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The floating bridge is an ambitious structure that enables new long-span sea crossings. Floating
structures are susceptible to dynamics due to their slender structures and interactions with the
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an accurate and representative dynamics model is crucial. This thesis provides a comprehensive
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1 INTRODUCTION

A long-term goal of Norwegian society is to develop the E39 as an improved and continuous
Coastal Highway Route between the cities of Kristiansand and Trondheim. A political decision
was made in 2017 in the National Transport Plan to build a motor highway route approximately
1100 km long to connect the coastal Norwegian cities of Stavanger, Bergen, Alesund and Molde.
Travel among these cities today requires approximately 21 hours and should be reduced to 11
hours. The aim is to create and improve E39 as a continuous connection without the need for ferries,
resulting in the reduction in the route length by almost 50 km. The travel time will be reduced by
replacing ferries with bridges and tunnels, in addition to upgrading several road sections on land.
This goal will be managed by the Public Road Administration in Norway (Statens Vegvesen).
Several aspects are evaluated in detail to improve highway connections from the aspects of society,
safety, the environment, economics and engineering. This thesis explores the numerical analysis
tools required to design bridge crossings that will be supported by floating pontoons. A series of
projects were launched to find feasible technological solutions that will make fjord crossings
possible. The feasibility studies investigated possible crossings of an extralong suspension bridge,
a multispan suspension bridge founded on tension leg platform (TLP) supports, an underwater
tunnel floating 20 m below the surface and a multipontoon cable-stayed bridge. The best-suited
crossing alternative will depend on the environmental and geographical conditions of the fjord.

Multi-spaﬁ si;spension bridge on floating foundations ~ ~

Figure 1-1: Crossing possibilities, long suspension bridge, floating bridge, underwater tunnel, pontoon bridge [1].
Slika 1-1:Premostitvene moznosti, viseci most, plavajoci most, podvodni tunel, pontonski most [1].
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This research work is based on the experience gained in the bridge design industry sector and has
been conducted in parallel with the author's full-time work on different bridge projects, which
offers important assistance to the floating bridge design. The development of a new floating bridge
concept is made possible by the multidisciplinary knowledge gained from different engineering
disciplines, combining the efforts of bridge designers, marine engineers, researchers and software
developers. This thesis provides an overview of all relevant environmental loads, with an emphasis
on alternative dynamic wind load formulations. The new floating bridges are dominated by the
dynamic excitation introduced by waves and turbulent winds. Therefore, these structures require
new analysis tools to fully capture their complex dynamic responses to better understand their
structural behavior and achieve efficient bridge designs. While individual environmental loads are
successfully managed by industry, the simultaneous coupled response of all environmental loads
is important to consider when attemption to understand the complex dynamic responses. To capture
various dynamic loads and represent the nonlinear response of the bridge, the fully coupled
nonlinear time-domain scheme was used. The combination of several engineering disciplines
resulted in a lack of available numerical tools, giving rise to different research and commercial
code development projects. This research work was implemented in the sophisticated commercial
bridge software RM Bridge, which has been applied to several feasibility study designs. The
author's main work has been to develop the required software extension for wind and wave
calculations, which has involved theoretical investigation, individual load algorithm design, code
implementation and testing work. The development extensions were achieved through an
accumulation of knowledge from different engineering disciplines; individuals from these
disciplines engaged in brainstorming exercises together to find optimal solutions for the given
environmental load formulation. The developed mathematical models have been validated by
software and applied to large finite element model bridges. Their successful implementation
enables this work to be applied to any floating bridge type, making it possible for researchers and
designers to continue this work. The final developed numerical models are suitable to calculate
complex dynamic response load scenarios. The numerical tools of this thesis can provide accurate
design values that will make floating bridge design safe and reliable. The presented work can be
applied as a guideline for dynamical bridge analysis, helping investors achieve efficient design and,
thus, reduce the project costs.

1.1 Current research

In structural engineering, the commonly applied and well-investigated time-integration methods
are suitable for the evaluation of nonlinear structural responses. Long slender floating structures
are subject to large displacement and rotations, where a third-order finite element formulation must
be applied. For most linear systems, the frequency domain will provide accurate results, whereas
nonlinear responses and nonlinear loads are best solved by time-domain algorithms. Hence, the
time-domain method is chosen as the investigation tool for the final bridge design. A popular
Newmark method can be applied to model geometrical nonlinear floating bridge responses,
allowing the analysis of fully coupled hydrodynamic and aerodynamic effects. This implicit
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method offers longer time steps and shorter simulation times. A Newmark integration scheme is
implemented in the RM Bridge software in this research investigation, as in [2]. This method was
designed to resolve geometrical nonlinear and material nonlinear effects, various nonlinear loads

and self-excited loads. A short overview of the applied time-integration code is presented in chapter
2.

The hydrodynamic effects are introduced in chapter 3, and the dynamic wind load is introduced in
chapter 4. The environmental loads on a bridge can be further divided into constant, time-dependent
loads and self-excited loads depending on the structural motion. The load formulation must be
transformed into a selected time-domain [3] or frequency-domain [4] framework; here, time-
domain transformations are investigated in detail. Both wind and wave self-excited loads are, per
definition, linearized frequency-dependent matrix functions, representing the harmonic
superposition of individual frequencies. The loads cannot be directly applied to the Newmark time-
integration scheme since loads cannot be expressed as constant matrices of time or displacement
vectors. The transformation into a time domain requires the environmental forces to be described
as time-dependent signals, which is made possible by convolution integral transformation,
presenting the frequency-dependent environmental loads as time vectors. The two-step convolution
transformation first involves calculating the inverse Fourier transform (IFT) of a load and then
transforming it into an impulse response function. In the second step, the convolution reflects the
impulse response signal of the structural response or the corresponding time derivative. The
underlying linear invariant causal theory can be applied to all time-domain transformations and is
derived in detail in [5]. The convolution integration is evaluated at each time step and can result in
time-intensive calculations. The classic convolution integration approach computes the
convolution integral for all past motions in each nonlinear time step. Recently, the very popular
state-space formulation has been used to transform the convolution integral into a first-order load
equation as a combination of matrix operations [6]. State-space methods are computationally
efficient; however, they require special fitted functions and user experience. In this research, a
traditional convolution theorem was used and was found to deliver the required specifications. The
implemented interface was specifically developed in commercial software used to conduct time-
integration simulations of floating bridges [7] [8].

The hydrodynamic effects are well investigated in the offshore industry. In the past few decades,
oil rigs have been successfully built in the tumultuous North Sea. Marine engineers have access to
various hydrodynamic load formulations and corresponding commercial analysis tools [9].
Offshore hydrodynamic effects are not commonly present in regular bridge design; therefore, new
extensions to the Newmark scheme are required. The potential theory can be applied to numerically
evaluate the properties of hydrodynamic floaters, for which specialized hydrodynamic software
can be a good choice [10]. Hydrodynamic properties such as hydrodynamic damping,
hydrodynamic stiffness, hydrodynamic added mass and wave loads fully describe the bridge-water
interaction. The precalculated input can be prepared by external hydrodynamic specialist groups.
The self-excited wave radiation and wave loads fully describe the bridge motion in the wave
environment. This can be resolved by the convolution theorem, where an interface has been built
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into the Newmark time-integration scheme in the floating bridge context [11] [12] [13] [14] [15]
[16][17][18][19] [20] [21].

The dynamic wind analysis examines a superposition of the incoming mean wind, turbulent wind
and structure motion. The structure motion can be expressed by a linearized quasi-steady-state
(QSS) formulation under the assumption of a fully developed flow. This wind interaction is
described by constant aerodynamic damping and stiffness matrices. The QSS formulation might
be suitable for examining the linear response under low wind speeds and is convenient for
Newmark implementation. However, it neglects different coupling and aeroelastic effects. This
method was successfully implemented in the Newark time-integration scheme and is the latest
state-of-the-art wind tool for designing floating bridge projects [4]. However, the QSS load model
is not suitable for the investigation of aeroelastic effects and delivers nonconservative response
results, leading to a less economical and perhaps less safe bridge design. This research proposes an
improvement involving the use of the flutter derivative model inside the current time-domain
framework used for the analysis of floating bridges. Dimensionless flutter derivatives are wind-
tunnel-measured results related to the movement of a section under laminar wind [22]. According
to Scanlan regarding linear aeroelastic theory [23], the measured forces are a function of the
reduced frequency, represented by eighteen functions arranged in the aeroelastic damping and
aeroelastic stiffness. This self-excited wind interaction load model is suitable for aeroelastic
instability and accurate wind buffeting responses [6]. Commonly scattered and available for limited
frequency, flutter derivatives require some interpolation and extrapolation of data. The common
rational function and indicial function models are well established to simulate aeroelastic effects.
The time-domain transformation requires a more sophisticated approach. Specifically, designed
functions fitted to the flutter derivatives have an analytical transformation solution in the time
domain. The indicial functions approach is an approximative force model combining the QSS and
self-excited models [24]. Rational functions are commonly used for wind self-excited load
formulation; thus, they agree well with wind tunnel measurements. To fulfill the causal dynamic
system requirement, the functions are simultaneously fitted to both the damping and stiffness
functions, thus requiring a complex multiparameter nonlinear fitting [25]. This formulation is
robust, behaves well for the limited frequency range data available and delivers an accurate self-
excited force result. Analytically derived rational functions are resolved by a convolution integral.
Hence, the rational function is a well-suited candidate for improving the current fully coupled time-
domain floating bridge response analysis. The currently available rational functions are however,
not suitable for implementation in the presently used time-domain floating bridge frameworks due
to a lack of programming access to commercial code. As a result, researchers are motivated to find
a possible rational function reformulation for convolution integration to fit inside the already
available hydrodynamic implementation. The research work focuses on delivering reformulated
self-excited load formulations in the form of aeroelastic damping tables using convolution over
velocity routines in hydrodynamic wave radiation damping. A reformulation suitable for direct use
could not be found in the available literature, leading to the development of a suitable numerical
model for the current time-domain analysis framework. These research efforts provide a working
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model for floating bridge projects; thus, this research provides a unique contribution to the field.
The work has also improved and simplified many aspects of the current rational function. In recent
years, free and forced vibration wind tunnel tests have improved the quality of the extracted data
and resulted in less scattered data. Thus, alternative nonparametric fitted functions, such as
polynomial functions, are now made possible by independent fitting to the aeroelastic damping and
stiffness functions.

Floating bridge analysis involves several disciplines, each belonging to the corresponding research
area. A more comprehensive literature overview is provided in each subsequent chapter of this
thesis, and different formulation alternatives are discussed. Few studies can be found on the
dynamic excitation of floating bridges since it is a relatively new research field consisting of a
combination of existing research areas. This work offers an overview of all relevant environmental
load formulations and corresponding load assumptions. Several conventional load linearizations
may no longer be valid for flexible floating bridge design. Therefore, a representative formulation
of each load must be provided to ensure that the relevant dynamic effects are well investigated for
these new bridge structures. Dynamic loads govern bridge designs; hence, accurate dynamic
prediction is crucial. To achieve this goal, significant contributions in several aspects must be
made, e.g., from the available and representative environmental measurements, by competent
designers and from the available analysis tools, which is the focus of this monograph.

1.2 Thesis goals

This research provides a comprehensive overview of the environmental loads on floating
structures. All environmental loads have been incorporated into the time-domain framework [26].
The current state-of-the-art wind implementations of the QSS wind buffeting theory have some
room for improvement. The main goal of this thesis is to introduce a more accurate self-excited
wind formulation into floating bridge design. Wind tunnel measurements have been confirmed to
be well in line with linear self-excited models and thus are important to consider for any future
floating bridge concept. Overall, self-excitation in the time domain is widely used in research
investigations; however, it is commonly avoided in bridge design. The commonly applied self-
excited models require specifically tailored fitted functions; thus, they require user expertise and
developing a fully automated numerical procedure is difficult. This situation also presents a
practical challenge for any commercial code developer and is the reason why commercial codes
have not yet been implemented in time-domain floating bridge analysis. The goal is to find a
suitable self-excited formulation that can be directly applied in the current time-domain analysis
framework. Various self-excited wind load models are presented as candidates for various
computer codes. The most important goal of this thesis is to reduce the practical challenges of self-
excited models and make them more accessible to bridge designers. The developed self-excited
load models should be suited for incorporation into the current time-domain framework, which can
result in a reduction in the amount of software needed, thus reducing the modeling effort and the
complexity of the simulations. The proposed framework can provide immediate feedback on
various structural changes or different load scenarios. These compelling arguments can result in
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efficient design and immediate feedback on the nonlinear structural performance. This goal was
accomplished by developing a new self-excited force model, which was evaluated by comparison
with wind tunnel measurements.

The main objectives of this research can be summarized as follows:

e to provide an overview of the dynamic loads on floating bridges;

to develop a new self-excited load model;
e to develop a load model suitable for future project work;
e to build on the already collected knowledge base of floating bridges and the available
numerical tools;
e to mathematically simplify the complex self-excited formulation, if possible.
The environmental forces on a TLP floating bridge example are demonstrated, including the
coupled hydrodynamic and wind load effects.

The testable hypothesis is the validation of a self-excited wind load model that is suitable for
implementation in the time-integration dynamic equation of motion. Scientific validation is
achieved by numerical tests and wind tunnel experiments.
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2 DYNAMIC STRUCTURAL ANALYSIS

This chapter provides some insight into the dynamic calculation of floating structures. An overview
of the possible dynamic solution algorithms in structural dynamic engineering is provided. In
detail, linear and nonlinear time marching algorithms are discussed to resolve the dynamic
equations of motion. The equations are resolved to extract the design values of the displacements
and inner forces. Some guidelines on how to introduce proper modeling and input for the analysis
of floating structures are provided. Two main groups of methods exist, i.e., frequency-domain and
time-domain formulations. Both deliver equivalent results for a linear response; however, the time-
domain methods are preferred in nonlinear response calculations. For each group method, different
numerical algorithms and possibilities for resolving motion equations exist, depending on the type
of problem. For the time-domain methods, the equations of motion are integrated over time, and
the results are time-dependent signals of structural motion. Time-integration methods are very
suitable for solving complex nonlinear and coupled equations of motion since the integration
algorithms can resolve nonlinearities iteratively. These methods are very suitable for the dynamic
analysis of floating bridges and are considered the most accurate methods. The frequency-domain
methods are based on linearized decomposed dynamic systems and reduce large structural matrix
systems into smaller modal equivalent systems. Eigenvalue decomposition is calculated by rotating
the symmetric coupled dynamic equation and is possible for most civil structures. Modal
decomposition methods are frequently used and provide valuable information on structural
frequencies and their participation. Frequency-domain methods are favorable due to their
computationally efficient algorithms, which can be extended to resolve nonsymmetrical coupled
motion and thus are suitable for the investigation of wind and wave load effects. The main
properties of both analysis methods are presented in the following table:

Table 2-1: Frequency- and time-domain methods for response calculations [2].

Preglednica 2-1: Primerjava frekvencne in casovne metode racuna odziva mostu [2].

Parameter Time domain Frequency domain
Linear system Excellent Excellent
Nonlinear — Large displacements Excellent Acceptable
Nonlinear — Material hysteretic Excellent Poor
Coupled loads Excellent Acceptable
Motion-induced loads Excellent Acceptable
Calculation speed Poor Excellent
General accuracy Excellent Acceptable
Structural damping definition Poor Excellent
Transient calculation Excellent Poor
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2.1 Equations of motion

The equations of motion of a linear structure discretized in space by a mesh of finite elements can
be written as flows:

Mii(¢)+Cu(r)+Ku(r)=f_ (¢) 2.1)

T Text

Here, M, C and K are the structural mass, damping and stiffness matrices, respectively; f o 1S the
external loading vector; u,uandu are vectors of the nodal accelerations, velocities and
displacements, respectively; t € [t, = 0,...,tg5,] is a time parameter; tg, is the final time of
interest; and each dot indicates the derivative with respect to time.

If nonlinearities are taken into account, such as geometric nonlinearity, nonlinear (and inelastic)
material models, moving masses acting on the structure, nonlinear structural damping, and
position-, velocity- and acceleration-dependent loads, equation (2.1) is replaced by the following
equation:

M (2)ii () +C(u)u(t)+F(u(r)) =f,, (t,i,0,u) (2.2)

The displacement-dependent inner restoring forces F (u(t)) arise if large displacements/rotations
and nonlinear (and inelastic) material models are considered. In bridge analysis, an example of
geometric nonlinearities is cable effects (including cable sagging). Material nonlinear models that
take into account cross-sectional steel yielding and concrete cracking also contribute to F. The
time-dependent mass matrix M may be due to the moving masses of traffic. For the time-varying
structural mass and stiffness, the Rayleigh damping C = aM + K also changes with time. The
external load vector f.,, can be quite complex. Hydrodynamic radiation-damping loads are
commonly described as acceleration- and velocity-dependent loads. They are represented by the
hydrodynamic mass My, and damping C,, matrix. Wind self-excited forces are represented as
velocity- and displacement-dependent loads. They are usually represented by aeroelastic damping
C,. and stiffness K, matrices. The loading vector also includes nonlinear viscous forces and
structural viscus dampers.

In this work, author considers an equation of the form of (2.2) for a time-domain analysis of floating
bridges subjected to environmental loads. For the integration of (2.2) with respect to time, a time-
stepping schemes available in the RM Bridge commercial computer code [2] is used.

2.2 Time-stepping scheme

The systems of equations of motion of (2.1) and (2.2) are solved numerically by introducing
discretization in time. The solutions are searched for at discrete time points ty, ***, t,-1, tn, tn+1 thin-
Various solution methods are available, which are called time-stepping schemes or time-integration
schemes for linear structural elastodynamics [27]. Many of them are also used for nonlinear
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structural dynamics. The methods are usually divided into two groups, i.e., explicit and implicit
structural dynamic time-stepping schemes. The explicit methods compute the solution at ¢, by
using a known solution at ¢, and known time derivatives at t,,. The implicit time-stepping schemes
compute the solution at t,,; by using a known solution at t,, and time derivatives at t,,,. The
explicit methods are only conditionally stable. To be stable, they demand very small time steps.
The implicit methods can be unconditionally stable for linear systems. They are much more
accurate than the explicit schemes.

In the following, a brief describtion the implicit version of the Newmark family of time-stepping
schemes is provided. The Newmark family of algorithms is commonly used to solve linear and
nonlinear equations of motion, i.e., (2.1) and (2.2). By changing the values of the Newmark
parameters, which are commonly denoted as [ and y, one can obtain different time-stepping
schemes [28]. The parameter values are in the range of 1/6 < f <1/4 and 0 <y < 1/2. The
value f = 1/4 yields an implicit constant acceleration scheme, and f = 1/6 yields an implicit
linear acceleration scheme. Setting f = 0andy = 1/2 gives the explicit central difference
method. The recommended value for the parameter y is 1/2, since only this value guarantees the
second-order accuracy of the Newmark algorithm. Other values for y provide only first-order-
accurate Newmark algorithms but add numerical damping, which in many cases acts in a favorable
manner.

Below is present derivation of the Newmark algorithm. The equilibrium equation for a linear
problem is expressed in incremental form as follows:

Muii + CAa + KAu = Af (2.3)
where:

Au = l'anrl - l'ln

Au = llnJrl _un

(2.4)
Aij = i’in+l - i’in
A =f, —f,
Using a Taylor series yields the folowing:
1 1
u, =u_ +Au +5At2iin + gAﬁ'u"n e (2.5)
Thus,
A DR S
Au:Atun+EAt un+gAt u, +-- (2.6)

The time derivative of (2.6) gives:

. N G
Au=Atu_ + EAtzun +--- (2.7)



Papinutti, M. 2021. Dynamic analysis of floating bridges 10
Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment.

For assumed linear acceleration, the third derivative may be expressed by:
'ﬁn:@: u,,—u, | _ 4du (2.8)
dt At At
Figure 2-1 presents the third-derivative approximation with the linear acceleration assumption

derived in (2.8).

ﬁA

A4

v

t t

n ntl
Figure 2-1: Approximation of the third-order term for linear acceleration.

Slika 2-1: Aproksimacija linearnega pospeska tretjega reda.
The parameter y is introduced in (2.7) to model the third-order and higher-order terms as:

M = Afii_ + yAt Aid (2.9)

and the parameter £ in (2.6), in a similar fashion, is introduced in:
N B ..
Au = A+ Eﬁtzun + A Aii (2.10)

A comparison of (2.9) and (2.7) with (2.10) and (2.6) yields the parametersy = 1/2and f = 1/6
for linear acceleration. The average acceleration or trapezoidal rule gives y = 1/2 and f = 1/4
and is commonly used for structural dynamics problems.

The acceleration increment Au is expressed based on (2.10) as:

sii=— -t a [ L 1) @.11)
BA pae " \2p
Inserting (2.11) into (2.9) yields:
pi=LAut|1-Z o, + 4| 1--L |ii, (2.12)
pAt B 2p

Inserting (2.11) into the incremental equation of motion (2.3) gives:

M{%AH_L%_(L_@%
pAt LAt 20

(2.13)
C{LAu+(l—l]ﬁn +A{ —Ljﬁn}+KAu = Af
pAt B 2p
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The effective dynamic stiffness K collects terms with displacement increments Au. The effective
dynamic increment force AF collects the known terms in (2.13).

K=K+ 12M+LC
pAt pAt
Al_?zAf+M{Llin+Liin}+C{( —lJﬁnJrAt(l—LJiin} (2.14)
pA " 2P ; 28

The dynamic equilibrium is written in incremental form as:
KAu = AF (2.15)

If K is symmetric, (2.15) is commonly solved by using LDL factorization. The solution results are
incremental displacements Au. These incremental displacements are inserted in (2.11) and (2.12)
to calculate the increments 4u, Au, which are then inserted into (2.4) to evaluate the structural
displacements. This procedure presents a solution for the linear dynamic equation in (2.1).

In Figure 2-2, a solution scheme for the nonlinear dynamic system (2.2) is depicted. This scheme
is implemented in RM Bridge [2], which is further used in this work for computations of the
responses of a floating bridge.
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— n=0,1,2,... solutionat ¢, =¢ +4t

— j=L2,..,j, At=44, /j timestep length

— i=1,2,... Newton-Raphson iterations

Average structural properties: M, = %, K. = %
Rayleigh damping: G =aM,, + K,

External load increment: Af =1, —f

Iterative Newark implicit solution: K, du,, =AF — u,,u,, i,
Nonlinear equilibrium: f., =K, u,

Norm of forces and displacements: Ry =|If.,, —f ] and Ry, = [u,,, —u]],
Tolerance check: Rie <Rys Ry <Ry

IF no equilibrium is found THEN reduce the time step ELSE go to the next

Figure 2-2: Nonlinear time integration scheme.

Slika 2-2: Shema nelinearne casovne integracije.
The average acceleration method with y = 1/2 and f = 1/4 is used in the following simulations.
A time step A4t=0.2 s is chosen for all time-domain analyses. For an appropriate time step A¢, the
following recommendations [2] can be used:

a) At < 1/10 Ty;g, where Ty, gy 1s the initial highest natural period.
b) More complex loads f,,; require smaller time steps.
c) Geometrical and material nonlinearities require smaller time steps.
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Equation (2.2) presents a complex set of coupled nonlinear equations of motion. Nonlinearities are
sourced from geometrical nonlinearities, material nonlinearities, nonlinear loads and their
interactions. The experience with extensive floating bridge dynamics gained during this research
work is presented, showing the tuning of different parameters to improve the numerical scheme.
The efficient and stable numerical scheme used in this thesis was achieved by:

a) setting the Newmark parameters to their default values (y = 1/2 and f = 1/4);

b) applying stiffness-dependent damping f to flexible cable structures, rather than mass
proportional damping a;

c) setting the convergence parameters for the Newton-Raphson algorithm (by adjustment of
the relevant convergence values for the model, the nonlinear increments, the number of
iteration steps, the final convergence steps, etc.);

d) avoiding the modeling of very stiff structural parts commonly attempted to reproduce some
rigid behavior;

e) tuning the substepping for the nonlinear nonconverted time step.

During model setup, several numerical problems can occur. Here, the experience gained in
modeling the structure is presented to avoid some common modeling mistakes. It is wise to avoid
the modeling of very stiff elements with no mass, which results in an extremely high K/M ratio
that cannot be resolved. This is related to the computer precision of the software code used for the
analyses. Many loads are nonlinear and time-step dependent, thus requiring a sufficiently small
time step to correctly resolve the hysteretic response. Some hydrodynamic and aeroelastic loads
involve numerical convolution calculations. A representative response time length and a
sufficiently small time step must be selected to obtain a proper calculation.

The discussion above shows that the time-integration parameters need to be determined to achieve
proper dynamic modeling of floating bridges. This is a complex multiparameter search that requires
some user experience. These guidelines might help readers in future investigations of floating
bridges and in the initial setup of a numerical model.
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3 HYDRODYNAMIC EFFECTS ON A FLOATING BRIDGE

3.1 Hydrodynamic effects on a floater

The submerged parts of a floating bridge interact with the surrounding sea. The movement of the
bridge structure in the sea can be mathematically decomposed into two load types. The first type
is the loads acting on a fixed rigid floater and is commonly modeled as static wave loads. The
second type is self-excited floater movement in still water conditions and results in motion-
dependent forces. Both effects can be linearly superimposed and are presented in Figure 3-1.

Waves acting on a fixed floater +  Moving floater in still water = Wave loads on a moving floater

Figure 3-1: Wave load and wave radiation-damping superposition.
Slika 3-1: Obtezba valov in radiacija valov zaradi pomikov mostu v morju.

The hydrodynamic effects on floating towers can be summarized as follows:

a) wave loads on a nonmoving rigid object, which are modeled as time-dependent loads;

b) forces induced by tower movement in still water result in radiating waves, which are
commonly described by linear frequency-dependent damping and inertia terms,
hydrodynamic damping and frequency dependence on the hydrodynamic added mass;

c) other effects of inertia, viscous effects, nonlinear effects, etc.

The submerged hull of a floating tower is modeled as a rigid body in hydrodynamic analysis,
neglecting the hydroelastic effects. All hydrodynamic loads are a resultant force of the integrated
pressures of the wet surfaces. The motion-dependent hydrodynamic forces in b) are measured under
still water conditions, where the nonmoving structure is exposed to the wave loads described in a).
By summing a) and b) together, one can describe a moving structure in the wave sea environment.
Floating bridge systems are commonly vertically restrained by a tether anchorage system, which
considerably reduces the vertical deformations; therefore, first-order wave load models can provide
sufficient accuracy for practical applications. Hydrodynamic loads contribute substantially to the
floating bridge dynamics, altering the structural properties.

Several additional hydrodynamic effects are commonly found in the literature [9]. The underwater
currents can be modeled as movements relative to the structure, expressed by nonlinear viscous
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drag damping (VDD) (chapter 3.8). Hydrodynamic inertia forces are present due to displaced water
structures, commonly modeled with linear diagonal stiffness terms (chapter 3.7). The
hydrodynamic effects of the floater are expressed as one “hydrodynamic node” describing all
hydrodynamic loads. The hydrodynamic node is then assigned to a finite element mesh node on
the bridge, commonly modeled at sea level. Hydrodynamic forces have six components, i.e., three
forces and three moments. These are described in right-hand Cartesian coordinates as surge, sway
and heave, as presented in Figure 3-2. This thesis bridge model uses a left-hand Cartesian
coordinate system, i.e., x, y and z, which is described as follows.

Hydrodynamic and Bridge coordinate system

Surge X | x
Sway y z
Heave z y 3.1)
Roll rx - rx
Pitch ry rz
| Yaw 1z | A

The suspension floating bridge concept is supported by a floating TLP foundation, offering support
for the bridge floating superstructure. The agreed-upon naming system provides vocabulary that is
used across different engineering disciplines, as shown in Figure 3-2.

Top cables <

Pvlon or Tower ———
Bridge system
Suspension cables
Hangers ——»

Bridge girder

Floater

Hydrodynamic system

Heave z

Surge x

Tethers ———»

Offshore foundation

Anchor

\‘_

Figure 3-2: Parts of the floating bridge according to the hydrodynamic naming convention [29].
Slika 3-2: Sestavni deli plavajocega mostu [29].
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3.2 Description of waves

Loading due to sea surface waves is simulated as periodic loading of the moving water fluid around
the submerged structure. Different wave generation mechanisms exist, such as wind, earthquakes,
the motion of objects in water, and astronomical tides. No universal model that covers all wave
motion scenarios exists. Different assumptions can be introduced to model the waves. In general,
wave loads can be divided into sea wave loads and swell wave loads [30].

a) Sea waves are a series of waves driven by local wind. The waves are short-crested,
extending 2-3 wave heights perpendicular to the direction of propagation. They are irregular
and are modeled as a summation of different random wave frequencies. The wave crests
look sharp under random wave motion. The wave properties are described for continuously
varying wave periods 7.

b) Swell loads propagate without locally generated wind. They can spread hundreds of
kilometers across the sea under calm winds. They have longer crest wavelengths, and their
wave height is more predictable. They can pass an object with a sequence of waves.

Waves are free-surface fluctuations of the surrounding sea. The underwater particle movement can
be mathematically described by wave potential theory. Complicated wave systems are a
superposition of different trigonometric waves. Each wave is described by a one-dimensional free-
surface elevation, resulting in horizontal and vertical underwater particle movement. Linear
potential theory is then used to describe the velocity field of underwater particle movement. The
displaced water movement results in changes in the surrounding pressure and hydrodynamic forces.

Wave forces are mathematically modeled as a product of the transfer function and wave movement.
The transfer function consists of the amplitude and phase lag of three-transversal and three-moment
forces. In general, the resulting forces depend on the shape of the submerged object and its pressure
distribution. In fjords, deep-water waves, also known as short waves, are commonly present. The
highest point (wave crest) and lowest point (wave trough) on a wave pass the zero-elevation
surface. The vertical separation is the so-called wave height, calculated as H = 2¢,. Free-surface
motion can be mathematically described by a superposition of cosine functions, commonly called
first-order waves. The horizontal separation distance between two wave crests is the wavelength A.
The ratio between the wave height H and wavelength 4 is the wave steepness H/A. This results in a
commonly applied cosine wave function of free-surface displacement &, which is defined as:

& =¢, cos(kr—ar) (3.2)

where k =27/ is the wavenumber, @ =27 /T is the circular wave frequency and &, is the
amplitude.
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These simple relations can be presented with one degree of freedom (DOF) of free-surface motion,
as depicted in Figure 3-3.
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Figure 3-3: Harmonic wave definition
Slika 3-3: Prikaz formulacije harmonicnih valov.
The linear wave theory assumption is used, which assumes a small steepness of waves H/4, also
known as first-order waves of small amplitude, thus allowing for the linear harmonic superposition
of displacements, velocities and accelerations.

3.3 Wave spectrum generation

A linear superposition of different cosine wave functions holds. Here, some well-known wave
relations are presented for stationary random processes. The measured wind-sea wave spectrum
has a significant wave height defined by Hy = 40 with a peak period T, = 2m/w,,. This property
defines the one-directional wave spectrum Sg(w) and can be extended to a mathematical model
that includes the directional distribution of incoming waves [31]. The spectral density fluctuation
considering multiple directions is:

So(@.0)=S5.(0)D(0) (3.3)

where S; 4 is the directional spectrum, S is the one-dimensional spectral density, and D is the
directional distribution function. The JONSWAP spectrum is commonly applied for wind-sea wave
simulations of deep-water fjords [32] [33]. The spectrum shape can be suited for onsite-measured
waves at the bridge location. The general spectrum expression is defined as:

4
_ 5(
S.(w)=Ag’w exp _Z(ij (3.4)

where wy, is the peak frequency and 4 is the energy scaling parameter. Waves are spread around
the main incoming wave direction by correcting the one-dimensional wave spectrum. For the
directional distribution, the non-frequency-dependent formula can be defined as:
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3 F(s+1) 5[0
D(Q)_zx/;r(sﬂ/z)COS (EJ G-

where s is a directional parameter and I is a gamma function. The circular integral of the directional
parameter D (0) yields an area equal to one; thus the energy content of the one-dimensional wave
spectrum is not changed. The gamma function is defined by the infinite integral:

I(s)= jts’le”dt (3.6)
0
With these parameters, free-surface waves can be simulated for a chosen direction. An example of

a synthetically generated power spectrum and a directional distribution for a directional angle of 0
is presented in Figure 3-4.
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Figure 3-4: Wave power spectrum and directional distribution [34]
Slika 3-4: Spekter valov in porazdelitvena funkcija smeri valovanja [34].
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3.4 Hydrodynamic potential theory

The hydrodynamic potential theory analytically describes the free-surface wave potential. It is a
well-accepted hydrodynamic offshore theory and can be applied to the hydrodynamic models of
floating bridges. An overview and the potential theory principles are presented in the following;
interested readers can review the literature for a more detailed explanation [30] [5]. For an
analytically defined velocity field, a numerical evaluation of the hydrodynamic forces on a
submerged object is possible. This evaluation is accomplished by numerical discretization of the
submerged object and application of the appropriate boundary conditions. In hydrodynamic
analysis, this is a well-known 3D panel numerical method. The water potential is defined by the
following boundaries a) to f):

a) Continuity condition, described by the Laplace equation of inviscid, incompressible and
irrotational flow, without any surface tension effect.

2 2 2
pig 09,70 0, 5
ox~ oy- oz

b) Seabed condition for a relation valid for deep-water waves.

% _,

for: z=-h (3.83)
Oz

c) Free-surface kinematic boundary surface condition, describing the wave periodic
surface oscillations.

o’¢p  0¢
99 o9 _0 for: z=0 3.9
EY P o 2 (3-9)

d) Kinematic boundary condition on the oscillating body surface, which assumes rigid
body movement. The velocity values for the body and water at surface S are equal. The
normal surface component n of the surface velocity v of the hull geometry f is:

_=‘7.ﬁ=26:vj-fj(x,y,z) (3.10)

e) Radiation condition, which states that for large distances, regarding middle-sea hull
objects, the potential converges to zero and can be defined as:

limg =0 (3.11)

R0

f) Symmetric or antisymmetric conditions can simplify the numerical calculation efforts.
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The wind-generated waves are approximated by a local homogeneous random field. Potential
theory assumes a linear relation between the surface wave motion ¢ and pressure distribution. The
velocity potential equation requires a numerical solution for calculating three-dimensional
submerged objects. For most floating bridge crossings, the deep-water wave modeling assumption
is adequate. An analytical solution of the wave potential ¢ describing circulating vertical w and
horizontal u velocities exists, as follows:

u =& we' cos(kx - wt)

3.12
w =& we' sin (kx — ot ) G-12)

The one-dimensional kinematics of deep-water waves resulting in subsea water movement in the
vertical and horizontal directions are depicted in Figure 3-5.
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Figure 3-5: Velocity field in the deep-water model.
Slika 3-5: Potencial hitrosti valov pri vecjih globinah.
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The presented theoretical assumptions can be solved by a numerical 3D panel method, which is
suitable for calculating complex hull geometry shapes. The three-dimensional potential is defined
and numerically resolved, yielding radiation diffraction forces. The theory calculates the wave-
frequency hydrodynamic loads of free-flowing objects. No leak condition is assumed for the
submerged object or the seabed. The results for a steel hull object are presented in Figure 3-6.

2

. Wave propagation

N — T

= e =

Figure 3-6: Steel hull (left), numerical model (middle), and excitation forces of wave propagation (right) [35].

Slika 3-6: Ponton iz jekla levo, numericna panelna metoda v sredini, sile valov na ponton desno [35].
In the 3D panel method, the potential flow around the hull is calculated numerically. According to
Green’s integral theorem, the three-dimensional linear homogeneous differential equation in Eq.
(3.7) can be transformed into a two-dimensional integral equation. In this way, the three-
dimensional Laplace (potential) equation is transformed into a surface integral equation with
Green’s identity theorem. The integral equation represents a distribution of sources (or sinks) and
dipoles on the surface. The surface of the body is divided into a number of discrete panels, as shown
in the middle of Figure 3-6. The water pressure during the wave potential is then integrated across
panels and results in wave transfer functions. The advantage of this method is the two-dimensional

surface calculation of any three-dimensional structure. It is suitable to investigate objects of any
shape and size. The transfer function is then evaluated separately for each frequency, resulting in
a transfer function of complex form. These functions are used for wave load generation or for
potential radiation damping. The numerical approach provides results that agree well with the water
tank measurement results and is a common tool used in hydrodynamic praxis. In addition,
laboratory tests can be carried out for obtaining wave records and linear radiation-damping tests,
as shown in Figure 3-7.

Figure 3-7: Laboratory tests at SINTEF Trondheim: wave excitation (left) and wave radiation damping (vight) [35].
Slika 3-7: Laboratorij SINTEF v Trondheimu, obtezba valov (levo), dusenje pomikov gibanja (desno) [35].
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3.5 Wave load time series

The wave load presents the integrated water pressure around the floater hull due to incoming waves.
The water surface elevation can be presented as a collection of single wave frequencies and is
represented by the power spectrum density (PSD), denoted as S;. Conversation between the
frequency and time domains is carried out via a pair of Fourier transforms that contain both real
and imaginary components. This mathematical operation transforms the time-dependent measured
wave time signal into a frequency-dependent wave PSD. These are commonly presented as
spectrum amplitude and phase shifts. An IFT can then be applied to simulate the time-dependent
wave records, which can be utilized in bridge response investigations. This conversion between
measurements and wave signal generation is presented in Figure 3-10.

Time domain Frequency domain Time domain
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Figure 3-8: Wave record analysis and generation.

Slika 3-8: Meritve valov desno in sintetiziranje valov levo.
The phase shift information is typically neglected because no requirement exists for directly
reproducing each individually measured wave signal. Instead, artificially generated waves can be
representative of multiple scenarios containing similar wave response energies. The discarded
measured imaginary phase information is replaced by the uniform random phases of white noise
spectra, which requires the generation of multiple time series to obtain the equivalent average
spectrum energy. This process presents a notable computational effort and is challenging for any
time-domain application. The variance in the generated signals must be maintained for an average
of all Fourier transformations. The root mean square (RMS) of several generated time series builds
a median time-domain response. The median of the generated signals should be on average equal
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to the variance in the input frequency power spectrum variance. The power spectrum variance is
calculated as the area below the input frequency power spectrum. The square of the following
relation must be maintained between all time and frequency transformations:

0

median[ (gz(r)ﬂ = |[S.(0)dw (3.13)

The same principle is also applicable to the wind time series, as presented in Figure 4-7. Fourier
transformation of the generated wave time signal also involves the directional distribution.
Homogeneous waves follow a linear stationary Gaussian model [25]. The rigid body behavior of
the hull object is assumed, and no hydroelasticity effects are present. The wave forces F,,,. are
presented with a six-component vector n, which includes three forces and three moments. The
forces are modeled by a transfer function F, obtained using the first-order calculation of the
potential theory presented in chapter 3.4. The time-domain wave force component is calculated as:

a)l.,éj) ,0)AwAO

waven x y’ 5,9(

cos[kxcos(@ )+kysm a)it+gi].—¢!]}, (3.14)

-1 ( ( 9)) kK =
Re(F(@.0))]

Here, Fyayen 1 € {1...6} denotes the fixed force components, F, is a complex hydrodynamic

2

1)
where ¢§j = tan —
g

transfer function, and ¢;;,n € {0...27} is a random uniform distributed phase angle. The

L ]'
amplitudes describe the absolute values of the transfer function |F,(w)| and the corresponding
phase angles. The frequency-dependent values represent a range of measured frequencies, where
the wind-sea modeling is in the range of [4s...10s]. The transfer functions can be calculated with
the numerical hydrodynamic software AQWA, the results of which are validated through
laboratory tests. COWI Norway [36] provided some numerical results, and SINTEF Trondheim
made the laboratory measurements [37]. An example of the amplitudes of the wave transfer

function for a steel hull is presented in Figure 3-9.
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Figure 3-9: Hull wave amplitudes, the left column shows translations, and the right column shows rotations [38].

Slika 3-9: Amplitude pomikov valov, levi stolpec za pomike in desni stolpec rotacije jeklenega pontona [38].
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3.6 Hydrodynamic wave radiation formulation

In this chapter, the motion-induced wave radiation loads are modeled with frequency-dependent
hydrodynamic damping and added mass. These are isolated forces without wave action, according
to Figure 3-1. Motion-dependent forces are measured at multiple discrete motion oscillation
frequencies, resulting in a frequency-dependent force formulation. The formulation assumes a
continuous linear superimposition at different frequencies. The linear hydrodynamic wave
radiation forces are expressed on the left side of the structural dynamic equation as:

(M+M, ())ii+(C+C,, (o))i+Ku=0 (3.15)

The hydrodynamic self-excited forces are mainly acceleration-velocity dependent. The
hydrodynamic force vector consists of frequency-dependent damping Cp,(w) and a hydrodynamic

mass My (w) contribution. Thus, the frequency-domain motion-induced hydrodynamic forces can
be expressed as:

G,y (@) =H, (0)G (@) (3.16)

where Gy, is a Fourier transform vector of hydrodynamic motion-induced forces, Hy,, is a transfer

function matrix suitable for velocity transformation, and G, is a Fourier transform vector of
structural velocities. Here, the hydrodynamic transfer function is defined as:

H, (0)=ioM, (0)+C, () (3.17)

Eq. (3.15) cannot be resolved within the Newark time-integration method and requires convolution
integration. The frequency-dependent properties are transferred to the time domain with the
numerical IFT, resulting in the J},, (t) impulse response function or retardation function:

1 T iot
Jhy(t)zgith(a))e dw (3.18)
With the convolution integral over the history of structural velocities, the hydrodynamic wave
radiation forces are calculated as:

Gy (0= My, ()i (1) + [ 3, (t— ) i(0)dr (3.19)

This convolution integral involves integrating all the way back to the start of the simulation at each
time step, causing increasingly slower simulation time progress. The exact derivation is presented
in an example with a single DOF to illustrate some theoretical principles.
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The hydrodynamic radiation force can be split into infinite and frequency-dependent contributions:

Mhy (a)) = I:Mhy (w) _Mhy (OO)] +Mhy (oo)
Gy (@) =[Cy (@)= Cyy () ]+ C,y ()

The frequency-dependent conversion into the time domain follows the IFT (3.18) and convolution
over velocities (3.19) [5]. In hydrodynamic applications, the well-known Cummins transformation
is used to calculate the hydrodynamic motion-induced forces [39] [40]. The wave radiation forces
are extrapolated to fulfill a relation G,y (o) = 0. The frequency contribution of the hydrodynamic

(3.20)

transfer function in (3.17) is defined as:
H, (o) =i M, (o)~ M, () |+ioM, () +C, (o) (3.21)

where the IFT (3.18) can be written as:
0 ® 1 i . i@
Ty O= I+ =~ [ ioM, () e”do

—0

(3.22)

+i T (ioo[Mhy(a))—Mhy(oo)]+Chy(a))) edw

The above equation consists of an infinite contribution Jii; and a frequency-dependent contribution
Jny impulse response function. The infinite contribution of infinite mass has an analytical solution

as a derivative of a step function:

J =M, ()3(t) (3.23)

y =

The frequency-dependent solution is found by a numerical Fourier transformation. Since the forces
can be described by a continuous function, the complex exponential Fourier transformation e‘®¢ =
cos(wt) + i - sin(wt) is written in trigonometric form as:
o 1 5. o
YMOE . _[ (zm[Mhy (0)-M,, (oo)} +C,, (a)))(cos((nt) +i-sin(ot))do (3.24)
The double-sided spectrum can be written as a sum of two single-sided spectra, consisting of
integrals from the negative and positive frequency axes:

e .
Ju(t) = . J (zm[Mhy (0)-M,, (oo)] +C, (a)))(cos(cot) +i-sin(wr))do+
- (3.25)
i (iw[Mhy (0)-M,, (00)] +C,, (a)))(cos(wt) +i-sin(wr))do
0
Applying asymmetry and symmetry valid for the causal invariant dynamic system changes the
integration limits and results in a single-sided spectrum:
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00

T (®) = ij(—iw[Mhy (@)-M,, (oo)] +C,, (a)))(cos(cot) —i-sin(of))do+

i (3.26)
%J.(im[Mhy (@)-M,, (oo)] +C,, (a)))(cos(oat) +i-sin(wr))dw
T 0
This expression simplifies to:
oo LT M (o) si 1t
()= - z[m [Mhy (0)-M,,( )] sin(wt)dw + - .([Chy (w)cos(wt)dw (3.27)

Introducing additional assumptions for all negative times, the response I,(—t) = 0. Since no
motion information is present before t=0, this result is valid for nonvibrating structures. This will
be reflected in the change in the integral limit, yielding the following relation:

C,, (@)cos(at)do = —a)[Mhy (0)-M,, (oo)] sin(ot)dw (3.28)

An important relation between frequency-dependent added mass and frequency-dependent
radiation damping is derived that is valid for causal dynamic systems. Substituting the relation
(3.28) into equation (3.27) yields:

()= ETChy (w)cos(awt)dw (3.29)
T 0

The total impulse response function is convoluted over the velocity history of motion (3.19),
yielding:

4, (t) = thy () ( u(t)dr + IJC cos w(t r)) u(t)dodr (3.30)
0
The analytical solution of an infinitely contributing hydrodynamic mass is:
t ©
i (1) = M, ()i (1) + = [ [, (@)cos(e(t—7)) ti(tYleodz (3.31)
4 00

Typical input data for frequency-dependent hydrodynamic wave radiation of added mass and
damping are presented for the steel hull (Figure 3-6) in Figure 3-10. These principles are applied
to a multi-DOF coupled dynamic system, yielding the linear wave radiation formulation in matrix
format presented in (3.19).
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3.7 Hydrostatic restoring forces

The submerged hull has to provide buoyancy to
the bridge superstructure. The hydrostatic force is
constant over time and represents the floater
buoyancy. According to Archimedes’ principle,
hydrostatic forces are equal to the floater volume
of replaced water. This permanent vertical force

Sea level

. . . Wet surface
gives the required uplift to balance the total

permanent and dynamic bridge loads. The design
requirement is that the buoyancy uplift force is
always higher than the maximum possible Submerged floater buoyancy
combination of negative vertical loads on the
floater. The excess vertical uplift forces are taken
by the tether system and are therefore always
subject to tension. This setup ensures a position
in the sea with minimal vertical displacements
and larger lateral deformations. This system
works as a reverse pendulum, with the tethers
designed to have tension at all times, as presented
in Figure 3-11.

B g Seabd

Figure 3-11: TLP suspension bridge concept.

Slika 3-11: Zasnova TLP visecega mostu.

The buoyancy force of the submerged object is calculated as:
Fbuy =gV (3.32)

where Fp,, is the vertical force component, g is the gravitational acceleration, Vy is the volume
of the submerged floater, and p is the water density. For the dynamic variation in the loads, a linear
change in forces is expressed by a linear spring coefficient related to a vertical stiffness Ky, which
is calculated as:

k hyy — P& Ay,Wp
khy,rx = pgjzz,wp (3 33)
khy,rz = pg]xx,wp

where Ay ,p, is a wet surface defined by the intersection of the hull with the seaplane and 1,

IYY:WP

system describes the constant variation in the wet surface interface cross-section. For the given
final steel hull design geometry presented in Figure 3-7, the hydrostatic restoring forces are ky,,,, =
7 MN, Kpyrx = knzrx = 2200 GN. The platform produces F,,, = 900 MN of the vertical uplift

force to support the floating bridge [36].

are the moments of inertia of the wet surface cross-section. A linear set of the vertical spring
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3.8 Current load

The hydrodynamic drag force results from the inflow of underwater sea currents. The currents are
represented by the velocity vectors of the sea and are nonlinearly distributed in the vertical
direction. They are simulated as time constant loads, where the dynamic damping effect is present
due to structural movement. These loads are commonly classified in the literature as viscous-drag
damping (VDD) loads [41] [30]. The current load is the relative velocity between structural
movement and the current velocity, as depicted in Figure 3-12. Its global bridge effects can be
described by the static load contribution and low-frequency dynamic damping participation. All
submerged elements, such as the hull and tethers, are subject to underwater current flows. The
relative velocity V.., between the structure and the current velocities is calculated as:

Via =V sream = Vetem (3.34)

rel stream

The interaction factor f,; is an empirical value that takes into account possible modified
interactions caused by different oscillation frequencies and changes in surface roughness due to
algae collected on the tethers. The VDD element distributed load is expressed as:

rel

1
Foy =5 PCDV (3.35)

where p is the water density, Cyis the drag coefficient, D is the diameter and exp = 2 is the velocity
exponent.

sea level

Current velocity Element velocity Relative velocity

Figure 3-12: Viscous-drag damping load and the relative velocities.
Slika 3-12: Viskozno duSenje morskih tokov in prikaz relativnih hitrosti.
Load implementation can be carried out by applying a nonuniform load distribution to the
submerged element. The current vector is defined as the global direction vector, and a table of the
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variable current profile along the selected axis is provided. The diameter of the element cross-
section can be defined from a database catalog or can have a user-defined value. The hydrodynamic
model coefficients are as follows: the drag coefficient, the density of water (approximately 1.0
t/m?), and the exponent, which is set to 2 for viscous damping. The interaction factor fi, is
commonly set to values near 1.0. Subdivision of the load distributes the nonuniform current loads
along the finite element beam and thus enables a more exact force calculation. This feature has
been implemented in RM Bridge, as depicted in Figure 3-13.

Elements Stream profile Diameter (m) Model properties
(®) Element series Variable name Stream | ¥ ® 1.0000 Drag coefficient 1.0000

from 101 10000

Direction X ) Mult. by CS width Density of fluid (t/m3) | 1.0000

201
e Direction Y 0.0000 ) Mult. by CS depth Exponential law 1.5000

1
SR Directian Z 0.0000 Interaction factor 1.0000

() Assembly v Abscissa (OX @Yy (OZ Subdivision of load
A ‘:l
Ok

Element selection Stream properties Cross-section Hvdrodvnamic

Explanafion Cancel

Figure 3-13: Implementation in RM Bridge [2].
Slika 3-13: Programiranje v programu RM Bridge [2].

3.9 Time-domain formulation

All the hydrodynamic effects presented in chapter 3 are summarized herein. Combining different
hydrodynamic forces into a linear dynamic equation of motion yields:

(M+M,, (0))ii+(C+C, (w))u+(K+K, Ju=F, +F, (t)+F, (u) (3.36)

buy wave cur

The hydrodynamic effects are described in the “hydrodynamic” node at sea level relative to the
pylon. The motion-induced hydrodynamic forces are calculated for each hull as a 6X6 matrix of
added symmetric mass My, (o) and nonsymmetrical added damping Cp,(w). The hydrodynamic

radiation forces and frequency-dependent participation are resolved via velocity convolution
integration. The result of the convolution integral is a six-component force vector and is moved to
the right side of the dynamic equilibrium. The infinite mass contribution is resolved implicitly on
the left side of the dynamic equilibrium. The nonlinear and all the nonsymmetrical loads are moved
to the right side, where they are resolved explicitly. The dynamic system is then resolved with the
following final form:

V.

(M +M,, (oo))ii+C1'1 +(K+Khy)u =F +F (t)+%pCdD(V vem St )

buy wave stream

L (3.37)
__“'Chy(a))cos(a)t—r)ﬁ(r)da)dr
T 00
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Convolution integration is a time-consuming mathematical operation; hence, an efficient algorithm
is necessary to evaluate the response. Several possibilities exist for improving the numerical
efficiency. The calculation time is measured during implementation inside RM Bridge to
investigate the numerical efficiency of the floating bridge analysis. The relatively long calculation
time is due to many additional nonlinear effects, which cause an increase in the number of Newton-
Raphson iterations. An average of 50 iterations is required to resolve the dynamic equilibrium
convergence of floating bridges. This high number results in considerable additional numerical
effort when evaluating the convolution integral areas inside the Newton-Raphson convergence. To
reduce the calculation times, the convolution integration can be split into two parts, i.e.,
convolution before t,, and convolution participation of the last iterated time step:

n+l n+l

q,, ()= j L, (t—7) u(r)dr = j L, (t—7) u(r)dr + j L, (t—7) u(r)dz (3.38)

This implementation speeds up the evaluation of the convolution integral up to 50 times and is
beneficial for nonlinear structural responses. In addition, the retardation function I, is

precalculated and stored in the read access memory. Furthermore, different integration algorithms
are tested, such as constant, linear and cubic integration rules. Linear integration offers the best
accuracy-performance ratio and thus is chosen for the final implementation.

An interesting alternative is a state-space method that transforms the second-order convolution
operations into a set of first-order linear system equations. The linear terms of this reduced matrix
have to be fitted to the experimental hydrodynamic data. Thus, a linear system can be resolved with
simple matrix multiplication operations, which results in significant computational efficiency
compared to convolution. However, additional work on obtaining reliable matrices for an
equivalent linear dynamic subspace system should not be neglected. This work is made possible
with complicated expressions for fitting to self-excited forces, such as rationa and indicial fnctions,
and requires user experience.
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4 WIND LOAD ON BRIDGES

4.1 Preview

This chapter presents dynamic wind loads according to the strip theory of bridge aerodynamics
[42]. The presented wind load formulations are suitable for the finite element method discretization
of line-like bridge structures [43]. The wind load is a superposition of different force actions on a
bridge strip section. The wind load effects are grouped as follows: I) mean wind, II) turbulent wind,
IIT) self-excited motion and IV) vortex shedding loads, as depicted in Figure 4-1.

Vortex shedding
Incoming turbulent wind

Self-excited motion

Figure 4-1: Different wind load components on a bridge deck section.
Slika 4-1: Razlicne vrste vetrnih obtezb na most.

Motion-induced load models can be simulated with steady aerodynamics, unsteady aerodynamics
and nonlinear aerodynamics models. The popular QSS model is derived from the assumption of
fully developed flow around the indicial wind angle. This approach is convenient for
implementation due to the availability of aerodynamic input. This formulation is applied in the
current time-domain floating bridge design and has been implemented in several commercial
software programs. Unstable models are popular in aeroelastic research, where linearized flutter
derivatives are especially convenient [44]. The wind tunnel measurements reveal that self-excited
force models are more suited to capturing motion-induced forces than are QSS models, resulting
in better accuracy in wind buffeting response prediction and opening up the possibility for
aeroelastic investigations. The nonlinear structural response can be successfully resolved with a
time-integration approach and requires a proper formulation for frequency-dependent self-excited
forces. Rational functions are commonly used in time-domain investigations but are not often
implemented in commercial codes. This research develops new possibilities for including a self-
excited force model suitable for implementation in current floating bridge projects. An accurate
prediction of fully coupled time-domain floating structures can be achieved by introducing a
specifically tailored self-excited force formulation into the presented numerical scheme. This
integration is made possible by using the existing hydrodynamic functionality inside the software
together with the developed load models. New linear self-excited numerical models are developed
and validated with wind tunnel measurements.
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4.2 Turbulent wind description

The incoming wind vector U(t) is decomposed into a constant mean value V and fluctuations v(t)
around the mean value, written in matrix notation as U(t) =V + v(t). The wind directions are
described in a wind left-hand Cartesian coordinate system, where the component u(t) is in the
direction of the wind fluctuation, v(t) is the vertical fluctuation in the reverse gravity direction,
and w(t) is the fluctuation in the horizontal direction, defined as:

ug | | V| |u@)
V(@) | =] 0 |+] v() (4.1)
W] 0] [wo)

The wind field properties U are a function of the height and depend on the terrain roughness of the
surrounding area. The wind flow is turbulent by nature and is commonly modeled with stochastic
methods. Here, the Fourier transformations presented in Figure 3-8 are applied to model a
homogeneous wind field. The information required for the determination of the load effect on a
bridge commonly includes the mean wind profile, power spectrum, turbulence intensity and
coherence of wind fluctuations. The wind field velocity (4.1) can be described as a fluctuating force
around the mean wind velocity, as depicted in Figure 4-2.

E 50 o _ o Al Turbulent wind
T = = = = Mean wind 2
I I I | | I
0 50 100 150 200 250 300
time (s)
10 T T T T T

v (m/s)
=

10 I I I | I
0 50 100 150 200 250 300
time (s)
5 T T T T T

w (m/s)
=)

5 I I I \ I
0 50 100 150 200 250 300
time (s)

Figure 4-2: Example of turbulent wind fluctuations.
Slika 4-2: Prikaz primera simulacije turbulentnega vetra.
Wind fluctuations are modeled by time-dependent signals, and the input is commonly provided by
a single-sided PSD [45] [46] [47]. The wind spectra of turbulent wind describe the amount of
energy associated with different frequencies, as depicted in Figure 4-3. Typically, three spectra
together with the associated coherence describe the turbulent wind field. The wind power spectrum

is commonly presented as a product of the variance and its normalized frequency PSD distribution
S(w) =0 PSD(w).
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Figure 4-3: Normalized PSD and the corresponding time-domain transformation [48].
Slika 4-3: Normaliziran turbulentni spekter vetra in pripadajoca ¢asovna transformacija signala [48].

For the time-domain simulations, reverse engineering from the frequency power spectra to time-
domain signals is possible via IFT techniques, as shown in Figure 3-8. These synthesized signals
do not exactly reproduce the input spectrum, as observed in Figure 4-3; however, they are
statistically achieved for an average realization in Figure 4-7. The nonhomogeneous wind field is
described by stochastic auto- and cross-correlation spectra, which define the wind field
fluctuations. The fluctuations across the bridge are correlated time-varying fluctuations, which are
described by the correlated wind fluctuations [49] [50] [51] [52] formulation as:

V(t)=szsu(wk)cos(a)kt+l//i’k) 4.2)

M N
=1 k=1

J

where i is the wind node number, k is the frequency, Sj; is the decomposed correlated wind spectrum
matrix, w is the frequency and ; ;. is the random phase angle of the white noise spectrum. In this
approach, the correlation between different directions and wind nodes along the bridge is

introduced. The correlated wind nodes are assembled in the form of a symmetrical lower triangular
matrix, which is defined as follows:

symm

(4.3)

ij 7

Si
S; = Sil
S SMj S

where the power spectra for two separated points 7 and j are calculated with an average spectrum
and its coherence as:

S, =+/S;S,Coh(w,As) (4.4)

To solve (4.2), several techniques are available [53] [54] [55]. In this work, an inverse discrete fast
Fourier transform (IDFFT) algorithm is applied and implemented. Sufficiently refined time,
frequency and space discretization are required for accurate wind fluctuation calculations in the
time domain. This represents a computational challenge for large 5 km long floating bridges.
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Floating bridges are commonly represented by larger complex finite element models and require
long simulation times [3] [56]. The time series generation (4.2) of approximately 40000 wind nodes
is a challenging task for PCs. Good concept development and preformat numerical algorithms can
considerably reduce the computational time. Therefore, a specifically tailored solution is
programmed into the software increase the speed of the calculations. The first improvement is the
generation of wind turbulence on the wind plane, as shown in Figure 4-4. From the wind plane,
wind turbulence is interpolated on a finite element mesh. The wind plane can have independent
space discretization based on wind generation requirements. Coarse frequency discretization is
added in (4.2), where the assembly of (4.3) is performed at predefined frequencies of the wind
power spectrum. To achieve the required fine discretization of frequencies for the IDFFT operation,
a linear interpolation between different assembly planes is applied, as presented in Figure 4-4. The
IDFFT algorithm is significantly faster than the trigonometric cosine operation of the IDFFT
algorithms. The parallel solver in (4.3) is added to further increase the calculation speed. The
directly used equation (4.2) would require more than 1 month of computation time. After the
described algorithms are introduced, the computation time is reduced to approximately 15 min,
achieving a speed-up factor of approximately 10°. This work to develop an efficient algorithm for
time series calculations is important for achieving an effective workflow. The presented
implementation is applied to the example of the floating bridge time-domain simulations presented
in chapter 6.

culated wind field plane

2) Cal

1) Incoming
turbulent wind

Parallel loop

Figure 4-4: IDFFT algorithm calculations (left) and the wind plane (right).

Slika 4-4: IDFFT algoritem za izracun turbulentnega vetra (levo) in ravnina vetra (desno).



Papinutti, M. 2021. Dynamic analysis of floating bridges 37
Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment.

A demonstration is presented for a homogeneous wind field calculation. The wind is calculated for
multiple points across the bridge length at an elevation of 20 m. The described wind field is
calculated with equations from (4.2) to (4.4). The time scale is t,,g = 2000s with At = 0.2s, and
the frequency sampling is f = {0 - 5} Hz with Af = 5 10™>s. The wind field is simulated for all
three wind fluctuations u, v, and w. A constant mean wind V=45 m/s is applied over all domains,
ensuring homogeneous properties. The coherence function is dependent on the frequency of the
wind fluctuations and the distance between nodes. Several coherence modeling formulations are
available, among which the popular exponential decay model is applied, as follows:

Coh e f (Condl)” +{Cypdy)” +(Cyz)’ dx dy dz
; _ _ here C 0 4 8| u
Copdde ) +(Coydy) +(C, 2 where C =
Coh, = ¢ VAT HEMTHC) 0 4 8 v (4.5)
Coh, =e \f/ (Cuncls) #{ o) +(Cotz)’ 0 4 8] w

Here, f is the wind oscillation frequency in Hz, C; is the coherence exponential decay coefficient
matrix, and dx,dy,dz are the length distances between wind nodes, where the length vector is
rotated in the same direction as the incoming wind vector U. For a nonhomogeneous wind field,
the average wind speeds between two nodes are taken as V; (V + V) /2. The wind fluctuation

can be described by various wind spectra, where a proper spectral application should be
investigated for each construction side individually. In this thesis, the Kdrman [57] continuous gust
wind fluctuation is modeled as:

Suu=(TI“V) : 4fLu/(1+70.8(fLu)2J
f v v

B (TIVV)z . i j2 11/6
Sw——f 4L 1+755 1+283 46)

Swwzm- 4L £1+755(f J/(st{f sz
f v v v

Suv = SUW = Svu = SVW = SWU =

Here the integral length scales are selected as L,= 180m, L,= 120m, L,,= 40m , and the turbulence
intensities are TI,= 6.66%, TI,=4.44%, and TI,,= 2.22%. The standard deviation is defined as
o=V -TI/100%, resulting in o,=3 m/s, o,=2 m/s, and ag,,= 1 m/s. The defined wind power
spectra in (4.6) are presented in Figure 4-3 in red, and the values numerically calculated with (4.2)
are presented as fluctuating black curves. The three wind fluctuations calculated using (4.2) are
presented for a single wind node, as shown in Figure 4-2. The wind field presented corresponds to
a length of 2000 m (see Figure 4-5) and has a longitudinal component u(¢). The extremely high
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(yellow) peak velocities are visually clustered in the reefs and represent an average integral length

scale L,= 180 m, as introduced in (4.6).

2000
1500

1000

Station (m)

500

150 200

Time (s)

0 50 100

250 300

Figure 4-5: Homogeneous wind field fluctuation u(t) for a span length of 2000 m at a height of 20 m.
Slika 4-5: Homogena vetrna turbulenca u(t) v dolzini 2000 m, na visini 20 m.

Different parameters are investigated to achieve an accurate reproduction of the wind field from
the wind spectra. Eq. (4.2) is used in Monte Carlo simulations and replaces the unknown phases
with random variables [58]. The time and frequency domains are similar in wave generation (3.13)
. To satisfy a statistical average, a set of 50 wind realizations with different random phase angles
are calculated. Fifty different realizations of three components of the wind time series are presented
in Figure 4-6. The RMS values of all signals agrees well with the input standard deviation o and
for the turbulence intensities. Possible deviations can lead to an investigation of the correctness of
the chosen time scale or frequency scale. The scattered peak factors represent the ratio of the
absolute maximal value to the standard deviation. The scattered maximal structural response
calculation requires several wind time series calculations and the application of statistical methods.
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Figure 4-6: Properties for 50 different turbulent time series realizations

Slika 4-6.: Lastnosti tridesetih simulacij turbulentnega vetra.
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The generated time series realizations are transformed back to the wind spectrum to confirm the
correct transformation. On average, turbulent wind time series tend to reproduce the energy of the
input wind spectra. Figure 4-7 shows the calculated spectrum and coherence defined in Eq. (4.5),
with an exponential decay factor C,, = 4 and a separation of 20 m.
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Figure 4-7: PSD of the generated time series and coherence in wind direction u.
Slika 4-7: Spektri in koherenca za razlicne casovne realizacije, prikaz v smeri vetra u.
Invariant processes are often used in bridge design practice and are verified in the literature. The
wind field is often measured and represented as an invariant 10-minute peak period wind event.
The simulated stationary invariant dynamic wind involves simplifications of the onsite-measured
results, with the intention of covering all extreme responses. Most likely, 5 km long floating bridges
will be exposed to variant and nonhomogeneous winds. To cover the worst-case scenario, some
bridge standard recommendations involve load scenarios of nonhomogeneity in both the vertical
and longitudinal directions [59] [60]. The methods described in (4.2) can be applied to model
nonhomogeneous wind fields, such as the mean wind variation over the height. Thus, directly
applying the methods in (4.3) can result in some numerical difficulties in the Cholesky
decomposition, which requires specifically designed algorithms. Over large distances, extreme
wind scenarios could occur for nonhomogeneous time variant wind events. To account for these
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variant scenarios, more sophisticated wind spectra analyses might be introduced. A wavelet
transformation is a possible candidate for synthesizing and investigating the correlation between
different variant time processes [61]. The wavelet transformation involves the frequency
decomposition of continuous-time sections and is well applied in biomedicine, spectrography,
image processing, the aerospace industry, etc. The transformation calculates the magnitude-
squared correlation, evaluated between 1 and 0, presented as varying colors in the figure below.
The varying frequency contest can be observed in the investigated time period. Figure 4-8
demonstrates the wavelet transformation of the invariant homogeneous wind fluctuation generated
in Figure 4-5.
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Figure 4-8: Wavelet for homogeneous invariant transformation of u(t) for 20 m and 1000 m separated nodes.
Slika 4-8: Wavelet transformcija vetra vzdolz 1000 m mostu na visini 20 m.

The time-invariant wind field is almost fully correlated over time for nodes separated by a short
distance of 20 m, where a low correlation is observed for a separation of 1000 m. The imaginary
phases of transformation are presented with arrows, where the arrow directions represent the phase
angles. These methods have possible applications in extreme wind synthesis for long-span floating
bridges. They could assist in the investigation of nonhomogeneity and variant winds to better match
the onsite wind measurements and improve extreme wind event investigations.
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4.3 Dynamic wind load

The aerodynamic wind forces are calculated according to the strip theory of a line-like structure
[54] [62] [63]. The aerodynamic forces are defined with dimensionless coefficients, i.e., the drag
Cp in the wind direction, the lift C;, in the vertical direction and the moment Cy; around the element
axis. The aerodynamic force is derived from the Bernoulli equation. This formulation allows the
scaling of the aerodynamic forces measured in wind tunnels to real bridge sizes. The mean wind
force F .., vector is defined for the central wind flow indicial angle o and is expressed as:

Cp(a)
F.. = 1 pV’B| C (a) 4.7)
2
BC, (o)

where p is the air density, V' is the laminar mean wind speed and B is the normalization width of
the strip cross-section. The wind load is defined for a unit length of 1 m. The dynamic wind load
formulation is a resultant force of the mean wind load component, incoming wind turbulence
component, structural velocities and displacements. The nonlinear wind buffeting formulation
Fpufenr 18 expressed as:

1 (OL +B (t))
Foun (1) =5 PV (£)B| € (a+B(1)) (4.8)
BC,, (oc +B (t))
where the time variant resultant wind velocity V,,, and effective angle of wind attack 3 are defined

by:

ﬁ(z)=tan[ YORAQ ] 49)

Vtu(t)—u, (1)

The velocity vector components according to QSS theory are presented in Figure 4-9.

Figure 4-9: Wind buffeting load vector components on a bridge segment.

Slika 4-9: Obtezbeni vektor turbulentnega vetra na most.
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Linearization of the wind buffeting formulation (4.8) according to the QSS airflow theory is
common [54]. The first step involves linearization of the aerodynamic derivatives around the mean
wind angle o with the help of the aerodynamic derivatives Cp, Cy, Cy as:

Cp(a+B(1))=Cp(a)+B(1)Cy,
C, (a+B(2))=C.(a)+B(1)C] (4.10)
Cy(a+B(1))=Cy (o) +B(2)Cy,

The second linearization neglects the small squared terms in (4.9) relative to the mean wind V-

V()= V2 +Vu(1)=Vii (1)
B(t)zy—%(t) (4.11)

Substituting the linearization of (4.10) and (4.11) into (4.8) forms the well-known linear wind
buffeting matrices. They are superpositions of the mean wind load F.,,, turbulent wind load F,,
quasi-static aerodynamic damping Cgq, and aerodynamic stiffness K. The total load linearized
wind buffeting format is expressed as:

Fbuf,lin = Fmean + FbufV (t) + Cqssl.l + qusu
C 20, C.-C
Lol o 28] 00 ie 100
2P - 2 R P w(e) (4.12)
BC,, 2BC,, BC),
. 2C, Cp-C. 0]fu, B 00 C|[u,
L2, cvc, 0, b 0.0 & |ju
2 , . 2 ,
2BC,, BC, 0|l|u, 0 0 BC,||u,

The linearized F, ), formulation can be inserted into the Newark time-integration scheme as:

Mij+(C+Cqss)1’1+(K+qus)u=F +F,.v(7) (4.13)

mean

This formulation is suitable for both time history integration and modal decomposition [64] [65]
[66] [67]. The linearization might make an important contribution and must be investigated for
individual projects. This formulation is successfully implemented in floating bridge design and is
discussed in chapter 6.
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4.4 Self-excited aeroelastic forces

In the early 20™ century, long-span bridges were built extensively and provided a cost-efficient
solution for longer spans. The second-order theory was developed to incorporate the cable sagging
effect on structural stiffness, resulting in up to 30% material savings and making slender structures
more sensitive to dynamic vibrations. The well-known Tacoma Narrows bridge collapse of 1940
was due to a very low wind speed of only V=17 m/s. The detailed investigation concluded that the
collapse was caused by then-unknown motion-induced phenomenon. The first airfoil theory of the
20" century was developed in the aerospace industry, and its principles were applied in the Scanlan
theory of coupled flutter instability calculation [22]. This formulation enabled the investigation of
the aeroelastic critical wind speeds of flexible structures. The inputs are linearized frequency-
dependent flutter derivatives and are valid around the mean wind direction a. The dimensionless
characteristics of the cross-section can be measured in a wind tunnel or can be calculated with
modern CFD tools [68] [69]. The developed numerical methods have been validated using the
experimental results obtained from the wind tunnel laboratory at NTNU Trondheim [70]. A modern
force vibration rig can reproduce various deck motions and very accurately measure the self-
excited force. Sophisticated motion-controlled sections are controlled by six servomotors, as shown
in Figure 4-10.

Figure 4-10: Wind tunnel rig at NTNU Trondheim [71].

Slika 4-10: Eksperimentalni instrument iz vetrovnika NTNU v Trondheimu [71].
The QSS motion-induced formulation in (4.12) is modeled by constant aerodynamic damping Cyss

and the stiffness matrix Kys. The wind tunnel measurements show that the QSS models fail to

properly reproduce aeroelastic instability and can lead to a poor aerodynamic damping estimate.
Aeroelastic formulations are therefore preferred for flexible floating bridge structures and will
deliver accurate results [72] [73] [74] [75] [76]. The nonsteady self-excited matrices

C..(K) and K. (K) replace the steady-state acrodynamic matrices C and K in (4.12). The load

qgss qss

directions are identical to the direction presented in Figure 4-9.
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The measured results are commonly normalized on cross-section width B. The self-excited forces
per unit length are expressed as:

F,=C,(K)a+K_(K)u=
(4.14)

PR g om oBH [La -2 H H. BH [u

* * * . 2 * * *
BA, B4 B4, ||u BA, BA, B’4; ||u

X

*

z

The reduced frequency K = wB/V is defined by the circular bridge deck frequency w =
2nf [rad/s]. The flutter derivatives are represented by the drag P/, lift Hf and moment A; forces,
where i = (1, 2,..,6). The symbol * on the flutter derivatives indicates that the values are
dimensionless and a function of the normalized reduced velocity V = wB/V. This formulation is
commonly applied in aeroelastic instability checks and is suitable for linearized wind buffeting in
frequency-domain calculations. The wind effect, with the self-excited formulation substituted into
the time-domain equation of motion, can be written as:

Mii +(C+C_ (o))u+(K+K (o))u=F,  +F, v() (4.15)

mean

The resolution of the frequency-dependent terms is made possible by convolution integration in
the time domain. This research investigates several convolution formulations and different
interpolation functions. The nonsymmetrical infinite aeroelastic matrices are moved to the left side
of the equation. The frequency-dependent part can be resolved as aeroelastic damping with the
hydrodynamic convolution integration presented in chapter 3.6. The implemented approach is
flexible and can incorporate different self-excited models into the software solution as:
Mii+(C-CZ, Ji+(K-KZ Ju=F

se,v se,v mean

+F,,.v(0)+

217 . . (4.16)
;! { [C..(@)-CZ, Jcos(a(t—7)) i(r)dwdr

This approach does not require additional implementation and reuses existing approaches available
in the hydrodynamic software. To substitute the self-excited formulation into (4.16), the flutter
equations have to be rewritten in a proper mathematical format. Several alternatives are presented
and discussed in the following chapter.
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4.5 Time-domain formulation of the self-excited forces

The flutter derivatives are measured at discrete points for a range of reduced frequencies. An
interpolation function is applied for a continuous presentation. The fitted frequency-dependent
function is then suitable for transferring the self-excited forces into the time domain. Equation
(4.14) 1s valid for only a single-frequency harmonic motion. By introducing the principle of
superposition, this can be extended to any periodic or aperiodic motion by applying the Fourier
integral representation [77] [78] [79] [80]. The frequency-domain response of self-excited forces
G, is expressed as:

G, (0)=F ()G, () (4.17)

where G is the Fourier transform of the self-excited force vector, G, is the Fourier transform of

the displacement vector, and F;, is the self-excited transfer function matrix. The transfer matrix
converges the displacement into self-excited forces and is defined by:

F.(0)=ioC,(0)+K_ () (4.18)

Here, i is the imaginary unit, and w is the oscillation frequency in radians. The self-excited force
transfer function (4.18) is defined for flutter derivatives (4.14) as:
| K*(Fi+P) K'Pi+F) KBPi+P)
F . (K)==pV?| K*(Hi+H,) K(Hi+H,) K’B(H,i+H)) (4.19)
K’B(Aii+A)) K’B(4i+A4,) K’B*(4i+A;)
The impulse response matrix I, is obtained by taking the Fourier transform of the transfer function
F,. as:

()= 1 j F_(0)“dw (4.20)
27 =,

where e'“t = cos(wt) +i-sin(wt) is a complex trigonometric vector. The time-domain
counterpart is obtained by applying the convolution theorem and integrating via the displacement
history as:

q,()= T I (t—-7)u(r)dr (4.21)
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An alternative calculation using the Fourier transform and convolution over the velocity histories
is developed. To reproduce the same self-excited forces using a higher-motion derivative, the
transfer function should be modified, which can be achieved by investigating the relation between
the Fourier derivatives of the displacement and velocity vectors:

G, (w)=¢e" displacements
1 . (4.22)
G, (v)=—¢e" velocities
io

Therefore, the transfer function of the displacements (4.18) is divided by iw to ensure that (4.17)
and (4.23) provide equivalent responses. The self-excited force G4 of the velocity formulation is

defined as:
G, (@) =H,(0)G,(0) (4.23)

where G, is the Fourier transform vector of the structural velocity vector, H,, is the transfer function
matrix for velocities and Gq is the frequency-dependent self-excited force vector. The velocity

transfer function is:
H_(0)=C, (0)+~K_ (o) (4.24)
io

The flutter derivative transfer function is expressed as:

| K(B —iP)) K(P —iF) KB(P, —iP))
H_(K)=—pVB| K(H;—iH,) K(H,-iH,) KB(H,-iH;) (4.25)
KB(A4; —id)) KB(4, —id,) KB’(A4; —id;)

The velocity transfer matrix now switches components into real damping terms and imaginary
stiffness terms. The Fourier transform of the velocity transfer function matrix yields the impulse
response function J:

J_ ()= i j H_(0)“dw (4.26)

The convolution theorem calculates the time-domain response by integrating the impulse response
via the velocity history as:

4. ()= T J_(t—om()de 4.27)
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4.6 Parametric modeling of self-excited forces

Rational functions (RFs) and indicial functions are commonly used to interpolate scattered flutter
derivative measurements. Both functions are especially suited for time-domain applications and
provide an analytical solution expression. The fitted expression has an inherited tendency to
converge to a constant value at infinite frequency co. This work presents only RFs; however, similar
principles can be applied to indicial functions. An example involving a single DOF is demonstrated,
and analogical expressions are derived for the coupled motion of equations presented from (4.18)
to (4.20). The general dimensionless form of transfer functions can be represented as a function of
reduced frequency K. The following fitting expression of RFs has been frequently used in the
literature [81] [72]:
iK

F (K)=— pV (a,+ a,iK +a,(iK)* + Zal+3 Kid —) (4.28)
where a, is a fitting coefficient, d; is a pole fitting coefficient and N is the number of poles needed
to fit the data. For practical applications, approximately three poles are used to fit the experiments.
The coefficients related to inertia a3 are neglected due to their minimal participation. For the
vertical lift direction, the rational expression is fitted to the flutter derivatives as:

1 & iK

> —pB’w’(H/i+H,)= 5pV2 (Cll + a,iK + lzl:am Kd J (4.29)
To interpolate (4.28), i.e., the aeroelastic transfer function, Eq. (4.19) is split into real and
imaginary components. The real part is fitted to the stiffness terms, and the imaginary part is fitted
to the damping terms:

RT(FU (K)) =V |q +Zaz+3 12
— VK> E ((d,V) +1)
2
(4.30)
M — V a2 + Jfal 5 L
; VK> = [(le)z +1j

The RF is fitted to a complex force vector, which requires a nonlinear regression fitting procedure.
An efficient numeric fitting approach for a quick and successful regression generally exists. First,
the pole coefficients are chosen as d; [ € (1,2,...,N — 3), and the rest of the coefficients a; i €
(1,2,...,N) are calculated with linear regression. Second, the nonlinear regression fit is used to
find the optimal d;, and linear regression is used to calculate a;. Third, when an optimal set of d is
found, nonlinear regression is used to find all the coefficients a; and d;, which allows a slight
adjustment of all the curves. It is often helpful to start with QSS asymptotes and iterate from there.
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The coefficients a; differ, and the same d,; values are chosen for all DOFs. This method requires
considering how to appropriately choose the starting values for the nonlinear regression scheme,
and the convergence results should be monitored. It has a rather complex curve fit, and therefore,
the automated procedure is rather challenging, particularly for scattered and limited reduced-
frequency data.

Displacement convolution format

The rational function (4.28) has a transfer function that is defined as:

iwB/V
F (0)==pV?| a +a,ioB/V + LA (4.31)
(@) p (a @t Z‘al” ia)B/V+d,j

This expression has an analytical IFT (4.20) solution in the following form:

L(1)=5 97| ad(t) a2 1+ a, o(1)- e - (4.32)

I=1

The time-domain force in Eq. (4.21) is calculated for the impulse response (4.32) as:

1 : 7—(171)
QSe(t):EpV2 al”(t)+a2_” Zam u e( ’ Ju(r)dr (4.33)

Infinite contribution (oo)

The expression has coefficients related to the infinite contribution and results in constant values.
The frequency contribution convolutes over the displacement response history. The infinite and
frequency variation contributions are depicted in Figure 3-8.
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Figure 4-11: Aeroelastic damping and stiffness, and the infinite and frequency variation contributions.

Slika 4-11: Aeroelasticno dusenje in togost, neskoncni in frekvencno odvisni prispevek.
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Velocity convolution format

The transformation between (4.23) and (4.27) calculates the self-excited forces. The displacement
transfer function format (4.31) of rational fit is expressed via (4.24) into a velocity transfer function
format as:

& B/V
H_(K)=—=pV? 27 4.34
(K)= p [ ,Z: YiwB |V +d f J ( )
The impulse response function is calculated with (4.26) as:
1 -5
Jse(t)ZEPV a, +a2 E a,,| e (4.35)

The response is calculated with velocity convolution (4.27) as:

e 7)dr (4.36)

=1

- e
«\

1 B
qse(t):Esz alu(z‘)+a2;u a,+3

Infinite contribution (oo)

Equations (4.36) and (4.33) yield equivalent responses for the rational function fit. This outcome
is related to the causal dynamic system property inherited in the parametrically fitted rational
function. The presented alternative velocity convolution formulation may offer some advantages
for the implementation of self-excited forces in various commercial software environments.

4.7 Nonparametric modeling of self-excited forces

A new novel approach to calculating the self-excited forces in the time domain is presented. It does
not require the complex nonlinear regression fitting of causal dynamic systems. It offers further
possibilities for the application of different freely chosen fitting functions, such as polynomial,
spline, rational, and moving average interpolation functions, and is achieved by numerical
evaluation via the IFT, an idea that is also applied to hydrodynamic wave radiation problems. The
frequency-dependent transfer functions are numerically transformed into impulse response
function (3.29) and then convoluted over the velocities (3.31). This procedure is not dependent on
parametric fitted functions, allowing for an analytical mathematical transformation. The method is
applied to independently fit the polynomial fitted stiffness and damping terms. The presented
numerical convolution offers a faster computational algorithm compared to the convolution of RFs
due to the required convolution operations. It is also attractive for implementation in commercial
software without additional software extensions. Here, the MATLAB and RM Bridge code are
investigated.
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4.7.1 Theoretical background

The proposed numerical nonparametric model approach is designed for any continuous function
fit. The transfer function can be split into frequency-dependent and constant contributions. A
transfer function (4.24) suitable for velocity convolution is defined by:

H (0)=H.(0)+H_ (4.37)
where the frequency contribution is
1
H’(w)=|C (0)-C. |+—| K _(0)-K 4.38
se( ) [ se( ) se:l ia)|: se( ) se] ( )
and the infinite contribution is
1
H (0)=C_+—K_ (4.39)
i

The infinite contribution has a straightforward analytical solution to the impulse response function:
Jo=C,(0)+6(1)K () (4.40)

where §(t) is the Dirac delta function. The frequency-dependent terms can be expressed in
trigonometric form: e'®* = cos(wt) + i - sin(wt). The proposed transfer function can have
general frequency-dependent numerical values and does not necessarily possess an analytical
solution form. Therefore, the frequency-dependent part is resolved by a numerical Fourier

transformation. The IFT (4.26) of the velocity transfer function (4.38) yields:

1 ¢ :
Jo(t)=— | F (o) €"do =
=5 | Ew)

i I [Cse (cos((ot)ﬂ sin(o?))do (4.41)
2L T Lrg ](cos(oat)+i~sin(c0t))doa
T zco

—00

The double-sided frequency spectrum can be expressed as a sum of negative and positive frequency
spectrum values as:

JO(t) = i j‘ ([Cse (a))—C:] +%[Kse (a))—KSf]j(cos(mt)H-sin(mt))dw+
(4.42)

+—w([Cse (a))—C::]-I-%I:Kse (a))—Kse]](cos(mt)-l-z sm(cot))d
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For linear causal time-invariant dynamic systems, the frequency-dependent spectrum is symmetric
for the real and asymmetric imaginary parts. The transformation from a double-sided infinite
spectrum into a single-sided infinite spectrum is as follows:

JO(t) = iI([CSC (a))—C:;’]—.L[Kse (a))—K:;’]j(cos(wt)H-sin(wt))da)+

) lw (4.43)
+iO([Cse(a))—CSf]+%[Kse(a))—K:jj(cos(cot)jti~sin((nt))da)
which can be simplified to:
17 1
JO(t) = 2= _ K sin(ot)d 4.44
)= I cos(mt) 7[‘([(0 (o) Se]sm(cot) w (4.44)

An additional assumption is that the response is not present before the integration starts. In practice,
the forces might not be correctly evaluated for the initial condition gg.(t = 0). This temporary
starting convolution effect usually diminishes quickly. (4.44) indicates that for negative values of
time, the response 1, (—t) = 0 is equal to zero:

0=lT[Cse(a))—C::]cos(a)(—t)) lzl a))—st]sin(a)(—t))da) (4.45)

T

This also provides an important relation between the frequency-dependent data of Cg.(w) and

Ko (w):
I( ]cos (ot) )da) j(é[Kse(a))—K:j}sin(a)t))da) (4.46)

This relation is an interesting assumption that is further exploited in the published article. Exploring
this relation opens up the possibility for new nonparametric flutter derivative fitting, where
independent fitting of the real and imaginary parts is possible. Introducing relation (4.46) into
equation (4.41) following the frequency-dependent Fourier transformation can yield:

Jo(t) = —J.[C cos(a)t)da) (4.47)
Thus, joining the constant (4.40) and frequency-dependent (4.47) parts results in:

T ()= T2+ T2 () = K. (0) + 5(1) C,. () + = [[C(@)=CZ Jeos(at)de  (4.48)
4 0
The application of flutter derivative aerodynamic normalization introduces fitting to reduce the

velocity values. The numerator {se, u} represents the terms related to the displacement
convolution, while the numerator {se, v} represents the velocity convolution terms.
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Convolution of the impulse response function over the velocities with (4.27) yields:

ﬂ[cse(”) City Jeos( (I—T))L?(T)dwdrj (4.49)

SRS

CI(t)——pV [Kmu(t% e a(t)+

A similar derivation of the numerical Fourier transform can be performed for the convolution over
the displacement. The transfer function of flutter derivatives (4.19) is split into constant and
variation parts. The impulse response function is obtained by (4.20) and convoluted over the
displacements (4.21). The reader can follow these steps, which lead to displacement numerical
convolutions as:

q(t )_—pV (Kseuu(t)+Cseuu(t)+ II[Kse(a)) Kseu]cos (t=7))u (r)da)drj (4.50)

4.7.2 Coefficient determination
Parametric modeling

The parametric model is used to validate the newly developed expression to ensure that the
analytical and newly developed numerical convolution will deliver the same self-excited forces.
Numerical tests are best performed on the parametric interpolation function of the rational function.
The limit search determines the coefficients of the corresponding infinite and frequency
contributions of the transfer function. The coefficients for the numerical velocity convolution
expression (4.49) are as follows:

K2, = Liiré(lm(Hse(a)))-—a)) = g
. B
Csc, = lim(Re(H, ())) = 4 (4.51)
¢ S, B_d
I:Cse( sev:l Re H ((0)) Cse,v = = al+3 V K2 + dlz
and are as follows for the displacement convolution expression (4.50):
K2, = lim(Re(F,, () = a+Ya,
o =1
B
C, =lim(Im(F, (0))/ o) = @ (4.52)
. N-3 _d/2
I:Kse ( seu] Re ( )/ CU) - Kse,u = = al+3 KZ—‘l‘dlz
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Nonparametric modeling

The numerical Fourier transformation method allows the application of various interpolation
techniques, such as independently fitted aeroelastic damping and stiffness curves. Coefficient
extraction for higher-order polynomials is demonstrated, where the fit is divergent outside the
available experimental data between w; and w,. Extrapolation corrections are applied to ensure
convergence to a constant infinite value plateau, thus satisfying the infinity convolution
requirement. The following function ensures a smooth transition to a constant value before and
after the experiment:

f(@)=g(@)[l-B(w-a)]
+g(w)| B(w-,)(1- B(o-w,)) ] (4.53)
+g(0,)[B(w-,)]
Here, g(w) is the function used within the range of the experimental data, and B(w) denotes the

logistic function, which smooths the sharp transition around the cutoff frequency. The smooth
function applied is the Heaviside unit step function, which is defined as follows:

1
1-exp(—2k(0-a,))

B(w) = (4.54)

Here, w,, is the circular frequency in which the unit step function is activated, and a larger k
corresponds to a sharper transition at w,. The infinite damping and stiffness values are simply
chosen at the cutoff frequency. The described techniques can be applied well to the polynomial fit
of the velocity convolution (4.49) by calculating the coefficients as:

Ko, =Im(H (o) —o,)

se,v

Ci,=Re(H, (o)) (4.55)

se,v

[C.(0)-CL, = Re(H,,(w))-C::

and to the polynomial displacement convolution (4.50) by calculating the coefficients as:

K., =Re(F ()

se,u

Ce,=Im(F (»,))/ o, (4.56)

se,u

[K.(0)-KZ, |=Re(F, (o) 0)-K

se,u se,u

The proposed approach allows a more engineering-type approach to flutter simulations, eliminating
the need to undertake complex parametric fitting procedures.
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4.8 Algorithm validation

The presented self-excited models were tested numerically and experimentally in a wind tunnel
laboratory [82]. The Hardanger bridge deck cross-section was tested at a scale of 1:50. Aeroelastic
tests were performed for the following three DOFs: the lateral, vertical and torsional directions.
First, the flutter derivatives were extracted with force vibration tests, providing individual flutter
derivative points. The flutter derivatives were fitted with parametric rational function expression
(4.28) and an individual polynomial fit, as shown in Figure 4-12 and Figure 4-13. The rational
function complex value fit was calculated via a nonlinear regression algorithm [52]. The two N=2
poles provided a well-correlated and representative fit. For polynomials, a second-order fit
provided reasonable accuracy.
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Figure 4-12: Fitting of the aeroelastic damping terms.

Slika 4-12: Interpolacija aeroelasticnega dusenja.
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Figure 4-13: Fitting of the aeroelastic stiffness terms.

Slika 4-13: Interpolacija aeroelasticne togosti.

In general, the torsional and vertical motion data are well correlated and provide very similar fits.
The measured accuracy of the scattered lateral flutter derivatives can be compromised due to
laboratory measurement inaccuracies or false linear model assumptions. The two different fitting
techniques, i.e., the parametric and nonparametric fit, show some discrepancies for highly reduced
frequencies and more scattered data. The second-order polynomial effectively captures all the
flutter derivative trends, while the third-order polynomial is excellent for complex lateral motion
trends. The two-pole rational function fit is satisfying and could be further improved by increasing

the number of poles, thus leading to a minimal self-excited force improvement. Increasing the

number of poles proportionally increases the number of calculations, while adding a higher

polynomial has no effect on the calculation performance.
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4.8.1 Numerical validation

The numerical validation compares the parametric fitted rational function inputs of the different
self-excited models. The experimentally fitted parametric rational function on the flutter derivative
data, depicted in Figure 4-12 and Figure 4-13, has an analytical solution. Analytically derived
rational function expressions are presented for the displacement convolution g, ; in Eq. (4.33) and
for the velocity convolution gy, in Eq. (4.36). The explicit expression provides a literature
reference for validation of the newly developed nonparametric numerical models. The numerical
velocity convolution g3 in Eq. (4.49) is determined by the rational function input presented in
Eq. (4.51). The numerical displacement convolution g, 4 in Eq. (4.50) is determined by the rational
function input presented in Eq. (4.52). All the presented models are validated with 87 s of random
motion, depicted in Figure 4-15. The 3-DOF tests of the four presented self-excited forces are
depicted in Figure 4-14.

Numerical validation Enlarged interval
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Figure 4-14. Self-excited force models for rational function input.
Slika 4-14: Razlicni numericni modeli aeroelasticnih sil.

Clearly, all self-excited models result in excellent overlap of the curves. Minor differences are
observed for the first few seconds, which is expected due to the absence of motion information
before time t=0. The well-matched curves confirm the correct implementation of the parametric
and nonparametric numerical self-excited force models. During the development, several
additional self-excited models were implemented that are not presented in this validation. The
Scanlan model frequency superposition model superimposes individual harmonic components. The
state space is an alternative calculation method based on applying the order reduction method of
convolution into the matrix operation. The frequency-domain representation is made possible with
a Fourier transformation of the displacement format in (4.17) and the velocity format (4.23). The
additional variations were well tested during the stepwise implementation. All mentioned models
result in well-matched self-excited forces, thus further confirming the correct implementation of
all self-excited force models. The presented convolution integral models are therefore fully suited
to represent the self-excited multiharmonic forces [70] [83] [84] [85].
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4.8.2 Experimental validation

A multiharmonic 3-DOF motion test is performed in a wind tunnel rig. The measured forces are
then compared to the developed numerical self-excited formulation models. The experimental
motion is introduced by a synthetically generated signal as a superposition of randomly chosen
amplitudes, frequencies and phases. The time histories have a constant rectangular frequency
spectrum (16 mm, 16 mm, and 2.4°) between 0.25 and 2.5 Hz. One such realization is presented in
Figure 4-15.
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Figure 4-15: Random motion in three directions, i.e., horizontal, vertical and pitching motion, tested at 8 m/s.

Slika 4-15: Harmonicni pomik horizontalno, vertikalno in torzijsko, testirani pri hitrosti vetra 8 m/s.
In the experimental test depicted in Figure 4-16, the parametric (rational function) and
nonparametric (individual polynomial fit) models were compared. The polynomial damping
interpolation convolutes over velocities in (4.49) and is determined by the coefficients in (4.55).
The individual damping interpolation includes only the frequency contribution of the aeroelastic
damping terms and does not relate to the frequency contribution of the aeroelastic stiffness. The
polynomial stiffness interpolation convolutes over the displacements in (4.50) and is determined
by the coefficients in (4.56). The rational function (4.33) uses nonlinear regression techniques,
where the polynomial is simply fitted to individual aeroelastic damping and stiffness terms. The
linear polynomial fitting represents a significant simplification in the fitting procedures, thus
considerably simplifying the aeroelastic analysis.

The linear multiharmonic test indicates the accuracy of the harmonic linear assumption and
compares the accuracies of the nonparametric numerical models. The experimental tests indicate
that linear superposition supports the aerodynamic cross-sectional shape of the Hardanger Bridge,
as evidenced by the good agreement between the experimentally measured forces and the
numerical models regarding the lift and moment forces. The modeled drag force, however, strongly
deviates from the measurements. The rather scattered lateral DOF flutter derivatives indicate
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possible false linear force identification. The drag force has a typical nonlinear multiharmonic force
pattern and therefore cannot be simulated successfully with any of the presented linear models.
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Figure 4-16: Parametric and nonparametric models.

Slika 4-16: Primerjava rezultatov parametricnih in neparametricnih interpolacij.
Additional extended testing is performed for 15 random motion realizations, the details of which
are presented in the published paper. All tests confirm the suitability of the presented parametric
and nonparametric models. Thus, we can conclude that the mathematically derived relation
between aeroelastic damping and aeroelastic stiffness in Eq. (4.46) holds. This relation results in
the nonparametric models providing accurate results in the presented tests and being well suited to
simulate the Hardanger cross-section self-excited forces. The causal dynamic system relation is
automatically satisfied without the need for a nonlinear complex parametric fitting of the transfer
functions. Clearly, the lateral flutter derivatives have a lower confidence level due to the data being
more scattered. More scattered flutter derivative data can also be expected for various cross-
sections, such as open box girders, [-beams, and T-beams. This scenario could lead to a possible
discrepancy between the aeroelastic damping and stiffness contributions. Here, the nonparametric
model offers an individual fitting to either the damping or stiffness terms, which are selected based
on the engineering judgment of the aeroelastic damping and stiffness measurement quality. In wind
tunnel experiments, the measured damping terms are typically more trustworthy than the stiffness
terms of sectional forces. The presented numerical convolutional models offer the ability to choose
the type of fit, individual damping, individual stiffness only or a parametric interpolated result.
Nonparametric models provide much needed simplification compared to a complex parametric
self-excited force model.

4.8.3 Software validation

A comprehensive overview of the literature commonly applied for self-excited models is provided.
Various alternatives of self-excited models are presented, providing different possibilities for a
time-domain implementation. This research focuses on well-tested parametric models and provides
newly developed nonparametric self-excited models. Reformulation of the well-known rational
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function expression into the numerical convolution calculation makes these models the best
candidates for a possible bridge industry application. Over the past few years, several fully coupled
time-domain models of wind-wave-bridge interactions have been developed. Due to the complex
modeling requirements, commercial codes are commonly applied in bridge response calculations.
Different time-domain solutions have different input possibilities and can be somewhat limited to
self-excited modeling possibilities. Suitable candidates for floating bridge analysis and design will
have to incorporate the linear wave radiation solution. Several candidates that fulfill the needed
hydrodynamic functionality have been identified, as follows: RM Bridge, OrcaFlex, SOFiSTIK,
and Ansys. These solutions can potentioally implement the numerical velocity convolution self-
excited models presented in this work, allowing the incorporation of the self-excited forces or
replacement of the less accurate QSS aerodynamic matrices. To date, this task has been
challenging, and aeroelastic analysis is commonly performed as a separate investigation. In this
work, suggested extensions are implemented in the software, thus resolving fully coupled floating
bridge dynamics. A single node with three DOFs is demonstrated in Figure 4-17.
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Figure 4-17: Software validation in the MATLAB and RM Bridge programs.

Slika 4-17: Aeroelasticni numericni modeli, sprogramirani v programih MATLAB in RM Bridge.
The models agree well with the MATLAB implementation and follow the wind tunnel measurement.
The frequency-dependent tables are imported into the convolution over the velocity calculations.
With the same interface as that used for hydrodynamic wave radiation damping, self-excited forces
are now simulated within the RM Bridge software environment. The aeroelastic damping tables in
Eq. (4.51) are applied in the hydrodynamic convolution nodal load interface. The wind nodes are
assigned to the structural deck nodes, where those effects are observed on the structure. As a result,
engineers can introduce self-excited models for the design of floating bridges. Furthermore, the
various nonparametric models can considerably simplify the aeroelastic design process without a
loss in accuracy.
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5 FREQUENCY-DOMAIN ANALYSIS

5.1 Preview

Modal decomposition techniques are frequently used in every engineering discipline and are
commonly applied in bridge design. They are strong supplemental tools in addition to time-domain
methods, providing important insight into the structural response. The structural response is
represented for the most relevant structural frequencies, masses, and corresponding deformation
shapes. The method results are easy to understand, and no special response postprocessing is
required. Frequency-domain methods are considerably computationally more efficient than time-
domain analysis. The different modal results can be merged with a combination rule, providing an
overview of the bridge response. The structural response is mathematically described in uncoupled
generalized coordinates, and coupled environmental loads are added.

This chapter provides a brief overview of a linear modal decomposition method referred to as
frequency-domain analysis. The presented method is used to validate and compare the time-domain
models applied to the floating bridge example. An additional explanation of the environmental load
formulation and a corresponding introduction to the floating bridge dynamic equation of motion
are provided.

5.2 Modal decomposition

The global assembled structural matrices are uncoupled by eigenvalue analysis and form equivalent
modal structural properties. The additional global environmental loads are time-dependent loads
and are transformed into a frequency-domain representation. The self-excited loads can be
expressed by adding additional frequency-dependent matrices, altering the structural properties.
The additional environmental matrices are coupled and prevent standard mode-by-mode
decomposition. Therefore, the dynamic system has to be analyzed in two steps. First, the dynamic
properties of the structure and hydrodynamic masses must be uncoupled into a generalized
coordinate system. Second, various coupled loads on the small generalized coordinates must be
considered. The dynamic equation of motion for a global structural nonlinear system is as follows:

Mii(7)+C(¢)u(t)+K(¢)u(r)=F,q(2,5,0,u) (5.1)

where M, C,K are equivalent global matrices of the mass, damping and nonlinear structural
stiffness, respectively. Different environmental loads F,.4(t, ii, %, u) are added stepwise to the
calculation procedure. The initial nonlinear structural system is determined by permanent loads
such as the self-weighted loads F;,,, prestressing of the cable initial geometry F_,;., mean wind
F ean» and mean current load F... The system is linearized around the tangential stiffness, which
consists of the linear structural stiffness and higher-order geometrical nonlinear stiffness.
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The nonlinear geometrical stiffness is a result of nonlinear deformations under the influence of
permanent static loads and is calculated with the Newton-Raphson iterative algorithm:

Mii(7)+Cu(7)+K u(t)=F +F . +F . +F_ (5.2)

cable mean

where K represents the linearized tangential stiffness matrix of permanent loads, introducing the
approximation of linearized nonlinear systems. Since the added masses participate much more in
the hydrodynamic interaction compared to the structural mass, the modal shapes are expected to
be strongly alterable. Therefore, the hydrodynamically added masses and hydrodynamic plane
stiffness are added to the frequency decomposition procedure, forming the global dynamic equation
of motion, as follows:

(M+M,, (@))ii(z)+Ca(r)+(K, + K, )u()=F (5.3)

perm

This dynamic system can be solved by eigenvalue decomposition. Here, w is an eigenvalue, and ¢
is the modal shape. Accounting for additional hydrodynamic added mass, the eigenvalue analysis
equation is formulated as:

[(Knl+Khy)‘“’2(M+Mhy(a’))“(f)}¢=0 (5.4)

Here, the damping is assumed to have a negligible effect on the frequencies. The representative
equivalent modal response relative to the global response can be expressed in generalized
coordinates as:

(5.5)

Eq. (5.4) contains real value vectors that are the result of the uncoupled global system in Eq. (5.3)
. This decomposition is made possible with some commonly available commercial codes. The
eigenanalysis software should have available functionality to model nonlinear geometrical bridge
stiffness and allow for symmetric 6x6 fully correlated mass matrix definitions. Here, the developed
calculation approach resolves the individual frequency-by-frequency mode as a set of independent
calculations [86], requiring an external algorithm to run a series of eigenanalyses with manipulation
of the added masses. The externally running algorithm runs a commercial code to calculate the
frequency, masses and modal shapes. The convergences and iteration of each mode are controlled.
Good convergence is made possible by selecting the infinite hydrodynamic mass My (o) as an

initial starting point, from which the frequency variation My (w) is adjusted through convergence

of the eigenfrequencies. A procedure allowing the modal decomposition of the frequency-
dependent structural properties is presented herein. The hydrodynamic added mass approaches a
constant value above 1.5 rad/s, which allows for the calculation of higher spectrum modes with



Papinutti, M. 2021. Dynamic analysis of floating bridges 62
Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment.

constant My (o). The lower spectrum of eigenfrequencies requires an iterative algorithm to
consider the hydrodynamic mass variation My, (w). The iterative solution starts with the lowest
frequency and progresses to higher frequencies, as presented in the numerical algorithm depicted
in Figure 5-1.

»| Calculate ¢j and @, for M (w)

[(Knl +Khy)—a)2 (M +Mhy(a)k))u(t)}¢k =0

Mhy (a)k) 6X6 mass calculation

—| o~ < Tolerance else k+1

Jiter <7 Criteria then j=j+1

Calculate ¢j and o for M (o)

|:(Knl + Khy) - o” (M My (oo))u(t):|¢k =0

jvar s ] S jmax

Assemble of ¢j and ; values

Visually inspect the modes

Figure 5-1: The iterative scheme used for the eigensolution for a frequency-dependent mass.
Slika 5-1: Iterativna shema resevanja problema lastnih vrednosti, kjer nastopa frekvencno odvisna masa.
The convergence is monitored for possible frequency shifts and sudden changes in the modal shape.
The external algorithm controls the stepwise iteration and convergence of each eigenmode. Due to
the possible relatively large participation of frequency-dependent hydrodynamic masses, the
possibility of a modal shift exists. These phenomena can be investigated by comparing the
evolution of modes and visual inspection of the modal shapes [86].

5.3 Environmental loads

After the first step of modal decomposition, the additional environmental loads are added to the
decomposed system in the generalized coordinate system. The added loads are unsymmetrical
coupled loads and cannot be resolved by using the classic real eigenvalue techniques. A complex-
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eigenvalue analysis procedure allowing the introduction of self-excited and time-dependent loads
is discussed herein. The presented mathematical derivation is suitable to calculate the complex
coupled environmental response, with a similar approach being commonly applied in the
aeroelastic instability analysis of bridges. On the left side of the dynamic equation, the frequency-
dependent self-excited loads, hydrodynamic damping loads, current loads and structural damping
are included. On the right side of the dynamic equation, time-dependent environmental loads, such
as wind buffeting and wave loads, are introduced. Adding additional environmental loads to Eq.
(5.3) yields the following global equation of motion:

M_.,,ii (1) +(C, = Copr = Cy, (@) = C,o (@) )1 (1) + (K oy Koo (@) u() =K, (1) (5:6)

where the modal analysis results in Eq. (5.4) incorporates the effect of the frequency-dependent
mass in the My, term and the tangent stiffness and hydrodynamic plane stiffness in the K4y

term. The current VDD is a nonlinear load that can be approximated by the linearized value around
the mean current velocity of the static component F_,,.. The tangent damping approximation can be
a reasonable simplification for practical applications due to its limited participation in the first few
lateral modes. Eq. (5.6) can be rewritten into a generalized mode by substituting u = ¢n as:

M, ¢#1+(C, —C,, —C,, (#)-C,(®))dpn+(K,,,, K, (@))én=F,, (1) (5.7)

where ¢ is the reduced modal matrix for the set of eigenvectors and presents each eigenmode.
Multiplying (5.7) by ¢” yields:
¢TMs+hy¢ﬁ + ¢T (Cs - Ccurr - Chy (CO) - Cse (a)))¢n + ¢T (Kthy - Kse (CO)) ¢n = ¢TFenv (58)
The equations can be rewritten in simplified form as:
1{I/[O‘i‘:l + CRn + KRT] = ¢TFenv (59)
where the residual damping and stiffness are defined by:
c,=C,-C,-C, -C
R ~0 Ncur hy se (5 ' 10)
KR = KO - Kse

The modal matrix notation ~can be written in an integral form suitable for finite element
implementation, with the dynamic structural properties expressed as:

My, = [ (6/m, ¢ !
C,. =250oM, (5.11)
= a)jMO

0,nn

K

0,nn

where M, is the modal mass matrix, C, is the modal damping, K, is the modal stiffness, &,, is the
structural logarithmic modal damping, w,, are natural frequencies, and n is the number of modes.
All structural matrices are diagonal and have zero off-diagonal terms. Different environmental
loads, presented for different vector sizes, are assembled in generalized coordinates as:



Papinutti, M. 2021. Dynamic analysis of floating bridges 64
Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment.

o Npon
Chy,nm (a)) = Zl (‘PE Chy (a))(pn]

1x1 6x1 6x6 1x6

Corn (V)= ] [ @1l J

1x1 2x1 2x2 1x2

ésc,nm (Vmcan > a)) = IL[(pI Cac (V,(O) (pm ]dl

1x1 3x1 3x3 1x3

> _ T

Kse,nm (I/mean’a)) - J.L( n Kae (V’ a))(Pm ]dl
1x1 3x1 3x3 1x3

The wind self-excited and VDD loads are commonly modeled with the linear load distribution
assumption. Hydrodynamic damping is modeled for the discrete hydrodynamic nodes of pontoons,

(5.12)

representing a nonsymmetrical frequency-dependent matrix. The linearized current damping is a
diagonal matrix without any off-diagonal terms. The structural damping, masses and stiffnesses
constitute diagonal matrices as a result of modal decomposition.

For any periodic and aperiodic motion, the Fourier integral representation 1 = 1 Oei“’t is applied to
the motion and to the time-dependent forces:
[-&'M, +ioC, + K, [ne” =¢'F,,, (¢)e (5.13)

Applying Fourier integration over the investigated frequency range yields:
(K —@0'M, ) +iaC, | [ ne” =" [ R, (1) (5.14)
The frequency-domain representation of the structural response, similar to the wind self-excitation
calculation in Eq. (4.17), is defined as:
G, (»)=F,, (0)G, (o) (5.15)

where F,,, is the transfer function matrix of environmental forces, G, is the Fourier transform of
the displacements and Gq is the Fourier transform of the forces. The environmental loads are

calculated as:
G, =| (K, -@'M,)+ieC, |G, (5.16)

The goal is to calculate the structural displacement; therefore, the displacements in Eq. (5.15) are
expressed as:

G,=H,G, (5.17)
where the impedance matrix is calculated as the inverse of the transfer function:

H,, (Vi V@) =[ (K, ~ M, ) iaC, | (5.18)
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Each term of the impedance matrix He,,(w); presents an amplitude and phase response of the
structure as a function of the frequency w and mode j. One can rewrite the impedance matrix in the
well-known nondimensional form H,,, by dividing (5.17) by K, = w2M,:

2 -1 ~ !
H(Vw){w_zci(zjﬂ} 5.19)

2
W, 20, o, o,

n

5.4 Structural stability

Global dynamic stability is an important aspect of a safe long-span bridge design. The commonly
used linear flutter derivatives can be applied to describe the self-excited wind forces. The dynamic
instability of flutter causes undamped oscillations at the central wind speed, resulting in permanent
damage to or collapse of the bridge. Several modes can contribute to the flutter and can be analyzed
with a multimodal coupled flutter formulation. Multimodal flutter methods have been extended for
various environmental loads, such as hydrodynamic wave radiation, VDD and aeroelastic self-
excited forces. Two deterministic methods are briefly described based on an eigenvalue analysis
of the dynamic equation of a floating bridge in Eq. (5.8).

The first method analyzes the instability of a structure by analyzing the impedance matrix H,,,.
The selected variable for the calculation of instability is the mean wind speed influencing the
aeroelastic flutter derivative contribution. The determinate calculation of the independent matrix
|det(H(Vpean))| = O provides the critical flutter wind speed. The mean wind speed is increased
stepwise until instability is achieved. The advantage of this method is its direct application to Eq.
(5.18) without the need to perform a complex-eigenvalue analysis. The approach requires a
sufficiently small frequency discretization and wind speed discretization, which presents a
computational challenge. The recommendation is to use visual inspection and the plotted
impendence matrix as a function of the frequency and wind speed to confirm possible instability.

The second alternative is to resolve the coupled mode dynamic system in generalized coordinates
by complex conjugate eigenvalue analyses [69] [87] [88] [89]. The aeroelastic self-excited and
hydrodynamic wave radiation forces are nonsymmetric and frequency dependent; therefore, the
classic eigenvalue procedure cannot be applied. An iterative nonlinear calculation scheme is
required to consider changes in the aeroelastic damping and stiffness. Mathematical packages are
also available, such as MATLAB, to resolve the nonlinear eigenvalue problem. Convergence
tolerance is commonly resolved within a few iterations. The complex-eigenvalue problem can be

formulated as:
I 0\ u? C, K
n HW P B [ BWA e (5.20)
0 Ilpw) (-1 0w
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The eigensolution has 2N pairs of complex conjugate eigenvalues p = (uw w). The real part
presents the frequency of oscillation, and the imaginary part presents the modified structural
dynamics, as depicted in Figure 5-2. Once damping becomes negative, unstable fluttering occurs.
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Figure 5-2: Multimodal flutter instability analysis. The upper diagram presents critical damping, and the lower
diagram presents the frequencies per vibration mode [90].

Slika 5-2: Modalna aeroelasticna stabilnostna analiza, zgoraj prikaz dusenja in spodaj prikaz frekvenc [90].

5.5 Structural response under wind loads

A dynamic response analysis of wind buffeting in the frequency domain that is suitable for
correlated multimodal responses is presented herein. The proposed equations can be applied to
calculate the floating bridge response under central turbulent wind events. For this analysis, the
modal load vector is defined as:

o(x)=[ @(x) - o(x) - ou(x) ]
¢y(xr) ¢y(xr) ¢y(xr) (5.21)
= ¢Z(xr) ¢Z(xr) ¢Z(xr)
g (x)) [A(x)] [a(x)],

The wind buffeting load at a single point is modified with an aerodynamic admittance function,
correcting the QSS buffeting load in Eq. (4.12) as:

2Cp 4, (@) (€L -C,)4,, (@)
2C A4, (0) (Cl+Cp)4,, (o) (5.22)
26y 4, (@)  BCyA,, (@)

The two-point spectral wind buffeting load is calculated with the integration of the coherent
spectral load across the exposed wind length as:

_pVB

B, (@)
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S i (@) = L L‘PI'T (x)By; (@)Sy (0)By;(@)9, (x_; )dxidxj (5.23)

Here, the frequency-domain representation of vertical lateral wind fluctuations is described with a
correlated wind fluctuation matrix:

| Su(Ax,0) S, (Ax,0)
Sv(@)= S (Ax,0) S, (Ax,a))} (5:24)

where the off-diagonal entries are commonly modeled as S,,, = S,v = 0. The spectral response
containing the single-sided spectrum is computed as:

Saa (a)) = (p(xr)I:Henv (w)sloadH:nv (a’)] Q' (xr) (5.25)

The corresponding covariance is computed as a 3x3 covariance matrix:
COV (xr ) = (P (xr )I[Henv (a)) SloadHva (a)):ldaxpT (Xr ) (5 26)
0

A fully coretlated and uncorrelated response is demeonstrated in Figure 5-3 from From chapter 6.
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Figure 5-3: 5DOF fully corelated (blue) and uncorrelated (red) wind buffeting response.

Slika 5-3: Dinamicna analiza odziva mustu z vezanimi (modra) in nevezanimi (rdeca) enacbami odziva.
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6 STUDY CASE OF A TLP FLOATING BRIDGE

This demonstration presents a practical example of a floating bridge feasibility study investigation.
This thesis presents the environmental loads that were introduced in this time-domain numerical
model. Floating bridge design is a rather complex project, requiring many steps to build the
dynamic equations of motion. This research work was developed and implemented stepwise for
over five years. Different phases of the project added increasingly sophisticated hydrodynamic and
wind load models. One of the most promising crossings is the 5 km wide Bjernafjord. Its 1/2
kilometer deep fjord presents several alternatives, such as underwater tunnels, multipontoon
floating bridges and TLP multispan suspension bridges. The demonstration herein involves an
attractive TLP suspension bridge. The bridge concept was developed in a cooperation between the
NPRA and a group of consultants, consisting of Aas-Jakobsen, COWI, Johs Holt, Moss Maritime,
Wind OnDemand, Aker Solutions, NGI and Plan Arkitekter. A multispan suspension bridge is
itself a challenging project when combined with the Bjornafjord dynamic excitation, thus requiring
the special project development presented in this thesis.

Figure 6-1: TLP Bjornafjorden suspension bridge rendering [1].

Slika 6-1: Vizualizacija TLP visecega mostu preko ozine Bjornafjorden [1].

The Bjernafjord suspension bridge consists of a three-span bridge with two rock-founded towers
on each side of the fjord and two floating pylons in the fjord. The floating pylons are found on TLP
platforms at depths of 550 and 450 m. These TLP floaters are subject to water-bridge interactions
and wave loads, introducing some new aspects to a multispan suspension bridge. Normally, the
ULS design loads are dynamic wind, traffic and road traffic accidents, but in the case of
Bjernafjorden, we also need to consider the wave, current and ship impact loading. To reproduce
the environmental factors, the dynamic loads simulate wind and waves in a fully coupled time-
domain analysis. Additional top cables are unique design features of TLP bridges; they reduce
vertical sagging and suppress some dynamic excitation. This bridge design is not feasible without
an accurate time-domain analysis, as presented in this thesis.
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6.1 Structural finite element model

A structural model of the bridge, depicted in Figure 6-2, is developed in RM Bridge. Twelve-DOF
line beam elements, with a weak finite formulation, are used for the numerical model of the pylons
and bridge deck. The steel pylons have variable cross-sections with stiffeners and cross diaphragms
inside the tower. The proper mass is applied to represent the dead load and superimposed dead
load. The main cables, hanger, and top cables are modeled with a special nonlinear cable
formulation, allowing compensation of the axial stiffness due to normal forces and transversal
loads. A set of linear springs is used to simulate the soil foundation. Nonlinear damper elements
are used to simulate different connections between the deck and pylons. A high-tensioned top cable
system is suspended between each span and anchored within the spreading chamber of the anchor
foundation. The top cable reduces the pylon top displacement from an unfavorable traffic position.
The connection between the deck and the floaters is laterally restrained and has free longitudinal
bearings. The bridge deck ends have restrained lateral motion and free longitudinal motion.
Additional 15 MN end stoppers are activated for excess bridge deck motion. The submerged parts
of the floaters are modeled as rigid bodies connected to the seabed by massless cable elements
representing the tendons. The hydrodynamic properties are included at the hydrodynamic points,
defined at each pylon in one node at sea level. The wind loads are introduced as finite element
loads. The investigated structural model reflects the nonlinear geometrical large-displacement
theory and includes nonlinear dampers and all relevant dynamic loads.

Figure 6-2: RM Bridge finite element model, 3 phase [91].
Slika 6-2: Model koncnih linijskih elementov v programu RM Bridge [91].
A form-finding procedure is carried out prior to any dynamic analysis investigations. The

multiparameter optimization of approximately 3000 nonlinear variables is performed to calculate
the proper initial form and structural forces. The results are stored in a permanent load file Fpep
together with the horizontal static loads to build the initial tangent stiffness as a basis for further
time-domain analysis.
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6.2 Hydrodynamic properties

The hydrodynamic linear wave radiation loads are modeled as frequency-dependent hydrodynamic
damping and added mass. Nonlinear VDD element loads are added to all submerged elements of
the hull and tethers. The representative design wave condition values for locally generated wind
waves are listed in Table 6-1. The time-dependent loads can be generated and imported to a time-
integration scheme. The wave loads are not included at present, as the focus is on the wind buffeting
response calculation only.

Table 6-1: Wind-generated waves for the Bjornafjorden crossing, and the JONSWAP spectrum input [59].
Preglednica 6-1:Parametri obtezbe valov za JONSWAP spekter, za primer oZine Bjornafjorden.

Return 1 year 10 years 100 years 10 000 years
period/Sectors
Hs [m] | Tp max | Hs[m] | Tp max | Hs [m] | Tp max | Hs [m] | Tp max

345° - 175° 0.8 4.0 1.1 4.5 1.5 5.0 23 59
75°-105° 1.6 53 2.2 59 2.8 6.6 3.9 7.6
105° - 165° 1.1 4.4 1.3 4.8 1.6 53 23 6.1

165° - 225° 1.2 4.4 1.5 4.9 1.9 53 2.7 6.1
225°-315° 1.3 4.6 1.8 53 2.4 59 33 6.8

315 -345° 1.5 5.1 1.9 5.6 2.5 6.2 3.5 7.2

The hydrodynamic added mass is represented as a 6x6 symmetric mass matrix, assigned to the
hydrodynamic node. Here, aerodynamic damping is the recalculated input of the hydrodynamic
panel theory. The VDD parameters are set as quadratic damping terms with the effective diameters
of the tethers and hull cross-sections. The underwater currents are not included in the following
analysis.

6.3 Dynamic wind properties

The wind velocity series are simulated using the Kaimal power spectrum and exponential wind
coherence presented in Table 6-2. The mean wind properties have an exponential height
distribution, with parameters defined at a 10 m reference height with a velocity V..r=26 m/s and an
exponential factor a=0.127. This scenario generates a mean wind speed of 32 m/s at a deck
elevation h=60 m. The Kaimal power spectrum uses a spectrum factor €=0.3. The turbulence
intensity is assumed to be constant over the height of each floating pylon. This investigation
considers a 100-year return period of the dynamic wind buffeting load, presenting a simulation of
a nonhomogeneous wind field due to changing mean wind velocities over the height.
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Table 6-2: Dynamic wind properties for a 100-year return period.

Preglednica 6-2: Lastnosti dinamicnega turbulentnega vetra pri povratni dobi stotih let.

u v w
along wind | vertical | horizontal
Kaimal power spectrum parameters
Length scale 245 28 85
Turbulence int. 0.15 0.07 0.11
Exponential coherence
AX AY AZ
u 0 10 10
v 0 3 6.5
w 0 6.5 6.5

For this investigation, the QSS wind buffeting load theory applies, and a full vector wind buffeting

load formulation considering all small squared terms is used. The aerodynamic damping and

stiffness according to the QSS load, assuming a fully developed wind flow around the deck, are
constant non-frequency-dependent matrices. The QSS formulation is evaluated from the

aerodynamic coefficients of the deck, as depicted in Figure 6-3. The cable elements have an

assigned drag coefficient CD=0.8. The pylon aerodynamic coefficients include the shedding effects
on each other, thus making this input elevation dependent.
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Figure 6-3: Aerodynamic coefficients for the deck, with width B normalized.

Slika 6-3: Aerodinamicni koeficienti za precni presek mostu.
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6.4 Environmental equation of motion

The global analysis of all environmental loads is a comprehensive study that includes all of the
above-described interactions. For demonstration purposes, an individual turbulent wind load event
is calculated, after which the time domain and frequency domain results are compared. The
equation of motion can be written as:

(M + Mhy (OO))u + (C + Chy (a)) _‘_Cqss)l’l + (Knl + I(hy + KqSS)u = 6.1)
F . .—-F 0 +F, () '

perm

The results of this analysis are presented for the frequency-domain and time-domain formulations.
To better understand the dynamic responses of those unique structures, this thesis develops a self-
excited load formulation, which is not presented in this example. Self-excited new load models
have been successfully developed and validated. The commercial use of these algorithms is
possible in the presented time-integration calculation. Several tests have been performed on a full
bridge; however, additional software validation might be required, which represents future work.

6.5 Frequency-domain analysis

The presented frequency-domain tools calculate the dynamic properties of a floating bridge. Here,
the modal decomposition is calculated for the suspension bridge structure, including the
hydrodynamic added mass effects. The presented nonlinear algorithm iteratively resolves the
matching of the calculated natural structure frequency and applies an appropriate hydrodynamic
added mass. The procedure is repeated for each individual frequency, and the evolution of each
frequency can be monitored. Changes in the natural periods, changed modal shapes and even
frequency shifts due to the changed added mass are expected. The hydrodynamic mass has a large
and important effect on the modal analysis.

For this analysis, an external MATLAB script was used to run the iterative eigenvalue procedure.
The scripts evaluate the structural frequencies and assign the appropriate hydrodynamic added
mass for the next iteration. The evolution of each frequency and the changes in frequency and
shapes are observed. The RM Bridge software calculates the combined structural and
hydrodynamic frequencies. For this floating bridge, the first 13 eigenfrequencies are changed due
to hydrodynamic mass effects, as presented in Table 6-3. The first few eigenvalues are influenced
considerably, approximately within a range of 12% to 20% of the changed mass. The vertical (V)
and lateral (L) bridge directions are influenced by these effects in different ways. During iteration,
the mode shapes do not change considerably, and no frequency shift is observed for this
investigation. An exception is mode no. 13; this mode completely disappears from the
eigenfrequency list due to the large activated rotational added mass. The original shape undergoes
rotation at the hull, which is restrained by a large activated hydrodynamic mass. Proper control
over these algorithms is important to properly evaluate the modal decomposition results.
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Figure 6-4: Modal analysis of the TLP bridge.
Slika 6-4: Modalna analiza TLP mostu.
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Table 6-3: Eigen value frequencies of the TLP bridge.

Preglednica 6-3: Lastne vrednosti frekvenc za TLP most.

Mode Frequency Change in M(c0)/M(w) DOF
[rad/s]
Frequency Mass
1 0.062 6.1% 12.7% L
2 0.082 5.7% 12.9% L
3 0.196 6.7% 19.8% \%
4 0.292 0.0% -1.4% L
5 0.322 0.3% -0.5% L
6 0.382 0.8% -1.5% L
7 0.497 0.0% 0.9% L
8 0.506 0.8% 8.4% v
9 0.550 0.0% 0.2% \%
10 0.581 0.0% -0.8% L
11 0.630 -0.8% -20.0% v
12 0.653 -0.8% -41.2% v

For this wind buffeting analysis, this important damping properties of floating bridges are
considered. The damping can be calculated in a straightforward manner for each damping mode-
per-mode, presenting us with the information available on the total damping for low-damped
structures. The damping is calculated according to Eq. (5.12) and is expressed relative to a
logarithmic decrement as:

5, = — <y (6.2)

v acritical,i B 2\/K,M1

where M is the generalized modal mass, K is the generalized modal stiffness, C is the damping
component, index 7 is the mode and index j is the source of the damping. The Rayleigh damping
formulation defines the structural damping of each mode, making it comparable to the time domain
result. Hydrodynamic radiation damping is included in the pylon hull properties. This value
represents 6-DOF fully correlated damping. Wind-induced vibration contributes to aerodynamic
damping and aerodynamic stiffness, which are modeled with QSS theory. The linearized VDD is
neglected in this analysis. The total damping C, is the sum of the structural damping Cg,,
aerodynamic damping Cge, hydrodynamic damping C,y, and linearized viscous damping Cypr,

expressed as.

Ctot = Cstr + Cqss + Cvhy + Ccurr (63 )

Total damping is used in the wind buffeting calculation. Different sources of damping for the
floating bridge frequencies are depicted in Figure 6-5. The logarithmic damping ratios for a
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frequency band of 0 to 1.8 rad/s are presented, with important low- and high-frequency bridge
responses. Hydrodynamic damping makes a major contribution in the range from 0.5 to 0.8 rad/s
because this range structure dissipates energy and introduces the energy of wave loads. Cable-
suspended structures have low structural damping and are sensitive to the resonant excitation of
wind turbulence. Aerodynamic damping is continuously distributed along the frequencies and is
important for both a low-frequency response and a high-frequency response. Notably, acrodynamic

damping is not present for no-wind conditions, and a large response is observed during swell load
events.
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Figure 6-5: Different damping sources for TLP bridges.
Slika 6-5: Razlicne vrste dusenja za TLP most.
Moreover, it makes a major contribution to the total damping and a strong contribution to the
vertical movement of the deck. The structural deck is the main mechanism of wind-induced
damping and directly affects the global structural response. The improved self-excited forces would

result in an important improvement in the prediction of aerodynamic damping and the accuracy of
floating bridges.

RM Bridge software was used to calculate the wind buffeting response. The advanced wind module
calculates the uncorrelated wind buffeting response with the mode-per-mode decomposition
method. In this approach, the correlation between different modes is neglected, and the modes are
later summed together with a modal CQC superposition rule. The total damping is externally
calculated and introduced in a total table. The damping table is then included in the response
calculation, which is performed by use of software integration algorithms.
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6.6 Fully coupled time-domain analysis results

The time domain of hydrodynamic and aerodynamic effects is implemented in the RM Bridge
software and used for this demonstration. The wind buffeting calculation is carried out for 1 hour
of simulation time, and approximately 25 CPU hours are needed to complete the calculation on one
4 GHz core. The total fixed realizations are calculated to obtain the proper mean value statistics of
the response. The RMS response is calculated for each time signal to directly compare the result to
that in the frequency domain [92] [93]. Here, the bridge deck response along the 4730 m long deck
station is presented. The response vibration is calculated using the two-dimensional Fourier
transform along the frequency axis and along the bridge station, as depicted in Figure 6-6.
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Figure 6-6: Vertical (left) and lateral (vight) RMS bridge deck response.

Slika 6-6: Prikaz RMS odziva v vertikalni smeri (levo) in precni smeri (desno).
Lateral and vertical response deck responses are the main mechanisms for aerodynamic damping.
The response shows what modes have been excited and the corresponding amplitudes. The lateral
response is dominated by the low-frequency response of the first few modes, where for slow
motion, the QSS damping approximation may be valid. The vertical response has a wider frequency
response from 0.1 to 0.2 Hz and excites multiple natural modes. The spread contribution of vertical
responses for these frequencies suggests that a self-excited force model is more appropriate to
reflect the measured aerodynamic damping. This compelling argument confirms the findings and
research work on the suggested self-excited models.
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6.7 Comparison of results

To conclude this investigation, the results of both methods for a floating bridge are presented. The
frequency-domain analyses do not include any wind correlation effects and are defined with the
QSS wind buffeting load formulation [94] [95]. The results are compared to the time-domain
analysis results and are evaluated with the QSS wind buffeting load model. The time-domain
calculations include coupling and nonlinear effects. The results of those analyses are presented for
the lateral direction in Figure 6-7 and for the vertical direction in Figure 6-8.
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Figure 6-7: Bridge deck response in the lateral direction: time-domain vs. frequency-domain analysis.

Slika 6-7: Odziv v precni smeri, casovna in frekvencna metoda.
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Figure 6-8: Bridge deck response in the vertical direction: time-domain vs. frequency-domain analysis.

Slika 6-8: Odziv v vertikalni smeri, casovna in frekvencna metoda.
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A comparison of the deck response with both the time- and frequency-domain approaches shows
good agreement. Some differences are observed for both directions and are sourced from the
nonlinear structural response and coupling effects. The lateral transversal stiffness is lower when
the bridge oscillates over the initial nondeformed position, resulting in a nonsymmetrical time-
domain response around the mean wind deflection. The overall lateral responses of both methods
agree well. The vertical time domain results have larger osculation compared to the frequency
domain results. Detailed investigations have shown a nonlinear vertical motion introduced by
horizontal movement. This effect is due to the large displacement and introduces new lower-mode
excitation, which does not occur in tangential matrix modal decomposition and is used for
frequency-domain wind buffeting calculations. The nonlinear top cables introduce nonlinear
induced motion and are directly related to the top tower horizontal motion and vertical deck motion.
For lateral and vertical response calculations, the linearized frequency decomposition methods do
not deliver the most reliable results, and time-domain large-displacement methods are more
suitable. Important for multiexcited systems is to consider the modal coupling effects, which are
neglected in this frequency-domain analysis but are included in the time-domain analysis.

Overall, the agreement of the results confirms the two independent analyses and validates the newly
implemented time-domain formulations. They calculated the correct response according to the
simplified QSS wind load theory. The time-domain formulation is well suited for the investigation
of coupled and nonlinear structural response effects, thus validating the use of these models for
further floating bridge design and development.
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7 CONCLUSIONS

A comprehensive overview of environmental loads on a floating bridge structure was provided.
The interaction of the bridge with wind and wave loads can be described by adding terms to the
dynamical equilibrium equation. Newmark time integration successfully resolves the dynamic
equation of motion under the cooperation of structural nonlinearities and environmental loads. This
is the most promising approach to evaluate possible nonlinear and coupling effects. All
environmental loads, i.e., wave loads, wave radiation damping, VDD, current, turbulent wind, and
aeroelastic damping, were successfully introduced. Environmental loads were individually tailored
to fit within the time-domain integration scheme. A series of software tests and development works
was performed to validate the functionality of the proposed models, and this partly overlapped with
parallel project work in the industry sector. Industry has successfully investigated different floating
bridge crossing possibilities using several commercial codes. Several years of development were
required to introduce the presented environmental loads and apply them to bridge design.

The main goals of the research were achieved by investigating various self-excited wind
formulations. The approximative QSS formulation can provide reasonable accuracy in the early
design stages and was implemented in this research work. Its convenient implementation and
accessible input make it a common design choice. Since this simplified method is not accurate for
higher wind speeds and does not correctly predict the aeroelastic instability, several self-excited
force models were presented. The linear self-excited functions were described by 18 flutter
derivative functions. An example rational function formulation was transferred into the current
time-domain framework by using the hydrodynamic numerical convolution implementation. The
research goal was achieved, proving that the rational function can be transformed into a suitable
formation without any additional software extension. The developed formulation exhibits high
numerical robustness. The accuracy of the rational function and polynomial fit was evaluated with
wind tunnel testing, showing good agreement of the results with wind tunnel measurements. The
presented RFs are state-of-the-art linear self-excited wind models and can now be successfully
integrated into floating bridge design. This reformulated wind self-excited force is suitable for use
in various other hydrodynamic software programs, where hydrodynamic-dependent damping is
similarly convoluted over velocity motion. The proposed algorithms can be applied across different
solutions of fully coupled environmental loads.

During the mathematical reformulation of the self-excited forces, an important relation between
the aeroelastic damping and stiffness of causal dynamic systems was discovered. This allowed us
to further explore the nonparametric modeling of self-excited forces and to present a new novel
approach. Simplified linear regression techniques can now be successfully applied to the newly
developed self-excited algorithm via numerical convolution integration. Furthermore, the
frequency contribution of either the damping or stiffness can be chosen for input, thus allowing the
selection of more reliable and less scattered data. This procedure considerably simplifies the
modeling effort since it no longer requires nonlinear regression, achieving one of the thesis goals.
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An alternative approach is offered that is very attractive for design work since it does not require
any special nonparametric fitting techniques or know-how and can be used without extensions.
Both parametric and nonparametric models show excellent agreement with the wind tunnel
experiments. This result represents an important scientific contribution, as presented in the attached
paper: a nonparametric modeling of unsteady self-excited forces based on the relations between
the flutter derivatives.

The research hypothesis was proven by the successful mathematical reformulation of wind self-
excited forces. Numerical validation was used to validate the transformation of RFs. The presented
models are now suitable for implementation in the floating bridge dynamic equation of motion.
Additional experimental tests were conducted to investigate different fitting possibilities for flutter
derivatives, such as parametric and nonparametric fits. This research offers the possibility of
introducing more accurate state-of-the-art self-excited formulations into floating bridge projects.
Such an implementation will allow immediate feedback regarding the aeroelastic performance,
thus resulting in an efficient design process. The developed models allow for accurate and
economically designed bridges that meet the high industry criteria. The proposed formulation is an
alternative way to implement the time-domain calculation of self-excited wind loads.
Nonparametric fitting can be further utilized to improve the uncertainty, leading to important
project savings. Future research is needed to confirm these ideas with various cross-sections. The
author hopes that interested readers will find this work inspiring and helpful in their professions.
The new bridges discussed offer hope for a sustainable future. Innovations such as these often
require out-of-the-box thinking and new ideas to be investigated.
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8 EXTENDED ABSTRACT IN SLOVENIAN

8.1 Uvod

V nadaljevanju je predstavljen povzetek doktorske disertacije v slovenskem jeziku. Eden od ciljev
norveskega ministrstva za promet (Statens vegvesen) je izvedba projekta E39, izgradnje
neprekinjene obalne avtoceste med mestoma Kristiansand in Trondheim, dolge priblizno 1100 km.
Potovalni Cas z osebnim vozilom danes znaSa 21 ur in bo z vzpostavitvijo neprekinjene cestne
povezave skrajSan na 11 ur. Cilj bo doseZen z zamenjavo trajektov z mostovi in tuneli. Premostitev
Sirokih in globokih fjordov predstavlja svojevrsten inzenirski izziv, saj trenutno premostitvene
resitve, ki bi premoscale razdalje ve¢ kilometrov brez vmesnega temeljenja, Se ne obstajajo. V ta
namen se izvajajo Studije izvedljivosti in razvoj razli¢nih tehnoloskih reSitev za premostitev
fjordov. V S§tudijah izvedljivosti so bile preucevane Stiri glavne moZnosti premostitev z izvedbo:
mostov z ekstremnimi razponi, viseega mostu na plavajocih pontonih, podvodnih tunelov in
vecpontonskih plavajo¢ih mostov, prikazanih na sliki 1-1. Za vsak fjord je bila narejena presoja
najustreznejSih resitev in s tem izbrana najprimernejSa tehnologija premostitve. Raziskovalno delo
je potekalo vzporedno s projektantskim delom avtorja na raznih Studijah izvedljivosti premostitev
fjordov. Raziskovalna naloga se ukvarja z razvojem novih konceptov plavajocih mostov, ki
zdruzuje multidisciplinarne inZenirske strokovnjake s podroc¢ja konstruiranja mostov, pomorske
inZenirje, raziskovalce in programerje. Disertacija navaja pregled vseh pomembnih dinami¢nih
obremenitev plavajocih mostov, kot je obteZba valov in turbulentnega vetra. Za konstruiranje
mostov so potrebna nova numeri¢na orodja za analizo, ki celovito obravnavajo zahtevne dinamic¢ne
odzive. So€asno delovanje razli¢nih obtezb je pomembno pri razumevanju zapletenih dinamic¢nih
odzivov, ki jih spremlja nelinearen odziv. Za konkreten problem je bila uporabljena nelinearna
casovna integracija, v katero so bile vgrajene nove kombinacije dinami¢nih obtezb. Pomanjkanje
razpoloZljivih numeri¢nih orodij in literature s tega podroc¢ja delno odpravlja to doktorsko delo.
Vse predstavljene dinami¢ne obtezbe so bile vgrajene v komercialno programsko kodo RM Bridge,
ki je bila veckrat uporabljena pri snovanju plavajo¢ih mostov. Glavno delo avtorja je bilo razvijanje
zahtevane programske razSiritve za izraCun dinamike vetra in valov, sestavljeno je bilo iz
teoretiCnega raziskovanja, nacrtovanja algoritmov, implementacije kode in obseZnega testiranja.
Razvoj in testiranje numeri¢nih orodij sta potekala postopoma v vecletnih razvojnih etapah. Tako
razvita numeri¢na orodja omogocajo izvedbo razlicnih vrst plavajo¢ih mostov in so na voljo
konstruktorjem za nadaljnje delo. V tem delu predstavljeni in razviti numeri¢ni modeli so primerni
za izraCun kompleksnih scenarijev dinamic¢nih obremenitev. Predstavljeno delo ima dodano
raziskovalno vrednost in je namenjeno bodo¢im raziskovalcem, investitorjem, konstruktorjem in
programerjem.

Pregled raziskav

Za racunanje nelinearnih odzivov mostov so pogosto uporabljene metode ¢asovne integracije, v
tem delu je bila uporabljena priljubljena Newmarkova metoda. Pregled hidrodinami¢nih obtezb je
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predstavljen v tretjem poglavju, uvedba vetrne dinami¢ne obremenitve je predstavljena v Cetrtem
poglavju. Obremenitve okolja na most lahko dodatno razdelimo na konstantne, ¢asovno odvisne
obremenitve in samovzbujajoce (self-excited) obremenitve. Za ustrezno izbiro izraunov v ¢asovni
[3] ali frekvencni domeni [4] je pogosto potrebno matemati¢no preoblikovanje obremenitve.
SamovzbujajoCe vetrovne in valovne obremenitve so po definiciji linearne frekvencno odvisne
funkcije in predstavljajo harmoni¢no superpozicijo posameznih frekvenc. Taksnih obremenitev ni
mogoce neposredno uporabiti v Newmarkovi integracijski shemi, saj vrednosti ni mogoce izraziti
kot ¢asovno odvisne ali pomi¢no odvisne matrike konstrukcije. Te obteZbe je mogoce uvesti v
¢asovno integracijo s pomoc¢jo matemati¢ne operacije konvolucijske transformacije [6]. V tem delu
je uporabljena klasi¢na integracija konvolucije, ki izracuna silo kot konvolucijski integral za vsa
pretekla gibanja. Vrednotenje obtezb v vsakem casovnem koraku lahko v praksi predstavlja
¢asovno intenziven izra¢un. Sprogramiran vmesnik konvolucije hidrodinami¢nih sil je bil posebe;j
razvit v komercialni programski opremi za dinamic¢ne ¢asovne integracije [2] [3].

Hidrodinamicni u€inki so dobro raziskani v pomorskem inzeniringu. V zadnjih nekaj desetletjih je
bilo zgrajenih ve¢ naftnih plos¢adi v razburkanem Severnem morju. V pomorskem inzeniringu so
na voljo razlicne hidrodinami¢ne formulacije obremenitev, primerne za uporabo pri analizi
plavajocih struktur [9] [7]. Dinami¢na analiza vetra je skupek srednje vetrne hitrosti, turbulentnega
vetra in gibanja strukture. Gibanje strukture samovzbujajocih sil vetra je mogoce opisati z linearno
kvazistaticno metodo QSS (Quasi-Steady State), ki predpostavlja poenostavljen teoreticni model
interakcije, modeliran s konstantnimi matrikami aerodinami¢nega duSenja in aerodinamicne
togosti. Model QSS se pogosto uporablja za aproksimativni izraCun odziva mostov pri nizkih
hitrostih vetra in je bil uspesno vgrajen v Newmarkovo shemo [4]. Pomanjkljivost metode QSS je
neprimernost za raziskovanje nestabilnosti omahovanja, ki se izraza v odstopanju od v vetrovniku
izmerjenih sil.

Cilji raziskav

Sré¢iko doktorskega dela predstavlja nadgradnja interakcije QSS z bolj natanénim modelom, ki
temelji na odvodih omahovanja (flutter derivatives). TakSna formulacija je bolj natanc¢na in je v
skladu z eksperimentalnimi rezultati. Predstavljen je model interpolacije aeroelasti¢nih sil
racionalnih funkcij, katerega razli¢ni primeri so v aeroelasticnih raziskavah dobro poznani in
nudijo natan¢nejSe podatke. Aeroelasticno modeliranje prinasa nekaj izzivov, ki predstavljajo
tezave pri sami uporabi matemati¢no zahtevne metode. Neposredno programiranja racionalnih
funkcij ni mogoce vgraditi v obstojece ¢asovne domene komercialnih orodij. Raziskava preucuje
alternativne moznosti matemati¢nih formulacij, ki lahko uporabijo Ze obstojeco funkcionalnost
hidrodinamic¢ne analize brez dodatnega komercialnega razvoja. Hipoteza je dokaz primerne
formulacije elasti¢nih sil v dinami¢nih enacbah gibanja. Dokazovanje poteka s pomocjo
numericnega testiranja in primerjave z rezultati iz vetrovnika. Predstavljen je nov model
aeroelasti¢nih sil vetra, ki omogoca aeroelasticno modeliranje na Ze sprogramiranem vmesniku
hidrodinami¢nih konvolucij. Prakticen namen raziskave je najti eventualno poenostavitev teorije v
praksi in ohraniti natan¢nost modelov za bodoci izracun plavajo¢ih mostov.
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8.2 Casovna integracija

To poglavje prikazuje osnove dinami¢nih izraCunov plavajocih konstrukeij. Prikazani so mozni
algoritmi Casovne integracije, primerni za reSevanje dinami¢nih enacb gibanja. Najprej sta
pojasnjeni dve skupini izracuna odziva mostu, frekven¢na domena in formulacija casovne domene,
predstavljeni v reglednici 2-1. Opisani metodi sta primerni za izraun linearnih odzivov, za izracun
nelinearnih odzivov pa so primernejSe metode ¢asovne domene. Frekven¢ne metode temeljijo na
rezultatih modalne linearne dekompozicije lastnih vrednosti in dajejo pomembno referencno
vrednost pri testiranju ¢asovnih metod, podrobno so predstavljene v poglavju 5. Frekvenéni pristop
je v projektiranju priljubljen, saj razpolaga z nazornimi informacijami o individualnem prispevku
posameznih nihajnih oblik. Omenjene metode so ra¢unsko ucinkovite in vgrajene v razna orodja
na trziscu.
Pri metodah ¢asovne domene se enacbe gibanja resujejo s ¢asovno integracijo korak za korakom,
rezultati so asovno odvisni pomiki gibanja vozlis¢. Casovne integracijske metode so
najprimernejse za reSevanje kompleksnih nelinearnih in sklopljenih enacb gibanja. Te metode so
potencialno najprimernej$i kandidat za dinami¢no analizo plavajoCih mostov, saj ponujajo
natancne rezultate. Raziskave in predstavljeni algoritmi temeljijo predvsem na nadgradnji ¢asovne
integracije s posameznimi dinami¢nimi obteZzbami vetra in valov, ki je podrobneje prikazana v tem
poglavju. Linearne enacbe gibanja mostne konstrukcije se lahko zapiSejo v naslednji obliki:
Mii(t)+Cu(t)+Ku(t) =1, (¢). (8.1)

ext

M, C in K so strukturne masna, dusilna in togostna matrika, f,,; je vektor zunanje obremenitve,
i, u, u so vektorji vozlisénih pospeskov, hitrosti in premikov, t je ¢as. Upostevajo¢ geometrijske
nelinearnosti, nelinearne (in neelasti¢ne) materialne modele, gibljive mase, nelinearno strukturno
dusenje, se nelinearne dinami¢ne enacbe oblikujejo kot:

M(t)ii(t)+C(u)u(r)+F(u(t)) =1, (¢, i,u,u). (8.2)

Pri nelinearni analizi vise€ih mostov so pogosti ucinki velikih deformacij, ki so opisani s teorijo
tretjega reda. Prisotni so lahko tudi materialna nelinearnost, Casovno odvisne mase in dusenja.
Zunanje obremenitve hidrodinamicne in vetrne sile se lahko naknadno izrazijo kot dodatki matrike
mase, dusSenja in togosti. Prikazana je izpeljava Newmarkove metode reSevanja dinami¢nih enacb
za linearne (8.1) in za nelinearne sisteme (8.2). Predstavljene so priporocene vrednosti 3 in v, ki
uravnavajo natanc¢nost metode in numeri¢no duSenje. Razumevanje metode lahko v praksi
pripomore k uspeSnemu numericnemu reSevanju dinami¢nih enacb. Numeri¢no reSevanje
plavajocih sistemov ni vedno trivialno in uspeSno, zato je poleg teoreti¢nih osnov podanih tudi
nekaj izkuSenj z raCunanjem dejanskih odzivov plavajoih mostov. Kompleksnost je v
obremenitvah, ki so nelinearne ali odvisne od izraCunanega pomika in zahtevajo dovolj majhen
casovni korak za pravilen izracun. Izbrani ¢asovni koraki in dolzina analize morajo tudi ustrezati
razlicnim konvolucijskim transformacijam. Predstavljenih je nekaj moZnosti spreminjanja
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razli¢nih parametrov za doseganje stabilne numeri¢ne sheme, ki pomagajo poiskati pravo
ravnotezje med hitrim, natan¢nim in stabilnim reSevanjem odziva.

8.3 Hidrodinamic¢ne obtezbe

Potopljeni deli plavajocega mostu so v neposrednem stiku z morjem, izpostavljeni so staticnim in
hidrodinami¢nim obtezbam. Stati¢na obtezba, kot je vzgonska sila, je posledica Arhimedovega
vzgona in daje podporo mostu. Poglavje obravnava dinamicne obtezbe, kot so hidrodinamicna
togost, valovi, samovzbujajoce sile konstrukcije in morski tokovi. Hidrodinami¢ne obremenitve
pomembno prispevajo k odzivu plavajo¢ih mostov in bistveno spreminjajo njihove dinami¢ne
lastnosti. Predstavljene so tudi osnove linearne potencialne teorije v hidrodinamiki, ki se lahko
uporabi za opis hitrosti gibanja podvodnih delcev. Sprememba potenciala pa povzroc¢i obtezbe na
samo konstrukcijo, opisane s hidrodinami¢nimi silami. Posledica sile valovanja je gibanje morske
povrsine in posledica samovzbujajoce sile so pomiki konstrukcije v morju. V tem delu so opisani
le hidrodinami¢ni pojavi, pomembni za globalni odziv, vsekakor je poznanih Se ve¢ pojavov,
navedeni so v literaturi [9]. Osnovna predpostavka je loCeno modeliranje posameznih u¢inkov
obtezbe, ki so matemati¢no modelirani v »hidrodinami¢nem vozlis¢u«. Hidrodinami¢no vozlisce
je nato dodeljeno vozlis¢u posameznega pontona, ki predstavlja Sest dodatnih vezanih dinamic¢nih
enacbh.

Obtezba valov

V splosnem obstajajo razli¢ni mehanizmi nastajanja valov, kot so veter, potres, podvodni plazovi,
astronomska plima itd. Trenutno univerzalni matemati¢ni model, ki bi pokrival vse scenarije
gibanja valov, ne obstaja, zato se uporabljajo razli¢ni poenostavljeni modeli. Valovanje morske
gladine na odprtem morju lahko v grobem razdelimo na [30]: morske valove kot posledico
lokalnega vetra (wind sea waves) in enakomerne valove z daljSimi periodami (swell waves). Za
modeliranje obeh se lahko uporabljajo isti matematicni modeli, vendar z razli€énimi vhodnimi
podatki predstavljajo locen obtezbeni primer. Valovi se lahko opiSejo kot prostorska nihanja
morske gladine, samo gibanje pod gladino pa lahko matemati¢no opiSemo s potencialom. Nihanje
gladine predstavlja zapleten sistem valov in se lahko opiSe kot superpozicija razlicnih
trigonometricnih nihanj visin. Vsak val je opisan z enodimenzionalno visino proste povrsine, ki
povzro¢i vodoravno in navpicno gibanje podvodnih delcev. Posamezen val je trigonometri¢na
funkcija, definirana z valovnim $tevilom, valovno frekvenco in amplitudo vala, kar je prikazano na
sliki 3-3 in sliki 3-5. Modeliranje trigonometri¢ne superpozicije valov je najpogosteje opisano v
frekventni domeni s spektrom valov Sgq. Prostorski valovi imajo znacilnosti glavne smeri
valovanja 0 in porazdelitve okoli glavne smeri, opisane s funkcijo porazdelitve D. Fouriereva
transformacija omogoca modeliranje frekven¢no odvisnih obtezb ali enakovredne ¢asovno odvisne
obtezbe, prikazane na sliki 3-9. Homogeni valovi so pogosto opisani z linearnim stacionarnim
Gaussovim modelom [20]. Obtezba valov se lahko modelira s Sestimi komponentami sile n €
{1...6}, izracunih kot:
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Fyave j€ vektor obtezbe valov, F, je kompleksna prenosna funkcija, Sz je spekter valov, &; je
nakljucno Stevilo spektra belega Suma, ¢;; je kot med realnim in imaginarnim delom prenosne

funkcije, valovno $tevilo je k; = w?/g, O je smer valovanja, w je frekvenca valovanja, x in y sta
prostorski koordinati.

Obtezba gibanja pontona

Gibanje pontona na morski gladini oddaja valove, ki posledi¢no odvzemajo energijo dinami¢nim
sistemom. Matemati¢ni opis hidrodinami¢ne samovzbujajoce sile je mozen z dodajanjem matrik
hidrodinami¢ne mase in hidrodinami¢nega dusenja. Sile so frekvencno odvisne vrednosti gibanja,
ki jih zaznamuje razli¢na intenziteta pri razlicnih frekvencah nihanja, prikazana na sliki 3-10. V
frekvencni domeni se sile pogosto modelirajo kot produkt prenosne funkcije in Fouriereve
transformacije pomikov, definirano kot Gyy(w) = Hyy(w)G,(w). Matematicno je mozno

pretvoriti formulacijo v ¢asovno domeno s Cumminsovo enacbo:
qy, () =M, (o0)ii(1)+= 2 ” (0—7)cos(wt—7)(r)dwdr, (8.4)
4 00

kjer je qpy hidrodinamicni vektor obtezbe radiacije valov, My, hidrodinami¢na masna matrika, C,

je hidrodinami¢na matrika duSenja, 1 in u sta vektorja pospeska in hitrost gibanja objekta.
Vzgon in stabilnost

Hidrostati¢na sila je ¢asovno konstantna in daje mostu potrebno vzgonsko silo. Po Arhimedovem
zakonu so hidrostati¢ne sile enake volumnu pontona izpodrinjene vode:

Fbuy = nghull 5 (85)

kjer Fy,, predstavlja navpicno silo vzgona, p je gostota vode, g je gravitacijski pospesek in Vi,
je volumen plavajo¢ega pontona. Projektna zahteva je, da je sila dviga vzgona vedno vi§ja od
najvecje mozne kombinacije negativne navpicne obremenitve na ponton. PreseZene sile vzgona se
lahko prevzamejo z napenjanjem kablov v morsko dno, s tem se poveca dinami¢na stabilnost
sistema, prikazanega na sliki 3-11. Hidrodinami¢na stabilnost pontona je odvisna od pomikov in
se pogosto modelira z linearno togostjo Ky

Viskozno duSenje

Viskozno dusenje morskih tokov je hidrodinamic¢na sila, ki je posledica podvodnih morskih tokov.
Obtezba ima tako staticno kot tudi dinami¢no komponento obtezbe, prikazano na sliki 3-12.
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Hidrodinamicna sila je definirana na podlagi relativne hitrosti med strukturnim gibanjem in
hitrostjo toka Vo] = Viiream — Velemfint 101 j€ Opisana kot:

F. =L oc,DVew (8.6)

ur 5 rel 2
kjer je p gostota vode, C; koeficient vleka, D presek potopljenega elementa, f;,, faktor interakcije
in exp = 2 eksponent hitrosti. Viskozno dusenje ima pomemben vpliv na nizkofrekven¢ne odzive
horizontalnih nihajnih oblik. ObteZba je prisotna pri vseh potopljenih elementih, kot so pontoni in
podvodni pritrdilni kabli.

ReSevanje ¢asovnih enacb

Opisane hidrodinami¢ne obtezbe je mozno opisati z dinami¢nimi enacbami gibanja kot:
(M + Mhy (OO))]] + Cu + (K + Khy)u = Fbuy + Fwave (t) + %pCdD(I/stream - I/‘:lem-fint )
5 (8.7)
__“.Chy (w—7)cos(wt —7)a(r)dwdr
4 00

Konstantne matrike so pomaknjene na levo stran dinamicne enacbe in se resujejo eksplicitno.
Nelinearne in frekvencno odvisne obremenitve so umescene na desno stran.

8.4 Vetrne obtezbe

Dinami¢na obtezba vetra je posledica aerodinami¢nega upora zraka na konstrukcijo. Vetrne
obtezbe se pogosto opisejo kot superpozicija obremenitev I) osrednje vetrne hitrosti, IT) turbulence,
IIT) samovzbujajocih sil in IV) vrtinenja vetra, kar je prikazano na sliki 4-1. Modeliranje sil
dinamic¢ne obremenitve vetra je mozno v skladu s predpostavkami kvazistacionarne (QSS) teorije
aerodinamike [54]. Predstavljene formulacije obtezb so primerne za vgraditev v kon¢ne elemente
linijskih konstrukeij [6]. Popularni model QSS temelji na predpostavki razvitega in stacionarnega
vetra okoli pre¢nega preseka. Bistvena prednost omenjenega modela so enostavni in lazje dostopni
aerodinamicni parametri. Formulacija je bila vgrajena v aktualne izracune plavajoc¢ih mostov s
¢asovno domeno. V poglavju so obravnavane posamezne komponente s poudarkom na
samovzbujajocih silah, ki so posledica gibanja mostu. V dinami¢nih raziskavah dobro poznani
aeroelasti¢ni modeli so uspesno uporabljeni v aeroelasti¢nih analizah omahovanja mostov [25][46]
[72]. Meritve v vetrovniku potrjujejo, da aeroelasticni modeli natanc¢neje popisujejo interakcijo
mostu v primerjavi s poenostavljenimi kvazistacionarnimi modeli. Natan¢nost se lahko odraza
predvsem v natan¢nejSih numeri¢nih analizah odziva in dodatni moznosti aeroelasti¢ne analize
omahovanja. V najnovejsih raziskavah je razsirjena uporaba racionalnih funkcij za interpretacijo
odvodov omahovanja v ¢asovni domeni. Matemati¢na formulacija racionalnih funkcij zal ni
primerna za uporabo v trenutno predlagani shemi analize dinamike plavajo¢ih mostov. Izpeljanih
izrazov ni mogoce vgraditi brez dodatnega programiranja v razli¢ne komercialne kode. Raziskava
preucuje moznosti uporabe racionalnih funkcij v obstoje¢i ¢asovni shemi. Za pristop ¢asovne
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integracije je potrebno pretvoriti frekvenéno odvisne aeroelasti¢ne sile v €¢asovno odvisne s
postopkom konvolucije. Podobna teoreti¢na ozadja veljajo za transformacijo aeroelasti¢nih in za
transformacijo hidrodinami¢nih samovzbujajo¢ih sil, kar pomeni, da obstajajo enake
transformacije z razlicnimi vhodnimi podatki sil. Cilj raziskave je preoblikovanje aeroelasti¢nih
modelov v obliko, primerno za uporabo v hidrodinami¢ni konvoluciji. Posamezne razlike obeh
matematic¢nih pristopov je moZno resiti z razvojem novega aeroelasticnega modela.

Turbulentni veter

Vektor hitrosti vetra se deli na konstantni in ¢asovno spremenljiv turbulentni vektor, definiran kot
U(t) =V +v(t). Vetrni vektor je opisan s tremi komponentami, opisanimi v levosu¢nem
kartezicnem koordinatnem sistemu. Tako je smer u(t) vzdolz vetra, w(t) horizontalna in v(t)
vertikalna obratna smer gravitacije. V sploSnem so dizajnirane lastnosti vetrov odvisne predvsem
od orografske pozicije mostov in so pogosto opisane kot funkcije visine, hrapavosti terena v okolici
ter izbranega modela. Potrebni podatki za simuliranje vetrne turbulence v prostoru so: osrednja
hitrost vetra, turbulenca, spektri, koherence in prostorske koordinate. Na sliki 4-2 je prikazana
Fouriereva transformacija vetrnih spektrov v casovno odvisno turbulenco. Poglavje prikazuje nacin
modeliranja turbulence v ¢asovni metodi z uporabo simulacije Monte Carlo kot:

V(t):ii\ﬂAa)Sﬁ(a)k)cos(a)ktﬂ//i,k). (8.8)

=1 k=1

Sij(wy) je matrika spektrov vozlis¢, Aw frekvencni korak, ¥ naklju¢no Stevilo, k predstavlja

frekvence, j predstavlja prostorska vozlis¢a. Vhodni podatki spektralne energije vetrne turbulence,
prikazane na sliki 4-3, opisujejo koli¢ino energije pri razlicnih frekvencah. Tako sintetizirani
signali prikazanega vhodnega spektra ne reproducirajo natan¢no, vendar je to mozno doseci za
povpre¢no vrednost ve¢ simulacij, kar je prikazano na sliki 4-7. Opisana metoda je bila
sprogramirana v ¢asovno analizo in je bila prilagojena za izracun vetrne turbulence na 5 km dolge
plavajoce mostove. Enacba (8.8) predstavlja precejSen racunski izziv, saj bi izracun turbulence
trajal kar mesec dni. Glavni razlog za to so razmeroma dolgi racunski ¢asi, ki so potrebni za uspesno
transformacijo, pogojeno z diskretizacijo ¢asa, frekvence in prostora. Zato je bil koncept izracuna
enacbe (8.8) razvit s posebej prilagojenim algoritmom z izboljSavami na ve¢ nivojih. Primarno
zmanj$anje Stevila vozIliS¢ je bilo mozno z uvedbo lo¢ene vetrne mreze, pri cemer se je izracunana
turbulenca projicirala na gosto mrezo kon¢nih elementov mostu, kar je prikazano na sliki 4-4 desno.
Taksen pristop omogoca neodvisno Stevilo konénih elementov in vozlis¢, uporabljenih pri vetrni
analizi za natan¢no transformacijo. Predstavljeni pristop bistveno zmanjsa Stevilo vozIis¢, in sicer
s 40000 na 1000, kar kvadratno zmanjSa racunski c¢as. Dodatne izboljSave algoritma so bile
narejene na interpolaciji frekvenc izracuna korelacijskih spektrov, ki je bil narejen na prej
dolocenih frekvencah. Dodatna optimizacija je bila dosezena z aplikacijo hitrega Fourierevega
algoritma, ki omogoca bistveno hitrejsi izrac¢un kot klasi¢ni Fourierev algoritem. Dodatni paralelni
izracun je naknadno pospesil numeri¢ne simulacije. Po uvedbi zgoraj opisanih izboljsav se je Cas
racunanja zmanjsal na priblizno 15 min, kar omogoca uc¢inkovitejsi izracun dinamike mostov.
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Modeliranje sil

Aerodinamicne sile vetra se modelirajo z dimenzionalnimi koeficienti vleka, dviga in momenta.
Brezdimenzijska formulacija omogoca prenos sil, izmerjenih v vetrovniku, na realne velikosti
mostov. Definicija aerodinamicnih sil izhaja iz Bernoullijeve enacbe primerjave energij zastojne
tocke tlaka in kineti¢ne energije vetra. Obremenitev vetra je definirana za dolzino segmenta enega
metra kot:

1 Cp (o)
F_. = EpV2B C (a) |, (8.9)
BC,, (o)

kjer je F,.., vektor vetrne obtezbe, p gostota zraka, /' laminarna osrednja hitrost vetra in B Sirina
preseka precnega preseka. Vektor osrednje hitrosti vetra je tako dolo¢en na podlagi povprecnega
kota a in povpre¢ne hitrosti vetra. Pri dinami¢ni analizi vetra se spreminjata vpadni kot vetra in
velikost vektorja hitrosti, sestavljenega iz osrednje hitrosti, turbulentne hitrosti in hitrosti
deformacij segmenta. V splosnem lahko formulacijo linearizirano, saj je doprinos kvadratnih
vektorjev hitrosti zanemarljiv. Linearizirano formulacijo lahko opiSemo kot:

Fbuf,lin = Fmean + FbufV (t) + (:qssl.l + qusu
2C C.,-C
N I I 7 1 R 111 ()
=—pV*B| ¢, |+2=| 2¢, C+C,
2 2 , w(?) (8.10)
BC,, 2BC,,  BC,
o 2C, C,-C, 0](a, . 00 ¢ \fu,
-] 2C, C+C, 0[<u, ¢~ 00 ¢ |y,
2 2
2BC,, BC,, 0||u, 0 0 BC,||u,

Linearna kvazistati¢na analiza je bila uporabljena za vrsto dinami¢nih analiz v dosedanjih Studijah
izvedljivosti plavajo¢ih mostov [8] [41] [90] [99]. Implementacija v Newmarkovo c¢asovno
integracijsko shemo je bila narejena kot:

Mii+(C+C,, Ju+(K+K, Ju=F,  +F,v(t). (8.11)

mean

Zgoraj prikazano kvazistaticno modeliranje interakcije vetra je moC opisati s kvazistaticnimi
matrikami duSenja Cgq in togosti K. Te so teoretina izpeljanka zgoraj opisanega analitiCnega
modela in so pogosto uporabljene za dinamiéne vetrne analize. Zal tak$no modeliranje odstopa od
dejanskih aeroelasti¢nih meritev v vetrovniku, predvsem za frekven¢no odvisno gibanje mostu. V
nadaljevanju je predlagana izboljSava z aeroelastiénimi modeli kot primernejSimi kandidati, ki bi
dali natan¢nejSe rezultate odzivov plavajocih mostov [6] [73] [95].

Aeroelasticno modeliranje interakcije
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Na zacetku 20. stoletja je gradnja dolgih vise¢ih mostov nudila stroSkovno ucinkovito resitev.
Razvita teorija drugega reda je bila klju¢na za analizo visec¢ih konstrukcij in je omogocala do 30 %
prihranka materiala, kar je vodilo do vitkej$ih mostov. Vitki mostovi so bili precej bolj dovzetni za
dinamicne vibracije, kar je povzro¢ilo nekaj porusitev mostov. Najbolj odmevna je bila porusitev
mostu Tacoma Narrows leta 1940, ki je bila posledica zelo nizke hitrosti vetra, komaj V = 17 m/s.
Podrobna preiskava je pokazala, da se je most porusil zaradi takrat Se neznanega pojava, ki je
povzrocil nestabilno nihanje mostu. Osnovna teorija aeroelastike je bila razvita v 60. letih 20.
stoletja in je bila posledica razvoja vesoljske industrije. Teorija je bila sprva narejena na osnovi
teoreticne nestabilnosti aerodinami¢ne plosce in je omogocila raziskavo aeroelasticnih kriticnih
hitrosti vetra, poznana je kot Scanlanova teorija nestabilnosti [22]. Vhodni podatki so linearno
frekvencno odvisne funkcije, izrazene z brezdimenzijskimi odvodi omahovanja (flutter
derivatives). Koeficienti za turbulentne pre¢ne preseke se lahko izmerijo v vetrovniku ali pa se
izratunajo s pomocjo racunalniSke dinamike tekocin (CFD). Aeroelasticna formulacija,
uporabljena pri preverjanju nestabilnosti omahovanja, je zapisana kot:

C.(K)yu+K_(K)u=
P P BP |(u P P BP |[(u
PVBK| . | " S G I I (8.12)

-Z——| H, H BH, i H, H, BH; | u

* * . 2 * *
BA; BA, B4, ||u BA, BA, B4, ||u

K = wB/V je reducirna frekvenca in w = 2nf je frekvenca pomikov, odvodi omahovanja
predstavljajo vlek P/, vzgon H{ in A; moment z indeksom i = (1,2,..,6). Oznaka * oznacuje
odvode omahovanja kot funkcije brezdimenzijske reducirane hitrosti ¥ = K? = oB/V. Meritve v
vetrovniku so bile izmerjene z diskretnimi tockami v omejenem obmocju reduciranih frekvenc, kar
zahteva interpolacijo in ekstrapolacijo podatkov. Direktno reSevanje enacbe

Mii+(C+C, (o))u+(K+K_(o))u=F,, +F, v(7) (8.13)
v Casovni domeni ni mogoce, saj vsebuje aeroelasticne matrike v odvisnosti od frekvenc. V tej
raziskavi je bila raziskana nova moznost formulacije s pomoc¢jo numericne konvolucije preko
zgodovine hitrosti z uporabo enakih algoritmov kot pri hidrodinami¢ni analizi gibanja mostu.
Predlagani sistem aeroelasticnih matrik je mogoce vkljuciti v ¢asovno domeno kot:

Mii+(C-CZ, Ju+(K-K. Ju=F,  +F,v(f)+

se,v mean

2

/A

(8.14)

[S) S

I[Cse(a’)—CZZ,V]cos(w(t—r)) i(r)dodr

Konstantni matriki Cg, in Kg , sta podani na levi strani enacbe, frekven¢no odvisna matrika
[Cse(w) — C;"glv] je pomaknjena na desno stran enacbe. V dosedanjih raziskavah uporabljene
interpolacijske funkcije temeljijo na izrazih s teoreticno izpeljavo ¢asovnega modela. 1z tega
razloga so bile polinomske interpolacije pogosto uporabljane za frekvencne modele, nikoli pa za
casovne. Ker je predlagani format enacbe (8.14) precej sploSen in omogoca uporabo Stevilnih novih
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interpolacijskih funkcij, predstavlja novost na tem podroc¢ju. Demonstracija uporabe enacbe (8.14)
je nadalje izpeljana na primeru interpolacije racionalnih funkcij kot primer parametri¢ne
interpolacije, velikokrat uporabljene v raziskavah. V nadaljevanju bodo predstavljene tudi
neparametri¢ne interpolacije z uporabo polinomske interpolacije.

Modeliranje aeroelasti¢nih sil v ¢asovni domeni

Zvezno funkcijo, ki opisuje odvode omahovanja, je mozno preoblikovati v ¢asovno odvisno
funkcijo. Funkcija mora biti zvezna in mora konvergirati h kon¢ni vrednosti. Direktno vrednotenje
enacbe (8.12) veljala samo za eno frekvenco harmoni¢nega gibanja. Z uvedbo superpozicije je
mozna raz$iritev veljavnosti za vse periodi¢ne ter aperiodi¢ne sisteme. Z uporabo Fouriereve
transformacije je tako mozno izraziti aeroelasticne sile v frekvenéni domeni kot produkt prenosne
matrike in Fouriereve transformacije pomikov kot Gg(®) = F.(0)G,(®). AeroelastiCna prenosna
matrika je definirana z analiticno resSitvijo v frekvenéni domeni, predstavljeni v kompleksni ravnini,
in se za odvode omahovanja zapiSe kot:

| K*(Ri+P) K (Pi+F) K'B(Bi+PR)
FSC(K):EpVZ K*(Hi+H,) K(Hji+H,) K’B(H,i+H,)]|. (8.15)
K’B(A4i+A) K’B(4i+A4,) K’B*(Ai+A4;)

V splosnem poteka transformacija iz frekvenéne domene v ¢asovno v dveh korakih. Najprej se
izracuna Fouriereva transformacija prenosne matrike F, kot

() =—— [F(@e“do, (8.16)
27 7,

kjer je I, impulzni odziv aeroelasti¢nih sil. Nato se izracuna konvolucija z integracijo impulzne
sile preko celotne zgodovine pomikov

q,()= T I .(t—7)u(r)dr. (8.17)

Dobljene aeroelasticne sile so tako izrac¢unane v odvisnosti od celotne zgodovine pomikov. 1z
enacbe (8.17) je razvidno, da je postopek konvolucije treba izracunati v vsakem koraku, saj se
vektor hitrosti spreminja v ¢asovnointegracijski metodi.

Racionalne funkcije

Racionalne funkcije (rational functions) in indicialne funkcije (indicial functions) se obicajno
uporabljajo za interpoliranje razprSenih meritev odvodov omahovanja. Obe funkciji sta posebej
prilagojeni za transformacije v ¢asovno domeno, saj omogocata analiti¢ne reSitve. Opremljeni
izrazi imajo priro¢ne lastnosti, saj tezijo h konstantni vrednosti pri neskon¢nih frekvencah oo, kar
omogoca analiticno resitev konvolucije. Podrobneje je predstavljen sistem z eno prostostno stopnjo
na primeru popularnih racionalnih funkcij, v mnogo raziskavah uporabljen izraz:
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F(K)== pV (a, + a,iK +a,(iK)’ +Za,+3 KZK 7 (8.18)
Kadar je a, interpolacijski koeficient, je d; koeficient prileganja pola in N je Stevilo izbranih polov.
Za prakticno uporabo se prilegajo priblizno od dva do trije poli. Koeficienti v povezavi z
vztrajnostjo az so praviloma zanemarjeni. Interpolacijska racionalna funkcija se prilega
kompleksnemu vektorju sile, kar zahteva postopek hkratne interpolacije realnih in imaginarnih
delov. Nelinearna regresijska interpolacija zahteva ucinkovit numeri¢ni pristop, ki je povzet v
nadaljevanju zapisa. Najprej se izberejo koeficienti a;, preostali koeficienti pa se izracunajo z
linearno regresijo. Nato se z uporabo nelinearne regresije poisce d;. Tretji korak sledi, ko je
dosezen optimalni niz vrednosti d;, potem se ponovno uporabi nelinearna regresija za iskanje vseh
koeficientov hkrati. Ta metoda zahteva kar nekaj pozornosti, saj vsak zacetek ne vodi do uspesne
konvergence. Prilagajanje izhodiS¢ne vrednosti, parametrov konvergence in komplicirani kon¢ni
izrazi konvolucije nakazujejo precej zahteven postopek. Za uspesno uporabo prikazanih postopkov
so v sploSnem potrebne dobre teoreticne osnove in osnove nelinearne regresije. Navedeni
argumenti predstavljajo pogosto oviro pri uporabi ¢asovnih modelov v praksi in v dosedanjih
dinami¢nih analizah plavajo¢ih mostov. Po uspes$ni interpolaciji lahko koeficiente uporabimo v
razvitih izrazih. Razvite izraze je mogoce analiticno reSiti skladno s postopki Fouriereve
transformacije (8.16) in konvolucije preko pomikov (8.17). Dobljen analiti¢ni izraz za konvolucijo
preko pomikov je:

dV

q.(t)= %sz au(t)+az—u Zah{u )—;3 e[tT)Ju(r)dz'] . (8.19)

Neskon¢ni delez (OO)
Izraz ima koeficiente, ki so povezani z neskon¢nim prispevkom in so rezultat konstantnih
vrednosti. Frekvencni prispevek se izraCuna z eksponentnim integralom. Prispevek z neskonénim
in frekvenénim deleZem je prikazan na sliki 3-8. Alternativno je aeroelasticne sile mogoce
izracunati s konvolucijo preko zgodovine hitrosti. Na aeroelasti¢ni prenosni matriki, deljeni z
vrednostjo iw, se analogno ponovi matematicni postopek transformacije in vodi v izraz:

0

qsc(t):%pV alu(t)+a2—u. +]:]Z=jal+ (j ( [(t T))u(r)dTJ . (8.20)

Neskon¢ni delez (OO) . ' o
Nekoliko spremenjen izraz ima tako neskonc¢ni delez kot tudi frekvenc¢no odvisen delez, ki je

razreSen z integralom preko zgodovine hitrosti. Izpeljani so tako delitev na neskoncne in
frekvencno odvisne deleze kakor tudi razmerja med transformacijami. Predstavljeni izrazi so
primerni kandidati za vgraditev v Newmarkovo Casovno integracijo. Nadalje je treba izraze
spremeniti v izraze, ki jih bo mogoce vgraditi v dosedanje sheme dinami¢ne analize plavajocih
mostov, predstavljene v tem delu.
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Novi postopek

Predstavljen je nov izracun aeroelasti¢nih sil s postopkom numeri¢ne transformacije aeroelasti¢nih
sil v ¢asovno domeno. Glavni namen razvitega postopka je moznost vgradnje v do zdaj uporabljeno
integracijsko shemo. Prednost razvitega postopka so dodatne moZnosti uporabe razlicnih
interpolacijskih funkcij, kot so polinomi, kubi¢ni zlepki, racionalne funkcije, povprec¢na
interpolacija itd. Teh ni bilo mogoce uporabiti z do zdaj opisanimi postopki, saj so vse
interpolacijske funkcije morale imeti analiti¢no reSitev. Ideja numeri¢ne transformacije prihaja iz
hidrodinami¢nega modeliranja in predstavlja tudi ciljno kon¢no formulacijo izrazov. Za
uporabljene interpolacijske funkcije velja, da zavzemajo zvezne numeri¢ne vrednosti. Tako
interpolirane vrednosti tvorijo prenosno aeroelasticno funkcijo, sestavljeno iz neskoncnega in
frekven¢no odvisnega dela. Neskon¢ni deli imajo analiti¢no resitev, frekvencno odvisni deli pa so
izraCunani z numeri¢no transformacijo v ¢asovno domeno, saj analiti¢na reSitev ni mogoca.
Poskrbljeno mora biti, da interpolacijske vrednosti konvergirajo h kon¢ni vrednosti, kar je mogoce
naknadno doseci z numeri¢no korekcijo ekstrapoliranih vrednosti. Tako razvit postopek je bil razvit
v konvolucijo preko pomikov:

q(t)= %PVZ(K::,uu(l‘)+C:;ubi(l‘)vL%j;I[Kse(a))—K:Z’u]cos(a)(t—r)) u(f)dwdTJ . (8.21)

in hkrati v izraz za konvolucijo preko hitrosti:

q(t)= %pVZ (Ksi,vu(r)+c::,va(t)+% [[[C(@)-CZ, Jeos(a(t—7)) a(r)dam] .(8.22)
00
Prikazana je teoreti¢na izpeljava zgornjih izrazov, ki temelji na teoriji realnih dinamicnih sistemov.
Narejene predpostavke so skladne s postavkami, narejenimi pri razvoju racionalnih funkecij. Izraza
(8.22) in (8.25) se lahko uporabita za modeliranje tako parametricnih kot neparametri¢nih
interpolacijskih funkcij. Za demonstracijo je prikazan primer parametricnega modeliranja
racionalnih funkecij z vstavljanjem

N-3
0
Kse,u =q + Z a3
I=1

" B
Cse,u =a, ; (823)
. N-=3 —d2
[Kse (CO) - Kse,u ] = — al+3 K2—+1d12

v nov postopek numeri¢ne konvolucije preko pomikov (8.21). Dobimo enak rezultat kot za
analiti¢no resitev racionalnih funkcij v enacbi (8.19). Enakost velja za vstavljene izraze
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Ks(zz,v = al
. B
Cse,v = aZ ; (824)
& B d
C.(w)-Cz, 1= ’
': se(a)) se,v] = 1+3 V K2+d12

v nov postopek numeri¢ne konvolucije preko hitrosti (8.22) dobimo enak rezultat kot za analiticno
reSitev racionalnih funkcij v enacbi (8.20). Vsi §tirje izrazi analiticne in nove numeri¢ne resitve so
bili testirani numeri¢no in dajejo povsem enak rezultat, kar dokazuje pravilno izpeljane izraze.

Posebej pomembna teoreti¢na izpeljava simetrije realnih dinamicnih sistemov opisuje razmerje
med zveznim frekvencno odvisnim duSenjem ter frekvencno odvisno togostjo, izrazeno kot:

I([CSe (w)- C:;]cos(a)t))da) = I(i[Kse (o) —Ksoe}sin(a)t)jda) : (8.25)

To velja tudi za zvezni opis odvodov omahovanja. Razmerje je bilo v nadaljevanju dokazano na
primeru racionalnih funkcij in tudi za poljubno interpolacijsko funkcijo. Razmerje je veljavno tako
v posameznih meritvah kot tudi v korespondenc¢nih interpolacijah. Dokaz je osnova za nadaljnji
razvoj neparametri¢nega modeliranja aeroelasti¢nih sil s poljubnimi interpolacijskimi funkcijami.
To omogoca neodvisno interpolacijo aeroelasticnega duSenja in aeroelasti¢ne togosti ter uporabo
polinomske linearne regresije. Polinomske interpolacije visjih redov lahko divergirajo zunaj
razpoloZljivih podatkov, zato se ekstrapolacije korigirajo z zvezno funkcijo prehoda. Zvezna
korekcija se lahko opravi z izrazom

1

Blw)= 1-exp(—2k(w-,))

(8.26)

za obmocja ekstrapolacij. Neskon¢ne konstantne vrednosti so lahko dolo¢ene v viSini vrednosti
zadnjih razpolozljivih interpolacijskih podatkov. Sprememba je potrebna pri vseh divergentnih
interpolacijskih funkcijah in je lahko opravljena numeri¢no. Bistvena prednost neparametri¢nega
modeliranja je izognitev nelinearni regresiji in s tem bistveno poenostavljen postopek modeliranja.

Vrednotenje aeroelasti¢énih modelov

Poleg numeri¢nih simulacij, izvedenih v tej raziskavi, so bili narejeni tudi laboratorijski preizkusi
v vetrovniku na trondheimski univerzi na Norveskem [59]. Predstavljeni so podatki za
aerodinamicni presek mostu Hardanger na Norveskem [71]. Prerez je bil pomanjSan v razmerju
1 :50, nanj so bili pritrjeni detajli ograj. Vetrovnik ima moderen servomehanizem, ki lahko
generira razlicna gibanja segmenta mostu in hkrati meri aeroelasti¢no silo, kar je prikazano na sliki
4-10. Najprej so bili narejeni harmonicni vsiljeni pomiki pri razliénih reduciranih hitrostih za
izratun odvodov omahovanja. Diskretne tocke so bile nato interpolirane z racionalnimi funkcijami
kot predstavniki parametri¢nega modela, kjer sta bila uporabljan dva pola N=2 za dobro natan¢nost.
Prileganji posameznih interpolacijskih krivulj sta prikazani na sliki 4-12 in sliki 4-13, kjer je vidno
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zelo dobro prileganje obeh krivulj. Razlike je mozno opaziti v ekstrapolacijskih vrednostih, ki niso
del testiranja in posledicno nimajo vpliva na rezultate. V sploSnem je to€nost izmerjenih odvodov
omahovanja neposredno odvisna od to¢nosti meritev, nacina preizkusa in vetrovnika. Pomembna
lastnost v tej raziskavi uporabljenih odvodov omahovanja je izredno nizek raztros posameznih
meritev, kar naznanja dobro izmerjene in reprezentativne odvode omahovanja. Nadaljnje testiranje
je bilo narejeno na primeru vecharmonskega odziva, kjer so bile izmerjene aeroelasticne sile v
spektru pomikov med 0,25 in 2,5 Hz z amplitudami 16 mm in 2,4°. Gre za najzahtevnejsi test
aeroelasti¢nih modelov, ki ga je mozno resiti le z ustrezno modeliranimi frekvencno odvisnimi
silami. Gibanje segmenta je simulirana superpozicija naklju¢no izbranih faz, amplitud in frekvenc
in je prikazano na sliki 4-15. Preizkus posameznih modelov je bil sestavljen iz treh faz testiranja:

1. fazaje numeri¢no primerjala analiticne izraze (8.19) in (8.20) ter nova numeri¢na postopka
(8.21) in (8.22). Za vhodne podatke vseh modelov so bile uporabljene racionalne funkcije.
Casovno odvisni rezultati se povsem ujemajo in so prikazani na sliki 4-14. To potrjuje
pravilno matemati¢no formulacijo in implementacijo modelov.

2. faza je primerjala parametriéni model racionalnih funkcij in neparametricni model
individualne polinomske interpolacije ter ju primerjala z meritvami iz vetrovnika. Na sliki
4-16 je prikazano dobro ujemanje sil dviga in momenta, kar potrjuje primernost
neparametriénih modelov. Sila vleka se ne ujema za vse modele zaradi nelinearne
karakteristike, zato so linearni modeli neprimerni.

3. fazaje numericno testiranje v programskih jezikih MATLAB in RM Bridge, ki je primerjano
z rezultati iz vetrovnika. Obe kodi se dobro ujemata z meritvami v skladu s teorijo.

8.5 FrekvencCna analiza

Tehnike modalne dekompozicije so Siroko uporabljane in priljubljene v razli¢nih inZenirskih
disciplinah. Poleg prikazanih ¢asovnih metod integracije ponujajo dodaten vpogled v razumevanje
odziva mostu, informacijo o najpomembnejsih frekvencah, nihajnih oblikah in participacije mase.
Rezultate je enostavno interpretirati in ne potrebujejo dodatne statisticne obdelave casovnih
signalov. Frekven¢ne metode so v primerjavi s casovno domeno precej manj racunsko potratne. To
poglavje ponuja kratko predstavitev metode linearne modalne dekompozicije, v nadaljevanju
imenovane frekvencna metoda. Frekvencna metoda je bila uporabljena pri kon¢ni primerjavi
rezultatov s ¢asovno metodo in tako uporabljena za odkrivanje morebitnih napak pri implementaciji
dinamic¢nih obtezb. Podan je postopek modalne dekompozicije, ki je bil narejen upostevajoc
zunanje vplive vseh obtezb okolja. Predlagani postopek dekompozicije je izveden v dveh korakih.
Prvi korak je dekompozicija mostu skupaj s frekvenc¢no odvisno hidrodinami¢no maso, drugi korak
pa modeliranje preostalih obtezb okolja. Nelinearni sistem mostu je aproksimiran s tangentno
togostjo K,;;, ki je posledica velikih deformacij mostu pod stalnimi obtezbami. Za linearizirani
sistem je mogoce izracunati lastne vrednosti plavajocih sistemov kot:

[(Knl +K,, )-0"(M+ Mhy(w))“(f)}i’:o. (8.27)
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Ker so prispevki hidrodinami¢ne mase relativno veliki, je treba zajeti maso pri posameznih
frekvencah, zato je postopek izracuna frekvence iterativen in podan s shemo na sliki 5-1. Tako
pridobljene lastne vrednosti so primerne za izracun v drugem koraku izracuna interakcije preostalih
obtezb, ki predstavljajo obtezbo in hkrati spreminjajo dinamic¢ne karakteristike mostu. Dodane
obteZzbe so v sploSnem nesimetricne vezane dinamicne enacbe, ki jih ni mogoce razresiti s
klasi¢nimi lastnimi tehnikami realne vrednosti. Predstavljen je sistem lastnih vrednosti
nesimetri¢nih vezanih dinamicnih enacb, ki daje kompleksne vrednosti modalnih vektorjev:

¢'M,., ¢i1+¢" (C,-C,, —C,, (0)-C,(0))pn+9¢" (K., ~K,(@))¢n=9"F,, . (8.28)

Na desni strani enacbe so obtezbe valov in vetra, na levi strani so interakcijske vrednosti
spremembe duSenja in togosti. V poglavju je prikazan postopek izracuna delezev posameznih
matrik interakcije in nakazan postopek reSevanja enacb. Prikazan je primer postopka izracuna
nestabilnosti omahovanja pri naraS¢ajoc¢ih hitrostih vetra. Podan je tudi pregled postopka
dinami¢nega izrauna vetrne obtezbe, uporabljenega v naslednjem poglavju.

8.6 Primer plavajocega viseCega mostu

Prikazan je prakti¢ni primer dinamié¢ne analize iz $tudije izvedljivosti plavajo¢ega mostu. Studija
izvedljivosti je bila izvedena za 5 km Sirok fjord Bjernafjorden z morskim dnom na globini 0,6 km.
Predstavljeni primer viseCega mostu s temeljenjem »Tension Leg Platform« prikazuje atraktivno
premostitev. Koncept mostu je bil razvit v sodelovanju med NPRA in skupino svetovalcev: Aas-
Jakobsen, COWI, Johs Holt, Moss Maritime, Wind OnDemand, Aker Solutions, NGI in Plan
arkitekter. Posebna pozornost je bila namenjena kombiniranim vplivom dinami¢nega vzbujanja
razli¢nih obtezb, ki so bili predmet preu¢evanja omenjenih raziskav. Ta disertacija ponuja pregled
razli¢nih dinami¢nih obremenitev na plavajo¢e mostove. Zaradi kompleksnosti vseh obtezb in
samega primera je bila narejena demonstracija za najbolj dominantno obtezbo vetra. Pri analizi sta
bili uposStevani kvazistati¢na interakcija in radiacija valov:

(M+Mhy (oo))ii+(C+Chy (a))+Cqss)1'1+(Kn1 +K,, +qus)“ =
F o+ F.(7)

perm

(8.29)

Rezultati dinami¢nega odziva mostu so prikazani na sliki 6-7 in sliki 6-8. 1z rezultatov je razvidno,
da gre za dobro ujemanje v horizontalni in srednje dobro ujemanje v vertikalni smeri. Bistveno
natan¢nejSa Casovna domena daje moznost vpogleda v nelinearnost sistema. Zakljuéen primer
ponazarja pomembnost ¢asovne integracije pri nelinearni analizi plavajo¢ih mostov. Moznosti
vgraditve aeroelasticnih modelov bi lahko nadalje izboljSale natancnost odzivov, kar je prikazano
v tej raziskavi.

8.7 Zakljucek

Predstavljeno modeliranje okolijskih obremenitev je bilo uspesno vgrajeno v ¢asovno integracijo
odziva mostov. Newmarkova integracijska shema je primerna za reSevanje vezanih nelinearnih
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dinami¢nih enacb gibanja. Razli¢ne obremenitve so bile dodane k dinami¢nim ena¢bam in so na
razpolago za nadaljnje inZenirsko in raziskovalno delo. Razvoj modelov je spremljalo intenzivno
testiranje razvitih modelov. Raziskave so potekale vzporedno z delom v praksi, ki je omogocalo
vpogled v izzive inZenirsko zahtevnega podrocja in moZnost izboljSav. Sam razvoj plavajo¢ih
mostov in spremljajo¢ih metod predstavlja pionirsko delo in je sad vecletnega dela ve¢ skupin.

Glavni cilji raziskave so bili uspesno dosezeni z raziskovalno nalogo, za vse obtezbe valov in vetra
so bili uspesno vgrajeni v Casovnointegracijsko metodo. Testiranje je potekalo vzporedno z
razli¢énimi Studijami izvedljivosti. Trenutno vgrajeni model kvazistatiCne interakcije vetra je bil
vgrajen v ¢asovno domeno in ponuja sprejemljivo natan¢nost v zgodnjih fazah Studije izvedljivosti.
Izveden je bil glavni cilj Studije, ki prikazuje primernost aeroelasti¢nih modelov v uporabljeni
casovnointegracijski shemi. Cilj je bil doseZen z uvedbo novega postopka numeri¢ne konvolucije,
ki omogoca simuliranje aeroelasti¢nih sil brez dodatnih posegov v komercialne kode, s ¢imer je
bila potrjena hipoteza. Primer interpolacije aeroelasti¢nih sil z racionalnimi funkcijami je bil
demonstriran v uporabljeni ¢asovni shemi. Prikazan je nov na¢in modeliranja aeroelasti¢nih sil z
neparametriénim interpoliranjem, ki predstavlja pomemben znanstveni prispevek. Primer
polinomske interpolacije bistveno poenostavi postopek, saj omogoca linearno regresijo in
nadomesca tezavne nelinearne regresijske sheme. Primera racionalne funkcije in polinomske
interpolacije sta bila testirana v vetrovniku in dajeta spodbudne rezultate za nadaljnjo uporabo
predstavljenih modelov v ¢asovni shemi.

Ta raziskava odpira vrata natan¢nejSim aeroelastiénim modelom za direktno apliciranje v projekte
plavajo¢ih mostov. Predstavljene izboljSave bodo omogocile takojSnje povratne informacije o
aeroelasti¢nih lastnostih in so bistvene za ucinkovito zasnovo mostu. Razviti modeli lahko
omogocajo natancen dinamic¢ni izracun, ki vodi do ekonomic¢no oblikovanega mostu. Delo
zainteresiranemu bralcu ponuja vrsto referenc, uporabljenih pri raziskovanju, z navdihujoc¢imi
plavajo€imi mostovi.
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