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Abstract: This paper presents a photogrammetry-based system for capturing turbulent aerated flow
topography in a laboratory environment, especially for complex hydraulic phenomena character-ised
by turbulent, non-stationary, and non-homogeneous aerated flows. It consists of ten high-resolution
cameras equipped with monochromatic sensors and custom-built LED lights, all synchronised for
accurate data acquisition. Post processing involves Structure-from-Motion and Multi-View Stereo
techniques to calculate exterior and interior orientation parameters that ensure accurate alignment
within a desired coordinate system, and conversion to point clouds. The proposed method showed
great potential for capturing free water surface topography of turbulent aerated flows with high
spatial and temporal resolution over the entire field of view of the cameras. Due to the unique
capabilities of this system, direct comparisons with existing benchmarks were not possible. Instead,
average free water surface profiles were derived from selected control cross sections, using 2D
LIDAR measurements for verification. Both the LIDAR and photogrammetry averaged profiles
showed remarkably good agreement, with deviations within ±20 mm. Validation showed that
photogrammetry can be used to measure the complex aerated turbulent free water surface. In this
way, this approach, involving consecutive image dataset acquisition at predefined intervals, is proving
to be a valuable tool for observing, visualising, analysing, investigating, and gaining a comprehensive
understanding of the dynamics of the free water surface.

Keywords: turbulent aerated flow; free water surface topography; non-intrusive measuring methods;
Structure-from-Motion

1. Introduction

Accurate measurement of water level and discharge is essential for the design and
management of natural and artificial hydraulic structures, such as rivers, spillways, sewers,
channel confluences, high-speed outlets, desilting, and fish migration facilities [1,2]. The
free water surface flows occurring in these structures are usually turbulent and charac-
terised by a greater or lesser degree of air entrainment, the mechanism of which has been
extensively studied [3,4]. Experimental hydraulic measurements, instrumentation, and data
processing have evolved over many decades of research and are described in several publi-
cations [5,6]. Characterisation of the free surface of slow, steady, and lightly aerated flows
is quite straightforward and can be adequately accomplished using well-established point
measurement methods, such as U-manometers, point gauges, wave probes, or ultrasonic
sensors [6,7]. Nevertheless, measuring the instantaneous free water surface topography of
highly complex, aerated, non-homogeneous, and non-stationary flows occurring at high
Reynolds and Froude numbers (such as Re > 104 and Fr > 3, respectively) requires a choice
of different measurement methods [8]. Only optical methods based on laser ranging [9,10],
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laser triangulation [11,12], 3D stereoscopic algorithms [13], and photogrammetric meth-
ods [6] have sufficient spatial and temporal resolution for adequate characterisation of
complex three-dimensional free surface flows.

The laser scanner works by emitting a laser beam onto a rotating mirror while the
scanner head simultaneously rotates and sweeps the laser across the target surface. When
the laser hits objects, it is reflected back to the scanner. This process allows not only distance
measurement, but also the acquisition of angles that are crucial for determining geometry
and generating accurate 3D data interpretations. Laser distance measurement techniques
such as LIDAR typically use a laser beam that scans the surface of interest and determines
the distance to it based on the time-of-flight principle [14], while laser triangulation also
employs cameras to capture the positions of beam reflections [12]. When measuring the
free water surface, laser-based methods have been used for hydraulic jumps [9,15,16],
undular tidal bores [17], and confluence flows [10,12]. In contrast to laser-based methods,
photogrammetric methods rely primarily on the use of multiple images that have sufficient
image overlap. The main advantage of photogrammetry over other optical methods is
the fast and inexpensive spatial data acquisition with no moving parts, as well as the
potentially much larger measurement range, which allows for spatial data to be obtained in
hard-to-reach or inaccessible areas. Compared to laser scanning, photogrammetric setups
rely on passive detection of visual surface features (e.g., textures, edges, reflections) instead
of detection of laser beam reflections from the free surface of liquids, which are often
associated with high rejection rates [14]. Therefore, laser scanning may require multiple
scans of the same flow section to obtain a sufficient density of measurement data points.
Consequently, photogrammetry allows for more robust free surface data acquisition with
much higher spatial and, depending on the acquisition system, better temporal resolution
than laser ranging methods.

Photogrammetry is already widely used in topographic mapping, architecture, engi-
neering, manufacturing, quality control, police investigations, cultural heritage, and geol-
ogy [18–25]. Various photogrammetric methods can be used for 3D surface reconstruction,
such as silhouette reconstruction, stereo reconstruction, and structure-from-motion algo-
rithms [26]. Among numerous other applications, photogrammetry has been used for the
3D structural modelling of buildings [27] and underground mines [28]. Spreitzer et al. [29]
used Structure-from-Motion (SfM) photogrammetry for segmentation, shape, and volume
determination of large wood assemblages in river systems. Similar algorithms can be used
to reconstruct free water surface flows, although the number of relevant studies is relatively
modest. Free water surface rivers where topography reconstruction is less challenging
include rivers with narrow open channels and spillways where water height does not vary
greatly across the direction of flow. Bung [30] used a high-speed camera to examine the
air–water surface topography of a stepped spillway model, where the walls of the spillway
were transparent to reveal the flow cross section.

Several reconstruction methods have been developed, from methods that use a single
camera, such as shape from shading, texture, or focus, to methods that use a spatial array of
multiple cameras [31]. Ferreira et al. [32] developed an automated algorithm to extract the
topography of the free surface of a straight channel with an open channel using SfM and
Multi-View Stereo (MVS) photogrammetry with floating markers as visible flow features
(seeding particles) and three spatially arranged cameras. A similar case with wave channels
was studied by Fleming et al. [33], who also used a three-camera setup and particle seeding.
The authors simultaneously measured the mean surface height of the fluid and the wave
velocity using digital image correlation. Velocity measurements by methods such as image
correlation or optical flow are not photogrammetric methods per se but can complement
the results of 3D photogrammetric reconstruction. A recent review of photogrammetric and
related optical methods for measuring the topography and velocity of flows on free water
surfaces was published by [34]. In this review, the algorithms were mostly supported by
floating particle markers and submerged 2D calibration targets with patterns. The vertical
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amplitude of fluctuations at the fluid surface was small compared to the planar dimension
of the fluid mass, and there were few or no air pockets.

The success of 3D photogrammetric reconstruction of a free water surface topography
depends on many factors, including the number of cameras in the imaging array, image
resolution and sharpness (negligible motion blur and a good depth field are required), and
the sufficient presence of trackable flow features such as seed particles and illumination
points [32]. When the fluid flow is highly turbulent and has large free water surface fluctua-
tion amplitudes in all three dimensions, such as in a T-branching flow [10,12], very complex
flow structures form with trapped air bubbles and random splashes. This limits the use of
external visual aids such as submerged calibration targets and seed particles due to exces-
sive distortion and obstructions from complex two-phase structures, while buoyant particle
markers are washed away from the intended measurement area by downwelling and
upwelling currents [33]. Few publications have addressed the reconstruction of topography
under these flow conditions. Pavlovčič et al. [12] investigated the formation of standing
waves at a T-junction of two channels. In addition to the LIDAR topography measurement,
high-speed image data with visible laser beam reflections were used for shape reconstruc-
tion by triangulation, and the methods were found to be in good agreement. The same
flow setup was also studied by [35], who attempted photogrammetric reconstruction of the
free surface shape using an array of two high-speed cameras with partially overlapping
fields of view. Although the authors succeeded in obtaining a 3D surface model of the
standing wave, the accuracy of the model was poor due to insufficient depth perception
caused by an insufficient number of cameras and specular reflections. In the present study,
these deficiencies are addressed by using a much larger number of synchronised cameras,
improved illumination, and more sophisticated reconstruction algorithms.

The aim of this study was to use the photogrammetric method for measuring the
dynamics of the free water surface within a complex hydraulic phenomenon, where con-
ventional measurement methods do not provide sufficiently accurate results. To the best
of our knowledge, the proposed approach has not yet been performed and reported. In
this paper, we introduce the use of our in-house developed system that combines SfM
with MVS techniques for capturing the non-homogeneous and non-stationary free water
surface topography of the supercritical junction flow over the entire field of view of the
synchronised cameras.

2. Materials and Methods
2.1. Supercritical Junction Flow Model

The study was conducted at the Faculty of Civil and Geodetic Engineering in Ljubl-
jana, using a laboratory model of a supercritical open T-channel. The experimental setup
consisted of a horizontal flow model specifically designed for the study of supercritical
junctions. Turbulent structures of various sizes were observed, ranging from a few millime-
tres to larger structures (Figure 1, left). A comprehensive description of the sharp-edged
junction model with a 90◦ angle between the main channel and its side-channel axes can be
found in previous records [10,14]. Only the main features of the model are outlined here.

To ensure consistent conditions within the junction, both the main and side channels
had the same length of 1 m for the incoming flows. Both inflows were supercritical. The
length of the main channel downstream of the junction was 4.5 m. The channel walls
were made entirely of glass panels with a minimal number of joints between them, so that
the effects of roughness on flow conditions were also minimised. The inflows from the
reservoir were controlled by two pipelines and regulated by a valve and an electromagnetic
flow meter. The desired inflow conditions at the channel entrances were achieved through
pressure vessels that allowed for the adjustment of the opening height.

To prevent the transmission of vibrations from the glass channel to the measuring equip-
ment and the occurrence of additional measurement uncertainties, measuring and illumination
devices were attached to a separately mounted frame structure. Precise positioning of the



Remote Sens. 2023, 15, 4774 4 of 19

measurement devices ensured the repeatability of the measurements. Both the model and the
frame structure were built on a supporting metal frame to suppress vibrations.
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Figure 1. High-turbulent aerated flow in the main channel downstream of the T-junction (left) and
the measurement station with the indicated cross-section locations C1–C4, where a comparison of
laser scanning and photogrammetry was performed (right).

We used the following three-dimensional coordinate system for all measurements and
analyses. The longitudinal axis originated at the beginning of the junction, the transverse
axis originated at the left bank edge of the main channel, and the vertical axis extended
from the bottom of the channel (Figure 1, right).

2.2. Selection of Hydraulic Parameters

A single set of operating parameters was selected for analysis. The hydraulic pa-
rameters of the supercritical inflows, both characterised by high Froude and Reynolds
numbers, for the selected scenario, are listed in Table 1. A pronounced three-dimensional
turbulent aerated flow develops at the junction, forming unsteady and non-homogeneous
standing waves. A 3D structure of the free water surface is formed in the transversal and
longitudinal directions. Turbulent flow is characterised by high local velocity, steep sur-
faces, and large height differences. Turbulent structures on the water surface are non-linear
and three-dimensional and include ridges, vortex swirls, waves, hairpin-like structures,
turbulent bursts, and flying water droplets.

Table 1. Set of operating hydraulic parameters for selected flow conditions.

Variable Value

main flow height [m] 0.02
side flow height [m] 0.02
main flow rate [l/s] 32.7
side flow rate [l/s] 22.2
main flow Fr [−] 7
side flow Fr [−] 5

main flow Re [−] 6.5 × 104

side flow Re [−] 4.4 × 104

main flow height [m] 0.02
side flow height [m] 0.02

2.3. Photogrammetry Procedure

Laser scanning methods based on measuring the distance between the instrument
and the observed object surface obtain information by applying relatively simple post-
processing procedures [10]. Due to the rapidly changing free water surface of turbulent
and highly aerated water flows, such as those considered in our study, post processing
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of the photogrammetric image dataset requires several steps that are not fully automated.
The procedure for the acquisition and post processing of the photogrammetric image data
consisted of the following steps:

1. Setting up the experiment, including mounting and arranging the array of cameras
and LED illumination, and performing reference and tie points measurements using a
precise terrestrial survey;

2. Acquisition of image datasets at different times;
3. Post processing of the image datasets and creating point clouds.

To achieve better contrast and minimise unwanted reflections in the acquired images, a
matte black foil was applied to the channel walls throughout the acquisition area (Figure 2).
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Figure 2. The reference points (A1–A4 and B1–B11) and tie points (white crosses) were positioned in
a way that ensures their visibility is optimised across all cameras.

As reference points, the 4 markers in the form of circular patterns A1–A4 were attached
to the black matte foil, while 11 reference points (B1–B11) were additionally selected among
the tie points (Figure 2, white crosses).

The measurement station was equipped with 10 cameras of the type VEYE CS-MIPI-
SC132 [36], as shown in Figure 3. The cameras have a resolution of 1.3 MP with a monochro-
matic sensor (image size 1/4′′ with 1080 H × 1280 V) with a global shutter, multi-camera
synchronisation option, and M12 × P0.5 lens mount [37]. The lens used was YT3.5-2M
with a viewing angle of 97◦ (focal length 2 mm), 0.6% optical distortion, and an aperture
of 3.5. All cameras were arranged in the side channel. A fixed shutter speed of 100 µs
was maintained on all cameras for all experiments. Exposure, gain, shutter, and other
image settings were manually adjusted and were the same and constant for all cameras.
The optimal positioning of the cameras was determined to ensure sufficient longitudinal
and transverse fields of view and their overlapping while maintaining the best possible
image resolution. The precise positioning, uniform reference system, and stability of the
cameras throughout the recording period were ensured by mounting them on an external
frame structure that was not attached to the channel structure. The cameras were arranged
in two horizontal rows, with the sensors’ centrelines positioned at heights of 350 and
550 mm above the channel bottom. In Figure 3 (right), a top view of the experimental
setup is presented. The precise coordinates of each camera were determined using the
SfM technique, relying on the coordinates of reference points measured during the precise
terrestrial survey detailed in Section 2.4.
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All cameras were triggered by an external trigger signal. The hardware triggering
option was chosen to ensure sub-microsecond synchronisation. Accurate synchronisation
of image acquisition was required due to the rapidly changing free water surface. The
trigger signal was provided by the Raspberry Pi 4 microprocessor. Communication between
the camera module and the microprocessor was via an Inter-Integrated Circuit IIC data
transmission bus and a 15-pin FPC connector. Images were temporarily stored on the
microprocessor and later transferred to the laptop computer via a Wi-Fi connection for
further analysis. The open-source library was used for communication, camera parameter
setting, and acquisition so that a single set of 10 synchronised images was acquired per
acquisition. The procedure was repeated by the operator to acquire the desired number of
image sets.

The field of view was illuminated with diffuse light from multiple LED lights installed
at different positions relative to the imaging region of interest to ensure good visibility
of features on the free water surface regardless of the viewing angle. Chip-on-load LED
panels covering an area of 0.5 m × 0.5 m illuminated the confluence area from above, while
additional LED lights (CREE XM-L2 type with collimating lens) were installed on both
sides of the main channel (i.e., upstream and downstream) and in the side channel toward
the downstream direction. To ensure spatially uniform illumination intensity throughout
the area of interest, the LED panels and lights were carefully positioned and their output
was adjusted by limiting the current to each light. To ensure flicker-free and continuous
illumination, a high-quality DC power supply was used to power the lighting.

Knowing the exact position of the reference points was crucial for calculating the
exterior orientation of the images and determining the position of the object in the local
coordinate system, which was identical to the laser scanner coordinate system. To accurately
determine the coordinates of all reference points in the local coordinate system, a precise
terrestrial survey was performed using an electronic Total Station Leica TS30 (0.5′′ angular
accuracy and EDM accuracy 0.6 mm + 1 ppm) and prisms.

Due to the complex hydraulic phenomena and the interaction between water and
light, such as reflection and refraction, obtaining a high point cloud density through pho-
togrammetric image post processing requires a significantly larger number of reference
points within the area of interest than measurements involving solid objects. When using
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multi-image methods to determine 3D coordinates, a well-distributed spatial arrange-
ment of reference points can enhance the grid geometry, and thus the results of the SfM
method [38–40].

Post processing of the images and conversion to raw point clouds were performed
using Agisoft’s Metashape software package (version 2.0.0), while further processing of the
point clouds was carried out in CloudCompare (version 2.12.4), a robust 3D point cloud
processing software known for its advanced capabilities. The Metashape software is based
on the SfM method of photogrammetry, which was developed in the 1990s and relies on
computer vision techniques. It is particularly well suited for multi-image photogrammetry
applications. By combining SfM with MVS, the Metashape software package enables the
generation of a point cloud representing the acquired surface from multiple overlapping
images, while simultaneously calculating the exterior and interior orientation parameters
of these images within a desired coordinate system (Figure 4).
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The SfM method utilizes automatic image-matching algorithms to identify correspond-
ing feature points in multiple images. These matched feature points are then used to
compute the exterior and interior orientation parameters of the images as well as a low-
density surface point cloud. To accomplish this, the coordinates of the previously identified
and measured reference points were included in the calculations for the determination
of the exterior and interior orientation of the images and the generation of a low-density
point cloud in the reference coordinate system. The accuracy of the SfM calculations
was verified by comparing the results to control points measured using precise terrestrial
survey methods.

In the process of densifying the low-density point cloud, the MVS image-matching
method is described in previous research publications [26,41,42]. This method helps to increase
the point cloud density and provides a more detailed representation of the captured surface.

2.4. Precise Terrestrial Survey of the Reference Points

When the reference points were surveyed, various parameters were recorded, includ-
ing horizontal angles, vertical angles, and slope distances. These measurements were
essential for the accurate determination of the horizontal and vertical positions of the
geodetic points in three-dimensional space. The unique combination of these parameters
enabled the precise calculation of a point’s 3D position.
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At each point, horizontal angles were measured using the method of angle sets (5 sets),
while vertical angles and slope distances were measured in five repetitions in both faces.
To ensure a high degree of accuracy, measurements of meteorological parameters were
made simultaneously. These meteorological measurements played a crucial role in post
processing, as they allowed for the calculation of corrections to the survey parameters [43].

The measurements were performed using a high-precision Leica TS30 Electronic Total
Station, adhering to the specifications provided by the manufacturer, Leica Geosystem. The
instrument specifications were according to σISO-17123-3 (hz, v) 0.5′′ for horizontal and
vertical angles and σISO-17123-4: 0.6 mm; 1.0 ppm for distances [44].

In addition to the electronic Total Station, other measuring instruments were used.
These included three Leica GPH1P single precision reflectors (with a prism constant of 0),
three Leica GZR3 rotating carriers with optical plummet precision reflector holders, a Meteo
Station HM30 for meteorological measurements, and three tripods.

All data processing for the reference point measurements and determination of the
local coordinate system were performed using our custom software algorithm. This algo-
rithm was developed in MATLAB, taking into account the fundamental principles of the
discipline. The tool has been extensively utilised and validated in previous survey projects,
as documented in other publications [43].

The software algorithm includes several functionalities that ensure comprehensive
data analysis. It checks the completeness of angle sets, calculates the arithmetic mean of
angle sets, evaluates accuracy, determines approximate coordinates, reduces all measured
distances to the surface ratio, and adjusts the results using the least squares method. These
functions allow for robust processing and analysis of the measured data.

Based on the results of the fitting, it was determined that the maximum position error
for a point is 0.3 mm, while the maximum height error is 0.45 mm. As expected, the accuracy
of the height measurements is slightly lower compared to the position measurements.

By using our software algorithm and associated data processing functions, we have
obtained accurate and reliable results in various surveying applications.

2.5. LIDAR Reference Measurements

Reference profiling in specific cross sections was performed using a 2D laser scanner,
which has demonstrated its robustness and effectiveness in acquiring the free water surface
of turbulent aerated flows [10,45]. For comparison with photogrammetry, laser scanning
measurements were made in four cross sections labelled C1 through C4, as shown by the
blue lines in Figure 1, right.

For these measurements, we utilised the industrial laser scanner SICK LMS400 [46],
which provides high temporal and spatial resolution along a scan line. The instrument
operates at a visible red-light wavelength (λ = 650 nm) and was configured with a line scan
frequency of 270 Hz and an angular resolution of 0.2◦. The systematic measurement uncer-
tainty and statistical measurement uncertainty of the instrument are ±4 mm and ±3 mm,
respectively. The beam diameter is 1 mm. Each scan line consists of 350 measurement
points within an angular range of 70◦. A total of 6000 scan lines, and thus 2,100,000 points
in the entire point cloud of each cross section, were used to reconstruct the average trans-
verse profile of the free water surface. The laser scanner was placed at an elevation of
1150 mm above the channel bottom. Given the pronounced spatial non-uniformity in the
free water surface profile and the objective of enhancing measurement precision, each
profile was scanned from two distinct laser scanner positions along the transverse axis of
the main channel, specifically at Y = 125 mm and Y = 375 mm. Detailed information on
the post-processing techniques applied to the data from laser scanning can be found in
previously published articles [10,14], which provide a comprehensive description of the
methods used.
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3. Results

The results section is divided into two parts. The first part presents the reconstruction
of the free water surface using photogrammetry datasets, while the second part focuses on
result verification through laser scanner measurements.

3.1. Reconstruction of the Free Water Surface Based on Photogrammetry Datasets

Following the post-processing steps detailed in Section 2.3, we created a raw point
cloud from the acquired images. The point cloud was carefully positioned in the local
coordinate system, as shown in Figure 1. To ensure accurate reconstruction of the free
water surface, we filtered out points that represented non-water objects, such as walls or
the bottom, as shown in Figure 5 (top).

Next, the unevenly distributed point cloud was rasterised. For this purpose, a raster
grid with a resolution of 5 mm × 5 mm was chosen. Each node within the raster grid
was assigned a vertical Z coordinate by a simple linear interpolation process. The same
coordinate system was used before the rasterisation. The resulting rasterised point cloud is
shown in Figure 5 (bottom).

Figure 5 shows a blind spot (x = 1000, y = 300) for which the photogrammetry method
could not provide points. This particular area was not accessible to the cameras due to
their positioning in the side channel and the height of the standing wave ridge. Additional
cameras in the main channel would be required to effectively cover this area.

Reconstructing the free water surface using photogrammetry allows us to capture spa-
tial variations in the topography of the water surface. By capturing a series of consecutive
image sets at selected time intervals, we can effectively observe and analyse the temporal
changes in the topography of the free water surface.

Figure 6 shows the corresponding images acquired by camera 7 (left), and the com-
puted topography maps (right). It is important to note that the water in the main channel
flows from left to right, while the inflow from the side channel is from below. Due to the
imaging system used in this experiment, only a single image was captured per camera at
any given time. This was because each microprocessor stored images locally for camera
synchronisation, which later had to be sent to the main computer, and only then could the
next synchronised set of images be captured. Therefore, the images in Figure 6 were taken
at irregular intervals between shots. Nevertheless, the topography maps can be used to
show the elevation differences of the free water surface of the junction flow.

The comparison (Figure 6) of camera images (left) and photogrammetric reconstruction
(right) shows that the photogrammetric method reconstructs the standing waves very well.
This is also true for the vertical (Z) direction, even in areas with significant variations in
water height. This is in contrast to previous studies by Jašarević et al. [35], in which a much
smaller number of cameras was used. An insufficient number of cameras in their study
resulted in limited depth perception and consequently, an underestimation of the height of
the free water surface. The results presented here demonstrate the importance of having a
sufficient number of cameras for accurate water surface measurements in similar studies.

Consistent with the inherent nature of the hydraulic phenomenon itself, the overall
shape of the reconstructed standing wave, as shown in Figure 6, remained relatively stable
throughout the measurements. The maximum height of the wave, about 320 mm, remained
relatively constant, while variations in the position and height of smaller and less significant
local peaks were observed. We found that there is a blind spot at about (x = 1000, y = 300)
in all four raw point clouds.

In the following section, we make a comprehensive comparison between the pho-
togrammetry results and those of the LIDAR measurements. This analysis aims to highlight
the strengths and limitations of each method and provide valuable insight into their respec-
tive effectiveness in capturing hydraulic phenomena.
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3.2. Verification of Photogrammetry Data Using LIDAR Measurements

In this study, laser scanning, as a proven method for measuring turbulent, aerated free
water surface flows, was used as a reference measurement method to verify the accuracy
of the photogrammetric method. The laser scanning device allows for the comparison
of profiles of the free water surface with those obtained by photogrammetry in selected
cross sections. To enable the comparison with the photogrammetric method, we calculated
average LIDAR profiles of the free water surface in control cross sections (C1 to C4 in
Figure 1, right). The average profiles were calculated from 6000 consecutive scan lines
acquired with a LIDAR scanner at a frequency of 270 Hz and an angular resolution of 0.2◦.

In contrast to laser scanning, photogrammetry provided comprehensive coverage of
the free water surface over the entire field of view of the synchronised cameras during im-
age acquisition. Since the points in the raw photogrammetry point cloud were distributed
along the cross sections where LIDAR measurements were taken, the profiles of the free
water surface were extracted from the rasterised photogrammetry point cloud with a
resolution of 5 mm × 5 mm for comparison.

Figure 7 shows the free water surface profiles for selected control cross sections C1 to C4.
The free water surface profiles are shown for the individual photogrammetry image datasets,
average profiles from all photogrammetry image datasets (solid, red), and average profiles
from laser scanning (dashed, blue). The comparison allows for an analysis of the similarities
and differences between the laser scanning and photogrammetry measurements.

The images of the measuring cameras (Figures 1 (left), 2, 3 and 6) show high flow
dynamics and turbulence in the entire measuring area. Nevertheless, the measurement
results for cross sections C1–C4 show good agreement between the profiles of the free
water surface obtained with the laser scanner and the averaged photogrammetry profile
for a large part of the profile. Except in the area where side inflow meets water flow in
the main channel and aerated standing waves begin to form (right side of profiles C1 and
C2), laser scanning results in a higher free water surface. This is not consistent with the
results of previous studies on laser scanning measurements. Water heights measured with
laser scanners are often underestimated because they are reflected from bubbles in deeper



Remote Sens. 2023, 15, 4774 13 of 19

water layers or from multiple successive laser beam reflections within the aerated portion of
the surface. Here, we find that reflections from flying droplets are more pronounced. The
effect of reflections from flying droplets could not be completely avoided even by filtering the
point cloud with a remission threshold. Indeed, due to light scattering and energy dissipation
on the path of the beam through the water, the measurements resulted in significantly lower
remission values of the returned signals reflected from immersed air bubbles [14].

As discussed by Rak et al. [10], it is important to consider the behaviour of the laser
scanning signal, which may be reflected multiple times by droplets and air bubbles before
returning to the instrument. In addition, the speed of light in water is approximately
25% slower than in air. Both of these factors contribute to a longer time of flight and
consequently, an overestimation of the measured distance, resulting in the determination
of lower water height. On the right side of profiles C1 and C2 in the intervals from about
400 mm to 500 mm, higher water levels measured by the laser scanner can be attributed to
turbulent vortices, air entrainment, intense spraying, and larger droplets that occur in the
region where the flows in the main and side channels meet. Based on our understanding of
these phenomena and analysis of the images, it can be concluded that photogrammetry
provides more reliable results in this particular area.

Figure 7. Cont.
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Figure 7. Free water surface profiles obtained from each photogrammetry image dataset for all four
control cross sections. In addition, the average free water surface profiles from all photogrammetry
image datasets in individual cross sections are given, along with the average profiles measured by
laser scanning.

A more significant deviation between the profiles of the free water surface, as averaged
by laser scanning and photogrammetry, is also noticeable in the area near the opposite
wall, specifically within the range of 0 mm to about 50 mm. Within this region, the intense
flow dynamics, turbulence, and interaction with the wall create unsteady flow structures
resulting in greater fluctuations in the free water surface (best shown in Figure 1). However,
except for these two regions mentioned above, both methods show good agreement over
most of the cross sections, with variations within ±20 mm. Figure 8 illustrates the degree of
agreement and range of deviations between the averaged profiles of the free water surface
obtained by laser scanning and photogrammetry. Despite the general underestimation of
water levels due to the above factors, the laser scanning measurements with the applied
correction based on remission values agree well with the photogrammetry results.
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Figure 8. Agreement between averaged profiles of free water surface obtained by laser scanning and
photogrammetry data. The positive value in the graph indicates that photogrammetry provided
higher free water surface values than laser scanning.

The profiles of free water surface in individual cross sections obtained from each
photogrammetry image dataset (i.e., in the selected time) allow for the evaluation of free
water surface variations around an average value. The average fluctuations in all analysed
cross sections were within ±25 mm, while the maximum fluctuations can reach values up
to ±60 mm. For profiles C2 and C3, Figure 9 shows the variations in free water profiles
obtained from the individual photogrammetry image datasets compared to the averaged
profile based on all five image datasets. Similar variations in the dynamics of the free
water surface were also found when analysing the image sequence acquired with a high-
speed camera at individual points and the laser scanning point cloud filtered based on the
remission of the returned signals [14].
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4. Discussion

Accurate measurements of free water surface flows play a pivotal role in a wide range
of engineering applications, encompassing civil, chemical, environmental, mechanical,
mining, and nuclear engineering. In turbulent free surface flows, the deformation of the
surface leads to the entrainment of air bubbles. When the turbulent shear stress exceeds
the surface tension stress that opposes interfacial breakup, air bubble entrainment becomes
possible. Characteristics of aerated flows have been studied experimentally, numerically,
and theoretically. In all these fields, free water surface measurements are essential for
gaining insight into and understanding the complexities of turbulent and aerated flows.
In comparison to the already proven measurement techniques, particularly LIDAR, the
limitations of the proposed method encountered to date and the challenges that can be
expected in the next steps of applying the method both in the laboratory and in the field,
are discussed in detail.

Over recent years, laser scanning has increasingly replaced conventional methods for
measurements of hydraulic phenomena where turbulent, vortexing, and distinctively 3D
flow with large free water surface fluctuation amplitudes occur [9,10,12,15–17,45]. Two-
dimensional laser scanner measurements with high temporal resolution usually allow for
measurements in a single cross-sectional profile. This restricts the reconstruction of objects
to a certain number of consecutive scan lines performed by the physical movement of the
2D laser scanner. As a result of the movement, the temporal resolution of these 3D scans is
low. It is also important to note that the interaction between the laser beam and the aerated
water surface is unique and results in a relatively low reflection rate of about 5% of the
laser signals detected by the photodetector. This is in contrast to solid surfaces, where the
reflection rate is typically close to 100%. Nevertheless, relevant publications show that
the performance of laser scanners in these experimental setups is still comparable to the
results of average surface measurements using conventional methods within the limits of
measurement uncertainty [9,12–14,45], while significantly exceeding them in capturing the
temporal dynamics of the phenomenon.

In contrast, photogrammetry captures the entire field of view at each successive time,
allowing for a full 3D object reconstruction with high spatial resolution, while the temporal
resolution is similar to 2D laser scanners. The temporal resolution of a photogrammetric ac-
quisition depends on the characteristics of the cameras, the possible use of microprocessors
for temporal storage of the images, and the data transfer protocols from microprocessors or
cameras to the main computer. In addition, photogrammetric methods require much more
complex post-processing procedures compared to laser scanners.

In contrast to laser scanners, photogrammetry is not based on the principle of dis-
tance measurement. By comparing the characteristics of the point cloud data produced
by each method, we estimate the uncertainty of laser scanner measurements for solid
objects (about ±3 mm) and the estimated error for measurements in aerated waters in the
range of ±5–10 mm [14]. In photogrammetry, accuracy depends on a variety of factors,
including the precision of the model produced, the accuracy of reference points measured,
image quality, synchronisation error, the algorithm used to determine the tie points, point
cloud generation, rasterisation, etc. In this work, the uncertainty of the point cloud after
rasterisation was estimated to be about ±5 mm. Considering the similar error magnitude
in both methods, it can be concluded that the methods are comparable in terms of accuracy
and laser scanning is suitable for verifying the accuracy of a photogrammetric point cloud.

From the standpoint of capturing the entire visible area of the cameras and providing a
more accurate representation of the topography of the free water surface, photogrammetry
proved to be the better method. It provides a better representation of the flow conditions in
the experiment. On the other hand, when reconstructing the water level based on cross
sections from LIDAR measurements, the influence of interpolation and smoothing between
these sections is greater.

However, there are also some potential drawbacks in using photogrammetry to re-
construct the free water surface. The water surface is specular and transparent, leading to
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very complex reflection mechanisms. This complexity is particularly pronounced when
interacting with a turbulent and non-homogeneous aerated free water surface characterised
by substantial vertical fluctuations and an abundance of flying droplets and submerged
trapped air bubbles. The occurrence of total internal reflections (especially at the bubble
and droplet surfaces) at high incident angles of the incident light, combined with reflections
at the liquid mass, can cause neighbouring cameras to capture very different images of local
free surface segments. To reduce this phenomenon to the greatest extent possible, diffuse
light from many different angles was used in our experimental setup. Since the effect of
complex light reflection mechanisms on the measurement uncertainty of the photogram-
metric method used is beyond the scope of this article, its evaluation on a functional level
is discussed by comparing it with the results from laser scanning. Given that the proposed
approach is currently still in the development phase and ensuring adequate illumination
for field measurements poses challenges, its current applicability is restricted to laboratory
experiments and the physical modelling of complex hydraulic phenomena. Nevertheless,
achieving precise and accurate measurements is critical to understanding these phenomena
and effectively designing hydraulic structures. Since laboratory-based hydraulic research
holds significant importance for the design of hydraulic structures, this approach could
already find practical application.

5. Conclusions

In the expected future challenges in hydraulic engineering, the most important re-
search topics are likely to be in the area of complex hydraulic phenomena associated with
high-velocity flows and, in particular, air-flow properties. Accurate measurements of free
water surface flows are crucial for both hydraulic and mechanical engineering applications.
They are essential for gaining insight into and understanding complex, turbulent, and
aerated flows. In this paper, an experimental setup and a photogrammetry-based method
for measuring the topography of the aerated free water surface were developed. A turbulent
and highly aerated confluence flow forming standing waves was chosen as a case study.
The combination of SfM and MVS methods of photogrammetry reconstruction methods
implemented in professional software packages provided the best results. In this way, we
were able to produce accurate topography maps of highly complex 3D water structures as
used in the standing wave experiment.

For the above case, we show a good agreement between photogrammetry and the now
well-established laser scanning method for a selection of four free water surface profiles
in the middle of the junction. To achieve this, sufficient camera coverage and overlap
of the flow phenomenon of interest is required, combined with completely uniform and
continuous illumination. Validation with LIDAR data revealed deviations within ±20 mm.
A significant distinction lies in the fact that photogrammetry enables the reconstruction
of the free water surface topography within the entire field of view of the cameras from a
single image dataset.

Free water surface reconstruction is a valuable tool for visual and in-depth analysis
of the spatial variations and dynamic fluctuations that occur in the topography of the
free water surface. By capturing a series of consecutive images at specific time intervals,
the method is interesting for observation and visualisation, analysis, investigation, and
comprehensive understanding of the topography of the free water surface.

It is also important to recognise the potential drawbacks associated with using pho-
togrammetry to reconstruct the free water surface. The aerated free water surface is both
specular and transparent, resulting in extremely complex reflectance sequences. Total
reflections can occur at high incident angles of the incident light, especially at the surfaces
of bubbles and droplets. These reflections, in combination with reflections from the liquid
mass, can cause even adjacent cameras to capture significantly different images of local free
water surface segments. These large discrepancies can complicate the photogrammetric
processing algorithm.
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We can see the main potential for future developments and applications of the pre-
sented photogrammetric method in the use of synchronised high-speed camera arrays for
high-resolution measurement of instantaneous flow topography, especially in unsteady or
otherwise highly complex flows where laser ranging methods may perform poorly.
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