CONCLUSIONS 

 

 

Natural sea states have irregular wave characteristics which makes difficult to predict effects 

of studied processes even for known wave attacks and constructions. Sea defence structures as 

harbour breakwaters with wave walls are constructed primarily to limit overtopping volumes 

that might cause flooding, or other potential hazards at harbours. On average, approximately 2 

- 5 people are killed each year of Italy and United Kingdom through wave action, chiefly on 

seawalls and similar structures.    

 

Two dimensional physical model for this thesis research was installed and tested in the wave 

flume at the Maritime Engineering Laboratory (CoastLab, www.unifi.it/labima) at the 

Department of Civil and Environmental Engineering of Florence University in Italy. This 

research is part of the international exchange ERASMUS between University of Ljubljana 

and University of Florence, which lasted during spring 2012. 

 

The objectives of this laboratory research were to measure wave overtopping (WO) and 

extreme wave-induced pressures on the wave wall, obtained by testing various design 

parameters, such as crest freeboard height (Rc), overspill basin length (OB) and various wave 

parameters (Hm0, T0, γ) on harbour breakwater. Finally the main aim was to study the 

differences between various constructions and to find the most effective harbour breakwater 

construction that would totally protect people and potential traffic from harmful consequences 

of overtopping waves. 

 

A series of tests were executed in a wave flume after water level stabilization in the flume and 

calibration of wave gauges was made. Wave attacks were chosen in particular to those 

wave characteristics found in Ligurian Sea. Conducted tests give us very wide range of 

overtopping discharges and wave pressures of impact due to the large number of wave 

conditions and geometries tested. 

 

Capture system of overtopping water, consists of a plastic overtopping tank, hanged on 4 

wires which connect overtopping tank with 4 load cells, measuring cylinder and a sloping 

chute of two different widths (sampler) by which water pass inside the tank. The pressures 

acting along the centre of wave wall were measured by five pressure transducers. Pressure 

transducers 1, 2 and 3 were positioned on the left centre side, in a descending order from a 

wave wall crown, while pressure transducers 4 and 5 were positioned on the right centre side 

in an increasing order from a wave wall crown. This concept of acquiring signal is very 

reliable and gives us good results on which detailed II. level analysis is based. There was also 

measuring cylinder used in order to compare measurements (volumes) between volume 

recorded by load cells and volume collected inside the overtopping tank. Accumulated 

volume recorded by load cells was always smaller than the one measured. 

 

In II. level analysis Matlab program was updated (see Attachment F - Overtopping program), 

which analyzed individual wave-by-wave overtopping volumes, unless a few overtopping 

waves come in one wave group. The overtopping graphs in Chapter 5 (Analysis and Results), 

clearly show the irregularity of wave overtopping volumes.  
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It can be summarized that by increasing wave height, period and peak elevation factor of 

JONSWAP spectrum wave overtopping is increasing too. In general, larger wave-by-wave 

overtopping discharges for all wave attacks are typical for the starting configuration C0. The 

most effective in decreasing overtopping discharges for wave attacks H1T125G5F1, 

H2T115G2F1 and H2T115G5F1 is configuration C3, with an overspill basin of 18.0 cm (in 

model scale) before the wave wall, where energy can be dissipated and so smaller quantity of 

water overflow the wall crown. On the other hand for wave attacks H1T085G2F1, 

H1T085G5F1, H1T105G2F1 and H1T105G5F1the most effective configuration is C4 with an 

elevated wave wall of 2.0 cm (in model scale) respect to starting configuration C0, which has 

also positive effects on reducing overtopping discharges. For wave attack H1T125G2F1 the 

most effective construction is C1 with an overspill basin of 6.0 cm (in model scale). 

 

In general, extreme wave impact pressures are achieved on transducers 1 and 5 for 

configurations with an overspill basin (C1, C2 and C3) and the smallest on transducer 3 for 

C4 and C5 configurations in most of the cases. Configuration C3 with the largest overspill 

basin of 18.0 cm (in model scale) causes the highest wave pressures on wave wall, due to 

“missing” berm material and small dissipation of wave energy. Extreme wave impact 

pressures were achieved on most of constructions for wave attack H2T115G5F1. 

 

To conclude the smallest wave impact pressures are found to be on C4 and C5 model 

configuration (for most of wave attacks), which were proved to be the most effective also in 

wave-by-wave overtopping analysis. Differences in mean overtopping discharge between C4 

and C5 are almost negligible, so C5 construction from financial point of view seems to be the 

best option, since extension of wave wall respect to starting C0 is smaller and so less 

expensive. 

 

In general if we consider increasing of mean sea level due to global warming by 2050 of + 0.2 

to more than + 1.0 m, already established sea defence constructions in harbours against 

overtopping and other hazards will have to be rebuilt to ensure the highest possible security. 

Most convenient for small wave heights (H1) would be elevation of wave wall, since in this 

research positive results in decreasing wave overtopping were shown. Problem here is that 

most of the people do not see it as a nice solution, since elevation of wave wall does not 

provide an open sea view. On the other hand the most convenient for greater wave heights 

(H2) is construction C3 with the largest overspill basin, also from economic point of view, 

since less material is necessary to fill the berm. 

 

Another interesting issue in future of this research could be testing three dimensional model, 

use of other material combination in the berm (such as artificial armour units) and a repetition 

of all the experiments. Sea waves follow random behaviour, so at the next execution of the 

same wave attacks at the same laboratory conditions, mean and maximum overtopping 

discharges could be different.  

 

This research could be very important also for Slovenia, despite the fact that it only has 46.6 

km of sea side and that wave characteristics from Ligurian sea are not the same as for Adriatic 

sea. There are few small harbours and a leading harbour of Koper, which has an important 

role in North Adriatic Sea not just for our small country but also for the countries of Central 

and Eastern Europe. Koper’s climate is dominated by the Bora wind, which occurs anytime 
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during the year, however the peak frequency occurs in the cold season (November – March) 

(Naval research Laboratory, 2003) and that effects port of Koper to stormy weather with high 

waves and wave overtopping. 
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7 SLOVENSKI POVZETEK 

 

 

7.1 Pojav prelivanja valov (ang. Overtopping) 

 

Naravno stanje morja je ob močnejših vetrovih zelo zapleteno, zato je predvidevanje 

obnašanja posameznih valovno-nevihtnih procesov kljub že znanim valovnim pogojem in 

geometriji konstrukcije zelo oteženo. Pojav prelivanja valov preko pristaniških valobranov je 

eden izmed glavnih vzrokov pri povzročanju škode na privezanih plovilih v pristaniščih in na 

obali. Vsako leto v Italiji in Veliki Britaniji umre približno 2 do 5 ljudi zaradi nevarnih 

prelivanj valov čez stene valobranov in drugih konstrukcije.  

 

Znan proces prelivanja valov se pojavi zaradi razlivanja vala navzgor po (in čez) steni 

konstrukcije in je odvisen od številnih dejavnikov (nekateri so bili preizkušeni tudi v sklopu te 

raziskave). Že majhne spremembe geometrije konstrukcije močno spremenijo obnašanje in 

količino prelivanja valov (Wai et al., 2003). Obalne konstrukcije, kot so pristaniški valobrani 

(ang. harbour breakwater) z vgrajenim zidom (ang. wave wall) zmanjšujejo prelivanje valov, 

ki bi povzročili škodo v pristaniščih ali poplave na zavetrni strani. 

 

7.1.1 Dopustni srednji pretoki q in maksimalni volumen Vmax prelivanja  

 

Glavni parameter procesa prelivanja je srednji pretok prelivanja q (m
3
/s na m širine ali bolj 

praktično uporabno l/s na m širine) (ang. mean overtopping discharge), ki ga je enostavno 

izmeriti v laboratorijskem kanalu ali bazenu. Na obseg prelivanja in pretok vpliva tudi način 

lomljenja valov (Pullen et al., 2007). Informacija o srednjem pretoku prelivanja pa ni vedno 

najbolj zanesljiv indikator varnosti za ljudi v določenih razmerah. Mogočo povzročeno škodo 

bolje opiše parameter maksimalnega prelitega volumna (pljuska) vala Vmax (Pullen et al., 

2007). Pljusk (ang. wave-by-wave overtopping volume) je volumen vode, ki se prelije čez 

steno valobrana v posameznem prelivajočem se valu. 

 



 Oset, U. 2012. Laboratory experiments on wave overtopping in harbour breakwaters.  141 
Grad. Th. – University studies. Ljubljana, UL FGG, Department of Civil Engineering 

 

 
  

Slika 1: Razmerje med srednjim pretokom q in maksimalnim volumnom pljuska Vmax na 

gladki, nasuti (ang. rubble mound) in navpični konstrukciji, pri srednji valovni višini med 1.0 

in 2.5 m. 

Vir: Pullen et al., 2007. 

 

 
 

Slika 2: Primerjava različnih konstrukcij glede na brezdimenzijski obseg prelivanja.                      

Vir: Pullen et al., 2007. 

Na zgornjih slikah je prikazano, da strma pobočja povzročajo večje prelivanje, ta pa se 

zmanjša z upadom naklona. Bolj navpična hrapava pobočja pa vseeno prelivajo manj, kot 

podobna strma pobočja z gladko oblogo, razen v primerih visokih navpičnih konstrukcij z 
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zelo impulzivnimi valovnimi pogoji. Obseg (in hitrost) prelivanja se lahko bistveno spremeni 

s spremembo valovnih in geometrijskih pogojev konstrukcije, tudi za že dani srednji pretok 

prelivanja (Pullen et al., 2007).  

 

Daljše nevihte povzročijo več prelivanja in statistično gledano tudi pljuske večjih dimenzij. 

Več manjših prelivajočih valov (ti so značilni za rečne nasute pregrade) lahko ustvari podobne 

srednje pretoke kot malo število ekstremno velikih valov na nemirnem morju. V splošnem je 

večina prelivajočih valov dokaj majhnih, vendar že nekaj valov lahko povzroči izdatnejše 

prelive. Zelo veliki dogodki prelivanja so značilni pri visokem valovanju na morju (Pullen et 

al., 2007). 

 

 
 

Slika 3: Povzročena nevarnost prelivnih pretokov za vozila, pešce, zgradbe, nasipane in 

zaščitne valobrane. 

Vir: Kofoed, 2002. 
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Prelivanje valov čez pristaniške valobrane povzroči prenos energije vala v mirno zavetrno 

območje, kar lahko privede do povzročitve večjih valov znotraj pristanišča in morebitno 

škodo ali izgubo privezanih plovil. 

 

Krone valobranov so območja, ki jih pogosto uporabljajo ljudje skupaj s prevoznimi sredstvi, 

kar lahko v primeru zelo valovitega morja predstavlja veliko tveganje za varnost. Veliko 

obalnih konstrukcij (valobranov itd.) je načrtovanih za prelivanje sprejemljivih srednjih 

pretokov pri visokem valovanju morja. Predvidevanje prelivanja srednjih pretokov temelji na 

empiričnih formulah določenih v skladu z laboratorijskimi meritvami. Nevaren vpliv 

prelivanja lahko zmanjšamo z odmaknjenostjo od obrambne črte (ang. defence line). 

Efektiven pretok prelivanja qeffective je tako približno podan z naslednjo enačbo v odvisnosti od 

razdalje x (od 5 do 25 m):  

 

          =                                (2.1) 

 

Kjer je qseawall nevarni prelivni pretok preko stene valobrana. 

 

Laboratorijski eksperimenti na fizičnem modelu so nujno potrebni za natančnejšo oceno 

obnašanja prelivajočih se valov (Wai et al., 2003), saj je ta proces slučajen, nanj vpliva veliko 

parametrov (posameznih ali povezanih) in ga je težko vnaprej napovedati. 

 

7.2 Cilji diplomske naloge 

 

Ta diplomska naloga je bila narejena v sodelovanju med Univerzo v Ljubljani in Univerzo v 

Firencah v okviru mednarodne študijske izmenjave ERASMUS, z namenom preučevanja 

procesa prelivanja in tlakov valov na fizičnem modelu pristaniškega valobrana v odprtem 

kanalu v Laboratoriju za morsko hidravliko v Firencah.  

 

Glavni motivi testiranja modela valobrana so bili: 

 

 Merjenje pretoka in volumna prelitih valov čez krono valobrana, sil na osrednji del 

vgrajenega betonskega zidu in parametrov odboja valov. 

 

 Študija vpliva različnih projektnih parametrov: višine krone zidu nad normalno 

gladino Rc in dolžine umirjevalne ploščadi (ang. overspill basin OB) na prelivanje in 

velikost tlakov na  vgrajeno steno. 

 

 Študija obnašanja različnih karakteristik valov (srednja valovna višina Hm0, valovna 

perioda T0, gama faktor stopnje vrha vala JONSWAP energijskega spektra γ). 

 

Končni cilj te raziskave je bil preučiti obnašanje različnih konstrukcij valobrana in najti 

najvarnejšo konstrukcijo, ki ščiti ljudi in plovila v pristaniščih pred visokimi valovi. Obdelava 

podatkov in analiza rezultatov sta bili izvedeni s pomočjo računalniškega programa Matlab. 
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V sklopu priprave in izvajanja testov za to diplomsko nalogo so bile izvedene naslednje 

dejavnosti:  
 

 Priprava programa testiranja. 

 

 Priprava in oprema kanala, postavitev fizičnega modela in njegovih konfiguracij. 

 

 Testiranje in merjenje parametrov. 

 

 Analiza in obdelava rezultatov, pridobljenih iz meritev. 

 

7.3 Opis laboratorija 

 

Fizični hidravlični model je bil nameščen in testiran v odprtem kanalu Laboratorija za morsko 

hidravliko (CoastLab) na oddelku za gradbeništvo in okoljsko gradbeništvo na Univerzi v 

Firencah v Italiji. Laboratorij obratuje od leta 1980 na področju pomorskega in obalnega 

inženirstva. Testiranje za diplomsko nalogo je bilo izvedeno v obdobju med marcem in 

junijem 2012. 

 

Laboratorijski hidravlični kanal je narejen iz železa in steklenih plošč z dimenzijami 47,0 m * 

0,8 m * 0,8 m (dolžina * širina * višina). Sestavljen je iz 39 podsektorjev z dimenzijami 1,2 m 

* 0,8 m * 0,8 m (prvih 37 podsektorjev je iz stekla in železa zadnja 2 pa iz betona). Dno 

kanala je od tal dvignjeno za 0,5 m in narejeno iz vlakenskih prednapetih betonskih plošč 

dimenzij 1,2 m * 0,8 m * 0,02 m, ki so lahko prestavljive in prilagojene zahtevam po 

spreminjanju profila (slika 48 v angleškem tekstu zgoraj, prerez na sliki 4 v slovenskem 

povzetku). 

 

 
 

Slika 4: Vzdolžni prerez kanala z modelom in merilno opremo (v merilu modela). 

 

7.4 Načrtovanje in izdelava valobrana 

 

Osnovne značilnosti kanala in testiranega hidravličnega modela so naslednje: 
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 Merilo modela v kanalu 1:50. 

 

 Globina vode pred loputo generatorja valov (ang. wave maker) 56,3 cm. 

 

 Dno kanala z naklonom 1:38. 

 

 Pobočje berme valobrana z naklonom 1:2. 

 

 Material v jedru v merilu 1:36,3. 

 

 Peta valobrana na globini – 16,06 cm. 

 

 Material za filter in skalometno oblogo v merilu 1:50. 

 

 Izbrana največja višina valov za testiranje je 15 cm (H2) z valovno periodo od 1,20 do 

1,77 sekund (na modelu). 

 

Po mednarodnih smernicah fizični model valobrana, narejen v merilu 1:50, zagotavlja 

tehnično dovolj dobre rezultate meritev, ki jih lahko prenesemo na dejansko konstrukcijo. 

 

V splošnem so nakloni valobrana kar se da strmi, saj se na ta način zmanjša količino 

potrebnega  materiala v jedru in žerjav pri vgradnji materiala (skal, tetrapodov…) lahko 

deluje na manjšem delovnem radiju od krone valobrana (Palmer at al., 1998). Naklon pobočja 

na privetrni strani valobrana v našem modelu je bil enak za vse konfiguracije in znaša, kot je 

navedeno zgoraj, 1:2. 

 

Izbor materiala za skalometno oblogo in filter je v istem merilu kot model sam, tj. 1:50. Za 

določitev velikosti in merila materiala v jedru pa smo sledili posebnemu postopku po 

Burcharth-u et al. (1999) za laboratorijski model valobrana. Ta pravi, da se za potrebe 

testiranja valobrana in natančne meritve tlakov merilo karakterističnega premera jedra d50 

izbere na podlagi Froudovega zakona za hitrost vode v porah jedra. Račun te hitrosti se izvede 

v 6 točkah. Nato se poišče srednjo vrednost hitrosti vseh točk, ki mora biti enaka porni hitrosti 

v jedru dejanske konstrukcije za predpostavljen karakterističen polmer v merilu 1:50 (glej 

poglavje 4.4.2.2, slika 60 v angleškem tekstu zgoraj). Po daljšem iteracijskem izračunu 

dobimo, da je potrebno merilo za kamne v jedru 1: 36,3. 

 

Če bi se ravnali po določitvi karakterističnega premera kamna za jedro po enotnem merilu za 

valobran, bi zaradi učinkov viskoznosti (ang. viscous effect) ta sloj postal premalo propusten 

(in voda ne bi pronicala skozenj). Posledica tega bi bile netočne meritve na modelu, prevelike 

količine prelite vode, napačni učinki delovanja na konstrukcijo in tudi preveliki sile na samo 

steno valobrana, kot bi se to dejansko zgodilo v naravi. Ta način izbire materiala modela pa 

nam na drugi strani vrne drugačne vrednosti od pričakovanih za odboj (ang. reflection) in 

prenos energije (ang. transmission) (Wolters, 2007). 

 

Absolutno geometrijsko ujemanje med izračunanim (premer d50) in dejansko vgrajenim 

materialom v konstrukcijo valobrana ni potrebno.  Majhne razlike ne vplivajo v veliki meri na 

rezultate testov. V splošnem je napaka pri rezultatih učinkov prelivanja in stabilnosti manjša 
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od 5-10 %. Bolj pomembna za točne meritve prelivanja je krona zidu, ki pa mora biti kar se 

da natančno izvedena, saj je od te najbolj odvisno število in količina prelitih valov. Pri 

dimenzioniranju kamnov za posamezne sloje Wolters (2007) pravi še, da je zelo pomembno 

zagotoviti pravi nivo zunanje skalometne obloge. Ta lahko v določenih primerih tudi zahteva, 

da se spodnji sloji temu primerno prilagodijo in so zaradi tega lahko tanjši ali debelejši. 

 

Stabilnost konstrukcije in disipacija energije valov se povečuje z večanjem debeline obloge 

valobrana, tako je na debelejših slojih prelivanje manj pogosto in izdatno. Debeline slojev so 

v celotnem testu ostajale enake in so prikazane v spodnji tabeli. V konstrukcijah C1, C2 in C3 

smo vgradili z odvzemom materiala iz berme pred betonsko steno (natančneje skalometne 

obloge) umirjevalno ploščad, za disipiranje energije valov (ang. overspill basin OB) različnih 

dolžin. Vse debeline slojev so prikazane v naslednji preglednici. 

 

Preglednica 1: Debeline posameznih slojev valobrana. 

 
 

Testirali smo 6 različnih konfiguracij modela valobrana, od tega se morska globina v kanalu 

ni spreminjala. Konstrukcije modela (C0, C1, C2, C3, C4 in C5) valobrana v pristanišču 

imajo vgrajeno betonsko steno s tremi različnimi višinami krone in tremi različno dolgimi 

umirjevalnimi ploščadmi pred steno. V prvih štirih konstrukcijah je bila višina krone modela 

konstantna, to je + 9,60 cm, nato smo jo v konstrukciji C4 povišali za 2 cm, na + 11,60 cm in 

nazadnje v konstrukciji C5 znižali na + 10,7 cm. Vse višine so merjene od prostega nivoja 

gladine. Umirjevalna ploščad se pojavi v konstrukcijah C1, C2 in C3, in imajo dolžino od 6,0 

cm za C1, 12,0 cm za C2 in 18,0 cm za model C3. 

 

 
 

Slika 5: Shematični prikaz vzdolžnega prereza vseh različic modela valobrana. 

 

Sloj Debelina [cm] 

Skalometna obloga 6,6

Filter 4,0

Jedro 15,0

Peta berme 2,0
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Preglednica 2: Geometrijske karakteristike posameznih konfiguracij modela valobrana.  

 

 
 

V merilu modela 1:50 smo za utrditev materiala za umirjevalno ploščadjo izbrali tetrapode 

višine 7,0 cm. Tetrapodi so štirinožne umetno oblikovane betonske enote, ki se pogosto 

uporabljajo za oblogo valobranov v pristaniščih, kjer naravnega materiala večjih dimenzij 

primanjkuje. Oblika tetrapodov naravno dispira energijo valov, ko se le ti približujejo 

konstrukciji in jim onemogoča večje premike materiala v bermi (slika 64 v angleškem tekstu 

zgoraj). V modelu so postavljeni v dveh vrstah, v prvi slonijo na treh nogah stabilno na sloju 

filtra, v naslednji vrsti pa so s tremi nogami obrnjeni proti vgrajeni betonski steni valobrana in 

tako stabilizirajo material za njim. V naravi ni vedno mogoče doseči tako natančne postavitve, 

saj je ta odvisna od naravnih pogojev dna. 

 

Za modela C4 in C5 smo za nadvišanje vgrajenega zidu uporabili pravokotni palici iz pleksi 

stekla z dimenzijami 2,0 cm * 80,0 cm * 3,0 cm (višina * dolžina * širina) za C4 in 1.1 cm * 

80.0 cm * 0.4 cm  za konstrukcijo C5 (slika 65 v angleškem tekstu zgoraj).  

 

7.5 Valovni pogoji  

 

Parametri testiranega valovanja so značilni za Ligurijsko morje, ki se nahaja na SZ Italije v 

regiji Ligurija. Univerza v Firencah namreč pogosto sodeluje pri projektiranju pristaniških 

valobranov v tej regiji. Morsko valovanje je nelinearno in ima značilnosti JONSWAP 

energijskega spektra valovanja na razburkanem morju z gama (“stopnja faktorja vrha”, ang. 

“peak incremental factor”) parametrom 2 ali 5. Pogoji testiranega valovanja predstavljajo 

stanje morja s povratno dobo petdesetih let. 

 

Vseh šest konstrukcij modela smo testirali na 8 različnih tipov razburkanega morja.  Skupno 

smo izvedli 40 testov, od katerih smo predhodno posamezne teste razdelili na podteste. Tako 

smo teste razburkanega morja z manjšo srednjo valovno višino (ang. wave height) H1 

razdelili na 3 podteste s trajanjem 20 + 0,5 min in teste z večjo srednjo valovno višino H2 na 

6, 10+ 0,5 min trajajočih podtestov. Oboji skupaj predstavljajo 1 urno nevihto, v realnosti pa 

7 urno. Čas v laboratoriju je namreč sedemkrat počasnejši od tega v realnosti (Froudov zakon, 

poglavje 4.4 v angleškem tekstu zgoraj). 

 

 

 

 

 

 

Geom. karakteristike [cm n.v.] C0 C1 C2 C3 C4 C5

Berma 9,6 9,6 9,6 9,6 9,6 9,6

Krona valovne stene 9,6 9,6 9,6 9,6 11,6 10,7

Peta valobrana dolvodno -13,84 -13,84 -13,84 -13,84 -13,84 -13,84

Dno kanala -16,06 -16,06 -16,06 -16,06 -16,06 -16,06

Umirjevalna ploščad (OB) 0 6,0 12,0 18,0 0,0 0,0
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Preglednica 3: Testirani valovni pogoji. 

 

 
 

Vsak valovni podtest ima svoje ime, ki se od drugih razlikuje glede na karakteristike  

posameznega vala.  

 

Na primer: H1T085G2AF1C0 

 

Kjer:  

 H1 označuje srednjo višino vala (H1 > Hm0 = 12,0 cm, H2 > Hm0 = 15,0 cm), 

 

 T085 označuje valovno periodo (Tp,085 = 1,2 s, Tp,105 = 1,48 s, Tp,115 = 1,63 s 

Tp,125 = 1,77 s), 

 

Val Ponovitev H [cm] T [s] γ JONSWAP Trajanje [s]

A 12 8,5 2 20 + 0,5

B 12 8,5 2 20 + 0,5

C 12 8,5 2 20 + 0,5

A 12 8,5 5 20 + 0,5

B 12 8,5 5 20 + 0,5

C 12 8,5 5 20 + 0,5

A 12 10,5 2 20 + 0,5

B 12 10,5 2 20 + 0,5

C 12 10,5 2 20 + 0,5

A 12 10,5 5 20 + 0,5

B 12 10,5 5 20 + 0,5

C 12 10,5 5 20 + 0,5

A 12 12,5 2 20 + 0,5

B 12 12,5 2 20 + 0,5

C 12 12,5 2 20 + 0,5

A 12 12,5 5 20 + 0,5

B 12 12,5 5 20 + 0,5

C 12 12,5 5 20 + 0,5

A 15 11,5 2 10 + 0,5

B 15 11,5 2 10 + 0,5

C 15 11,5 2 10 + 0,5

D 15 11,5 2 10 + 0,5

E 15 11,5 2 10 + 0,5

F 15 11,5 2 10 + 0,5

A 15 11,5 5 10 + 0,5

B 15 11,5 5 10 + 0,5

C 15 11,5 5 10 + 0,5

D 15 11,5 5 10 + 0,5

E 15 11,5 5 10 + 0,5

F 15 11,5 5 10 + 0,5

W7

W8

W1

W2

W3

W4

W5

W6
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 G2 stopnja faktorja vrha (ang. »peak elevation factor«) JONSWAP spektra (γG2 = 2,0, 

γG5 = 5,0), 

 

 A ponovitev podtesta (A, B, C or A, B, C, D, E, F), 

 

 F1 nivo gladine pri loputi generatorja valov, v kanalu s prižganim generatorjem (ang. 

pump on) je enaka 56,3 cm in 55,5 cm pri ugasnjenem (ang. pump off), 

 

 C0 različica modela (C0, C1, C2, C3, C4, C5). 

 

Vsi podtesti imajo dodanih 30 sekund v katerih loputa generatorja valov miruje, merilne 

sonde pa takrat izmerijo začetni nivo gladine v kanalu. Pomembno je tudi, da smo med 

posameznimi test počakali dovolj dolgo, da se je nivo vode stabiliziral, tj. vsaj 15 min.  

 

7.6 Preučevani parametri 

 

Naše zanimanje med in po testiranju valovnih prehodov je bilo osredotočeno na pojave in 

parametre: 

 

1. Prelivanje 

Za dobro statistično analizo je pomembno, da imamo dovolj veliko število prelivnih pljuskov. 

Priporočljivo je, da se posamezne poskuse podaljša na minimalno število 2000 valovnih 

period. Valovna perioda, predvidena v testih, znaša približno 2 sekundi (v merilu modela), kar 

pomeni, da izmeri prelivanje valov za najmanj 4000 s. Dolžina testa, ki temu ustreza, je tako 

60 min = 3600 s. Prelivanje valov ujamemo v zbiralnik za krono valobrana preko drče, 

nastanjene na sredini krone. Drča ima 2 vstopni širini in sicer se razlikuje za teste z višino 

valov H1, kjer znaša 30 cm od testov z višino valov H2, kjer znaša 20 cm.  Razlog za tako 

odločitev je, da valovi z višino H2 prinašajo veliko večje pljuske in smo zaradi omejene 

kapacitete vodnega zbiralnika in celic, ki merijo obtežbo vode, zmanjšali širino in s tem 

zmanjšali tudi sam dotok zbiralnika. To je bilo razvidno iz predhodno opravljenih testov (s 

trajanjem 5 min na začetni konfiguraciji C0), ki smo jih opravili v času med 28. in 30. 

marcem 2012. Z zgornjo utemeljitvijo upravičimo tudi uporabo 2 različnih dolžin testiranja 

posameznih podtestov, za valove z višino H1 in H2. 

 

 

2. Valovni tlaki 

 

Meritve tlakov valov smo opravili v osrednjem delu vgrajenega betonskega zidu (slika 56 v 

angleškem tekstu zgoraj) s 5 tlačnimi pretvorniki, vgrajenimi v sredino stene s frekvenco 

vzorčenja 0,01 kg/cm
2
 (10 g/cm

2
, v prototipu 0,5 kg/cm

2
). Po sprejemu signala in obdelavi 

podatkov smo v vsakem posameznem tlačnem pretvorniku grafično, preko programa Matlab 

(»Trasduttori«) dobili porazdelitev tlakov po času in frekvenci pojavljanja. Tlaki so v bar-ih, 1 

bar je 100000 Pa, kar je 100000 N/m
2
 in pomeni silo na enoto površine.  
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3. Refleksija ali odboj (ang. reflection)  

Merilne sonde (2, 3, 4 in 5) z vzorčno frekvenco 20 Hz so izmerile podatke o koeficientih 

valovne refleksije (Hi, Hr, Kr). Ti parametri so pomembni pri presoji učinkovitosti zaščite 

vgrajenega zidu v valobranu. 

 

7.7 ANALIZA 

 

7.7.1 Analiza prelivanja 

 

Sistem zajemanja in zbiranja pljuskov je sestavljen iz plastičnega zbiralnika, obešenega na 4 

nitkah z merilnimi celicami, merilnega valja in nagnjene drče (dveh), po kateri voda steče v 

zbiralnik. Pri analiziranju prelite količine vode je bil uporabljen tudi merilni valj, s katerim 

smo takoj po zaključenem testu izmerili volumen vode v zbiralniku in ga primerjali s tistim, 

ki je bil izmerjen s celicami, ki so merile obtežbo. V vseh primerih so meritve volumna z 

merilnim valjem dale večje vrednosti od meritev z merilnimi celicami. Merilne celice namreč 

predčasno prenehajo beležiti signal, v tem času pa zadnji valovi še vedno prihajajo do 

valobrana. 

 

Za natančno sledenje signalu (tj. obtežbe celic ) v zbiralniku, je bilo v sam zbiralnik dodano 

0,5 l vode pred začetkom vsakega poskusa. Merilne celice smo umerili na to vrednost, kar je 

pomenilo začetno vrednost beleženja obtežbe, z natančnostjo 0,02 g. Po vsakem končanem 

podtestu smo v analizi I. stopnje izmerili volumen vode iz zbiralnika, brez začetnih 500 ml in 

vpisom volumna v podatkovno bazo ter Dnevno poročilo (Priloga E v angleškem tekstu). 

Sledila je obdelava zabeleženega signala obtežbe merilnih celic z Matlabovim programom 

»Overtopping«. Dobili smo graf seštevkov obtežbe posameznih pljuskov v času trajanja 

podtesta, vrednost srednjega prelivnega pretoka ter celoten obseg volumna. Izmerjen volumen 

z merilnim valjem smo prav tako zabeležili in ga s pomočjo enačbe 5.1 (v angleškem tekstu 

zgoraj) pretvorili v srednji prelivni pretok v merilo realne konstrukcije. Z analizo I. stopnje 

ocenimo ali so merilni instrumenti delovali pravilno in izračunamo karakteristike valov, 

velikost pljuskov in tlakov. Nato nadaljujemo z analizo II. stopnje. 

 

Za vrednotenje rezultatov analize II. stopnje je najprej narejena primerjava med srednjim 

pretokom prelivanja in maksimalnimi volumni pljuskov, nato pa še presoja maksimalnih 

tlakov in analiza odboja valov na vgrajeno betonsko steno za posamezen tip konstrukcije in 

valovanja. 

 

Potek analize II. stopnje za prelivanje valov:  

 

 Definicija imen zank za vse teste, 

 

 Združitev podtestov v en sam test in s tem ustvariti podatke testa za analizo, 

 

 Kombinacija 3 ali 6 podtestov je bila v analizi prelivanja narejena z seštevanjem 

posameznih podtestov k predhodnemu podtestu. Prvo vrednost naslednjega grafa smo 
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prišteli zadnji vrednosti predhodnega grafa. Pri tem sta bili vsakemu naslednjemu 

grafu podtesta od A naprej odvzeti prvi 2 minuti, v katerih valovi še ne prihajajo v 

zbiralnik in merilne celice še ne zabeležijo obtežbe (na grafu se to pozna kot ravna 

črta). Novi test ima tako trajanje 55,5 min za teste z višino valov H1 in trajanje 51,0 

min za teste z višino valov H2.  

 

 Sledila je filtracija krivulje grafa prelivanja v stopničasto krivuljo, kjer vsaka stopnica 

prikazuje posamezen pljusk ter analiza pogostosti in razporeditve le teh. 

 

Rezultati analize prelivanja II. stopnje so trije tipi grafov (glej Graf 17 v angleškem tekstu 

zgoraj): 

 

 Stopničast graf prelivanja valov po času s krogci, ki označujejo dogodke prelivajočih 

pljuskov (ang. wave-by-wave overtopping volumes). 

 

 Velikost pljuskov v trajanju nevihtnega dogodka. 

 

 Porazdelitev vseh pljuskov danega valovanja. 

 

Za lažjo primerjavo med volumni pljuskov v grafu porazdelitev prelivajočih dogodkov je bilo 

za vse teste narejenih 20 razredov enotne velikosti 1/20 * Vmax. S pomočjo analize I. stopnje 

smo določili Vmax pljuska prelivanja, ki znaša 3 l/m. Drugostopenjska analiza z nadgrajenim 

programom Matlab (Priloga G – Overtopping program) je pod drobnogled vzela posamezne 

pljuske, kadar je bilo to seveda možno. V primeru, da več visokih valov skupaj v zelo kratkem 

časovnem obdobju pljuskne čez vgrajeno steno, jih ni mogoče razločiti in smo privzeli, da gre 

za en sam večji pljusk.  

 

Grafi prelivanja (overtopping) v 5. poglavju angleškega teksta z imenom Analiza in rezultati 

jasno pokažejo, da gre pri pojavu prelivanja za zelo nepravilen in slučajen proces. 

 

 
 

Graf 1: Srednji pretoki prelivanja qm za vse valove v povezavi s konstrukcijami modela. 
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Zgornji graf prikazuje, da so za valove z manjšo višino H1 značilni manjši srednji pretoki 

prelivanja kot za tiste z večjo. Z naraščanjem valovne periode T085 do T125 za valove z 

višino H1 narašča tudi srednji pretok qm. Prav tako je iz grafa razvidno, da pri valovih z enako 

višino in periodo, a višjim faktorjem JONSWAP spektra γG5, nastopa večji srednji pretok 

preliva kot v primerljivem valu s faktorjem γG2. Na primer za val H2T115G2F1C0 qm znaša 

0,0096 l/s/m, za val H2T115G5F1C0 pa je qm enak 0,0105 l/s/m. Povzamemo lahko, da se z 

naraščanjem višine vala, periode in faktorja JONSWAP spektra povečuje tudi količina prelitih 

valov. V splošnem so večji pretoki prelivanja doseženi za večino tipov valov v začetni 

konstrukciji C0. Najučinkovitejša v zmanjševanju prelivanja valov H1T125G5F1, 

H2T115G2F1 in H2T115G5F1 je konstrukcija C3 z najdaljšo umirjevalno ploščadjo, ki znaša 

18,0 cm (v merilu modela) pred vgrajenim zidom. Tu se vodni tok umiri in energija valov 

zmanjša preden doseže sam zid. Za valove H1T085G2F1, H1T085G5F1, H1T105G2F1 in 

H1T105G5F1 da najmanjše prelivanje konstrukcija C4 z nadvišanjem zidu za 2,0 cm, glede 

na prvotno konstrukcijo C0.  Za val H1T125G2F1 pa je najmanj prelite vode v zbiralniku pri 

konstrukciji C1 z umirjevalno ploščadjo dolgo 6,0 cm. 

 

7.7.2 Maksimalni tlaki na vgrajeni zid v valobranu 

 

Tlaki so merjeni s 5 tlačnimi pretvorniki. Tlačni pretvorniki 1, 2 in 3 so bili nameščeni levo 

od sredine zidu v padajočem vrstnem redu od krone zidu, medtem ko sta bila tlačna 

pretvornika 4 in 5 nameščena v naraščajočem zaporedju od krone zidu desno od sredine. Ta 

način vzorčenja signala je zelo zanesljiv in nam je dal dobre rezultate, na osnovi katerih je 

bila razvita drugostopenjska analiza obdelave podatkov.  

 

Potek analize II. stopnje za maksimalne tlake je bil naslednji:  

 

 Definicija imen zank za vse teste. 

 

 Združitev podtestov v en sam test z namenom ustvariti podatke za analizo. 

 

 Združitev 3 ali 6 podtestov je narejena z zaporednim dodajanje posameznih podtestov 

(grafov) k predhodnemu podtestu. Prvo vrednost naslednjega grafa smo dodali zadnji 

vrednosti predhodnega grafa. Tudi tu smo odvzeli prvi 2 minuti zabeleženega signala 

sil na steno, zaradi istega razloga kot pri analizi prelivanja (graf 22 v angleškem tekstu 

zgoraj). 

 

 Rezultat analize sta 2 grafa: tlaki v času in porazdelitev vrednosti tlakov po razredih. 

 

V nekaterih grafih lahko opazimo presledke med posameznimi podtesti, kar pomeni, da je 

ponekod začetni val od lopute generatorja valov potreboval tudi več kot 2 minuti.  
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Graf 2: Največji tlaki na steno valobrana po vseh testih. 

V večini poskusov so največji tlaki doseženi na najnižje nameščenih tlačnih pretvornikih na 

valovni steni, pri konstrukcijah z umirjevalno ploščadjo (tj. C1, C2 in C3), najmanjši pa na 

zgornjem tlačnem pretvorniku 3 za konstrukciji C4 in C5. Konstrukcija C3 z najdaljšo 

umirjevalno ploščadjo 18,0 cm (v merilu modela) povzroči največje sile na steno valobrana. 

Razlog za take rezultate je odvzet material iz berme oz. ploščad, ki služi disipaciji oz. 

uničenju valovne energije, preden doseže zid in vodni zbiralnik. V primeru umirjevalne 

ploščadi pa je bil kljub dobrim rezultatom v zmanjšanju prelivne količine opazen tudi 

nastajajoč »tolmun«. Zgornja skalometna obloga je bila odstranjena in tako so močni valovi 

pričeli spodjedati ploščad. V tej diplomski nalogi se na to nismo posebej osredotočili, smo pa 

zaznali ta pojav. Največje tlake je na vseh tipih konstrukcije povzročal tip vala H2T115G5F1.  

 

Najmanjše vrednosti tlakov na vgrajeni zid kažeta konstrukciji modela C4 in C5 (za večino 

valovnih dogodkov). Ti dve različici modela sta se izkazali za najugodnejši tudi pri analizi 

pljuskov valov. Razlika med srednjima prelivnima pretokoma med omenjenima 

konstrukcijama je skoraj zanemarljiva, zato se iz finančnega vidika zdi boljša rešitev 

optimizacija konstrukcije modela valobrana C5. Ta ima za 0,5 m nižjo krono zidu od C4, a je 

vseeno zelo učinkovita in cenejša. 

 

7.7.3 Refleksija ali odboj 

 

Robni pogoji v valobranu povzročajo pojav refleksije oz. odboje valov od sten kanala. Valovi 

potujejo navzdol po kanalu, dokler na koncu ne dosežejo valobrana. Nekaj energije valov se 

odbije v nasprotni smeri prihajanja valov, kar se dogaja tudi v naravi. Razlika je le v tem, da 

se odbiti valovi v naravi vračajo nazaj v ocean, v kanalu, pa so ponovno odbiti itn. (Hughes, 

1993). Analiza odboja omogoča izračun komponent vpadnih (ang. incident) in odbitih 
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valovnih višin po metodi Goda in Suzuki (1976). Račun je bil izveden na podlagi meritev, 

pridobljenih s sond 2, 3, 4 in 5 nameščenih v kanalu (Priloga A v angleškem tekstu). 

 

Analiza odboja je pokazala, da za večino primerov odbite višine valov in reflekcijski 

koeficienti (kr) naraščajo skupaj z naraščanjem valovnih parametrov (višina valov, valovna 

perioda in faktor gama JONSWAP spektra). 

 

7.8 Zaključek 

 

To diplomsko delo obsega v 7 poglavij, ki si vsebinsko sledijo v naslednjem zaporedju: v 2. 

poglavju  so predstavljena pomembna teoretična izhodišča o valovih, standardne tehnike za 

določanje le-teh, pristaniška hidrodinamika, valobrani in pojav prelivanja. V 3. poglavju so 

opisane karakteristike hidravličnih fizičnih modelov, slabosti in prednosti testiranja modela v 

laboratoriju, materiali in merilna oprema. V poglavju 4 sledi opis laboratorija v Firencah in 

postopek testiranja in izdelave valobrana pristanišča. V poglavju 5 je predstavljena obdelava 

podatkov in rezultati. Pred slovenskim povzetkom pa so v poglavju 6 navedeni še zaključki o 

prelivanju valov na valobranu v pristaniščih. 

 

Če privzamemo, da se bo morska gladina zaradi globalnega segrevanja do leta 2050 dvignila 

med 0,2 m pa vse do 1,0 m, bodo konstrukcije valobranov za zaščito obale in pristanišč pred 

visokimi valovi potrebne obnovitve. Najbolj primerna rešitev za male srednje višine valov 

(H1) bi bilo nadvišanje vgrajene betonske stene, saj rezultati analize tu  prikažejo najmanjše 

prelivanje čez krono stene. Vendar pa to ni vedno najboljša rešitev, saj imamo vsi povsod radi 

pogled na odprto morje, ki pa nam bi ga povišan zid zakrival. Na drugi strani pa je najbolj 

primerna rešitev za valove z višino H2 konstrukcija valobrana C3 z najdaljšim umirjevalno 

ploščadjo. Ta je tudi iz finančnega vidika zelo ugodna, saj je potrebnega manj materiala za 

zapolnitev skalometne obloge berme. 

 

Pri prihodnjem delu bi lahko poskusili s testiranjem podobnega modela v 3D bazenu in 

preizkusili obnašanje kombinacije drugih materialov v valobranu kot so npr. umetno narejene 

betonske enote (ang. artificial armour units). Ker pa gre v primeru pojava prelivanja morskih 

valov za slučajen in nenapovedljiv pojav, bi bilo zanimivo celotno testiranje ponoviti in 

primerjati rezultate novih testov s predhodnimi. 

 

Rezultati te raziskave bi lahko bili zelo pomembni tudi za Slovenijo in to kljub dejstvu da 

nimamo veliko obale in da so karakteristike valovanja v Jadranskem morju drugačne od teh v 

Ligurijskem morju. Močna burja pogosto povzroča preglavice v obratovanju največjega 

slovenskega pristanišča Koper tako v zimskih mesecih kot občasno tudi čez leto. Učinki burje 

pa povzročajo visoke valove in posledično prelivanje valov preko valobranov. 
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Appendix A: Wave flume with physical model at Maritime Engineering Laboratory 

 

 

 



 

Appendix B: Granulometric Analysis Data 

 

Example of first 43 (of total 571) rocks for armour layer in range of 60 ÷ 100 g. 

 

 
 

 

 

 

 

 

ρ 2682,0 kg/m
3

Rock Number Weight [g] Weight  [Kg] Dn,50 [m] Dn,50 [mm] φ

1 83 0,083 0,031 31,4 -4,97

2 75 0,075 0,030 30,4 -4,92

3 88 0,088 0,032 32,0 -5,00

4 84 0,084 0,032 31,5 -4,98

5 65 0,065 0,029 28,9 -4,85

6 60 0,06 0,028 28,2 -4,82

7 78 0,078 0,031 30,8 -4,94

8 100 0,1 0,033 33,4 -5,06

9 89 0,089 0,032 32,1 -5,01

10 60 0,06 0,028 28,2 -4,82

11 86 0,086 0,032 31,8 -4,99

12 83 0,083 0,031 31,4 -4,97

13 98 0,098 0,033 33,2 -5,05

14 82 0,082 0,031 31,3 -4,97

15 71 0,071 0,030 29,8 -4,90

16 91 0,091 0,032 32,4 -5,02

17 100 0,1 0,033 33,4 -5,06

18 84 0,084 0,032 31,5 -4,98

19 60 0,06 0,028 28,2 -4,82

20 85 0,085 0,032 31,6 -4,98

21 79 0,079 0,031 30,9 -4,95

22 73 0,073 0,030 30,1 -4,91

23 82 0,082 0,031 31,3 -4,97

24 95 0,095 0,033 32,8 -5,04

25 60 0,06 0,028 28,2 -4,82

26 67 0,067 0,029 29,2 -4,87

27 93 0,093 0,033 32,6 -5,03

28 88 0,088 0,032 32,0 -5,00

29 97 0,097 0,033 33,1 -5,05

30 86 0,086 0,032 31,8 -4,99

31 83 0,083 0,031 31,4 -4,97

32 100 0,1 0,033 33,4 -5,06

33 85 0,085 0,032 31,6 -4,98

34 73 0,073 0,030 30,1 -4,91

35 88 0,088 0,032 32,0 -5,00

36 99 0,099 0,033 33,3 -5,06

37 70 0,07 0,030 29,7 -4,89

38 69 0,069 0,030 29,5 -4,88

39 97 0,097 0,033 33,1 -5,05

40 80 0,08 0,031 31,0 -4,95

41 100 0,1 0,033 33,4 -5,06

Range 60 ÷ 100g

ARMOUR LAYER



 

 

 
 

Example of first 40 (of total 1261) rocks for filter layer in range of 14 ÷ 25 g. 

 

 
 

 

 

 

 

 

 

 

ρ 2682,0 kg/m
3

Rock Number Weight [g] Weight  [Kg] Dn,50 [m] Dn,50 [mm] φ

1 18 0,018 0,019 18,9 -4,24

2 9 0,009 0,015 15,0 -3,90

3 10 0,01 0,016 15,5 -3,95

4 25 0,025 0,021 21,0 -4,40

5 9 0,009 0,015 15,0 -3,90

6 14 0,014 0,017 17,3 -4,12

7 11 0,011 0,016 16,0 -4,00

8 9 0,009 0,015 15,0 -3,90

9 14 0,014 0,017 17,3 -4,12

10 12 0,012 0,016 16,5 -4,04

11 14 0,014 0,017 17,3 -4,12

12 14 0,014 0,017 17,3 -4,12

13 12 0,012 0,016 16,5 -4,04

14 8 0,008 0,014 14,4 -3,85

15 14 0,014 0,017 17,3 -4,12

16 12 0,012 0,016 16,5 -4,04

17 15 0,015 0,018 17,8 -4,15

18 9 0,009 0,015 15,0 -3,90

19 12 0,012 0,016 16,5 -4,04

20 9 0,009 0,015 15,0 -3,90

21 17 0,017 0,019 18,5 -4,21

22 10 0,01 0,016 15,5 -3,95

23 10 0,01 0,016 15,5 -3,95

24 9 0,009 0,015 15,0 -3,90

25 12 0,012 0,016 16,5 -4,04

26 21 0,021 0,020 19,9 -4,31

27 13 0,013 0,017 16,9 -4,08

28 12 0,012 0,016 16,5 -4,04

29 8 0,008 0,014 14,4 -3,85

30 9 0,009 0,015 15,0 -3,90

31 13 0,013 0,017 16,9 -4,08

32 8 0,008 0,014 14,4 -3,85

33 9 0,009 0,015 15,0 -3,90

34 8 0,008 0,014 14,4 -3,85

35 12 0,012 0,016 16,5 -4,04

36 11 0,011 0,016 16,0 -4,00

37 10 0,01 0,016 15,5 -3,95

38 12 0,012 0,016 16,5 -4,04

39 18 0,018 0,019 18,9 -4,24

40 24 0,024 0,021 20,8 -4,38

FILTER

Range 14 ÷ 25 g



 

Example of first 41 (of total 1120) rocks for core in range of 9 ÷ 13 g. 

 

 

ρ 2682,0 kg/m
3

Rock Number Weight [g] Weight  [Kg]Dn,50 [m] Dn,50 [mm] φ

1 13 0,013 0,017 16,92 -4,08

2 10 0,01 0,016 15,51 -3,95

3 10 0,01 0,016 15,51 -3,95

4 11 0,011 0,016 16,01 -4,00

5 9 0,009 0,015 14,97 -3,90

6 13 0,013 0,017 16,92 -4,08

7 13 0,013 0,017 16,92 -4,08

8 11 0,011 0,016 16,01 -4,00

9 11 0,011 0,016 16,01 -4,00

10 9 0,009 0,015 14,97 -3,90

11 9 0,009 0,015 14,97 -3,90

12 11 0,011 0,016 16,01 -4,00

13 9 0,009 0,015 14,97 -3,90

14 10 0,01 0,016 15,51 -3,95

15 9 0,009 0,015 14,97 -3,90

16 13 0,013 0,017 16,92 -4,08

17 9 0,009 0,015 14,97 -3,90

18 11 0,011 0,016 16,01 -4,00

19 13 0,013 0,017 16,92 -4,08

20 9 0,009 0,015 14,97 -3,90

21 12 0,012 0,016 16,48 -4,04

22 11 0,011 0,016 16,01 -4,00

23 11 0,011 0,016 16,01 -4,00

24 12 0,012 0,016 16,48 -4,04

25 11 0,011 0,016 16,01 -4,00

26 9 0,009 0,015 14,97 -3,90

27 12 0,012 0,016 16,48 -4,04

28 11 0,011 0,016 16,01 -4,00

29 10 0,01 0,016 15,51 -3,95

30 13 0,013 0,017 16,92 -4,08

31 10 0,01 0,016 15,51 -3,95

32 12 0,012 0,016 16,48 -4,04

33 11 0,011 0,016 16,01 -4,00

34 9 0,009 0,015 14,97 -3,90

35 13 0,013 0,017 16,92 -4,08

36 9 0,009 0,015 14,97 -3,90

37 10 0,01 0,016 15,51 -3,95

38 11 0,011 0,016 16,01 -4,00

39 12 0,012 0,016 16,48 -4,04

40 11 0,011 0,016 16,01 -4,00

41 11 0,011 0,016 16,01 -4,00

CORE

Range 9 ÷ 14 g



 

 

 
 

Appendix C: Check – List 

 

Sample Check-list example of testing procedure for harbour breakwater model 

CHECK-LIST - 2012 ICCE 
Operator: 

 

Date: 

 

Executed tests: 

Step Daily operations: Notes: 

1 
Turn on the resistive wave gauges (No. 8 in the electrical cabinet) 

and the wave maker (No. 7 in the electrical cabinet). 
 

2 
Turn on the PC GENERATORE, GANIMEDE, and power of the 

load cells and pressure transducers. 
 

3 
Check the memory on PC GENERATORE (E:) and GANIMEDE 

(F:). 
 

4 

Create folder of the day in the format dd-mm-yy  in GANIMEDE 

F:\ModelliFisiciInConduzione\2012_ICCE\Esperimenti   
and folders Figure and DatiCalibrati always in GANIMEDE, on 

PC GENERATORE  create E:\2012_ICCE only folder of the day 

in the format dd-mm-yy. 

 

5 

Create text file in folder of the day in GANIMEDE (e.g. 

c180112F10_livelli.cal) with the following content: 

WG    CHANNEL   TROUGH  CREST     ZERO 

1 9 -10 10 0 

2 2 -5  5 0 

3 3 -5  5 0 

4 4 -5  5 0 

5 10 -5  5 0 

Copy in Ganimede’s folder of the day in "DatiCalibrati" the Matlab 

file IstogrammaVolumiOvertopping.m and update items "name" 

and "saveas". 

 

6 
Place the hydrometric tip on the right level position for the test, 

where pump is off  F1: 15.2 cm. 

* note: 

Level F1: Pomp 

on, at the nonius 

is 14.4 cm. 

7 

Check that the free surface in the channel is tangent to the 

hydrometric tip, wait for about 10 minutes. If the level is less than 

requested, input water in the channel and wait that the level is 

tangent to the tip of the nonius. 

 

8 
Start the Calibration procedure (Calibrazione)(see further on the 

check-list wave gauges calibration). 
 

9 Turn on the pump of the back blade and wait for about 20 minutes.  

10 
Connect the overtopping tank to the load cells, put 500 ml of water 

inside and wait for the time necessary for the stabilization. 
 

11 Perform Load cells calibration (Calibrazione delle celle di carico)  

 



 

from PC GANIMEDE in 

F:\ModelliFisiciInConduzione\2012_ICCE\Esperimenti start the 

program of the load cells and pressure transducers ICCE.seproj  

- Stepsetup – Configuration; 

- Device – Strain Calibration for each sensor; 

- Select only “Enable Offset Nulling”; 

- Finally, click on Calibrate and then Finish and proceed for 

the other transducer  

12 
Before execution of the test, register at the back of the check-list 

the level at the hydrometric tip at the nonius. 
 

13 

Launch the first 20 min wave attack from the PC-GENERATORE 

(start from the menu bar of Labview, the module of  “esecuzione” 

example: H1G2A*.pre), start ICCE.seproj by clicking "RUN" the 

acquisition of load cells and pressure transducers, turn on the two 

spotlights above the flume and start filming the video. 

*Note!!! 

The repetitions 

to do are three 

A, B, C of 20 

min each, for 

waves with wave 

height H1 and 

six repetitions A, 

B, C, D, E, F of 

10 minutes each, 

for waves with 

wave height H2. 

 

14 

At the end of each repetition: 

- Stop recording the video; 

- Empty the overtopping tank, which collects overflows and 

write down the volume in the check-list and in the Excel file; 

- End the recording of the load cells and pressure transducers, 

cut the file Celle.txt and Trasd.txt  from the folder Esperimenti 

(Experiments) and put them in the folder of the day with the 

name of the test performed  H1G2A1F1C0_Celle.dat and  

H1G2A1F1C0_Trasd.dat; 

 

 

15 

Transform the file you just obtained from the PC-GENERATORE 

(H1G2A.a01) from binary to ASCII (start from the menu bar of 

Labview the module  form of “trasformazione” ("transformation")). 

 

16 
Transfer the file that has been just acquired (binario.a01) in the 

folder of the day of PC-GENERATORE. 
 

17 

Cut the transformed file from PC-GENERATORE (ASCII.t01) 

and copy it to GANIMEDE (in the folder of the day!) and rename 

it in the form like H1G2A1F1C0.dat 

 

18 
Analyze the file you have just acquired it by Matlab 7.1 program 

using the program "Main". 
 

19 

Analyze the graph of overtopping volume (H2G1A1F1C0-

Overtopping.bmp) and create a text file with 2 columns, one 

showing the serial number of overtopping events and the other the 

corresponding cumulative volumes; save it into the form 

 



 

 

 
 

H1G2A1F1C0_VolumiOvertopping.dat 

20 
Analyze the file you have just created by software Matlab 7.1 with 

the program "IstogrammaVolumiOvertopping.m". 
 

21 
Wait 10 minutes to stabilize the water level inside the wave flume 

and fill the database and the daily report. 
 

22 

Repeat the operations from step 9 until the end of the daily tests. 

IN CASE OF THE CHANGES IN THE STUDIED LEVEL 

REPEAT THE CALIBRATION!! 

 

23 

When the daily tests are finished, turn off the computers, wave 

gauges, load cells, pressure transducers and close the door of PC 

GENERATORE’s room. 
 

CHECK-LIST 

  Wave gauges calibration  

Operator: 

 

Date: 

 

Step Tiered approach for wave gauges calibration Notes 

1 
Start the calibration procedure by opening the folder 2012_ICCE 

from your PC GENERATORE’s desktop. 
 

2 Launch the file idra11.vi.  

3 
Launch the module “predisposizione” ("predisposition") from the 

menu bar and after that launch the module “taratura” ("calibration"). 
 

4 Select channels of wave gauges to calibrate: wave gauges from 1-10.  

5 Enter the range of calibration for each wave gauge [mm].  

6 
Enter the distance value for each wave gauge from the back blade 

[mm]. 
 

7 Enter the depth value for each wave gauge [mm].  

8 

Bring the wave gauges to the maximum level, firmly attach the 

nonius, wait until the water level stabilize and acquire data from 

GENERATORE (select the “taratura” (“calibration”)). 

 

9 

Bring the wave gauges to the minimum level, firmly attach the 

nonius, wait until the water level stabilize and acquire data from 

GENERATORE (select the “taratura” (“calibration”)). 

 

10 

Center the wave gauges, firmly attach the nonius, wait until the 

water level stabilize and acquire data from GENERATORE (select 

the “taratura” (“calibration”)). 

 

11 

Copy file idra11.son into the folder of the day of GENERATORE 

and connect it to GANIMEDE and GENERATORE network and 

copy it F:\ModelliFisiciInConduzione\2012_ICCE \Esperimenti\dd-

mm-yy and rename into cddmmyyzzx.cal (day month year level, 

number of calibration (e.g. c040507F00.cal)). 

 

12 

Analyze the calibration file using the Matlab program 

"VerificaCalibrazione “ by entering calibration instruction (' date ',' 

level ', number of calibration). 

 

13 
Write down in notes and in the diary any deviations found during 

calibration. 
 



 

Notes: 

 

Wave Code Rep. Config. 

Level before 

the test 

execution (read 

on the nonius) 

Volume of 

overtopping 

(liters) 

H1G2 A1 C0   

H1G2 B1 C0   

H1G2 C1 C0   



 

 

 
 

Appendix D: Diary of laboratory activities 

 

Testing Schedule 

2012 ICCE 

Date Operator Activity NOTES 

March 

28, 

2012 

Andrea 

PRELIMINARY TESTS 

 

H1T7G2 – Hm0=4.5m, Tp=7s, γ=2 

 Wave H10T99G2A (H=10cm, T=0.99s, γ=2) 

 Wave H11T99G2A (H=11cm, T=0.99s, γ=2) 

 Wave H12T99G2A (H=12cm, T=0.99s, γ=2) 

 Wave H12T99G2B (H=12cm, T=0.99s, γ=2) 

 Wave H12T99G2C (H=12cm, T=0.99s, γ=2) 

 Wave H115T99G2A (H=11.5cm, T=0.99s, 

γ=2) 

 Wave H115T99G2B (H=11.5cm, T=0.99s, 

γ=2) 

 

Performed with a 

single calibration, 

there are not 

significant errors.  

 

Wave 

H115T99G2 

(H=11.5cm, 

T=0.99s, γ=2) is 

the wave of the 

project H1T7G2 

March 

29, 

2012 

Andrea 

Urška 

PRELIMINARY TESTS 

 

H1T9G2 – Hm0=4.5m, Tp=9s, γ=2 

 Wave H115T127G2A (H=11.5cm, T=1.27s, 

γ=2) 

H1T11G2 – Hm0=4.5m, Tp=11s, γ=2 

 Wave H115T156G2A (H=11.5cm, T=1.56, 

γ=2) 

H1T7G5 – Hm0=4.5m, Tp=7s, γ=5 

 Wave H115T99G5A (H=11.5cm, T=0.99s, 

γ=2) 

H2T115G5 – Hm0=7.5m, Tp=11.5s, γ=5 

 Wave H18T163G5 (H=18cm, T=1.63s, γ=5) 

 Wave H17T163G5 (H=17cm, T=1.63s, γ=5) 

Performed with a 

single calibration 

there are not 

significant errors. 

  

Wave 

H115T127G2 

(H=11.5cm, 

T=1.27s, γ=2) is 

the wave of the 

project H1T9G2. 

 

Wave 

H115T156G2 

(H=11.5cm, 

T=1.56s, γ=2) is 

the wave of the 

project H1T11G2. 

 

Wave 

H175T163G5 

(H=17cm, 

T=1.63s, γ=5) is 

the wave of the 

project 

H2T115G5. 

 

 

 

 
PRELIMINARY TESTS 

 

Modification of 

characteristic 



 

 

 

 

 

 

 

 

 

 

 

 

 

March 

30, 

2012 

 

 

 

 

 

 

 

 

 

 

 

 

Andrea 

Urška 

H1T85G2 – Hm0=6.0m, Tp=8.5s, γ=2 

 Wave H14T12G2 (H=14cm, T=1.20, γ=2) 

 

H1T105G2 – Hm0=6.0m, Tp=10.5s, γ=2 

 Wave H135T148G2 (H=13.5cm, T=1.48, 

γ=2) 

 

H1T125G2 – Hm0=6.0m, Tp=12.5s, γ=2 

 Wave H13T177G2 (H=13cm, T=1.77, γ=2) 

 

H1T85G5 – Hm0=6.0m, Tp=8.5s, γ=5 

 Wave H14T12G5 (H=14cm, T=1.20, γ=5) 

 

H1T105G5 – Hm0=6.0m, Tp=10.5s, γ=5 

 Wave H135T148G5 (H=13.5cm, T=1.48, 

γ=5) 

 

H1T125G5 – Hm0=6.0m, Tp=12.5s, γ=5 

 Wave H13T177G5 (H=13cm, T=1.77, γ=5) 

 

H2T163G5 – Hm0=7.5m, Tp=11.5s, γ=5 

 Wave H17T163G5 (H=17cm, T=1.63, γ=5) 

 

H2T163G2 – Hm0=7.5m, Tp=11.5s, γ=2 

 Wave H17T163G2 (H=17cm, T=1.63, γ=2) 

parameters of the 

waves; new 

search of the 

waves. 

 

Performed with a 

single calibration 

there are not 

significant errors.  

 

 

April 

03,  

2012 

Andrea 

Urška 

Deniz 

 DEFINITIVE TESTS 

 

 Wave H1T85G2AF1C0 

 Wave H1T85G2BF1C0 

 Wave H1T85G2CF1C0 

 

 Wave H1T105G2AF1C0 

 Wave H1T105G2BF1C0 

 Wave H1T105G2CF1C0 

 

Performed with a 

single calibration 

there are not 

significant errors.  

 

In the test 

H1T85G2AF1C0 

has been recorded 

an electric shock 

to the WG2 and 

WG3 and to the 

transducers 

during the first 

30''. 

 

Performed a 

second calibration 

before the 

execution of wave 

H1T105G2 

because there has 

been an offset 



 

 

 
 

towards the 

bottom of the WG 

2, 3, 4 and 5. 

April 

04,  

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T125G2AF1C0 

 Wave H1T125G2BF1C0 

 Wave H1T125G2CF1C0 

 

 Wave H1T85G5AF1C0 

 Wave H1T85G5BF1C0 

 Wave H1T85G5CF1C0 

 

 Wave H1T105G5AF1C0 

 Wave H1T105G5BF1C0 

 Wave H1T105G5CF1C0 

 

 Wave H1T125G5AF1C0 

 Wave H1T125G5BF1C0 

 Wave H1T125G5CF1C0 

 

 

 

Performed  with a 

single calibration 

there are not 

significant errors  

 

From the tests 

H1T105G5 there 

is an offset 

upward of the 

WG1 equal to 

about 

2-3 mm.  

April 

05, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H2T115G2AF1C0 

 Wave H2T115G2BF1C0 

 Wave H2T115G2CF1C0 

 Wave H2T115G2DF1C0 

 Wave H2T115G2EF1C0 

 Wave H2T115G2FF1C0 

 

 Wave H2T115G5AF1C0 

 Wave H2T115G5BF1C0 

 Wave H2T115G5CF1C0 

 Wave H2T115G5DF1C0 

 Wave H2T115G5EF1C0 

 Wave H2T115G5FF1C0 

 

Performed  with a 

single calibration 

there are not 

significant errors  

Recalibrated 

(with a pump on) 

before the test 

H2T115G2CF1C

0 due to a power 

outage. 

 

The wave gauges 

have been 

subjected to an 

offset upwards of 

about 2 mm 

before the tests 

H2G5 

April 

10,  

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H2T115G2AF1C1 

 Wave H2T115G2BF1C1 

 Wave H2T115G2CF1C1 

 Wave H2T115G2DF1C1 

 Wave H2T115G2EF1C1 

 Wave H2T115G2FF1C1 

Performed with a 

single calibration 

there are not 

significant errors.  

 

In the test 

H2T115G2CF1C

1 there has been a 



 

 

 Wave H2T115G5AF1C1 

 Wave H2T115G5BF1C1 

 Wave H2T115G5CF1C1 

 Wave H2T115G5DF1C1 

 Wave H2T115G5EF1C1 

 Wave H2T115G5FF1C1 

 

 Wave H1T125G5AF1C1 

 Wave H1T125G5BF1C1 

 Wave H1T125G5CF1C1 

 

 Wave H1T125G2AF1C1 

 

wrong 

functioning of the 

pressure 

transducer 5 due 

to the presence of 

a stone close to 

the same 

transducer 

 

From the test 

H2T115G2CF1C

1 there is an 

upward offset of 

the wave gauges 

of approximately 

1-2 mm. 

 

In the test 

H2T115G5EF1C

1 the wave gauge 

3 has suffered an 

electric blackout 

(see the water 

zero levels) 

April 

11, 

2012 

Andrea 

Urška 

Deniz 

DEFINITIVE TESTS  

 

 Wave H1T125G2BF1C1 

 Wave H1T125G2CF1C1 

 

 Wave H1T105G5AF1C1 

 Wave H1T105G5BF1C1 

 Wave H1T105G5CF1C1 

 

 Wave H1T105G2AF1C1 

 Wave H1T105G2BF1C1 

 Wave H1T105G2CF1C1 

 

 Wave H1T85G5AF1C1 

 Wave H1T85G5BF1C1 

 Wave H1T85G5CF1C1 

 

 Wave H1T85G2AF1C1 

 Wave H1T85G2BF1C1 

 Wave H1T85G2CF1C1 

Performed  with a 

single calibration 

there are not 

significant errors  

 

After the first test 

the WG1 has an 

upward offset of 

about 5 mm. 

 

From the test 

H1T85G5AF1C1 

there is a further 

upward offset of 

all the wave 

gauges. 

April 

12, 

Andrea 

Urška 
DEFINITIVE TESTS  

 

 

 



 

 

 
 

2012  Wave H1T85G2AF1C2 

 Wave H1T85G2BF1C2 

 Wave H1T85G2CF1C2 

 

 Wave H1T85G5AF1C2 

 Wave H1T85G5BF1C2 

 Wave H1T85G5CF1C2 

 

 Wave H1T105G2AF1C2 

 Wave H1T105G2BF1C2 

 Wave H1T105G2CF1C2 

 

 Wave H1T105G5AF1C2 

 Wave H1T105G5BF1C2 

 Wave H1T105G5CF1C2 

 

 Wave H1T125G2AF1C2 

 Wave H1T125G2BF1C2 

 

 

 

 

Performed with a 

single calibration 

there are not 

significant errors  

 

The WG1has an 

upward offset, 

which increases 

from test to test. 

April 

13, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T125G2CF1C2 

 

 Wave H1T125G5AF1C2 

 Wave H1T125G5BF1C2 

 Wave H1T125G5CF1C2 

 

 Wave H2T115G2AF1C2 

 Wave H2T115G2BF1C2 

 Wave H2T115G2CF1C2 

 Wave H2T115G2DF1C2 

 Wave H2T115G2EF1C2 

 Wave H2T115G2FF1C2 

 

 Wave H2T115G5AF1C2 

 Wave H2T115G5BF1C2 

 Wave H2T115G5CF1C2 

Performed with a 

single calibration 

there are not 

significant errors.  

April 

16, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H2T115G5DF1C2 

 Wave H2T115G5EF1C2 

 Wave H2T115G5FF1C2 

 

 Wave H2T115G2AF1C3 

 Wave H2T115G2BF1C3 

 Wave H2T115G2CF1C3 

 

 

 

 

 

 

Performed with a 

single calibration 

there are not 



 

 Wave H2T115G2DF1C3 

 Wave H2T115G2EF1C3 

 Wave H2T115G2FF1C3 

 

 Wave H2T115G5AF1C3 

significant errors.  

 

The WG has a 

downward offset, 

gets bigger from 

the second day 

test forward.  

April 

17, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H2T115G5BF1C3 

 Wave H2T115G5CF1C3 

 Wave H2T115G5DF1C2 

 Wave H2T115G5EF1C2 

 Wave H2T115G5FF1C2 

 

 Wave H1T125G2AF1C3 

 Wave H1T125G2BF1C3 

 Wave H1T125G2CF1C3 

 

 Wave H1T125G5AF1C3 

 Wave H1T125G5BF1C3 

 Wave H1T125G5CF1C3 

 

 Wave H1T105G2AF1C3 

Performed with a 

single calibration 

there are not 

significant errors.  

 

The WG1 has a 

downward offset 

of about 5.0 mm. 

April 

18, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T105G2BF1C3 

 Wave H1T105G2CF1C3 

 

 Wave H1T105G5AF1C3 

 Wave H1T105G5BF1C3 

 Wave H1T105G5CF1C3 

Performed with a 

single calibration 

there are not 

significant errors.  

 

All the wave 

gauges are 

subjected to a 

downward offset. 

April 

19, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T85G2AF1C3 

 Wave H1T85G2BF1C3 

 Wave H1T85G2CF1C3 

 

 Wave H1T85G5AF1C3 

 Wave H1T85G5BF1C3 

 Wave H1T85G5CF1C3 

 

 Wave H1T85G2AF1C4 

 Wave H1T85G2BF1C4 

 Wave H1T85G2CF1C4 

 

Performed  with a 

single calibration 

there are not 

significant errors.  

 

The WG1 has by 

a downward 

offset of about 5.0 

mm. 



 

 

 
 

 

 Wave H1T85G5AF1C4 

 Wave H1T85G5BF1C4 

 Wave H1T85G5CF1C4 

April 

20, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T85G5CF1C4 

 

 Wave H1T105G2AF1C4 

 Wave H1T105G2BF1C4 

 Wave H1T105G2CF1C4 

Performed with a 

single calibration 

there are not 

significant errors.  

 

April 

23, 

2012 

 

Urška 

 DEFINITIVE TESTS  

 

 Wave H1T125G2AF1C4 

 Wave H1T125G2BF1C4 

 Wave H1T125G2CF1C4 

 

 Wave H1T125G5AF1C4 

 Wave H1T125G5BF1C4 

 Wave H1T125G5CF1C4 

 

 Wave H2T115G2AF1C4 

 Wave H2T115G2BF1C4 

 Wave H2T115G2CF1C4 

 Wave H2T115G2DF1C4 

Performed with a 

single calibration 

there are not 

significant errors.  

April 

24, 

2012 

 

Andrea 

Urška 

 DEFINITIVE TESTS  

 

 

 Wave H2T115G2EF1C4 

 Wave H2T115G2FF1C4 

 

 Wave H2T115G5AF1C4 

 Wave H2T115G5BF1C4 

 Wave H2T115G5CF1C4 

 Wave H2T115G5DF1C4 

 Wave H2T115G5EF1C4 

 Wave H2T115G5FF1C4 

 

 Wave H2T115G2AF1C5 

 Wave H2T115G2BF1C5 

Performed with a 

single calibration 

there are not 

significant errors.  

April 

26, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H2T115G2CF1C5 

 Wave H2T115G2DF1C5 

 Wave H2T115G2EF1C5 

Performed with a 

single calibration 

there are not 

significant errors.  



 

 Wave H2T115G2FF1C5 

 

 Wave H2T115G5AF1C5 

 Wave H2T115G5BF1C5 

 Wave H2T115G5CF1C5 

 Wave H2T115G5DF1C5 

 Wave H2T115G5EF1C5 

 Wave H2T115G5FF1C5 

 

 Wave H1T125G2AF1C5 

 Wave H1T125G2BF1C5 

April 

27, 

2012 

Andrea 

DEFINITIVE TESTS  

 

 Wave H1T125G2CF1C5 

 

 Wave H1T125G5AF1C5 

 Wave H1T125G5BF1C5 

 Wave H1T125G5CF1C5 

 

 Wave H1T105G2AF1C5 

 Wave H1T105G2BF1C5 

 Wave H1T105G2CF1C5 

 

 Wave H1T105G5AF1C5 

 Wave H1T105G5BF1C5 

 Wave H1T105G5CF1C5 

 

 Wave H1T85G2AF1C5 

Performed with a 

single calibration 

there are not 

significant errors.  

May 

02, 

2012 

Andrea 

Urška 

DEFINITIVE TESTS  

 

 Wave H1T85G2BF1C5 

 Wave H1T85G2CF1C5 

 

 Wave H1T85G5AF1C5 

 Wave H1T85G5BF1C5 

 Wave H1T85G5CF1C5 

Performed with a 

single calibration 

there are not 

significant errors. 

 

 

 

 

 

 

 

 

 



 

 

 
 

Appendix E: Example of a daily report 

 

An example of a daily laboratory report of the day April 20, 2012 is shown. 

 

REPORT -- April 20, 2012 

 

Level F1 Configuration C0 

 

Depth at the blade with the pump off: 55.50 cm (15.2 cm at nonius) 

 

Report of the calibration coefficients lines for the five wave gauges used in the wave flume: 

 

Table 1: Calibration Parameters for each wave gauge [cm]=[Volt]A+B 

 

 
 

Hereinafter the graphs of each WG daily calibration are reported: 

 

 

 
 

 

 

 

 



 

Water levels in the wave flume 

 

 
 

Acquisition made by back blade and generator on, for wave H1T85G2A 

 Hm0=12.0 cm T= 1.2 s  =2 (duration 20 min) 

 

Table 3: Characteristic Wave Parameters measured by each relative WG from the wave attack  

 

 
** These values are computed by using the 30s long measurements before the activation of 

the wave maker. 

 

Table 4: Reflection analysis according to Godo and Suzuki (1976)  

 

 
 

Hereinafter graphs for each WG are reported in terms of: 

i) Level time series 

ii) Spectrum in frequency 

iii) Zero crossing distribution of the wave heights  

 



 

 

 
 

 
 
 

 

 

 

 

 

 



 

Hereinafter graphs of each reflection analysis after Goda and Suzuki (1976) are reported (See 

Table 4): 

 
 
Hereinafter graphs of overtopping analysis obtained by the four load cells placed at the back 

of the wave wall and graphs of pressure analysis are reported: 

 

    
 

 

     

 
 



 

 

 
 

Appendix F: Matlab program for overtopping analysis 

 
function [VolumeCumulato 

qm]=Overtopping(LarghezzaCampionatore,TempoRiferimento,Celle,fs,Data,scala,

FileWg) 
precisioneMisura=0.02; %kg 
step = precisioneMisura/LarghezzaCampionatore; 

  
%Celle=dati; %load(['..\input\' FileWg '_Celle.dat']); 
VolumeCumulato=-sum(Celle(length(Celle),2:5)'); 
OvertoppingCumulato=-sum(Celle(:,2:5)')/LarghezzaCampionatore; 
time=[0:1/fs:length(OvertoppingCumulato)/fs-1/fs]; 

  
OvertoppingCumulato_filt=OvertoppingCumulato; 
intervallo=20; 
for i=1:length(OvertoppingCumulato) 
    if (i<=intervallo) 
        

OvertoppingCumulato_filt(i)=mean(OvertoppingCumulato(1:i+intervallo)); 
    elseif i>=(length(OvertoppingCumulato)-intervallo) 
        OvertoppingCumulato_filt(i)=mean(OvertoppingCumulato(i-

intervallo:length(OvertoppingCumulato))); 
    else 
        OvertoppingCumulato_filt(i)=mean(OvertoppingCumulato(i-

intervallo:i+intervallo)); 
    end 
end 

  
j=1; 
intervallo2=1000; 
jumpIndex=[1]; 
for i=1+intervallo2:length(OvertoppingCumulato_filt) 

     
    if mean(OvertoppingCumulato_filt(i-intervallo2:i))-

OvertoppingCumulato_filt(j)>step 
        jumpIndex=[jumpIndex; i]; 
        j=i; 
    else 
    end 
end 

  
OvertoppingVolumes=[]; 

  
close all 
plot(time,OvertoppingCumulato_filt,'-r') 
hold on 
plot(time(jumpIndex(1)),OvertoppingCumulato_filt(jumpIndex(1)),'ok'); 
for i=2:length(jumpIndex) 
    plot(time(jumpIndex(i)),OvertoppingCumulato_filt(jumpIndex(i)),'ok'); 
    OvertoppingVolumes(i-1)=OvertoppingCumulato_filt(jumpIndex(i))-

OvertoppingCumulato_filt(jumpIndex(i-1)); 
end 

  
%qm: mean discharge [l/s/m] 
qm=OvertoppingCumulato(length(OvertoppingCumulato))/TempoRiferimento; 

  



 

title(['Overtopping Time History - Test: ' FileWg ' Data: ' Data]); 
xlabel(['Time [s]']); 
ylabel(['Volume [l/m]']); 
axis([0 time(length(time)) 0 

OvertoppingCumulato(length(OvertoppingCumulato))+1]); 
grid on; 
saveas(gcf,['..\OutPut\Figure\' FileWg '-Overtopping.bmp']); 
hold off; 
close all; 

  
plot(time(jumpIndex(2:length(jumpIndex))), OvertoppingVolumes,'.'); 
title(['Wave-by-Wave Overtopping Volumes - Test: ' FileWg ' Data: ' Data]); 
xlabel(['Time [s]']); 
ylabel(['Volume [l/m]']); 
axis([0 time(length(time)) 0 3]); 
grid on; 
saveas(gcf,['..\OutPut\Figure\' FileWg '-WaveBywaveOvertopping.bmp']); 
hold off; 
close all 

  
M=[0.01:3/300:3]; 
[pluto MM]=hist(OvertoppingVolumes,M); 
bar(MM,pluto/sum(pluto)*100); 
title(['Overtopping Volumes Distribution Test: ' FileWg  ' Date: ' Data]); 
grid on 
axis([0 3 0 100]); 
xlabel('Volumes [l/m]'); 
ylabel('n/N [%]'); 
saveas(gcf,['..\OutPut\Figure\' FileWg  '-

OvertoppingVolumesDistribution.bmp']); 
close all 

  
risultati=fopen(['..\OutPut\' FileWg 'Overtopping.dat'],'w'); 
fprintf(risultati,' %7.4f ',qm); 
fprintf(risultati,' %%q_m [l/s/m]\r\n ') 
for i=1:length(OvertoppingVolumes) 
    fprintf(risultati,' %6.3f ',OvertoppingVolumes(i)); 
    fprintf(risultati,['%%Volume N. ' num2str(i) ' [l/m]\r\n ']); 
end 
fclose(risultati); 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Appendix G: Matlab program for pressure analysis 

 
function []=Trasduttori(Trasd,fs,Data,FileWg) 

  
%Trasd=load(['..\Input\' FileWg '_Trasd.dat']); 
Trasd(:,1)=[]; 
[n m]=size(Trasd); 
time=[0:1:n-1]/fs; 
Pzero=mean(Trasd(1:30*fs,:)); 

  
for i=1:m 
    Trasd(:,i)=Trasd(:,i)-Pzero(i); 

     
    plot(time, Trasd(:,i)); 
    title(['Pressure Trasducer ' num2str(i) '- Test: ' FileWg ' Data: ' 

Data ]), grid on; 
    xlabel(['Time [s]']); 
    ylabel(['Pressure [bar]']); 
    axis([0 time(length(time)) 0 0.0082]); 
    saveas(gcf,['..\OutPut\Figure\' FileWg '-Trasduttore' num2str(i) 

'.bmp']); 

    

     
    I=find(Trasd(:,i)>0.0002); %tolgo il rumore 
    X=[0.0004:0.0004:0.0082];  
    [N1 XX]=hist(Trasd(I,i),X); 
    Freq_1=N1/sum(N1)*100; 
    bar(X,Freq_1); 
    title(['PT' num2str(i) ' - Pressure frequency - Test: ' FileWg ' Data: 

' Data ]); 
    xlabel('Pressure [bar]'); 
    ylabel ('Frequency of Occurrence [%]') 
    axis([0 0.0082 0 100]), grid on 
    saveas(gcf,['..\OutPut\Figure\' FileWg '-PressureFrequency-PT' 

num2str(i) '.bmp']); 

     
end 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix H: Program output  

 

Appendix H.1: Output graphs for overtopping analysis 

 

 



 

 

 
 



 

 



 

 

 
 



 



 

 

 
 



 



 

 

 
 

 
 



 

Appendix H.2: Output graphs for pressure analysis 

 

Hereinafter graphs of pressure distribution for pressure transducer 1 are reported. Graphs of 

pressure distribution for the other transducers are available on CD in the repository of UL 

FGG. 

 



 

 

 
 



 



 

 

 
 



 



 

 

 
 

 




