
 

 

 

 

 

 

 
Kandidat:  

MITJA  PAPINUTTI 

 

 
 

DINAMIČNA ANALIZA PLAVAJOČIH MOSTOV 
 

Doktorska disertacija 

 

 

DYNAMIC ANALYSIS OF FLOATING BRIDGES 
 

Doctoral thesis 

 

 

 

 

 

 

 

 

 

 

Ljubljana, maj 2021  

DOKTORSKI ŠTUDIJSKI 

PROGRAM III. STOPNJE 

GRAJENO OKOLJE 



 

 

 

 

 

 

 

 
Candidate:  

MITJA  PAPINUTTI 

 

 

DYNAMIC ANALYSIS OF FLOATING BRIDGES 
 

Doctoral thesis 

 

 

 

 

 

 

Supervisor: 

Prof. Boštjan Brank, Ph.D, University of Ljubljana, Slovenia 

 

Cosupervisor: 

Prof. Ole Øiseth, Ph.D, Norwegian University of Science and Technology, Norway 

 

 

 

 

 

Ljubljana, May 2021 

 



 

 

 

 

 

 

 

Mentor: red. prof. dr. Boštjan Brank,      UL FGG 

Somentor: red. prof. dr. Ole Øiseth,       NTNU Trondheim 

 

Poročevalci za oceno doktorske disertacije: 

Član:    red. prof. dr. Nils Erik Anders Rønnquist, NTNU Trondheim 

Član:   red. prof. dr. Stojan Kravanja,      FGPA Maribor 

Član:   izr. prof. dr. Dušan Žagar,      FGG Ljubljana 

 

Lektura slovenskega jezika: 

  dr. Kaja Jošt 

 

Lektura angleškega jezika: 

American Journal Experts  



Errata 

 

Page   Line   Error   Correction 

 

 



Papinutti, M. 2021. Dynamic analysis of floating bridges   I 

Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment. 

  

Bibliografsko-dokumentacijska stran in izvleček 

 

UDK:    624.04:624.87(043) 

Avtor:    Mitja Papinutti 

Mentor:   red. prof. dr. Boštjan Brank 

Somentor:   red. prof. dr. Ole Øiseth 

Naslov: Dinamična analiza plavajočih mostov 

Obseg in oprema:  103 str., 4 pregl., 43 sl., 167 en., 99 virov 

Ključne besede: dimenzioniranje plavajočih mostov, dinamika mostov, časovna 

integracija odziva, vetrna analiza, odvodi omahovanja, obtežba 

valov, obtežba morskih tokov 

Izvleček: 
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niso mogoče s konvencionalnimi rešitvami. Plavajoče mostove pogosto zaznamuje vitkost in so 

umeščeni neposredno na območja visokih morskih valov ter močnih vetrov. Dinamičen odziv 

pogosto pomembno vpliva na samo zasnovo mostu. Doktorsko delo predstavlja numerično 
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1 INTRODUCTION 

A long-term goal of Norwegian society is to develop the E39 as an improved and continuous 

Coastal Highway Route between the cities of Kristiansand and Trondheim. A political decision 

was made in 2017 in the National Transport Plan to build a motor highway route approximately 

1100 km long to connect the coastal Norwegian cities of Stavanger, Bergen, Ålesund and Molde. 

Travel among these cities today requires approximately 21 hours and should be reduced to 11 

hours. The aim is to create and improve E39 as a continuous connection without the need for ferries, 

resulting in the reduction in the route length by almost 50 km. The travel time will be reduced by 

replacing ferries with bridges and tunnels, in addition to upgrading several road sections on land. 

This goal will be managed by the Public Road Administration in Norway (Statens Vegvesen). 

Several aspects are evaluated in detail to improve highway connections from the aspects of society, 

safety, the environment, economics and engineering. This thesis explores the numerical analysis 

tools required to design bridge crossings that will be supported by floating pontoons. A series of 

projects were launched to find feasible technological solutions that will make fjord crossings 

possible. The feasibility studies investigated possible crossings of an extralong suspension bridge, 

a multispan suspension bridge founded on tension leg platform (TLP) supports, an underwater 

tunnel floating 20 m below the surface and a multipontoon cable-stayed bridge. The best-suited 

crossing alternative will depend on the environmental and geographical conditions of the fjord. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Crossing possibilities, long suspension bridge, floating bridge, underwater tunnel, pontoon bridge [1]. 

Slika 1-1:Premostitvene možnosti, viseči most, plavajoči most, podvodni tunel, pontonski most [1].  
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This research work is based on the experience gained in the bridge design industry sector and has 

been conducted in parallel with the author's full-time work on different bridge projects, which 

offers important assistance to the floating bridge design. The development of a new floating bridge 

concept is made possible by the multidisciplinary knowledge gained from different engineering 

disciplines, combining the efforts of bridge designers, marine engineers, researchers and software 

developers. This thesis provides an overview of all relevant environmental loads, with an emphasis 

on alternative dynamic wind load formulations. The new floating bridges are dominated by the 

dynamic excitation introduced by waves and turbulent winds. Therefore, these structures require 

new analysis tools to fully capture their complex dynamic responses to better understand their 

structural behavior and achieve efficient bridge designs. While individual environmental loads are 

successfully managed by industry, the simultaneous coupled response of all environmental loads 

is important to consider when attemption to understand the complex dynamic responses. To capture 

various dynamic loads and represent the nonlinear response of the bridge, the fully coupled 

nonlinear time-domain scheme was used. The combination of several engineering disciplines 

resulted in a lack of available numerical tools, giving rise to different research and commercial 

code development projects. This research work was implemented in the sophisticated commercial 

bridge software RM Bridge, which has been applied to several feasibility study designs. The 

author's main work has been to develop the required software extension for wind and wave 

calculations, which has involved theoretical investigation, individual load algorithm design, code 

implementation and testing work. The development extensions were achieved through an 

accumulation of knowledge from different engineering disciplines; individuals from these 

disciplines engaged in brainstorming exercises together to find optimal solutions for the given 

environmental load formulation. The developed mathematical models have been validated by 

software and applied to large finite element model bridges. Their successful implementation 

enables this work to be applied to any floating bridge type, making it possible for researchers and 

designers to continue this work. The final developed numerical models are suitable to calculate 

complex dynamic response load scenarios. The numerical tools of this thesis can provide accurate 

design values that will make floating bridge design safe and reliable. The presented work can be 

applied as a guideline for dynamical bridge analysis, helping investors achieve efficient design and, 

thus, reduce the project costs.  

1.1 Current research 

In structural engineering, the commonly applied and well-investigated time-integration methods 

are suitable for the evaluation of nonlinear structural responses. Long slender floating structures 

are subject to large displacement and rotations, where a third-order finite element formulation must 

be applied. For most linear systems, the frequency domain will provide accurate results, whereas 

nonlinear responses and nonlinear loads are best solved by time-domain algorithms. Hence, the 

time-domain method is chosen as the investigation tool for the final bridge design. A popular 

Newmark method can be applied to model geometrical nonlinear floating bridge responses, 

allowing the analysis of fully coupled hydrodynamic and aerodynamic effects. This implicit 
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method offers longer time steps and shorter simulation times. A Newmark integration scheme is 

implemented in the RM Bridge software in this research investigation, as in [2]. This method was 

designed to resolve geometrical nonlinear and material nonlinear effects, various nonlinear loads 

and self-excited loads. A short overview of the applied time-integration code is presented in chapter 

2. 

The hydrodynamic effects are introduced in chapter 3, and the dynamic wind load is introduced in 

chapter 4. The environmental loads on a bridge can be further divided into constant, time-dependent 

loads and self-excited loads depending on the structural motion. The load formulation must be 

transformed into a selected time-domain [3] or frequency-domain [4] framework; here, time-

domain transformations are investigated in detail. Both wind and wave self-excited loads are, per 

definition, linearized frequency-dependent matrix functions, representing the harmonic 

superposition of individual frequencies. The loads cannot be directly applied to the Newmark time-

integration scheme since loads cannot be expressed as constant matrices of time or displacement 

vectors. The transformation into a time domain requires the environmental forces to be described 

as time-dependent signals, which is made possible by convolution integral transformation, 

presenting the frequency-dependent environmental loads as time vectors. The two-step convolution 

transformation first involves calculating the inverse Fourier transform (IFT) of a load and then 

transforming it into an impulse response function. In the second step, the convolution reflects the 

impulse response signal of the structural response or the corresponding time derivative. The 

underlying linear invariant causal theory can be applied to all time-domain transformations and is 

derived in detail in [5]. The convolution integration is evaluated at each time step and can result in 

time-intensive calculations. The classic convolution integration approach computes the 

convolution integral for all past motions in each nonlinear time step. Recently, the very popular 

state-space formulation has been used to transform the convolution integral into a first-order load 

equation as a combination of matrix operations [6]. State-space methods are computationally 

efficient; however, they require special fitted functions and user experience. In this research, a 

traditional convolution theorem was used and was found to deliver the required specifications. The 

implemented interface was specifically developed in commercial software used to conduct time-

integration simulations of floating bridges [7] [8]. 

The hydrodynamic effects are well investigated in the offshore industry. In the past few decades, 

oil rigs have been successfully built in the tumultuous North Sea. Marine engineers have access to 

various hydrodynamic load formulations and corresponding commercial analysis tools [9]. 

Offshore hydrodynamic effects are not commonly present in regular bridge design; therefore, new 

extensions to the Newmark scheme are required. The potential theory can be applied to numerically 

evaluate the properties of hydrodynamic floaters, for which specialized hydrodynamic software 

can be a good choice [10]. Hydrodynamic properties such as hydrodynamic damping, 

hydrodynamic stiffness, hydrodynamic added mass and wave loads fully describe the bridge-water 

interaction. The precalculated input can be prepared by external hydrodynamic specialist groups. 

The self-excited wave radiation and wave loads fully describe the bridge motion in the wave 

environment. This can be resolved by the convolution theorem, where an interface has been built 
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into the Newmark time-integration scheme in the floating bridge context [11] [12] [13] [14] [15] 

[16] [17] [18] [19] [20] [21]. 

The dynamic wind analysis examines a superposition of the incoming mean wind, turbulent wind 

and structure motion. The structure motion can be expressed by a linearized quasi-steady-state 

(QSS) formulation under the assumption of a fully developed flow. This wind interaction is 

described by constant aerodynamic damping and stiffness matrices. The QSS formulation might 

be suitable for examining the linear response under low wind speeds and is convenient for 

Newmark implementation. However, it neglects different coupling and aeroelastic effects. This 

method was successfully implemented in the Newark time-integration scheme and is the latest 

state-of-the-art wind tool for designing floating bridge projects [4]. However, the QSS load model 

is not suitable for the investigation of aeroelastic effects and delivers nonconservative response 

results, leading to a less economical and perhaps less safe bridge design. This research proposes an 

improvement involving the use of the flutter derivative model inside the current time-domain 

framework used for the analysis of floating bridges. Dimensionless flutter derivatives are wind-

tunnel-measured results related to the movement of a section under laminar wind [22]. According 

to Scanlan regarding linear aeroelastic theory [23], the measured forces are a function of the 

reduced frequency, represented by eighteen functions arranged in the aeroelastic damping and 

aeroelastic stiffness. This self-excited wind interaction load model is suitable for aeroelastic 

instability and accurate wind buffeting responses [6]. Commonly scattered and available for limited 

frequency, flutter derivatives require some interpolation and extrapolation of data. The common 

rational function and indicial function models are well established to simulate aeroelastic effects. 

The time-domain transformation requires a more sophisticated approach. Specifically, designed 

functions fitted to the flutter derivatives have an analytical transformation solution in the time 

domain. The indicial functions approach is an approximative force model combining the QSS and 

self-excited models [24]. Rational functions are commonly used for wind self-excited load 

formulation; thus, they agree well with wind tunnel measurements. To fulfill the causal dynamic 

system requirement, the functions are simultaneously fitted to both the damping and stiffness 

functions, thus requiring a complex multiparameter nonlinear fitting [25]. This formulation is 

robust, behaves well for the limited frequency range data available and delivers an accurate self-

excited force result. Analytically derived rational functions are resolved by a convolution integral. 

Hence, the rational function is a well-suited candidate for improving the current fully coupled time-

domain floating bridge response analysis. The currently available rational functions are however, 

not suitable for implementation in the presently used time-domain floating bridge frameworks due 

to a lack of programming access to commercial code. As a result, researchers are motivated to find 

a possible rational function reformulation for convolution integration to fit inside the already 

available hydrodynamic implementation. The research work focuses on delivering reformulated 

self-excited load formulations in the form of aeroelastic damping tables using convolution over 

velocity routines in hydrodynamic wave radiation damping. A reformulation suitable for direct use 

could not be found in the available literature, leading to the development of a suitable numerical 

model for the current time-domain analysis framework. These research efforts provide a working 
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model for floating bridge projects; thus, this research provides a unique contribution to the field. 

The work has also improved and simplified many aspects of the current rational function. In recent 

years, free and forced vibration wind tunnel tests have improved the quality of the extracted data 

and resulted in less scattered data. Thus, alternative nonparametric fitted functions, such as 

polynomial functions, are now made possible by independent fitting to the aeroelastic damping and 

stiffness functions. 

Floating bridge analysis involves several disciplines, each belonging to the corresponding research 

area. A more comprehensive literature overview is provided in each subsequent chapter of this 

thesis, and different formulation alternatives are discussed. Few studies can be found on the 

dynamic excitation of floating bridges since it is a relatively new research field consisting of a 

combination of existing research areas. This work offers an overview of all relevant environmental 

load formulations and corresponding load assumptions. Several conventional load linearizations 

may no longer be valid for flexible floating bridge design. Therefore, a representative formulation 

of each load must be provided to ensure that the relevant dynamic effects are well investigated for 

these new bridge structures. Dynamic loads govern bridge designs; hence, accurate dynamic 

prediction is crucial. To achieve this goal, significant contributions in several aspects must be 

made, e.g., from the available and representative environmental measurements, by competent 

designers and from the available analysis tools, which is the focus of this monograph. 

1.2 Thesis goals 

This research provides a comprehensive overview of the environmental loads on floating 

structures. All environmental loads have been incorporated into the time-domain framework [26]. 

The current state-of-the-art wind implementations of the QSS wind buffeting theory have some 

room for improvement. The main goal of this thesis is to introduce a more accurate self-excited 

wind formulation into floating bridge design. Wind tunnel measurements have been confirmed to 

be well in line with linear self-excited models and thus are important to consider for any future 

floating bridge concept. Overall, self-excitation in the time domain is widely used in research 

investigations; however, it is commonly avoided in bridge design. The commonly applied self-

excited models require specifically tailored fitted functions; thus, they require user expertise and 

developing a fully automated numerical procedure is difficult. This situation also presents a 

practical challenge for any commercial code developer and is the reason why commercial codes 

have not yet been implemented in time-domain floating bridge analysis. The goal is to find a 

suitable self-excited formulation that can be directly applied in the current time-domain analysis 

framework. Various self-excited wind load models are presented as candidates for various 

computer codes. The most important goal of this thesis is to reduce the practical challenges of self-

excited models and make them more accessible to bridge designers. The developed self-excited 

load models should be suited for incorporation into the current time-domain framework, which can 

result in a reduction in the amount of software needed, thus reducing the modeling effort and the 

complexity of the simulations. The proposed framework can provide immediate feedback on 

various structural changes or different load scenarios. These compelling arguments can result in 
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efficient design and immediate feedback on the nonlinear structural performance. This goal was 

accomplished by developing a new self-excited force model, which was evaluated by comparison 

with wind tunnel measurements. 

The main objectives of this research can be summarized as follows: 

• to provide an overview of the dynamic loads on floating bridges; 

• to develop a new self-excited load model; 

• to develop a load model suitable for future project work;  

• to build on the already collected knowledge base of floating bridges and the available 

numerical tools;  

• to mathematically simplify the complex self-excited formulation, if possible. 

The environmental forces on a TLP floating bridge example are demonstrated, including the 

coupled hydrodynamic and wind load effects. 

The testable hypothesis is the validation of a self-excited wind load model that is suitable for 

implementation in the time-integration dynamic equation of motion. Scientific validation is 

achieved by numerical tests and wind tunnel experiments. 
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2 DYNAMIC STRUCTURAL ANALYSIS 

This chapter provides some insight into the dynamic calculation of floating structures. An overview 

of the possible dynamic solution algorithms in structural dynamic engineering is provided. In 

detail, linear and nonlinear time marching algorithms are discussed to resolve the dynamic 

equations of motion. The equations are resolved to extract the design values of the displacements 

and inner forces. Some guidelines on how to introduce proper modeling and input for the analysis 

of floating structures are provided. Two main groups of methods exist, i.e., frequency-domain and 

time-domain formulations. Both deliver equivalent results for a linear response; however, the time-

domain methods are preferred in nonlinear response calculations. For each group method, different 

numerical algorithms and possibilities for resolving motion equations exist, depending on the type 

of problem. For the time-domain methods, the equations of motion are integrated over time, and 

the results are time-dependent signals of structural motion. Time-integration methods are very 

suitable for solving complex nonlinear and coupled equations of motion since the integration 

algorithms can resolve nonlinearities iteratively. These methods are very suitable for the dynamic 

analysis of floating bridges and are considered the most accurate methods. The frequency-domain 

methods are based on linearized decomposed dynamic systems and reduce large structural matrix 

systems into smaller modal equivalent systems. Eigenvalue decomposition is calculated by rotating 

the symmetric coupled dynamic equation and is possible for most civil structures. Modal 

decomposition methods are frequently used and provide valuable information on structural 

frequencies and their participation. Frequency-domain methods are favorable due to their 

computationally efficient algorithms, which can be extended to resolve nonsymmetrical coupled 

motion and thus are suitable for the investigation of wind and wave load effects. The main 

properties of both analysis methods are presented in the following table: 

Table 2-1: Frequency- and time-domain methods for response calculations [2]. 

Preglednica 2-1: Primerjava frekvenčne in časovne metode računa odziva mostu [2]. 

Parameter Time domain  Frequency domain 

Linear system Excellent Excellent 

Nonlinear – Large displacements Excellent Acceptable 

Nonlinear – Material hysteretic Excellent Poor 

Coupled loads Excellent Acceptable 

Motion-induced loads Excellent Acceptable 

Calculation speed Poor Excellent 

General accuracy Excellent Acceptable 

Structural damping definition Poor Excellent 

Transient calculation Excellent Poor 
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2.1 Equations of motion 

The equations of motion of a linear structure discretized in space by a mesh of finite elements can 

be written as flows: 

 ( ) ( ) ( ) ( )extt t t t+ + =Mu Cu Ku f  (2.1) 

Here, M, C and K are the structural mass, damping and stiffness matrices, respectively; 𝒇ext is the 

external loading vector; �̈�, �̇� and 𝐮 are vectors of the nodal accelerations, velocities and 

displacements, respectively; 𝑡 ∈ [𝑡𝑜 = 0, . . . , 𝑡fin] is a time parameter; 𝑡fin is the final time of 

interest; and each dot indicates the derivative with respect to time. 

If nonlinearities are taken into account, such as geometric nonlinearity, nonlinear (and inelastic) 

material models, moving masses acting on the structure, nonlinear structural damping, and 

position-, velocity- and acceleration-dependent loads, equation (2.1) is replaced by the following 

equation: 

 ( ) ( ) ( ) ( ) ( )( ) ( )ext ,t t t t t+ + =M u C u u F u f u,u,u   (2.2) 

The displacement-dependent inner restoring forces 𝑭(𝒖(𝑡)) arise if large displacements/rotations 

and nonlinear (and inelastic) material models are considered. In bridge analysis, an example of 

geometric nonlinearities is cable effects (including cable sagging). Material nonlinear models that 

take into account cross-sectional steel yielding and concrete cracking also contribute to 𝑭. The 

time-dependent mass matrix 𝐌 may be due to the moving masses of traffic. For the time-varying 

structural mass and stiffness, the Rayleigh damping 𝐂 = 𝛼𝐌 + 𝛽𝚱 also changes with time. The 

external load vector 𝐟ext can be quite complex. Hydrodynamic radiation-damping loads are 

commonly described as acceleration- and velocity-dependent loads. They are represented by the 

hydrodynamic mass 𝐌hy and damping 𝐂hy matrix. Wind self-excited forces are represented as 

velocity- and displacement-dependent loads. They are usually represented by aeroelastic damping 

𝐂se and stiffness 𝐊se matrices. The loading vector also includes nonlinear viscous forces and 

structural viscus dampers. 

In this work, author considers an equation of the form of (2.2) for a time-domain analysis of floating 

bridges subjected to environmental loads. For the integration of (2.2) with respect to time, a time-

stepping schemes available in the RM Bridge commercial computer code [2] is used. 

 

2.2 Time-stepping scheme 

The systems of equations of motion of (2.1) and (2.2) are solved numerically by introducing 

discretization in time. The solutions are searched for at discrete time points 𝑡0 , ⋯ , 𝑡n-1 , 𝑡n, 𝑡n+1, 𝑡fin. 

Various solution methods are available, which are called time-stepping schemes or time-integration 

schemes for linear structural elastodynamics [27]. Many of them are also used for nonlinear 
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structural dynamics. The methods are usually divided into two groups, i.e., explicit and implicit 

structural dynamic time-stepping schemes. The explicit methods compute the solution at 𝑡n+1 by 

using a known solution at 𝑡n and known time derivatives at 𝑡n. The implicit time-stepping schemes 

compute the solution at 𝑡n+1 by using a known solution at 𝑡n and time derivatives at 𝑡n+1. The 

explicit methods are only conditionally stable. To be stable, they demand very small time steps. 

The implicit methods can be unconditionally stable for linear systems. They are much more 

accurate than the explicit schemes. 

In the following, a brief describtion the implicit version of the Newmark family of time-stepping 

schemes is provided. The Newmark family of algorithms is commonly used to solve linear and 

nonlinear equations of motion, i.e., (2.1) and (2.2). By changing the values of the Newmark 

parameters, which are commonly denoted as 𝛽 and 𝛾, one can obtain different time-stepping 

schemes [28]. The parameter values are in the range of 1/6 ≤ 𝛽 ≤ 1/4 and 0 ≤ 𝛾 ≤ 1/2. The 

value 𝛽 = 1/4   yields an implicit constant acceleration scheme, and 𝛽 = 1/6  yields an implicit 

linear acceleration scheme. Setting 𝛽 = 0 and 𝛾 = 1/2 gives the explicit central difference 

method. The recommended value for the parameter 𝛾 is 1/2, since only this value guarantees the 

second-order accuracy of the Newmark algorithm. Other values for 𝛾 provide only first-order-

accurate Newmark algorithms but add numerical damping, which in many cases acts in a favorable 

manner. 

Below is present derivation of the Newmark algorithm. The equilibrium equation for a linear 

problem is expressed in incremental form as follows: 

    + + =M u C u K u f   (2.3) 

where: 

 

n+1 n

n+1 n

n+1 n

n+1 n









= −

= −

= −

= −

u u u

u u u

u u u

f f f

   (2.4) 

Using a Taylor series yields the folowing: 

 
2 3

n+1 n n n n

1 1

2 6
t t t  = + + + +u u u u u    (2.5) 

Thus, 

 
2 3

n n n

1 1

2 6
t t t   = + + +u u u u    (2.6) 

The time derivative of (2.6) gives: 

 
2

n n

1

2
t t  = + +u u u    (2.7) 
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For assumed linear acceleration, the third derivative may be expressed by: 

 n+1 n
n

d

dt t t



 

− 
= = = 

 

u u u u
u    (2.8) 

Figure 2-1 presents the third-derivative approximation with the linear acceleration assumption 

derived in (2.8). 

 

 

 

 

 

Figure 2-1: Approximation of the third-order term for linear acceleration. 

Slika 2-1: Aproksimacija linearnega pospeška tretjega reda. 

The parameter 𝛾 is introduced in (2.7) to model the third-order and higher-order terms as: 

 
nt t   = +u u u    (2.9) 

and the parameter 𝛽 in (2.6), in a similar fashion, is introduced in: 

 
2 2

n n

1

2
t t t    = + +u u u u    (2.10) 

A comparison of (2.9) and (2.7) with (2.10) and (2.6) yields the parameters 𝛾 = 1/2 and 𝛽 = 1/6 

for linear acceleration. The average acceleration or trapezoidal rule gives 𝛾 = 1/2 and 𝛽 = 1/4 

and is commonly used for structural dynamics problems. 

The acceleration increment u  is expressed based on (2.10) as: 

 
n n2

1 1 1
1

2t t
 

  

 
= − − − 

 
u u u u    (2.11) 

Inserting (2.11) into (2.9) yields: 

 
n n1 1

2
t

t

  
  

  

   
= + − + −   

   
u u u u    (2.12) 

Inserting (2.11) into the incremental equation of motion (2.3) gives: 

 

n n2

n n

1 1 1
1

2

1 1
2

t t

t
t


  

  
   

  

  
− − − +  

  

    
+ − + − + =    

    

M u u u

C u u u K u f

   (2.13) 

u   

nt n+1t                

nu t n+1u                             

u  
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The effective dynamic stiffness �̄� collects terms with displacement increments 𝛥𝐮. The effective 

dynamic increment force 𝛥�̄� collects the known terms in (2.13).  

 

2

n n n n

 
1

1 1
1 1

2

 

2

t t

t
t



 

 
  

   

= + +

      
= + + + − + −      

      

K K M C

F f M u u C u u   (2.14) 

The dynamic equilibrium is written in incremental form as: 

  =K u F   (2.15) 

If �̄� is symmetric, (2.15) is commonly solved by using LDL factorization. The solution results are 

incremental displacements 𝛥𝐮. These incremental displacements are inserted in (2.11) and (2.12) 

to calculate the increments 𝛥�̈�, 𝛥�̇�, which are then inserted into (2.4) to evaluate the structural 

displacements. This procedure presents a solution for the linear dynamic equation in (2.1). 

In Figure 2-2, a solution scheme for the nonlinear dynamic system (2.2) is depicted. This scheme 

is implemented in RM Bridge [2], which is further used in this work for computations of the 

responses of a floating bridge. 
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Figure 2-2: Nonlinear time integration scheme. 

Slika 2-2: Shema nelinearne časovne integracije. 

The average acceleration method with 𝛾 = 1/2 and 𝛽 = 1/4 is used in the following simulations. 

A time step Δt=0.2 s is chosen for all time-domain analyses. For an appropriate time step Δt, the 

following recommendations [2] can be used: 

a) 𝛥𝑡 ≤  1/10 𝑇ℎ𝑖𝑔ℎ, where 𝑇ℎ𝑖𝑔ℎ is the initial highest natural period. 

b) More complex loads 𝐟ext require smaller time steps. 

c) Geometrical and material nonlinearities require smaller time steps. 

 

  

n+1 nn 0,1,2,...    solution at  t t t= = +  

j 1,2,...,       /   timestep lengthtot totj t tj j = =  

1,2,...  Newton-Raphson iterationsi =  

i n i n
i+1 i+1,  

2 2

+ +
= =

M M K K
M KAverage structural properties:             

i+1 i+1 i+1
 = +C M KRayleigh damping:    

i+1 n
 = −f f fExternal load increment:       

i+1 i+1 i+1 i+1 i+1  ,  ,  , = →K u F u u uIterative Newark implicit solution:    

i+1 i+1 i+1=f K uNonlinear equilibrium:     

force i+1 i displ i+1 iR  and R ,= − = −f f u uNorm of forces and displacements:   

force tol disp tol
R R ,    R R   Tolerance check:      

IF no equilibrium is found THEN reduce the time step ELSE go to the next 

time point 
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Equation (2.2) presents a complex set of coupled nonlinear equations of motion. Nonlinearities are 

sourced from geometrical nonlinearities, material nonlinearities, nonlinear loads and their 

interactions. The experience with extensive floating bridge dynamics gained during this research 

work is presented, showing the tuning of different parameters to improve the numerical scheme. 

The efficient and stable numerical scheme used in this thesis was achieved by: 

a) setting the Newmark parameters to their default values (𝛾 = 1/2 and 𝛽 = 1/4); 

b) applying stiffness-dependent damping β to flexible cable structures, rather than mass 

proportional damping α; 

c) setting the convergence parameters for the Newton-Raphson algorithm (by adjustment of 

the relevant convergence values for the model, the nonlinear increments, the number of 

iteration steps, the final convergence steps, etc.); 

d) avoiding the modeling of very stiff structural parts commonly attempted to reproduce some 

rigid behavior; 

e) tuning the substepping for the nonlinear nonconverted time step. 

During model setup, several numerical problems can occur. Here, the experience gained in 

modeling the structure is presented to avoid some common modeling mistakes. It is wise to avoid 

the modeling of very stiff elements with no mass, which results in an extremely high K/M ratio 

that cannot be resolved. This is related to the computer precision of the software code used for the 

analyses. Many loads are nonlinear and time-step dependent, thus requiring a sufficiently small 

time step to correctly resolve the hysteretic response. Some hydrodynamic and aeroelastic loads 

involve numerical convolution calculations. A representative response time length and a 

sufficiently small time step must be selected to obtain a proper calculation. 

The discussion above shows that the time-integration parameters need to be determined to achieve 

proper dynamic modeling of floating bridges. This is a complex multiparameter search that requires 

some user experience. These guidelines might help readers in future investigations of floating 

bridges and in the initial setup of a numerical model. 
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3 HYDRODYNAMIC EFFECTS ON A FLOATING BRIDGE 

3.1 Hydrodynamic effects on a floater 

The submerged parts of a floating bridge interact with the surrounding sea. The movement of the 

bridge structure in the sea can be mathematically decomposed into two load types. The first type 

is the loads acting on a fixed rigid floater and is commonly modeled as static wave loads. The 

second type is self-excited floater movement in still water conditions and results in motion-

dependent forces. Both effects can be linearly superimposed and are presented in Figure 3-1.  

 

Figure 3-1: Wave load and wave radiation-damping superposition. 

Slika 3-1: Obtežba valov in radiacija valov zaradi pomikov mostu v morju. 

The hydrodynamic effects on floating towers can be summarized as follows: 

a) wave loads on a nonmoving rigid object, which are modeled as time-dependent loads; 

b) forces induced by tower movement in still water result in radiating waves, which are 

commonly described by linear frequency-dependent damping and inertia terms, 

hydrodynamic damping and frequency dependence on the hydrodynamic added mass; 

c) other effects of inertia, viscous effects, nonlinear effects, etc. 

The submerged hull of a floating tower is modeled as a rigid body in hydrodynamic analysis, 

neglecting the hydroelastic effects. All hydrodynamic loads are a resultant force of the integrated 

pressures of the wet surfaces. The motion-dependent hydrodynamic forces in b) are measured under 

still water conditions, where the nonmoving structure is exposed to the wave loads described in a). 

By summing a) and b) together, one can describe a moving structure in the wave sea environment. 

Floating bridge systems are commonly vertically restrained by a tether anchorage system, which 

considerably reduces the vertical deformations; therefore, first-order wave load models can provide 

sufficient accuracy for practical applications. Hydrodynamic loads contribute substantially to the 

floating bridge dynamics, altering the structural properties. 

Several additional hydrodynamic effects are commonly found in the literature [9]. The underwater 

currents can be modeled as movements relative to the structure, expressed by nonlinear viscous 

Waves acting on a fixed floater     +      Moving floater in still water                 =       Wave loads on a moving floater 
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drag damping (VDD) (chapter 3.8). Hydrodynamic inertia forces are present due to displaced water 

structures, commonly modeled with linear diagonal stiffness terms (chapter 3.7). The 

hydrodynamic effects of the floater are expressed as one “hydrodynamic node” describing all 

hydrodynamic loads. The hydrodynamic node is then assigned to a finite element mesh node on 

the bridge, commonly modeled at sea level. Hydrodynamic forces have six components, i.e., three 

forces and three moments. These are described in right-hand Cartesian coordinates as surge, sway 

and heave, as presented in Figure 3-2. This thesis bridge model uses a left-hand Cartesian 

coordinate system, i.e., x, y and z, which is described as follows. 

 

  and  coordinate system

Surge x

Sway y

    Heave z
                                          

Roll rx

Pitch ry

Yaw rz

x

z

y

rx

rz

ry

   
   
   
   

=   
   
   
   
      

Hydrodynamic    Bridge

  (3.1) 

The suspension floating bridge concept is supported by a floating TLP foundation, offering support 

for the bridge floating superstructure. The agreed-upon naming system provides vocabulary that is 

used across different engineering disciplines, as shown in Figure 3-2. 

 

Figure 3-2: Parts of the floating bridge according to the hydrodynamic naming convention [29]. 

Slika 3-2: Sestavni deli plavajočega mostu [29].  
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3.2 Description of waves 

Loading due to sea surface waves is simulated as periodic loading of the moving water fluid around 

the submerged structure. Different wave generation mechanisms exist, such as wind, earthquakes, 

the motion of objects in water, and astronomical tides. No universal model that covers all wave 

motion scenarios exists. Different assumptions can be introduced to model the waves. In general, 

wave loads can be divided into sea wave loads and swell wave loads [30]. 

a) Sea waves are a series of waves driven by local wind. The waves are short-crested, 

extending 2-3 wave heights perpendicular to the direction of propagation. They are irregular 

and are modeled as a summation of different random wave frequencies. The wave crests 

look sharp under random wave motion. The wave properties are described for continuously 

varying wave periods T. 

b) Swell loads propagate without locally generated wind. They can spread hundreds of 

kilometers across the sea under calm winds. They have longer crest wavelengths, and their 

wave height is more predictable. They can pass an object with a sequence of waves. 

Waves are free-surface fluctuations of the surrounding sea. The underwater particle movement can 

be mathematically described by wave potential theory. Complicated wave systems are a 

superposition of different trigonometric waves. Each wave is described by a one-dimensional free-

surface elevation, resulting in horizontal and vertical underwater particle movement. Linear 

potential theory is then used to describe the velocity field of underwater particle movement. The 

displaced water movement results in changes in the surrounding pressure and hydrodynamic forces. 

Wave forces are mathematically modeled as a product of the transfer function and wave movement. 

The transfer function consists of the amplitude and phase lag of three-transversal and three-moment 

forces. In general, the resulting forces depend on the shape of the submerged object and its pressure 

distribution. In fjords, deep-water waves, also known as short waves, are commonly present. The 

highest point (wave crest) and lowest point (wave trough) on a wave pass the zero-elevation 

surface. The vertical separation is the so-called wave height, calculated as 𝐻 = 2𝜉a. Free-surface 

motion can be mathematically described by a superposition of cosine functions, commonly called 

first-order waves. The horizontal separation distance between two wave crests is the wavelength λ. 

The ratio between the wave height H and wavelength λ is the wave steepness H/λ. This results in a 

commonly applied cosine wave function of free-surface displacement 𝜉, which is defined as: 

 ( )a cos kx t  = −   (3.2) 

where 2 /k  =  is the wavenumber, 2 /T =  is the circular wave frequency and 𝜉a is the 

amplitude.  
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These simple relations can be presented with one degree of freedom (DOF) of free-surface motion, 

as depicted in Figure 3-3. 

 

Figure 3-3: Harmonic wave definition  

Slika 3-3: Prikaz formulacije harmoničnih valov. 

The linear wave theory assumption is used, which assumes a small steepness of waves H/λ, also 

known as first-order waves of small amplitude, thus allowing for the linear harmonic superposition 

of displacements, velocities and accelerations.  

3.3 Wave spectrum generation 

A linear superposition of different cosine wave functions holds. Here, some well-known wave 

relations are presented for stationary random processes. The measured wind-sea wave spectrum 

has a significant wave height defined by 𝐻s ≡ 4𝜎 with a peak period 𝛵p ≡ 2𝜋/𝜔p. This property 

defines the one-directional wave spectrum 𝑆ξ(𝜔) and can be extended to a mathematical model 

that includes the directional distribution of incoming waves [31]. The spectral density fluctuation 

considering multiple directions is: 

 ( ) ( ) ( )ξ,θ ξS S D  =   (3.3) 

where 𝑆ξ,θ is the directional spectrum, 𝑆ξ is the one-dimensional spectral density, and 𝐷 is the 

directional distribution function. The JONSWAP spectrum is commonly applied for wind-sea wave 

simulations of deep-water fjords [32] [33]. The spectrum shape can be suited for onsite-measured 

waves at the bridge location. The general spectrum expression is defined as:  

 ( )
4

p2 5

ξ

5
exp

4
S Ag


 



−
  

= −  
   

  (3.4) 

where 𝜔p is the peak frequency and A is the energy scaling parameter. Waves are spread around 

the main incoming wave direction by correcting the one-dimensional wave spectrum. For the 

directional distribution, the non-frequency-dependent formula can be defined as: 
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 ( )
( )

( )
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D

s






 +  
=  

 +  
  (3.5) 

where s is a directional parameter and 𝛤 is a gamma function. The circular integral of the directional 

parameter 𝐷(𝜃) yields an area equal to one; thus the energy content of the one-dimensional wave 

spectrum is not changed. The gamma function is defined by the infinite integral: 

 ( ) 1

0

s ts t e dt



− − =    (3.6) 

With these parameters, free-surface waves can be simulated for a chosen direction. An example of 

a synthetically generated power spectrum and a directional distribution for a directional angle of 0 

is presented in Figure 3-4.  

 

Figure 3-4: Wave power spectrum and directional distribution [34] 

Slika 3-4: Spekter valov in porazdelitvena funkcija smeri valovanja [34]. 
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3.4 Hydrodynamic potential theory 

The hydrodynamic potential theory analytically describes the free-surface wave potential. It is a 

well-accepted hydrodynamic offshore theory and can be applied to the hydrodynamic models of 

floating bridges. An overview and the potential theory principles are presented in the following; 

interested readers can review the literature for a more detailed explanation [30] [5]. For an 

analytically defined velocity field, a numerical evaluation of the hydrodynamic forces on a 

submerged object is possible. This evaluation is accomplished by numerical discretization of the 

submerged object and application of the appropriate boundary conditions. In hydrodynamic 

analysis, this is a well-known 3D panel numerical method. The water potential is defined by the 

following boundaries a) to f): 

a) Continuity condition, described by the Laplace equation of inviscid, incompressible and 

irrotational flow, without any surface tension effect. 

 
2 2 2

2

2 2 2
0

x y z

  
 

  
= + + =

  
  (3.7) 

b) Seabed condition for a relation valid for deep-water waves. 

 0     for:  z = h
z


= −


  (3.8) 

c) Free-surface kinematic boundary surface condition, describing the wave periodic 

surface oscillations. 

 
2

2
0     for:  0g z =

t z

  
+ =

 
  (3.9) 

d) Kinematic boundary condition on the oscillating body surface, which assumes rigid 

body movement. The velocity values for the body and water at surface S are equal. The 

normal surface component n of the surface velocity v of the hull geometry 𝑓 is: 

 ( )
6

1

, ,j j

j

v n v f x y z
n



=


=  = 


   (3.10) 

e) Radiation condition, which states that for large distances, regarding middle-sea hull 

objects, the potential converges to zero and can be defined as: 

 lim
R→

 = 


  (3.11) 

f) Symmetric or antisymmetric conditions can simplify the numerical calculation efforts. 
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The wind-generated waves are approximated by a local homogeneous random field. Potential 

theory assumes a linear relation between the surface wave motion 𝜉 and pressure distribution. The 

velocity potential equation requires a numerical solution for calculating three-dimensional 

submerged objects. For most floating bridge crossings, the deep-water wave modeling assumption 

is adequate. An analytical solution of the wave potential 𝜙 describing circulating vertical w and 

horizontal u velocities exists, as follows: 

 
( )

( )

kz

a

kz

a

cos

sin

u e kx t

w e kx t

  

  

= −

= −
  (3.12) 

The one-dimensional kinematics of deep-water waves resulting in subsea water movement in the 

vertical and horizontal directions are depicted in Figure 3-5.  

 

 

Figure 3-5: Velocity field in the deep-water model.  

Slika 3-5: Potencial hitrosti valov pri večjih globinah. 
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The presented theoretical assumptions can be solved by a numerical 3D panel method, which is 

suitable for calculating complex hull geometry shapes. The three-dimensional potential is defined 

and numerically resolved, yielding radiation diffraction forces. The theory calculates the wave-

frequency hydrodynamic loads of free-flowing objects. No leak condition is assumed for the 

submerged object or the seabed. The results for a steel hull object are presented in Figure 3-6. 

 

Figure 3-6: Steel hull (left), numerical model (middle), and excitation forces of wave propagation (right) [35]. 

Slika 3-6: Ponton iz jekla levo, numerična panelna metoda v sredini, sile valov na ponton desno [35].  

In the 3D panel method, the potential flow around the hull is calculated numerically. According to 

Green’s integral theorem, the three-dimensional linear homogeneous differential equation in Eq. 

(3.7) can be transformed into a two-dimensional integral equation. In this way, the three-

dimensional Laplace (potential) equation is transformed into a surface integral equation with 

Green’s identity theorem. The integral equation represents a distribution of sources (or sinks) and 

dipoles on the surface. The surface of the body is divided into a number of discrete panels, as shown 

in the middle of Figure 3-6. The water pressure during the wave potential is then integrated across 

panels and results in wave transfer functions. The advantage of this method is the two-dimensional 

surface calculation of any three-dimensional structure. It is suitable to investigate objects of any 

shape and size. The transfer function is then evaluated separately for each frequency, resulting in 

a transfer function of complex form. These functions are used for wave load generation or for 

potential radiation damping. The numerical approach provides results that agree well with the water 

tank measurement results and is a common tool used in hydrodynamic praxis. In addition, 

laboratory tests can be carried out for obtaining wave records and linear radiation-damping tests, 

as shown in Figure 3-7. 

 

Figure 3-7: Laboratory tests at SINTEF Trondheim: wave excitation (left) and wave radiation damping (right) [35].  

Slika 3-7: Laboratorij SINTEF v Trondheimu, obtežba valov (levo), dušenje pomikov gibanja (desno) [35]. 
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3.5 Wave load time series 

The wave load presents the integrated water pressure around the floater hull due to incoming waves. 

The water surface elevation can be presented as a collection of single wave frequencies and is 

represented by the power spectrum density (PSD), denoted as 𝑆𝜉. Conversation between the 

frequency and time domains is carried out via a pair of Fourier transforms that contain both real 

and imaginary components. This mathematical operation transforms the time-dependent measured 

wave time signal into a frequency-dependent wave PSD. These are commonly presented as 

spectrum amplitude and phase shifts. An IFT can then be applied to simulate the time-dependent 

wave records, which can be utilized in bridge response investigations. This conversion between 

measurements and wave signal generation is presented in Figure 3-10. 

 

Figure 3-8: Wave record analysis and generation. 

Slika 3-8: Meritve valov desno in sintetiziranje valov levo. 

The phase shift information is typically neglected because no requirement exists for directly 

reproducing each individually measured wave signal. Instead, artificially generated waves can be 

representative of multiple scenarios containing similar wave response energies. The discarded 

measured imaginary phase information is replaced by the uniform random phases of white noise 

spectra, which requires the generation of multiple time series to obtain the equivalent average 

spectrum energy. This process presents a notable computational effort and is challenging for any 

time-domain application. The variance in the generated signals must be maintained for an average 

of all Fourier transformations. The root mean square (RMS) of several generated time series builds 

a median time-domain response. The median of the generated signals should be on average equal 
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to the variance in the input frequency power spectrum variance. The power spectrum variance is 

calculated as the area below the input frequency power spectrum. The square of the following 

relation must be maintained between all time and frequency transformations: 

 ( ) ( )2

ξ

0

median t S d  


  
      (3.13) 

The same principle is also applicable to the wind time series, as presented in Figure 4-7. Fourier 

transformation of the generated wave time signal also involves the directional distribution. 

Homogeneous waves follow a linear stationary Gaussian model [25]. The rigid body behavior of 

the hull object is assumed, and no hydroelasticity effects are present. The wave forces 𝐹wave are 

presented with a six-component vector n, which includes three forces and three moments. The 

forces are modeled by a transfer function 𝐹𝑛 obtained using the first-order calculation of the 

potential theory presented in chapter 3.4. The time-domain wave force component is calculated as:  
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  (3.14) 

Here, 𝐹wave,n , 𝑛 ∈ {1. . .6} denotes the fixed force components, 𝐹𝑛 is a complex hydrodynamic 

transfer function, and 휀𝑖𝑗 , 𝑛 ∈ {0. . .2𝜋} is a random uniform distributed phase angle. The 

amplitudes describe the absolute values of the transfer function |𝐹𝑛(𝜔)| and the corresponding 

phase angles. The frequency-dependent values represent a range of measured frequencies, where 

the wind-sea modeling is in the range of [4𝑠. . .10𝑠]. The transfer functions can be calculated with 

the numerical hydrodynamic software AQWA, the results of which are validated through 

laboratory tests. COWI Norway [36] provided some numerical results, and SINTEF Trondheim 

made the laboratory measurements [37]. An example of the amplitudes of the wave transfer 

function for a steel hull is presented in Figure 3-9. 

  



Papinutti, M. 2021. Dynamic analysis of floating bridges   24 

Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment. 

  

        

Figure 3-9: Hull wave amplitudes; the left column shows translations, and the right column shows rotations [38]. 

Slika 3-9: Amplitude pomikov valov, levi stolpec za pomike in desni stolpec rotacije jeklenega pontona [38]. 
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3.6 Hydrodynamic wave radiation formulation 

In this chapter, the motion-induced wave radiation loads are modeled with frequency-dependent 

hydrodynamic damping and added mass. These are isolated forces without wave action, according 

to Figure 3-1. Motion-dependent forces are measured at multiple discrete motion oscillation 

frequencies, resulting in a frequency-dependent force formulation. The formulation assumes a 

continuous linear superimposition at different frequencies. The linear hydrodynamic wave 

radiation forces are expressed on the left side of the structural dynamic equation as: 

 ( )( ) ( )( )hy hy 0 + + + + =M M u C C u Ku   (3.15) 

The hydrodynamic self-excited forces are mainly acceleration-velocity dependent. The 

hydrodynamic force vector consists of frequency-dependent damping 𝐂hy(𝜔) and a hydrodynamic 

mass 𝐌hy(𝜔) contribution. Thus, the frequency-domain motion-induced hydrodynamic forces can 

be expressed as: 

 hy hy v( ) ( ) ( )  =G H G   (3.16) 

where 𝐆hy is a Fourier transform vector of hydrodynamic motion-induced forces, 𝐇hy is a transfer 

function matrix suitable for velocity transformation, and 𝐆v is a Fourier transform vector of 

structural velocities. Here, the hydrodynamic transfer function is defined as: 

 ( ) ( ) ( )hy hy hy i   = +H M C   (3.17) 

Eq. (3.15) cannot be resolved within the Newark time-integration method and requires convolution 

integration. The frequency-dependent properties are transferred to the time domain with the 

numerical IFT, resulting in the 𝐉hy(𝑡) impulse response function or retardation function: 

 ( )hy hy

1
( )

2

i tt e d 






= J H   (3.18) 

With the convolution integral over the history of structural velocities, the hydrodynamic wave 

radiation forces are calculated as: 

 ( ) ( )hy hy hy( ) ( ) ( )t t t d  


−

=  + −q M u J u  (3.19) 

This convolution integral involves integrating all the way back to the start of the simulation at each 

time step, causing increasingly slower simulation time progress. The exact derivation is presented 

in an example with a single DOF to illustrate some theoretical principles.  
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The hydrodynamic radiation force can be split into infinite and frequency-dependent contributions:  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

hy hy hy hy

hy hy hy hy

M M M M

C C C C

 

 

 = −  +  

 = −  +  

  (3.20) 

The frequency-dependent conversion into the time domain follows the IFT (3.18) and convolution 

over velocities (3.19) [5]. In hydrodynamic applications, the well-known Cummins transformation 

is used to calculate the hydrodynamic motion-induced forces [39] [40]. The wave radiation forces 

are extrapolated to fulfill a relation 𝐶hy(∞) = 0. The frequency contribution of the hydrodynamic 

transfer function in (3.17) is defined as: 

 ( ) ( ) ( ) ( )hy hy hy hy hy( )H i M M i M C   =  −  +   +    (3.21) 

where the IFT (3.18) can be written as:   
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  (3.22) 

The above equation consists of an infinite contribution 𝐽hy
∞  and a frequency-dependent contribution 

𝐽hy
𝜔  impulse response function. The infinite contribution of infinite mass has an analytical solution 

as a derivative of a step function: 

 ( ) ( )hy hyJ M t =    (3.23) 

The frequency-dependent solution is found by a numerical Fourier transformation. Since the forces 

can be described by a continuous function, the complex exponential Fourier transformation  𝑒𝑖𝜔𝑡 =

𝑐𝑜𝑠( 𝜔𝑡) + 𝑖 ⋅ sin(𝜔𝑡) is written in trigonometric form as: 

 ( ) ( ) ( )( )( )hy hy hy hy

1
( ) cos( ) sin( )

2
J t i M M C t i t d 







−

 =  −  +  +       (3.24) 

The double-sided spectrum can be written as a sum of two single-sided spectra, consisting of 

integrals from the negative and positive frequency axes: 

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

hy hy hy hy

hy hy hy

0

1
( ) cos( ) sin( )

2

1
              cos( ) sin( )

2

J t i M M C t i t d

i M M C t i t d

 


 






−



 =  −  +  +    + 

  −  +  +    





  (3.25) 

Applying asymmetry and symmetry valid for the causal invariant dynamic system changes the 

integration limits and results in a single-sided spectrum: 
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  (3.26) 

This expression simplifies to: 

 ( ) ( ) ( )hy hy hy hy

0 0

1 1
( )  sin( ) cos( )J t M M t d C t d      

 

 

  = − −  +     (3.27) 

Introducing additional assumptions for all negative times, the response 𝐼𝜔(−𝑡) = 0. Since no 

motion information is present before t=0, this result is valid for nonvibrating structures. This will 

be reflected in the change in the integral limit, yielding the following relation: 

 ( ) ( ) ( )hy hy hycos( ) sin( )C t d M M t d       = − −     (3.28) 

An important relation between frequency-dependent added mass and frequency-dependent 

radiation damping is derived that is valid for causal dynamic systems. Substituting the relation 

(3.28) into equation (3.27) yields:  

 ( ) ( )hy hy

0

2
( ) cosJ t C t d  





 =    (3.29) 

The total impulse response function is convoluted over the velocity history of motion (3.19), 

yielding: 

 ( ) ( ) ( ) ( ) ( )( ) ( )hy hy hy

0 0 0

2
( )   + cos  

t t

q t M t u t d C t u t d d −     −   




=      (3.30) 

The analytical solution of an infinitely contributing hydrodynamic mass is: 

 ( ) ( ) ( ) ( )( ) ( )hy hy hy

0 0

2
( ) cos  

t

q t M u t C t u t d d  −   




=  +     (3.31) 

Typical input data for frequency-dependent hydrodynamic wave radiation of added mass and 

damping are presented for the steel hull (Figure 3-6) in Figure 3-10. These principles are applied 

to a multi-DOF coupled dynamic system, yielding the linear wave radiation formulation in matrix 

format presented in (3.19). 
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Figure 3-10: Frequency-dependent damping C(𝜔) and hydrodynamic mass M(𝜔) of a steel hull [29]. 

Slika 3-10: Rezultati jeklenega pontona za rekvenčno odvisno hidrodinamično dušenje C(𝜔) in maso M(𝜔) [29]. 
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3.7 Hydrostatic restoring forces 

 The submerged hull has to provide buoyancy to 

the bridge superstructure. The hydrostatic force is 

constant over time and represents the floater 

buoyancy. According to Archimedes’ principle, 

hydrostatic forces are equal to the floater volume 

of replaced water. This permanent vertical force 

gives the required uplift to balance the total 

permanent and dynamic bridge loads. The design 

requirement is that the buoyancy uplift force is 

always higher than the maximum possible 

combination of negative vertical loads on the 

floater. The excess vertical uplift forces are taken 

by the tether system and are therefore always 

subject to tension. This setup ensures a position 

in the sea with minimal vertical displacements 

and larger lateral deformations. This system 

works as a reverse pendulum, with the tethers 

designed to have tension at all times, as presented 

in Figure 3-11.  

The buoyancy force of the submerged object is calculated as:  

 buy hullg=F V   (3.32) 

where 𝐅buy is the vertical force component, g is the gravitational acceleration, 𝐕hull is the volume 

of the submerged floater, and ρ is the water density. For the dynamic variation in the loads, a linear 

change in forces is expressed by a linear spring coefficient related to a vertical stiffness 𝐊hy, which 

is calculated as: 

 

hy,y y,wp

hy,rx zz,wp

hy,rz xx,wp

k g

k g

k g

 

 

 

=

=

=

  (3.33) 

where 𝛢y,wp is a wet surface defined by the intersection of the hull with the seaplane and 𝛪zz,wp, 

𝛪yy,wp are the moments of inertia of the wet surface cross-section. A linear set of the vertical spring 

system describes the constant variation in the wet surface interface cross-section. For the given 

final steel hull design geometry presented in Figure 3-7, the hydrostatic restoring forces are 𝑘hy,y =

7 MN, 𝑘hy,rx = 𝑘hz,rx = 2200 GN. The platform produces 𝐹buy = 900 MN of the vertical uplift 

force to support the floating bridge [36].  

Figure 3-11: TLP suspension bridge concept. 

Slika 3-11: Zasnova TLP visečega mostu. 
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3.8 Current load  

The hydrodynamic drag force results from the inflow of underwater sea currents. The currents are 

represented by the velocity vectors of the sea and are nonlinearly distributed in the vertical 

direction. They are simulated as time constant loads, where the dynamic damping effect is present 

due to structural movement. These loads are commonly classified in the literature as viscous-drag 

damping (VDD) loads [41] [30]. The current load is the relative velocity between structural 

movement and the current velocity, as depicted in Figure 3-12. Its global bridge effects can be 

described by the static load contribution and low-frequency dynamic damping participation. All 

submerged elements, such as the hull and tethers, are subject to underwater current flows. The 

relative velocity 𝑉rel between the structure and the current velocities is calculated as: 

 rel stream elem intV V V f= −   (3.34) 

The interaction factor 𝑓int is an empirical value that takes into account possible modified 

interactions caused by different oscillation frequencies and changes in surface roughness due to 

algae collected on the tethers. The VDD element distributed load is expressed as:  

 
exp

cur rel

1

2
dF C DV=   (3.35) 

where ρ is the water density, Cd is the drag coefficient, D is the diameter and 𝑒𝑥𝑝 = 2 is the velocity 

exponent.  

 

Figure 3-12: Viscous-drag damping load and the relative velocities.  

Slika 3-12: Viskozno dušenje morskih tokov in prikaz relativnih hitrosti. 

Load implementation can be carried out by applying a nonuniform load distribution to the 

submerged element. The current vector is defined as the global direction vector, and a table of the 
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variable current profile along the selected axis is provided. The diameter of the element cross-

section can be defined from a database catalog or can have a user-defined value. The hydrodynamic 

model coefficients are as follows: the drag coefficient, the density of water (approximately 1.0 

t/m3), and the exponent, which is set to 2 for viscous damping. The interaction factor 𝑓int is 

commonly set to values near 1.0. Subdivision of the load distributes the nonuniform current loads 

along the finite element beam and thus enables a more exact force calculation. This feature has 

been implemented in RM Bridge, as depicted in Figure 3-13. 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: Implementation in RM Bridge [2].  

Slika 3-13: Programiranje v programu RM Bridge [2]. 

3.9 Time-domain formulation  

All the hydrodynamic effects presented in chapter 3 are summarized herein. Combining different 

hydrodynamic forces into a linear dynamic equation of motion yields:  

 ( )( ) ( )( ) ( ) ( ) ( )hy hy hy buy wave curt u+  + + + + = + +M M u C C u K K u F F F   (3.36) 

The hydrodynamic effects are described in the “hydrodynamic” node at sea level relative to the 

pylon. The motion-induced hydrodynamic forces are calculated for each hull as a 6X6 matrix of 

added symmetric mass 𝐌hy(∞) and nonsymmetrical added damping 𝐂hy(𝜔). The hydrodynamic 

radiation forces and frequency-dependent participation are resolved via velocity convolution 

integration. The result of the convolution integral is a six-component force vector and is moved to 

the right side of the dynamic equilibrium. The infinite mass contribution is resolved implicitly on 

the left side of the dynamic equilibrium. The nonlinear and all the nonsymmetrical loads are moved 

to the right side, where they are resolved explicitly. The dynamic system is then resolved with the 

following final form:  
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Convolution integration is a time-consuming mathematical operation; hence, an efficient algorithm 

is necessary to evaluate the response. Several possibilities exist for improving the numerical 

efficiency. The calculation time is measured during implementation inside RM Bridge to 

investigate the numerical efficiency of the floating bridge analysis. The relatively long calculation 

time is due to many additional nonlinear effects, which cause an increase in the number of Newton-

Raphson iterations. An average of 50 iterations is required to resolve the dynamic equilibrium 

convergence of floating bridges. This high number results in considerable additional numerical 

effort when evaluating the convolution integral areas inside the Newton-Raphson convergence. To 

reduce the calculation times, the convolution integration can be split into two parts, i.e., 

convolution before 𝑡𝑛 and convolution participation of the last iterated time step: 

 
1 1

hy hy hy hy

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

n

t t t

t

t t d t d t d   =    +   
+ +

= − − −  q I u I u I u  (3.38) 

This implementation speeds up the evaluation of the convolution integral up to 50 times and is 

beneficial for nonlinear structural responses. In addition, the retardation function 𝐈hy is 

precalculated and stored in the read access memory. Furthermore, different integration algorithms 

are tested, such as constant, linear and cubic integration rules. Linear integration offers the best 

accuracy-performance ratio and thus is chosen for the final implementation. 

An interesting alternative is a state-space method that transforms the second-order convolution 

operations into a set of first-order linear system equations. The linear terms of this reduced matrix 

have to be fitted to the experimental hydrodynamic data. Thus, a linear system can be resolved with 

simple matrix multiplication operations, which results in significant computational efficiency 

compared to convolution. However, additional work on obtaining reliable matrices for an 

equivalent linear dynamic subspace system should not be neglected. This work is made possible 

with complicated expressions for fitting to self-excited forces, such as rationa and indicial fnctions, 

and requires user experience.   
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4 WIND LOAD ON BRIDGES 

4.1 Preview 

This chapter presents dynamic wind loads according to the strip theory of bridge aerodynamics 

[42]. The presented wind load formulations are suitable for the finite element method discretization 

of line-like bridge structures [43]. The wind load is a superposition of different force actions on a 

bridge strip section. The wind load effects are grouped as follows: I) mean wind, II) turbulent wind, 

III) self-excited motion and IV) vortex shedding loads, as depicted in Figure 4-1.  

 

Figure 4-1: Different wind load components on a bridge deck section.  

Slika 4-1: Različne vrste vetrnih obtežb na most. 

Motion-induced load models can be simulated with steady aerodynamics, unsteady aerodynamics 

and nonlinear aerodynamics models. The popular QSS model is derived from the assumption of 

fully developed flow around the indicial wind angle. This approach is convenient for 

implementation due to the availability of aerodynamic input. This formulation is applied in the 

current time-domain floating bridge design and has been implemented in several commercial 

software programs. Unstable models are popular in aeroelastic research, where linearized flutter 

derivatives are especially convenient [44]. The wind tunnel measurements reveal that self-excited 

force models are more suited to capturing motion-induced forces than are QSS models, resulting 

in better accuracy in wind buffeting response prediction and opening up the possibility for 

aeroelastic investigations. The nonlinear structural response can be successfully resolved with a 

time-integration approach and requires a proper formulation for frequency-dependent self-excited 

forces. Rational functions are commonly used in time-domain investigations but are not often 

implemented in commercial codes. This research develops new possibilities for including a self-

excited force model suitable for implementation in current floating bridge projects. An accurate 

prediction of fully coupled time-domain floating structures can be achieved by introducing a 

specifically tailored self-excited force formulation into the presented numerical scheme. This 

integration is made possible by using the existing hydrodynamic functionality inside the software 

together with the developed load models. New linear self-excited numerical models are developed 

and validated with wind tunnel measurements.  
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4.2 Turbulent wind description 

The incoming wind vector 𝑼(𝑡) is decomposed into a constant mean value 𝑽 and fluctuations 𝒗(𝑡) 

around the mean value, written in matrix notation as 𝑼(𝑡) = 𝑽 + 𝒗(𝑡). The wind directions are 

described in a wind left-hand Cartesian coordinate system, where the component 𝑢(𝑡) is in the 

direction of the wind fluctuation, 𝑣(𝑡) is the vertical fluctuation in the reverse gravity direction, 

and 𝑤(𝑡) is the fluctuation in the horizontal direction, defined as:  

 

( )

0 ( )

0 ( )

U(t) V u t

V(t) v t

W(t) w t

     
     

= +
     
          

  (4.1) 

The wind field properties 𝐔 are a function of the height and depend on the terrain roughness of the 

surrounding area. The wind flow is turbulent by nature and is commonly modeled with stochastic 

methods. Here, the Fourier transformations presented in Figure 3-8 are applied to model a 

homogeneous wind field. The information required for the determination of the load effect on a 

bridge commonly includes the mean wind profile, power spectrum, turbulence intensity and 

coherence of wind fluctuations. The wind field velocity (4.1) can be described as a fluctuating force 

around the mean wind velocity, as depicted in Figure 4-2.  

 

Figure 4-2: Example of turbulent wind fluctuations. 

Slika 4-2: Prikaz primera simulacije turbulentnega vetra. 

Wind fluctuations are modeled by time-dependent signals, and the input is commonly provided by 

a single-sided PSD [45] [46] [47]. The wind spectra of turbulent wind describe the amount of 

energy associated with different frequencies, as depicted in Figure 4-3. Typically, three spectra 

together with the associated coherence describe the turbulent wind field. The wind power spectrum 

is commonly presented as a product of the variance and its normalized frequency PSD distribution 

𝑆(𝜔) = 𝜎 ⋅ 𝑃𝑆𝐷(𝜔).  
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Figure 4-3: Normalized PSD and the corresponding time-domain transformation [48]. 

Slika 4-3: Normaliziran turbulentni spekter vetra in pripadajoča časovna transformacija signala [48]. 

For the time-domain simulations, reverse engineering from the frequency power spectra to time-

domain signals is possible via IFT techniques, as shown in Figure 3-8. These synthesized signals 

do not exactly reproduce the input spectrum, as observed in Figure 4-3; however, they are 

statistically achieved for an average realization in Figure 4-7. The nonhomogeneous wind field is 

described by stochastic auto- and cross-correlation spectra, which define the wind field 

fluctuations. The fluctuations across the bridge are correlated time-varying fluctuations, which are 

described by the correlated wind fluctuations [49] [50] [51] [52] formulation as: 

 ( ) ( ) ( )
M N

ij ,

1 1

2 cosk k i k

j k

t t   
= =

=  +v S   (4.2) 

where i is the wind node number, k is the frequency, 𝐒ij is the decomposed correlated wind spectrum 

matrix, 𝜔 is the frequency and 𝜓𝑖,𝑘 is the random phase angle of the white noise spectrum. In this 

approach, the correlation between different directions and wind nodes along the bridge is 

introduced. The correlated wind nodes are assembled in the form of a symmetrical lower triangular 

matrix, which is defined as follows: 
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ij 1

1

i ij

M Mj MM

symm 
 

=  
 
 

S

S S S

S S S

  (4.3) 

where the power spectra for two separated points i and j are calculated with an average spectrum 

and its coherence as: 

 ( )ij i j s= S S S Coh   (4.4) 

To solve (4.2), several techniques are available [53] [54] [55]. In this work, an inverse discrete fast 

Fourier transform (IDFFT) algorithm is applied and implemented. Sufficiently refined time, 

frequency and space discretization are required for accurate wind fluctuation calculations in the 

time domain. This represents a computational challenge for large 5 km long floating bridges. 
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Floating bridges are commonly represented by larger complex finite element models and require 

long simulation times [3] [56]. The time series generation (4.2) of approximately 40000 wind nodes 

is a challenging task for PCs. Good concept development and preformat numerical algorithms can 

considerably reduce the computational time. Therefore, a specifically tailored solution is 

programmed into the software increase the speed of the calculations. The first improvement is the 

generation of wind turbulence on the wind plane, as shown in Figure 4-4. From the wind plane, 

wind turbulence is interpolated on a finite element mesh. The wind plane can have independent 

space discretization based on wind generation requirements. Coarse frequency discretization is 

added in (4.2), where the assembly of (4.3) is performed at predefined frequencies of the wind 

power spectrum. To achieve the required fine discretization of frequencies for the IDFFT operation, 

a linear interpolation between different assembly planes is applied, as presented in Figure 4-4. The 

IDFFT algorithm is significantly faster than the trigonometric cosine operation of the IDFFT 

algorithms. The parallel solver in (4.3) is added to further increase the calculation speed. The 

directly used equation (4.2) would require more than 1 month of computation time. After the 

described algorithms are introduced, the computation time is reduced to approximately 15 min, 

achieving a speed-up factor of approximately 510 . This work to develop an efficient algorithm for 

time series calculations is important for achieving an effective workflow. The presented 

implementation is applied to the example of the floating bridge time-domain simulations presented 

in chapter 6. 

 

Figure 4-4: IDFFT algorithm calculations (left) and the wind plane (right). 

Slika 4-4: IDFFT algoritem za izračun turbulentnega vetra (levo) in ravnina vetra (desno). 
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A demonstration is presented for a homogeneous wind field calculation. The wind is calculated for 

multiple points across the bridge length at an elevation of 20 m. The described wind field is 

calculated with equations from (4.2) to (4.4). The time scale is 𝑡end = 2000𝑠 with Δ𝑡 = 0.2𝑠, and 

the frequency sampling is 𝑓 = {0 - 5} Hz with Δ𝑓 = 5 ⋅ 10−5𝑠. The wind field is simulated for all 

three wind fluctuations u, v, and w. A constant mean wind V=45 m/s is applied over all domains, 

ensuring homogeneous properties. The coherence function is dependent on the frequency of the 

wind fluctuations and the distance between nodes. Several coherence modeling formulations are 

available, among which the popular exponential decay model is applied, as follows: 
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Here, 𝑓 is the wind oscillation frequency in Hz, Cij is the coherence exponential decay coefficient 

matrix, and , ,dx dy dz  are the length distances between wind nodes, where the length vector is 

rotated in the same direction as the incoming wind vector 𝐔. For a nonhomogeneous wind field, 

the average wind speeds between two nodes are taken as 𝑉ij = (𝑉i + 𝑉j)/2. The wind fluctuation 

can be described by various wind spectra, where a proper spectral application should be 

investigated for each construction side individually. In this thesis, the Kármán [57] continuous gust 

wind fluctuation is modeled as: 

 

( )

( )

( )

5/62 2

u

uu u u

11/62 2 2

v

vv v v v

11/62 2 2

w

ww w w w

TI V
4 1 70.8

V V

TI V
4 1 755 1 283

V V V

TI V
4 1 755 1 283

V V V

f f
S L L

f

f f f
S L L L

f

f f f
S L L L

f

    =  +       

        =  + +                 

       =  + +                

uv uw vu vw wu wv 0S S S S S S






= = = = = =

  (4.6) 

Here the integral length scales are selected as 𝐿u= 180m, Lv= 120m, Lw= 40m , and the turbulence 

intensities are ΤΙu= 6.66%, ΤΙv= 4.44%, and ΤΙw= 2.22%. The standard deviation is defined as 

𝜎 = 𝑉 ⋅ ΤΙ/100% , resulting in 𝜎u= 3 m/s, 𝜎v= 2 m/s, and 𝜎w= 1 m/s. The defined wind power 

spectra in (4.6) are presented in Figure 4-3 in red, and the values numerically calculated with (4.2) 

are presented as fluctuating black curves. The three wind fluctuations calculated using (4.2) are 

presented for a single wind node, as shown in Figure 4-2. The wind field presented corresponds to 

a length of 2000 m (see Figure 4-5) and has a longitudinal component u(t). The extremely high 
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(yellow) peak velocities are visually clustered in the reefs and represent an average integral length 

scale 𝐿u= 180 m, as introduced in (4.6). 

 

Figure 4-5: Homogeneous wind field fluctuation u(t) for a span length of 2000 m at a height of 20 m. 

Slika 4-5: Homogena vetrna turbulenca u(t) v dolžini 2000 m, na višini 20 m. 

Different parameters are investigated to achieve an accurate reproduction of the wind field from 

the wind spectra. Eq. (4.2) is used in Monte Carlo simulations and replaces the unknown phases 

with random variables [58]. The time and frequency domains are similar in wave generation (3.13)

. To satisfy a statistical average, a set of 50 wind realizations with different random phase angles 

are calculated. Fifty different realizations of three components of the wind time series are presented 

in Figure 4-6. The RMS values of all signals agrees well with the input standard deviation 𝜎 and 

for the turbulence intensities. Possible deviations can lead to an investigation of the correctness of 

the chosen time scale or frequency scale. The scattered peak factors represent the ratio of the 

absolute maximal value to the standard deviation. The scattered maximal structural response 

calculation requires several wind time series calculations and the application of statistical methods.   

 

Figure 4-6: Properties for 50 different turbulent time series realizations 

Slika 4-6: Lastnosti tridesetih simulacij turbulentnega vetra. 
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The generated time series realizations are transformed back to the wind spectrum to confirm the 

correct transformation. On average, turbulent wind time series tend to reproduce the energy of the 

input wind spectra. Figure 4-7 shows the calculated spectrum and coherence defined in Eq. (4.5), 

with an exponential decay factor Cuy = 4 and a separation of 20 m.  

 

Figure 4-7: PSD of the generated time series and coherence in wind direction u. 

Slika 4-7: Spektri in koherenca za različne časovne realizacije, prikaz v smeri vetra u. 

Invariant processes are often used in bridge design practice and are verified in the literature. The 

wind field is often measured and represented as an invariant 10-minute peak period wind event. 

The simulated stationary invariant dynamic wind involves simplifications of the onsite-measured 

results, with the intention of covering all extreme responses. Most likely, 5 km long floating bridges 

will be exposed to variant and nonhomogeneous winds. To cover the worst-case scenario, some 

bridge standard recommendations involve load scenarios of nonhomogeneity in both the vertical 

and longitudinal directions [59] [60]. The methods described in (4.2) can be applied to model 

nonhomogeneous wind fields, such as the mean wind variation over the height. Thus, directly 

applying the methods in (4.3) can result in some numerical difficulties in the Cholesky 

decomposition, which requires specifically designed algorithms. Over large distances, extreme 

wind scenarios could occur for nonhomogeneous time variant wind events. To account for these 
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variant scenarios, more sophisticated wind spectra analyses might be introduced. A wavelet 

transformation is a possible candidate for synthesizing and investigating the correlation between 

different variant time processes [61]. The wavelet transformation involves the frequency 

decomposition of continuous-time sections and is well applied in biomedicine, spectrography, 

image processing, the aerospace industry, etc. The transformation calculates the magnitude-

squared correlation, evaluated between 1 and 0, presented as varying colors in the figure below. 

The varying frequency contest can be observed in the investigated time period. Figure 4-8 

demonstrates the wavelet transformation of the invariant homogeneous wind fluctuation generated 

in Figure 4-5.  

 

Figure 4-8: Wavelet for homogeneous invariant transformation of u(t) for 20 m and 1000 m separated nodes. 

Slika 4-8: Wavelet transformcija vetra vzdolž 1000 m mostu na višini 20 m. 

The time-invariant wind field is almost fully correlated over time for nodes separated by a short 

distance of 20 m, where a low correlation is observed for a separation of 1000 m. The imaginary 

phases of transformation are presented with arrows, where the arrow directions represent the phase 

angles. These methods have possible applications in extreme wind synthesis for long-span floating 

bridges. They could assist in the investigation of nonhomogeneity and variant winds to better match 

the onsite wind measurements and improve extreme wind event investigations.  
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4.3 Dynamic wind load 

The aerodynamic wind forces are calculated according to the strip theory of a line-like structure 

[54] [62] [63]. The aerodynamic forces are defined with dimensionless coefficients, i.e., the drag 

𝐶D in the wind direction, the lift 𝐶L in the vertical direction and the moment 𝐶M around the element 

axis. The aerodynamic force is derived from the Bernoulli equation. This formulation allows the 

scaling of the aerodynamic forces measured in wind tunnels to real bridge sizes. The mean wind 

force 𝐅mean vector is defined for the central wind flow indicial angle   and is expressed as: 
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where ρ is the air density, V is the laminar mean wind speed and B is the normalization width of 

the strip cross-section. The wind load is defined for a unit length of 1 m. The dynamic wind load 

formulation is a resultant force of the mean wind load component, incoming wind turbulence 

component, structural velocities and displacements. The nonlinear wind buffeting formulation 

𝐅buff,nl is expressed as:  
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where the time variant resultant wind velocity 𝑉tot and effective angle of wind attack β are defined 

by: 
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The velocity vector components according to QSS theory are presented in Figure 4-9.  

 

Figure 4-9: Wind buffeting load vector components on a bridge segment. 

Slika 4-9: Obtežbeni vektor turbulentnega vetra na most. 
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Linearization of the wind buffeting formulation (4.8) according to the QSS airflow theory is 

common [54]. The first step involves linearization of the aerodynamic derivatives around the mean 

wind angle α with the help of the aerodynamic derivatives 𝐶D
′ , 𝐶L

′ , 𝐶M
′  as: 
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  (4.10) 

The second linearization neglects the small squared terms in (4.9) relative to the mean wind V: 
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Substituting the linearization of (4.10) and (4.11) into (4.8) forms the well-known linear wind 

buffeting matrices. They are superpositions of the mean wind load 𝐅mean, turbulent wind load 𝐅buf, 

quasi-static aerodynamic damping 𝐂qss and aerodynamic stiffness 𝐊qss. The total load linearized 

wind buffeting format is expressed as: 

 

( )

( )

( )

buf,lin mean buf qss qss

D D D L

2

L L L D

M M M

D D L y D2

L L D z L

M M rx M

2
1

2
2 2

2

2 0 0 0

2 0 0 0
2 2

2 0 0 0

t

C C C C
u tVB

V B C C C C
w t

BC BC BC

C C C u C
VB V B

C C C u C

BC BC u BC




 

= + + +

 −   
     = + +              

 −    
   − + −  
      

F F F v C u K u

y

z

rx

u

u

u

  
  
  
     

  (4.12) 

The linearized 𝐅buf,lin formulation can be inserted into the Newark time-integration scheme as: 

 ( ) ( ) ( )qss qss mean buf t+ + + + = +Mu C C u K K u F F v   (4.13) 

This formulation is suitable for both time history integration and modal decomposition [64] [65] 

[66] [67]. The linearization might make an important contribution and must be investigated for 

individual projects. This formulation is successfully implemented in floating bridge design and is 

discussed in chapter 6. 
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4.4 Self-excited aeroelastic forces 

In the early 20th century, long-span bridges were built extensively and provided a cost-efficient 

solution for longer spans. The second-order theory was developed to incorporate the cable sagging 

effect on structural stiffness, resulting in up to 30% material savings and making slender structures 

more sensitive to dynamic vibrations. The well-known Tacoma Narrows bridge collapse of 1940 

was due to a very low wind speed of only V=17 m/s. The detailed investigation concluded that the 

collapse was caused by then-unknown motion-induced phenomenon. The first airfoil theory of the 

20th century was developed in the aerospace industry, and its principles were applied in the Scanlan 

theory of coupled flutter instability calculation [22]. This formulation enabled the investigation of 

the aeroelastic critical wind speeds of flexible structures. The inputs are linearized frequency-

dependent flutter derivatives and are valid around the mean wind direction 𝛼. The dimensionless 

characteristics of the cross-section can be measured in a wind tunnel or can be calculated with 

modern CFD tools [68] [69]. The developed numerical methods have been validated using the 

experimental results obtained from the wind tunnel laboratory at NTNU Trondheim [70]. A modern 

force vibration rig can reproduce various deck motions and very accurately measure the self-

excited force. Sophisticated motion-controlled sections are controlled by six servomotors, as shown 

in Figure 4-10.  

 

Figure 4-10: Wind tunnel rig at NTNU Trondheim [71].  

Slika 4-10: Eksperimentalni instrument iz vetrovnika NTNU v Trondheimu [71]. 

The QSS motion-induced formulation in (4.12) is modeled by constant aerodynamic damping 𝐂qss 

and the stiffness matrix 𝐊qss. The wind tunnel measurements show that the QSS models fail to 

properly reproduce aeroelastic instability and can lead to a poor aerodynamic damping estimate. 

Aeroelastic formulations are therefore preferred for flexible floating bridge structures and will 

deliver accurate results [72] [73] [74] [75] [76]. The nonsteady self-excited matrices 

𝐂se(𝐾) and 𝐊se(𝐾) replace the steady-state aerodynamic matrices 𝐂qss and 𝐊qss in (4.12). The load 

directions are identical to the direction presented in Figure 4-9. 
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The measured results are commonly normalized on cross-section width B. The self-excited forces 

per unit length are expressed as: 
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The reduced frequency 𝛫 = 𝜔𝛣/𝑉 is defined by the circular bridge deck frequency 𝜔 =

2𝜋𝑓 [rad/s]. The flutter derivatives are represented by the drag 𝑃𝑖
∗, lift 𝐻𝑖

∗ and moment 𝐴𝑖
∗ forces, 

where 𝑖 = (1, 2,...,6). The symbol * on the flutter derivatives indicates that the values are 

dimensionless and a function of the normalized reduced velocity �̂� = 𝜔𝛣/𝑉. This formulation is 

commonly applied in aeroelastic instability checks and is suitable for linearized wind buffeting in 

frequency-domain calculations. The wind effect, with the self-excited formulation substituted into 

the time-domain equation of motion, can be written as: 

 ( )( ) ( )( ) ( )se se mean buf t + + + + = +Mu C C u K K u F F v   (4.15) 

The resolution of the frequency-dependent terms is made possible by convolution integration in 

the time domain. This research investigates several convolution formulations and different 

interpolation functions. The nonsymmetrical infinite aeroelastic matrices are moved to the left side 

of the equation. The frequency-dependent part can be resolved as aeroelastic damping with the 

hydrodynamic convolution integration presented in chapter 3.6. The implemented approach is 

flexible and can incorporate different self-excited models into the software solution as: 
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This approach does not require additional implementation and reuses existing approaches available 

in the hydrodynamic software. To substitute the self-excited formulation into (4.16), the flutter 

equations have to be rewritten in a proper mathematical format. Several alternatives are presented 

and discussed in the following chapter.    
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4.5 Time-domain formulation of the self-excited forces 

The flutter derivatives are measured at discrete points for a range of reduced frequencies. An 

interpolation function is applied for a continuous presentation. The fitted frequency-dependent 

function is then suitable for transferring the self-excited forces into the time domain. Equation 

(4.14) is valid for only a single-frequency harmonic motion. By introducing the principle of 

superposition, this can be extended to any periodic or aperiodic motion by applying the Fourier 

integral representation [77] [78] [79] [80]. The frequency-domain response of self-excited forces 

𝐆q is expressed as: 

 q se u( ) ( ) ( )  =G F G   (4.17) 

where 𝐆q is the Fourier transform of the self-excited force vector, 𝐆u is the Fourier transform of 

the displacement vector, and 𝐅se is the self-excited transfer function matrix. The transfer matrix 

converges the displacement into self-excited forces and is defined by: 

 ( ) ( )se se se( ) i   = +F C K   (4.18) 

Here, i is the imaginary unit, and ω is the oscillation frequency in radians. The self-excited force 

transfer function (4.18) is defined for flutter derivatives (4.14) as: 
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The impulse response matrix 𝐈se is obtained by taking the Fourier transform of the transfer function 

𝐅se as: 

 se se
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where 𝑒𝑖𝜔𝑡 = 𝑐𝑜𝑠( 𝜔𝑡) + 𝑖 ⋅ sin(ω𝑡) is a complex trigonometric vector. The time-domain 

counterpart is obtained by applying the convolution theorem and integrating via the displacement 

history as: 

 u se( ) ( ) ( )t t d  


−

= −q I u   (4.21) 
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An alternative calculation using the Fourier transform and convolution over the velocity histories 

is developed. To reproduce the same self-excited forces using a higher-motion derivative, the 

transfer function should be modified, which can be achieved by investigating the relation between 

the Fourier derivatives of the displacement and velocity vectors:  
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Therefore, the transfer function of the displacements (4.18) is divided by 𝑖𝜔 to ensure that (4.17) 

and (4.23) provide equivalent responses. The self-excited force 𝐆q of the velocity formulation is 

defined as:  

 q se v( ) ( ) ( )  =G H G   (4.23) 

where 𝐆v is the Fourier transform vector of the structural velocity vector, 𝐇v is the transfer function 

matrix for velocities and 𝐆q is the frequency-dependent self-excited force vector. The velocity 

transfer function is: 
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The flutter derivative transfer function is expressed as:  
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The velocity transfer matrix now switches components into real damping terms and imaginary 

stiffness terms. The Fourier transform of the velocity transfer function matrix yields the impulse 

response function 𝐉se: 
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The convolution theorem calculates the time-domain response by integrating the impulse response 

via the velocity history as: 

 se se( ) ( ) ( )t t d  


−

= −q J u  (4.27)  
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4.6 Parametric modeling of self-excited forces 

Rational functions (RFs) and indicial functions are commonly used to interpolate scattered flutter 

derivative measurements. Both functions are especially suited for time-domain applications and 

provide an analytical solution expression. The fitted expression has an inherited tendency to 

converge to a constant value at infinite frequency ∞. This work presents only RFs; however, similar 

principles can be applied to indicial functions. An example involving a single DOF is demonstrated, 

and analogical expressions are derived for the coupled motion of equations presented from (4.18) 

to (4.20). The general dimensionless form of transfer functions can be represented as a function of 

reduced frequency K. The following fitting expression of RFs has been frequently used in the 

literature [81] [72]: 
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where an is a fitting coefficient, dl is a pole fitting coefficient and N is the number of poles needed 

to fit the data. For practical applications, approximately three poles are used to fit the experiments. 

The coefficients related to inertia a3 are neglected due to their minimal participation. For the 

vertical lift direction, the rational expression is fitted to the flutter derivatives as:  
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To interpolate (4.28), i.e., the aeroelastic transfer function, Eq. (4.19) is split into real and 

imaginary components. The real part is fitted to the stiffness terms, and the imaginary part is fitted 

to the damping terms: 
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The RF is fitted to a complex force vector, which requires a nonlinear regression fitting procedure. 

An efficient numeric fitting approach for a quick and successful regression generally exists. First, 

the pole coefficients are chosen as 𝑑𝑙  𝑙 ∈ (1, 2, . . . , 𝑁 − 3), and the rest of the coefficients 𝑎𝑖  𝑖 ∈

(1, 2, . . . , 𝑁) are calculated with linear regression. Second, the nonlinear regression fit is used to 

find the optimal 𝑑𝑙, and linear regression is used to calculate 𝑎𝑖. Third, when an optimal set of d is 

found, nonlinear regression is used to find all the coefficients 𝑎𝑖 and 𝑑𝑙, which allows a slight 

adjustment of all the curves. It is often helpful to start with QSS asymptotes and iterate from there. 
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The coefficients 𝑎𝑙 differ, and the same 𝑑𝑙 values are chosen for all DOFs. This method requires 

considering how to appropriately choose the starting values for the nonlinear regression scheme, 

and the convergence results should be monitored. It has a rather complex curve fit, and therefore, 

the automated procedure is rather challenging, particularly for scattered and limited reduced-

frequency data.  

Displacement convolution format 

The rational function (4.28) has a transfer function that is defined as:  
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This expression has an analytical IFT (4.20) solution in the following form: 
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The time-domain force in Eq. (4.21) is calculated for the impulse response (4.32) as:  
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    (4.33) 

 

The expression has coefficients related to the infinite contribution and results in constant values. 

The frequency contribution convolutes over the displacement response history. The infinite and 

frequency variation contributions are depicted in Figure 3-8. 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Aeroelastic damping and stiffness, and the infinite and frequency variation contributions. 

Slika 4-11: Aeroelastično dušenje in togost, neskončni in frekvenčno odvisni prispevek. 
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Velocity convolution format 

The transformation between (4.23) and (4.27) calculates the self-excited forces. The displacement 

transfer function format (4.31) of rational fit is expressed via (4.24) into a velocity transfer function 

format as:  

  
3

2

se 1 2 3

1

1 1 /
( )

2 /

N

l

l l

B B V
H V a a a

i V i B V d
 

 

−

+

=

 
= + + 

+ 
   (4.34) 

The impulse response function is calculated with (4.26) as: 
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   (4.35) 

The response is calculated with velocity convolution (4.27) as: 

 ( ) ( ) ( )
( )
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3
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1 0
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l

l

B
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+

=

  
 = + +  

  
  

    (4.36) 

 

Equations (4.36) and (4.33) yield equivalent responses for the rational function fit. This outcome 

is related to the causal dynamic system property inherited in the parametrically fitted rational 

function. The presented alternative velocity convolution formulation may offer some advantages 

for the implementation of self-excited forces in various commercial software environments.  

4.7 Nonparametric modeling of self-excited forces 

A new novel approach to calculating the self-excited forces in the time domain is presented. It does 

not require the complex nonlinear regression fitting of causal dynamic systems. It offers further 

possibilities for the application of different freely chosen fitting functions, such as polynomial, 

spline, rational, and moving average interpolation functions, and is achieved by numerical 

evaluation via the IFT, an idea that is also applied to hydrodynamic wave radiation problems. The 

frequency-dependent transfer functions are numerically transformed into impulse response 

function (3.29) and then convoluted over the velocities (3.31). This procedure is not dependent on 

parametric fitted functions, allowing for an analytical mathematical transformation. The method is 

applied to independently fit the polynomial fitted stiffness and damping terms. The presented 

numerical convolution offers a faster computational algorithm compared to the convolution of RFs 

due to the required convolution operations. It is also attractive for implementation in commercial 

software without additional software extensions. Here, the MATLAB and RM Bridge code are 

investigated.  

  

( )Infinite contribution ( )          Frequency variation  
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4.7.1 Theoretical background 

The proposed numerical nonparametric model approach is designed for any continuous function 

fit. The transfer function can be split into frequency-dependent and constant contributions. A 

transfer function (4.24) suitable for velocity convolution is defined by:   

 se se se( ) ( )H H H  = +   (4.37) 

where the frequency contribution is 

 ( ) ( )se se se se se

1
( )H C C K K

i
  



     = − + −      (4.38) 

and the infinite contribution is 

 se se se

1
( )H C K

i




  = +   (4.39) 

The infinite contribution has a straightforward analytical solution to the impulse response function:  

 ( ) ( ) ( )se se se+   J C t K =     (4.40) 

where 𝛿(𝑡) is the Dirac delta function. The frequency-dependent terms can be expressed in 

trigonometric form: 𝑒𝑖𝜔𝑡 = 𝑐𝑜𝑠( 𝜔𝑡) + 𝑖 ⋅ sin(ω𝑡). The proposed transfer function can have 

general frequency-dependent numerical values and does not necessarily possess an analytical 

solution form. Therefore, the frequency-dependent part is resolved by a numerical Fourier 

transformation. The IFT (4.26) of the velocity transfer function (4.38) yields:   
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  (4.41) 

The double-sided frequency spectrum can be expressed as a sum of negative and positive frequency 

spectrum values as: 
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For linear causal time-invariant dynamic systems, the frequency-dependent spectrum is symmetric 

for the real and asymmetric imaginary parts. The transformation from a double-sided infinite 

spectrum into a single-sided infinite spectrum is as follows: 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

se se se se se
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  (4.43) 

which can be simplified to: 

 ( ) ( ) ( ) ( )se se se se se

0 0

1 1 1
( ) cos sinJ t C C t d K K t d   

  

 

     = −  + −        (4.44) 

An additional assumption is that the response is not present before the integration starts. In practice, 

the forces might not be correctly evaluated for the initial condition 𝑞se(𝑡 = 0). This temporary 

starting convolution effect usually diminishes quickly. (4.44) indicates that for negative values of 

time, the response 𝐼𝜔(−𝑡) = 0 is equal to zero: 

 ( ) ( )( ) ( ) ( )( )se se se se

0 0

1 1 1
0 cos sinC C t d K K t d  −    − 

  

 

    = − + −       (4.45) 

This also provides an important relation between the frequency-dependent data of 𝐶se(𝜔) and 

𝐾se(𝜔): 

 ( ) ( )( ) ( ) ( )se se se se

0 0

1
cos sinC C t d K K t d   =   



 

  
   − −    

 
    (4.46) 

This relation is an interesting assumption that is further exploited in the published article. Exploring 

this relation opens up the possibility for new nonparametric flutter derivative fitting, where 

independent fitting of the real and imaginary parts is possible. Introducing relation (4.46) into 

equation (4.41) following the frequency-dependent Fourier transformation can yield: 

 ( ) ( )se se se

0

2
( ) cosJ t C C t d  





  = −    (4.47) 

Thus, joining the constant (4.40) and frequency-dependent (4.47) parts results in:  

 ( ) ( ) ( ) ( ) ( ) ( )se se se se se se se

0

2
( ) ( ) cosJ t J t J t K t C C C t d   





   = + =  +  + −    (4.48) 

The application of flutter derivative aerodynamic normalization introduces fitting to reduce the 

velocity values. The numerator {se, u} represents the terms related to the displacement 

convolution, while the numerator {se, v} represents the velocity convolution terms.  



Papinutti, M. 2021. Dynamic analysis of floating bridges   52 

Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment. 

  

Convolution of the impulse response function over the velocities with (4.27) yields:  

 ( ) ( ) ( ) ( ) ( )( ) ( )2

se,v se,v se se,v

0 0

1 2
cos  

2

t

q t V K u t C u t C C t u d d      




  
 

 = + + − −  
 

    (4.49) 

A similar derivation of the numerical Fourier transform can be performed for the convolution over 

the displacement. The transfer function of flutter derivatives (4.19) is split into constant and 

variation parts. The impulse response function is obtained by (4.20) and convoluted over the 

displacements (4.21). The reader can follow these steps, which lead to displacement numerical 

convolutions as: 
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   (4.50) 

4.7.2 Coefficient determination 

Parametric modeling 

The parametric model is used to validate the newly developed expression to ensure that the 

analytical and newly developed numerical convolution will deliver the same self-excited forces. 

Numerical tests are best performed on the parametric interpolation function of the rational function. 

The limit search determines the coefficients of the corresponding infinite and frequency 

contributions of the transfer function. The coefficients for the numerical velocity convolution 

expression (4.49) are as follows: 
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and are as follows for the displacement convolution expression (4.50): 
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Nonparametric modeling 

The numerical Fourier transformation method allows the application of various interpolation 

techniques, such as independently fitted aeroelastic damping and stiffness curves. Coefficient 

extraction for higher-order polynomials is demonstrated, where the fit is divergent outside the 

available experimental data between 𝜔1 and 𝜔2. Extrapolation corrections are applied to ensure 

convergence to a constant infinite value plateau, thus satisfying the infinity convolution 

requirement. The following function ensures a smooth transition to a constant value before and 

after the experiment: 
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  (4.53) 

Here, 𝑔(𝜔) is the function used within the range of the experimental data, and 𝐵(𝜔) denotes the 

logistic function, which smooths the sharp transition around the cutoff frequency. The smooth 

function applied is the Heaviside unit step function, which is defined as follows: 
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1
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1 exp 2 ( )n
B

k


 
=

− − −
  (4.54) 

Here, 𝜔𝑛 is the circular frequency in which the unit step function is activated, and a larger 𝑘 

corresponds to a sharper transition at 𝜔𝑛. The infinite damping and stiffness values are simply 

chosen at the cutoff frequency. The described techniques can be applied well to the polynomial fit 

of the velocity convolution (4.49) by calculating the coefficients as: 
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and to the polynomial displacement convolution (4.50) by calculating the coefficients as: 
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The proposed approach allows a more engineering-type approach to flutter simulations, eliminating 

the need to undertake complex parametric fitting procedures.  
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4.8 Algorithm validation 

The presented self-excited models were tested numerically and experimentally in a wind tunnel 

laboratory [82]. The Hardanger bridge deck cross-section was tested at a scale of 1:50. Aeroelastic 

tests were performed for the following three DOFs: the lateral, vertical and torsional directions. 

First, the flutter derivatives were extracted with force vibration tests, providing individual flutter 

derivative points. The flutter derivatives were fitted with parametric rational function expression 

(4.28) and an individual polynomial fit, as shown in Figure 4-12 and Figure 4-13. The rational 

function complex value fit was calculated via a nonlinear regression algorithm [52]. The two N=2 

poles provided a well-correlated and representative fit. For polynomials, a second-order fit 

provided reasonable accuracy.  

 

Figure 4-12: Fitting of the aeroelastic damping terms. 

Slika 4-12: Interpolacija aeroelastičnega dušenja. 
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Figure 4-13: Fitting of the aeroelastic stiffness terms. 

Slika 4-13: Interpolacija aeroelastične togosti. 

In general, the torsional and vertical motion data are well correlated and provide very similar fits. 

The measured accuracy of the scattered lateral flutter derivatives can be compromised due to 

laboratory measurement inaccuracies or false linear model assumptions. The two different fitting 

techniques, i.e., the parametric and nonparametric fit, show some discrepancies for highly reduced 

frequencies and more scattered data. The second-order polynomial effectively captures all the 

flutter derivative trends, while the third-order polynomial is excellent for complex lateral motion 

trends. The two-pole rational function fit is satisfying and could be further improved by increasing 

the number of poles, thus leading to a minimal self-excited force improvement. Increasing the 

number of poles proportionally increases the number of calculations, while adding a higher 

polynomial has no effect on the calculation performance.   
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4.8.1 Numerical validation 

The numerical validation compares the parametric fitted rational function inputs of the different 

self-excited models. The experimentally fitted parametric rational function on the flutter derivative 

data, depicted in Figure 4-12 and Figure 4-13, has an analytical solution. Analytically derived 

rational function expressions are presented for the displacement convolution 𝑞se,1 in Eq. (4.33) and 

for the velocity convolution 𝑞se,2 in Eq. (4.36). The explicit expression provides a literature 

reference for validation of the newly developed nonparametric numerical models. The numerical 

velocity convolution 𝑞se,3 in Eq. (4.49) is determined by the rational function input presented in 

Eq. (4.51). The numerical displacement convolution 𝑞se,4 in Eq. (4.50) is determined by the rational 

function input presented in Eq. (4.52). All the presented models are validated with 87 s of random 

motion, depicted in Figure 4-15. The 3-DOF tests of the four presented self-excited forces are 

depicted in Figure 4-14.  

 

Figure 4-14: Self-excited force models for rational function input.  

Slika 4-14: Različni numerični modeli aeroelastičnih sil. 

Clearly, all self-excited models result in excellent overlap of the curves. Minor differences are 

observed for the first few seconds, which is expected due to the absence of motion information 

before time t=0. The well-matched curves confirm the correct implementation of the parametric 

and nonparametric numerical self-excited force models. During the development, several 

additional self-excited models were implemented that are not presented in this validation. The 

Scanlan model frequency superposition model superimposes individual harmonic components. The 

state space is an alternative calculation method based on applying the order reduction method of 

convolution into the matrix operation. The frequency-domain representation is made possible with 

a Fourier transformation of the displacement format in (4.17) and the velocity format (4.23). The 

additional variations were well tested during the stepwise implementation. All mentioned models 

result in well-matched self-excited forces, thus further confirming the correct implementation of 

all self-excited force models. The presented convolution integral models are therefore fully suited 

to represent the self-excited multiharmonic forces [70] [83] [84] [85].   
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4.8.2 Experimental validation 

A multiharmonic 3-DOF motion test is performed in a wind tunnel rig. The measured forces are 

then compared to the developed numerical self-excited formulation models. The experimental 

motion is introduced by a synthetically generated signal as a superposition of randomly chosen 

amplitudes, frequencies and phases. The time histories have a constant rectangular frequency 

spectrum (16 mm, 16 mm, and 2.4°) between 0.25 and 2.5 Hz. One such realization is presented in 

Figure 4-15.  

 

Figure 4-15: Random motion in three directions, i.e., horizontal, vertical and pitching motion, tested at 8 m/s. 

Slika 4-15: Harmonični pomik horizontalno, vertikalno in torzijsko, testirani pri hitrosti vetra 8 m/s. 

In the experimental test depicted in Figure 4-16, the parametric (rational function) and 

nonparametric (individual polynomial fit) models were compared. The polynomial damping 

interpolation convolutes over velocities in (4.49) and is determined by the coefficients in (4.55). 

The individual damping interpolation includes only the frequency contribution of the aeroelastic 

damping terms and does not relate to the frequency contribution of the aeroelastic stiffness. The 

polynomial stiffness interpolation convolutes over the displacements in (4.50) and is determined 

by the coefficients in (4.56). The rational function (4.33) uses nonlinear regression techniques, 

where the polynomial is simply fitted to individual aeroelastic damping and stiffness terms. The 

linear polynomial fitting represents a significant simplification in the fitting procedures, thus 

considerably simplifying the aeroelastic analysis. 

The linear multiharmonic test indicates the accuracy of the harmonic linear assumption and 

compares the accuracies of the nonparametric numerical models. The experimental tests indicate 

that linear superposition supports the aerodynamic cross-sectional shape of the Hardanger Bridge, 

as evidenced by the good agreement between the experimentally measured forces and the 

numerical models regarding the lift and moment forces. The modeled drag force, however, strongly 

deviates from the measurements. The rather scattered lateral DOF flutter derivatives indicate 
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possible false linear force identification. The drag force has a typical nonlinear multiharmonic force 

pattern and therefore cannot be simulated successfully with any of the presented linear models.  

 

Figure 4-16: Parametric and nonparametric models. 

Slika 4-16: Primerjava rezultatov parametričnih in neparametričnih interpolacij. 

Additional extended testing is performed for 15 random motion realizations, the details of which 

are presented in the published paper. All tests confirm the suitability of the presented parametric 

and nonparametric models. Thus, we can conclude that the mathematically derived relation 

between aeroelastic damping and aeroelastic stiffness in Eq. (4.46) holds. This relation results in 

the nonparametric models providing accurate results in the presented tests and being well suited to 

simulate the Hardanger cross-section self-excited forces. The causal dynamic system relation is 

automatically satisfied without the need for a nonlinear complex parametric fitting of the transfer 

functions. Clearly, the lateral flutter derivatives have a lower confidence level due to the data being 

more scattered. More scattered flutter derivative data can also be expected for various cross-

sections, such as open box girders, I-beams, and T-beams. This scenario could lead to a possible 

discrepancy between the aeroelastic damping and stiffness contributions. Here, the nonparametric 

model offers an individual fitting to either the damping or stiffness terms, which are selected based 

on the engineering judgment of the aeroelastic damping and stiffness measurement quality. In wind 

tunnel experiments, the measured damping terms are typically more trustworthy than the stiffness 

terms of sectional forces. The presented numerical convolutional models offer the ability to choose 

the type of fit, individual damping, individual stiffness only or a parametric interpolated result. 

Nonparametric models provide much needed simplification compared to a complex parametric 

self-excited force model. 

4.8.3 Software validation 

A comprehensive overview of the literature commonly applied for self-excited models is provided. 

Various alternatives of self-excited models are presented, providing different possibilities for a 

time-domain implementation. This research focuses on well-tested parametric models and provides 

newly developed nonparametric self-excited models. Reformulation of the well-known rational 
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function expression into the numerical convolution calculation makes these models the best 

candidates for a possible bridge industry application. Over the past few years, several fully coupled 

time-domain models of wind-wave-bridge interactions have been developed. Due to the complex 

modeling requirements, commercial codes are commonly applied in bridge response calculations. 

Different time-domain solutions have different input possibilities and can be somewhat limited to 

self-excited modeling possibilities. Suitable candidates for floating bridge analysis and design will 

have to incorporate the linear wave radiation solution. Several candidates that fulfill the needed 

hydrodynamic functionality have been identified, as follows: RM Bridge, OrcaFlex, SOFiSTiK, 

and Ansys. These solutions can potentioally implement the numerical velocity convolution self-

excited models presented in this work, allowing the incorporation of the self-excited forces or 

replacement of the less accurate QSS aerodynamic matrices. To date, this task has been 

challenging, and aeroelastic analysis is commonly performed as a separate investigation. In this 

work, suggested extensions are implemented in the software, thus resolving fully coupled floating 

bridge dynamics. A single node with three DOFs is demonstrated in Figure 4-17.  

 

Figure 4-17: Software validation in the MATLAB and RM Bridge programs.  

Slika 4-17: Aeroelastični numerični modeli, sprogramirani v programih MATLAB in RM Bridge. 

The models agree well with the MATLAB implementation and follow the wind tunnel measurement. 

The frequency-dependent tables are imported into the convolution over the velocity calculations. 

With the same interface as that used for hydrodynamic wave radiation damping, self-excited forces 

are now simulated within the RM Bridge software environment. The aeroelastic damping tables in 

Eq. (4.51) are applied in the hydrodynamic convolution nodal load interface. The wind nodes are 

assigned to the structural deck nodes, where those effects are observed on the structure. As a result, 

engineers can introduce self-excited models for the design of floating bridges. Furthermore, the 

various nonparametric models can considerably simplify the aeroelastic design process without a 

loss in accuracy.  
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5 FREQUENCY-DOMAIN ANALYSIS 

5.1 Preview 

Modal decomposition techniques are frequently used in every engineering discipline and are 

commonly applied in bridge design. They are strong supplemental tools in addition to time-domain 

methods, providing important insight into the structural response. The structural response is 

represented for the most relevant structural frequencies, masses, and corresponding deformation 

shapes. The method results are easy to understand, and no special response postprocessing is 

required. Frequency-domain methods are considerably computationally more efficient than time-

domain analysis. The different modal results can be merged with a combination rule, providing an 

overview of the bridge response. The structural response is mathematically described in uncoupled 

generalized coordinates, and coupled environmental loads are added. 

This chapter provides a brief overview of a linear modal decomposition method referred to as 

frequency-domain analysis. The presented method is used to validate and compare the time-domain 

models applied to the floating bridge example. An additional explanation of the environmental load 

formulation and a corresponding introduction to the floating bridge dynamic equation of motion 

are provided.  

5.2 Modal decomposition 

The global assembled structural matrices are uncoupled by eigenvalue analysis and form equivalent 

modal structural properties. The additional global environmental loads are time-dependent loads 

and are transformed into a frequency-domain representation. The self-excited loads can be 

expressed by adding additional frequency-dependent matrices, altering the structural properties. 

The additional environmental matrices are coupled and prevent standard mode-by-mode 

decomposition. Therefore, the dynamic system has to be analyzed in two steps. First, the dynamic 

properties of the structure and hydrodynamic masses must be uncoupled into a generalized 

coordinate system. Second, various coupled loads on the small generalized coordinates must be 

considered. The dynamic equation of motion for a global structural nonlinear system is as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )load , , ,t t t t t t u u u+ + =Mu C u K u F   (5.1) 

where 𝐌, 𝐂, 𝐊 are equivalent global matrices of the mass, damping and nonlinear structural 

stiffness, respectively. Different environmental loads 𝐅load(𝑡, �̈�, �̇�, 𝑢) are added stepwise to the 

calculation procedure. The initial nonlinear structural system is determined by permanent loads 

such as the self-weighted loads 𝐅sw, prestressing of the cable initial geometry 𝐅cable, mean wind 

𝐅mean, and mean current load 𝐅curr. The system is linearized around the tangential stiffness, which 

consists of the linear structural stiffness and higher-order geometrical nonlinear stiffness.   
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The nonlinear geometrical stiffness is a result of nonlinear deformations under the influence of 

permanent static loads and is calculated with the Newton-Raphson iterative algorithm: 

 ( ) ( ) ( )nl sw cable mean currt t t+ + = + + +Mu Cu K u F F F F   (5.2) 

where 𝐊nl represents the linearized tangential stiffness matrix of permanent loads, introducing the 

approximation of linearized nonlinear systems. Since the added masses participate much more in 

the hydrodynamic interaction compared to the structural mass, the modal shapes are expected to 

be strongly alterable. Therefore, the hydrodynamically added masses and hydrodynamic plane 

stiffness are added to the frequency decomposition procedure, forming the global dynamic equation 

of motion, as follows: 

 ( )( ) ( ) ( ) ( ) ( )hy nl hy permt t t+ + + + =M M u Cu K K u F   (5.3) 

This dynamic system can be solved by eigenvalue decomposition. Here, 𝜔 is an eigenvalue, and ϕ 

is the modal shape. Accounting for additional hydrodynamic added mass, the eigenvalue analysis 

equation is formulated as: 

 ( ) ( )( ) ( )2

nl hy hy 0t  + − + =
 

K K M M u    (5.4) 

Here, the damping is assumed to have a negligible effect on the frequencies. The representative 

equivalent modal response relative to the global response can be expressed in generalized 

coordinates as: 
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  (5.5) 

Eq. (5.4) contains real value vectors that are the result of the uncoupled global system in Eq. (5.3)

. This decomposition is made possible with some commonly available commercial codes. The 

eigenanalysis software should have available functionality to model nonlinear geometrical bridge 

stiffness and allow for symmetric 6×6 fully correlated mass matrix definitions. Here, the developed 

calculation approach resolves the individual frequency-by-frequency mode as a set of independent 

calculations [86], requiring an external algorithm to run a series of eigenanalyses with manipulation 

of the added masses. The externally running algorithm runs a commercial code to calculate the 

frequency, masses and modal shapes. The convergences and iteration of each mode are controlled. 

Good convergence is made possible by selecting the infinite hydrodynamic mass 𝐌hy(∞) as an 

initial starting point, from which the frequency variation 𝐌hy(𝜔) is adjusted through convergence 

of the eigenfrequencies. A procedure allowing the modal decomposition of the frequency-

dependent structural properties is presented herein. The hydrodynamic added mass approaches a 

constant value above 1.5 rad/s, which allows for the calculation of higher spectrum modes with 
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constant 𝐌hy(∞). The lower spectrum of eigenfrequencies requires an iterative algorithm to 

consider the hydrodynamic mass variation 𝐌hy(𝜔). The iterative solution starts with the lowest 

frequency and progresses to higher frequencies, as presented in the numerical algorithm depicted 

in Figure 5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: The iterative scheme used for the eigensolution for a frequency-dependent mass. 

Slika 5-1: Iterativna shema reševanja problema lastnih vrednosti, kjer nastopa frekvenčno odvisna masa. 

The convergence is monitored for possible frequency shifts and sudden changes in the modal shape. 

The external algorithm controls the stepwise iteration and convergence of each eigenmode. Due to 

the possible relatively large participation of frequency-dependent hydrodynamic masses, the 

possibility of a modal shift exists. These phenomena can be investigated by comparing the 

evolution of modes and visual inspection of the modal shapes [86]. 

5.3 Environmental loads 

After the first step of modal decomposition, the additional environmental loads are added to the 

decomposed system in the generalized coordinate system. The added loads are unsymmetrical 

coupled loads and cannot be resolved by using the classic real eigenvalue techniques. A complex-
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eigenvalue analysis procedure allowing the introduction of self-excited and time-dependent loads 

is discussed herein. The presented mathematical derivation is suitable to calculate the complex 

coupled environmental response, with a similar approach being commonly applied in the 

aeroelastic instability analysis of bridges. On the left side of the dynamic equation, the frequency-

dependent self-excited loads, hydrodynamic damping loads, current loads and structural damping 

are included. On the right side of the dynamic equation, time-dependent environmental loads, such 

as wind buffeting and wave loads, are introduced. Adding additional environmental loads to Eq. 

(5.3) yields the following global equation of motion: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )s+hy s curr hy se nl+hy se envt t t t  + − − − + − =M u C C C C u K K u F   (5.6) 

where the modal analysis results in Eq. (5.4) incorporates the effect of the frequency-dependent 

mass in the 𝐌s+hy term and the tangent stiffness and hydrodynamic plane stiffness in the 𝐊nl+hy 

term. The current VDD is a nonlinear load that can be approximated by the linearized value around 

the mean current velocity of the static component 𝐅cur. The tangent damping approximation can be 

a reasonable simplification for practical applications due to its limited participation in the first few 

lateral modes. Eq. (5.6) can be rewritten into a generalized mode by substituting 𝐮 = ϕη as: 

 ( ) ( )( ) ( )( ) ( )s+hy s cur hy se nl+hy se env t  + − − − + − =M C C C C K K F     (5.7) 

where ϕ is the reduced modal matrix for the set of eigenvectors and presents each eigenmode. 

Multiplying (5.7) by ϕ
T
 yields: 

 ( ) ( )( ) ( )( )T T T T

s+hy s curr hy se nl+hy se env  + − − − + − =M C C C C K K F         (5.8) 

The equations can be rewritten in simplified form as: 

 
T

0 R R env+ + =M C K F      (5.9) 

where the residual damping and stiffness are defined by: 

 
R 0 cur hy se

R 0 se

= − − −

= −

C C C C C

K K K
  (5.10) 

The modal matrix notation  can be written in an integral form suitable for finite element 

implementation, with the dynamic structural properties expressed as: 

 

( )T

0,nn n s+hy n

0,nn n n 0

2

0,nn n 0

2

L
dl

 



=

=

=

M m

C M

K M

 

  (5.11) 

where �̃�0 is the modal mass matrix, �̃�0 is the modal damping, �̃�0 is the modal stiffness, 𝜉𝑛 is the 

structural logarithmic modal damping, 𝜔𝑛 are natural frequencies, and 𝑛 is the number of modes. 

All structural matrices are diagonal and have zero off-diagonal terms. Different environmental 

loads, presented for different vector sizes, are assembled in generalized coordinates as: 
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  (5.12) 

The wind self-excited and VDD loads are commonly modeled with the linear load distribution 

assumption. Hydrodynamic damping is modeled for the discrete hydrodynamic nodes of pontoons, 

representing a nonsymmetrical frequency-dependent matrix. The linearized current damping is a 

diagonal matrix without any off-diagonal terms. The structural damping, masses and stiffnesses 

constitute diagonal matrices as a result of modal decomposition. 

For any periodic and aperiodic motion, the Fourier integral representation η = η
0

𝑒𝑖𝜔𝑡 is applied to 

the motion and to the time-dependent forces: 

 ( )2 t T t

0 R R 0 env

i ii e t e −  + + = M C K F    (5.13) 

Applying Fourier integration over the investigated frequency range yields: 

 ( ) ( )2 t T t

R 0 R 0 env

i ii e t e  
 

− −

 − + =
   K M C F    (5.14) 

The frequency-domain representation of the structural response, similar to the wind self-excitation 

calculation in Eq. (4.17), is defined as: 

 ( ) ( ) ( )q env u  =G F G   (5.15) 

where 𝐅env is the transfer function matrix of environmental forces, 𝐆u is the Fourier transform of 

the displacements and 𝐆q is the Fourier transform of the forces. The environmental loads are 

calculated as: 

 ( )2

q R 0 R ui  = − +
 

G K M C G   (5.16) 

The goal is to calculate the structural displacement; therefore, the displacements in Eq. (5.15) are 

expressed as: 

 u env q=G H G   (5.17) 

where the impedance matrix is calculated as the inverse of the transfer function: 

 ( ) ( )
1

2

env mean cur R 0 R,V V i   
−

 = − +
 

H K M C   (5.18) 
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Each term of the impedance matrix 𝐇env(𝜔)ij presents an amplitude and phase response of the 

structure as a function of the frequency ω and mode j. One can rewrite the impedance matrix in the 

well-known nondimensional form �̂�env by dividing (5.17) by �̃�0 = 𝜔𝑛
2�̃�0: 

 ( )

1
2 1 1

R 0 R 0
env 2 2

n n n n

ˆ , 2  
2

V i
 


   

−
− −  

= − + +  
  

C M K M
H   (5.19) 

5.4 Structural stability  

Global dynamic stability is an important aspect of a safe long-span bridge design. The commonly 

used linear flutter derivatives can be applied to describe the self-excited wind forces. The dynamic 

instability of flutter causes undamped oscillations at the central wind speed, resulting in permanent 

damage to or collapse of the bridge. Several modes can contribute to the flutter and can be analyzed 

with a multimodal coupled flutter formulation. Multimodal flutter methods have been extended for 

various environmental loads, such as hydrodynamic wave radiation, VDD and aeroelastic self-

excited forces. Two deterministic methods are briefly described based on an eigenvalue analysis 

of the dynamic equation of a floating bridge in Eq. (5.8). 

The first method analyzes the instability of a structure by analyzing the impedance matrix 𝐇env. 

The selected variable for the calculation of instability is the mean wind speed influencing the 

aeroelastic flutter derivative contribution. The determinate calculation of the independent matrix 

|det(𝐇(𝑉mean))| = 0 provides the critical flutter wind speed. The mean wind speed is increased 

stepwise until instability is achieved. The advantage of this method is its direct application to Eq. 

(5.18) without the need to perform a complex-eigenvalue analysis. The approach requires a 

sufficiently small frequency discretization and wind speed discretization, which presents a 

computational challenge. The recommendation is to use visual inspection and the plotted 

impendence matrix as a function of the frequency and wind speed to confirm possible instability. 

The second alternative is to resolve the coupled mode dynamic system in generalized coordinates 

by complex conjugate eigenvalue analyses [69] [87] [88] [89]. The aeroelastic self-excited and 

hydrodynamic wave radiation forces are nonsymmetric and frequency dependent; therefore, the 

classic eigenvalue procedure cannot be applied. An iterative nonlinear calculation scheme is 

required to consider changes in the aeroelastic damping and stiffness. Mathematical packages are 

also available, such as MATLAB, to resolve the nonlinear eigenvalue problem. Convergence 

tolerance is commonly resolved within a few iterations. The complex-eigenvalue problem can be 

formulated as: 

 
2

R R0
0

0 0

te
      
 + =      

−       

I C K ww

I I ww
  (5.20) 
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The eigensolution has 2N pairs of complex conjugate eigenvalues μ = (μ𝐰  w). The real part 

presents the frequency of oscillation, and the imaginary part presents the modified structural 

dynamics, as depicted in Figure 5-2. Once damping becomes negative, unstable fluttering occurs. 

 

Figure 5-2: Multimodal flutter instability analysis. The upper diagram presents critical damping, and the lower 

diagram presents the frequencies per vibration mode [90].  

Slika 5-2: Modalna aeroelastična stabilnostna analiza, zgoraj prikaz dušenja in spodaj prikaz frekvenc [90]. 

 

5.5 Structural response under wind loads 

A dynamic response analysis of wind buffeting in the frequency domain that is suitable for 

correlated multimodal responses is presented herein. The proposed equations can be applied to 

calculate the floating bridge response under central turbulent wind events. For this analysis, the 

modal load vector is defined as: 
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  (5.21) 

The wind buffeting load at a single point is modified with an aerodynamic admittance function, 

correcting the QSS buffeting load in Eq. (4.12) as: 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

D yu D L yw

q L zu L D zw

M rxu M rxw

2

2
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2
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 − 
 

= + 
  

B   (5.22) 

The two-point spectral wind buffeting load is calculated with the integration of the coherent 

spectral load across the exposed wind length as: 
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 ( ) ( ) ( ) ( ) ( ) ( )T T

load,ij q,i V q,ji i j j i j
L L

x x dx dx   =  S B S B    (5.23) 

Here, the frequency-domain representation of vertical lateral wind fluctuations is described with a 

correlated wind fluctuation matrix: 

 ( )
( ) ( )

( ) ( )
uu uw

V

wu ww

x, x,

x, x,

S S

S S

 


 

  
=  

  
S   (5.24) 

where the off-diagonal entries are commonly modeled as 𝑆wu = 𝑆uw = 0. The spectral response 

containing the single-sided spectrum is computed as: 

 ( ) ( ) ( ) ( ) ( )* T

qq r env load env rx x   =  S H S H    (5.25) 

The corresponding covariance is computed as a 3×3 covariance matrix: 

 ( ) ( ) ( ) ( ) ( )* T

r r env load env r

0

x x d x  


 =  Cov H S H    (5.26) 

A fully coretlated and uncorrelated response is demeonstrated in Figure 5-3 from From chapter 6. 

 

Figure 5-3: 5DOF fully corelated (blue) and uncorrelated (red) wind buffeting response. 

Slika 5-3: Dinamična analiza odziva mustu z vezanimi (modra) in nevezanimi (rdeča) enačbami odziva.  
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6 STUDY CASE OF A TLP FLOATING BRIDGE 

This demonstration presents a practical example of a floating bridge feasibility study investigation. 

This thesis presents the environmental loads that were introduced in this time-domain numerical 

model. Floating bridge design is a rather complex project, requiring many steps to build the 

dynamic equations of motion. This research work was developed and implemented stepwise for 

over five years. Different phases of the project added increasingly sophisticated hydrodynamic and 

wind load models. One of the most promising crossings is the 5 km wide Bjørnafjord. Its 1/2 

kilometer deep fjord presents several alternatives, such as underwater tunnels, multipontoon 

floating bridges and TLP multispan suspension bridges. The demonstration herein involves an 

attractive TLP suspension bridge. The bridge concept was developed in a cooperation between the 

NPRA and a group of consultants, consisting of Aas-Jakobsen, COWI, Johs Holt, Moss Maritime, 

Wind OnDemand, Aker Solutions, NGI and Plan Arkitekter. A multispan suspension bridge is 

itself a challenging project when combined with the Bjørnafjord dynamic excitation, thus requiring 

the special project development presented in this thesis.  

 

Figure 6-1: TLP Bjørnafjorden suspension bridge rendering [1]. 

Slika 6-1: Vizualizacija TLP visečega mostu preko ožine Bjørnafjorden [1]. 

The Bjørnafjord suspension bridge consists of a three-span bridge with two rock-founded towers 

on each side of the fjord and two floating pylons in the fjord. The floating pylons are found on TLP 

platforms at depths of 550 and 450 m. These TLP floaters are subject to water-bridge interactions 

and wave loads, introducing some new aspects to a multispan suspension bridge. Normally, the 

ULS design loads are dynamic wind, traffic and road traffic accidents, but in the case of 

Bjørnafjorden, we also need to consider the wave, current and ship impact loading. To reproduce 

the environmental factors, the dynamic loads simulate wind and waves in a fully coupled time-

domain analysis. Additional top cables are unique design features of TLP bridges; they reduce 

vertical sagging and suppress some dynamic excitation. This bridge design is not feasible without 

an accurate time-domain analysis, as presented in this thesis. 
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6.1 Structural finite element model 

A structural model of the bridge, depicted in Figure 6-2, is developed in RM Bridge. Twelve-DOF 

line beam elements, with a weak finite formulation, are used for the numerical model of the pylons 

and bridge deck. The steel pylons have variable cross-sections with stiffeners and cross diaphragms 

inside the tower. The proper mass is applied to represent the dead load and superimposed dead 

load. The main cables, hanger, and top cables are modeled with a special nonlinear cable 

formulation, allowing compensation of the axial stiffness due to normal forces and transversal 

loads. A set of linear springs is used to simulate the soil foundation. Nonlinear damper elements 

are used to simulate different connections between the deck and pylons. A high-tensioned top cable 

system is suspended between each span and anchored within the spreading chamber of the anchor 

foundation. The top cable reduces the pylon top displacement from an unfavorable traffic position. 

The connection between the deck and the floaters is laterally restrained and has free longitudinal 

bearings. The bridge deck ends have restrained lateral motion and free longitudinal motion. 

Additional 15 MN end stoppers are activated for excess bridge deck motion. The submerged parts 

of the floaters are modeled as rigid bodies connected to the seabed by massless cable elements 

representing the tendons. The hydrodynamic properties are included at the hydrodynamic points, 

defined at each pylon in one node at sea level. The wind loads are introduced as finite element 

loads. The investigated structural model reflects the nonlinear geometrical large-displacement 

theory and includes nonlinear dampers and all relevant dynamic loads.   

 

Figure 6-2: RM Bridge finite element model, 3td phase [91]. 

Slika 6-2: Model končnih linijskih elementov v programu RM Bridge [91]. 

A form-finding procedure is carried out prior to any dynamic analysis investigations. The 

multiparameter optimization of approximately 3000 nonlinear variables is performed to calculate 

the proper initial form and structural forces. The results are stored in a permanent load file 𝐅perm 

together with the horizontal static loads to build the initial tangent stiffness as a basis for further 

time-domain analysis. 
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6.2 Hydrodynamic properties 

The hydrodynamic linear wave radiation loads are modeled as frequency-dependent hydrodynamic 

damping and added mass. Nonlinear VDD element loads are added to all submerged elements of 

the hull and tethers. The representative design wave condition values for locally generated wind 

waves are listed in Table 6-1. The time-dependent loads can be generated and imported to a time-

integration scheme. The wave loads are not included at present, as the focus is on the wind buffeting 

response calculation only.  

Table 6-1: Wind-generated waves for the Bjørnafjorden crossing, and the JONSWAP spectrum input [59].  

Preglednica 6-1:Parametri obtežbe valov za JONSWAP spekter, za primer ožine Bjørnafjorden. 

Return 

period/Sectors 

1 year 10 years 100 years 10 000 years 

Hs [m] Tp max 

[s] 

Hs [m] Tp max 

[s] 

Hs [m] Tp max 

[s] 

Hs [m] Tp max 

[s] 345° - 75° 0.8 4.0 1.1 4.5 1.5 5.0 2.3 5.9 

75° - 105° 1.6 5.3 2.2 5.9 2.8 6.6 3.9 7.6 

105° - 165° 1.1 4.4 1.3 4.8 1.6 5.3 2.3 6.1 

165° - 225° 1.2 4.4 1.5 4.9 1.9 5.3 2.7 6.1 

225° - 315° 1.3 4.6 1.8 5.3 2.4 5.9 3.3 6.8 

315 - 345° 1.5 5.1 1.9 5.6 2.5 6.2 3.5 7.2 

The hydrodynamic added mass is represented as a 6×6 symmetric mass matrix, assigned to the 

hydrodynamic node. Here, aerodynamic damping is the recalculated input of the hydrodynamic 

panel theory. The VDD parameters are set as quadratic damping terms with the effective diameters 

of the tethers and hull cross-sections. The underwater currents are not included in the following 

analysis. 

6.3 Dynamic wind properties 

The wind velocity series are simulated using the Kaimal power spectrum and exponential wind 

coherence presented in Table 6-2. The mean wind properties have an exponential height 

distribution, with parameters defined at a 10 m reference height with a velocity Vref=26 m/s and an 

exponential factor α=0.127. This scenario generates a mean wind speed of 32 m/s at a deck 

elevation h=60 m. The Kaimal power spectrum uses a spectrum factor ε=0.3. The turbulence 

intensity is assumed to be constant over the height of each floating pylon. This investigation 

considers a 100-year return period of the dynamic wind buffeting load, presenting a simulation of 

a nonhomogeneous wind field due to changing mean wind velocities over the height. 
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Table 6-2: Dynamic wind properties for a 100-year return period. 

Preglednica 6-2: Lastnosti dinamičnega turbulentnega vetra pri povratni dobi stotih let. 

 
u 

along wind 

v 

vertical 

w 

horizontal 

Kaimal power spectrum parameters 

Length scale 245 28 85 

Turbulence int. 0.15 0.07 0.11 

Exponential coherence 

 ΔX ΔY ΔZ 

u 0 10 10 

v 0 3 6.5 

w 0 6.5 6.5 

For this investigation, the QSS wind buffeting load theory applies, and a full vector wind buffeting 

load formulation considering all small squared terms is used. The aerodynamic damping and 

stiffness according to the QSS load, assuming a fully developed wind flow around the deck, are 

constant non-frequency-dependent matrices. The QSS formulation is evaluated from the 

aerodynamic coefficients of the deck, as depicted in Figure 6-3. The cable elements have an 

assigned drag coefficient CD=0.8. The pylon aerodynamic coefficients include the shedding effects 

on each other, thus making this input elevation dependent. 

 

Figure 6-3: Aerodynamic coefficients for the deck, with width B normalized. 

Slika 6-3: Aerodinamični koeficienti za prečni presek mostu. 
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6.4 Environmental equation of motion  

The global analysis of all environmental loads is a comprehensive study that includes all of the 

above-described interactions. For demonstration purposes, an individual turbulent wind load event 

is calculated, after which the time domain and frequency domain results are compared. The 

equation of motion can be written as: 

 
( )( ) ( )( ) ( )

( )

hy hy qss nl hy qss

2

perm cur buf                                                                 t

+  + + + + + + =

− +

M M u C C C u K K K u

F F u F
  (6.1) 

The results of this analysis are presented for the frequency-domain and time-domain formulations. 

To better understand the dynamic responses of those unique structures, this thesis develops a self-

excited load formulation, which is not presented in this example. Self-excited new load models 

have been successfully developed and validated. The commercial use of these algorithms is 

possible in the presented time-integration calculation. Several tests have been performed on a full 

bridge; however, additional software validation might be required, which represents future work.  

6.5 Frequency-domain analysis 

The presented frequency-domain tools calculate the dynamic properties of a floating bridge. Here, 

the modal decomposition is calculated for the suspension bridge structure, including the 

hydrodynamic added mass effects. The presented nonlinear algorithm iteratively resolves the 

matching of the calculated natural structure frequency and applies an appropriate hydrodynamic 

added mass. The procedure is repeated for each individual frequency, and the evolution of each 

frequency can be monitored. Changes in the natural periods, changed modal shapes and even 

frequency shifts due to the changed added mass are expected. The hydrodynamic mass has a large 

and important effect on the modal analysis. 

For this analysis, an external MATLAB script was used to run the iterative eigenvalue procedure. 

The scripts evaluate the structural frequencies and assign the appropriate hydrodynamic added 

mass for the next iteration. The evolution of each frequency and the changes in frequency and 

shapes are observed. The RM Bridge software calculates the combined structural and 

hydrodynamic frequencies. For this floating bridge, the first 13 eigenfrequencies are changed due 

to hydrodynamic mass effects, as presented in Table 6-3. The first few eigenvalues are influenced 

considerably, approximately within a range of 12% to 20% of the changed mass. The vertical (V) 

and lateral (L) bridge directions are influenced by these effects in different ways. During iteration, 

the mode shapes do not change considerably, and no frequency shift is observed for this 

investigation. An exception is mode no. 13; this mode completely disappears from the 

eigenfrequency list due to the large activated rotational added mass. The original shape undergoes 

rotation at the hull, which is restrained by a large activated hydrodynamic mass. Proper control 

over these algorithms is important to properly evaluate the modal decomposition results. 
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Figure 6-4: Modal analysis of the TLP bridge. 

Slika 6-4: Modalna analiza TLP mostu. 
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Table 6-3: Eigen value frequencies of the TLP bridge. 

Preglednica 6-3: Lastne vrednosti frekvenc za TLP most. 

Mode 

 

Frequency 

[rad/s] 
Change in M(∞)/M(𝜔) DOF 

Frequency Mass 

1 0.062 6.1% 12.7% L 

2 0.082 5.7% 12.9% L 

3 0.196 6.7% 19.8% V 

4 0.292 0.0% -1.4% L 

5 0.322 0.3% -0.5% L 

6 0.382 0.8% -1.5% L 

7 0.497 0.0% 0.9% L 

8 0.506 0.8% 8.4% V 

9 0.550 0.0% 0.2% V 

10 0.581 0.0% -0.8% L 

11 0.630 -0.8% -20.0% V 

12 0.653 -0.8% -41.2% V 

For this wind buffeting analysis, this important damping properties of floating bridges are 

considered. The damping can be calculated in a straightforward manner for each damping mode-

per-mode, presenting us with the information available on the total damping for low-damped 

structures. The damping is calculated according to Eq. (5.12) and is expressed relative to a 

logarithmic decrement as: 

 
critical,

C C

2 K M

ij ij

ij

i i i

 = =


  (6.2) 

where M is the generalized modal mass, K is the generalized modal stiffness, C is the damping 

component, index i is the mode and index j is the source of the damping. The Rayleigh damping 

formulation defines the structural damping of each mode, making it comparable to the time domain 

result. Hydrodynamic radiation damping is included in the pylon hull properties. This value 

represents 6-DOF fully correlated damping. Wind-induced vibration contributes to aerodynamic 

damping and aerodynamic stiffness, which are modeled with QSS theory. The linearized VDD is 

neglected in this analysis. The total damping 𝐶tot is the sum of the structural damping 𝐶str, 

aerodynamic damping 𝐶qss, hydrodynamic damping 𝐶hy, and linearized viscous damping 𝐶curr, 

expressed as.  

 tot str qss hy currC C C C C= + + +   (6.3) 

Total damping is used in the wind buffeting calculation. Different sources of damping for the 

floating bridge frequencies are depicted in Figure 6-5. The logarithmic damping ratios for a 
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frequency band of 0 to 1.8 rad/s are presented, with important low- and high-frequency bridge 

responses. Hydrodynamic damping makes a major contribution in the range from 0.5 to 0.8 rad/s 

because this range structure dissipates energy and introduces the energy of wave loads. Cable-

suspended structures have low structural damping and are sensitive to the resonant excitation of 

wind turbulence. Aerodynamic damping is continuously distributed along the frequencies and is 

important for both a low-frequency response and a high-frequency response. Notably, aerodynamic 

damping is not present for no-wind conditions, and a large response is observed during swell load 

events. 

 

Figure 6-5: Different damping sources for TLP bridges. 

Slika 6-5: Različne vrste dušenja za TLP most. 

Moreover, it makes a major contribution to the total damping and a strong contribution to the 

vertical movement of the deck. The structural deck is the main mechanism of wind-induced 

damping and directly affects the global structural response. The improved self-excited forces would 

result in an important improvement in the prediction of aerodynamic damping and the accuracy of 

floating bridges. 

RM Bridge software was used to calculate the wind buffeting response. The advanced wind module 

calculates the uncorrelated wind buffeting response with the mode-per-mode decomposition 

method. In this approach, the correlation between different modes is neglected, and the modes are 

later summed together with a modal CQC superposition rule. The total damping is externally 

calculated and introduced in a total table. The damping table is then included in the response 

calculation, which is performed by use of software integration algorithms. 

  



Papinutti, M. 2021. Dynamic analysis of floating bridges   76 

Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment. 

  

6.6 Fully coupled time-domain analysis results 

The time domain of hydrodynamic and aerodynamic effects is implemented in the RM Bridge 

software and used for this demonstration. The wind buffeting calculation is carried out for 1 hour 

of simulation time, and approximately 25 CPU hours are needed to complete the calculation on one 

4 GHz core. The total fixed realizations are calculated to obtain the proper mean value statistics of 

the response. The RMS response is calculated for each time signal to directly compare the result to 

that in the frequency domain [92] [93]. Here, the bridge deck response along the 4730 m long deck 

station is presented. The response vibration is calculated using the two-dimensional Fourier 

transform along the frequency axis and along the bridge station, as depicted in Figure 6-6. 

 

Figure 6-6: Vertical (left) and lateral (right) RMS bridge deck response. 

Slika 6-6: Prikaz RMS odziva v vertikalni smeri (levo) in prečni smeri (desno). 

Lateral and vertical response deck responses are the main mechanisms for aerodynamic damping. 

The response shows what modes have been excited and the corresponding amplitudes. The lateral 

response is dominated by the low-frequency response of the first few modes, where for slow 

motion, the QSS damping approximation may be valid. The vertical response has a wider frequency 

response from 0.1 to 0.2 Hz and excites multiple natural modes. The spread contribution of vertical 

responses for these frequencies suggests that a self-excited force model is more appropriate to 

reflect the measured aerodynamic damping. This compelling argument confirms the findings and 

research work on the suggested self-excited models.  
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6.7 Comparison of results 

To conclude this investigation, the results of both methods for a floating bridge are presented. The 

frequency-domain analyses do not include any wind correlation effects and are defined with the 

QSS wind buffeting load formulation [94] [95]. The results are compared to the time-domain 

analysis results and are evaluated with the QSS wind buffeting load model. The time-domain 

calculations include coupling and nonlinear effects. The results of those analyses are presented for 

the lateral direction in Figure 6-7 and for the vertical direction in Figure 6-8.   

 

Figure 6-7: Bridge deck response in the lateral direction: time-domain vs. frequency-domain analysis. 

Slika 6-7: Odziv v prečni smeri, časovna in frekvenčna metoda. 

 

Figure 6-8: Bridge deck response in the vertical direction: time-domain vs. frequency-domain analysis. 

Slika 6-8: Odziv v vertikalni smeri, časovna in frekvenčna metoda. 



Papinutti, M. 2021. Dynamic analysis of floating bridges   78 

Ph.D. Th. Ljubljana, UL FGG, Third-cycle doctoral study programme Built Environment. 

  

A comparison of the deck response with both the time- and frequency-domain approaches shows 

good agreement. Some differences are observed for both directions and are sourced from the 

nonlinear structural response and coupling effects. The lateral transversal stiffness is lower when 

the bridge oscillates over the initial nondeformed position, resulting in a nonsymmetrical time-

domain response around the mean wind deflection. The overall lateral responses of both methods 

agree well. The vertical time domain results have larger osculation compared to the frequency 

domain results. Detailed investigations have shown a nonlinear vertical motion introduced by 

horizontal movement. This effect is due to the large displacement and introduces new lower-mode 

excitation, which does not occur in tangential matrix modal decomposition and is used for 

frequency-domain wind buffeting calculations. The nonlinear top cables introduce nonlinear 

induced motion and are directly related to the top tower horizontal motion and vertical deck motion. 

For lateral and vertical response calculations, the linearized frequency decomposition methods do 

not deliver the most reliable results, and time-domain large-displacement methods are more 

suitable. Important for multiexcited systems is to consider the modal coupling effects, which are 

neglected in this frequency-domain analysis but are included in the time-domain analysis. 

Overall, the agreement of the results confirms the two independent analyses and validates the newly 

implemented time-domain formulations. They calculated the correct response according to the 

simplified QSS wind load theory. The time-domain formulation is well suited for the investigation 

of coupled and nonlinear structural response effects, thus validating the use of these models for 

further floating bridge design and development.  
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7 CONCLUSIONS  

A comprehensive overview of environmental loads on a floating bridge structure was provided. 

The interaction of the bridge with wind and wave loads can be described by adding terms to the 

dynamical equilibrium equation. Newmark time integration successfully resolves the dynamic 

equation of motion under the cooperation of structural nonlinearities and environmental loads. This 

is the most promising approach to evaluate possible nonlinear and coupling effects. All 

environmental loads, i.e., wave loads, wave radiation damping, VDD, current, turbulent wind, and 

aeroelastic damping, were successfully introduced. Environmental loads were individually tailored 

to fit within the time-domain integration scheme. A series of software tests and development works 

was performed to validate the functionality of the proposed models, and this partly overlapped with 

parallel project work in the industry sector. Industry has successfully investigated different floating 

bridge crossing possibilities using several commercial codes. Several years of development were 

required to introduce the presented environmental loads and apply them to bridge design. 

The main goals of the research were achieved by investigating various self-excited wind 

formulations. The approximative QSS formulation can provide reasonable accuracy in the early 

design stages and was implemented in this research work. Its convenient implementation and 

accessible input make it a common design choice. Since this simplified method is not accurate for 

higher wind speeds and does not correctly predict the aeroelastic instability, several self-excited 

force models were presented. The linear self-excited functions were described by 18 flutter 

derivative functions. An example rational function formulation was transferred into the current 

time-domain framework by using the hydrodynamic numerical convolution implementation. The 

research goal was achieved, proving that the rational function can be transformed into a suitable 

formation without any additional software extension. The developed formulation exhibits high 

numerical robustness. The accuracy of the rational function and polynomial fit was evaluated with 

wind tunnel testing, showing good agreement of the results with wind tunnel measurements. The 

presented RFs are state-of-the-art linear self-excited wind models and can now be successfully 

integrated into floating bridge design. This reformulated wind self-excited force is suitable for use 

in various other hydrodynamic software programs, where hydrodynamic-dependent damping is 

similarly convoluted over velocity motion. The proposed algorithms can be applied across different 

solutions of fully coupled environmental loads. 

During the mathematical reformulation of the self-excited forces, an important relation between 

the aeroelastic damping and stiffness of causal dynamic systems was discovered. This allowed us 

to further explore the nonparametric modeling of self-excited forces and to present a new novel 

approach. Simplified linear regression techniques can now be successfully applied to the newly 

developed self-excited algorithm via numerical convolution integration. Furthermore, the 

frequency contribution of either the damping or stiffness can be chosen for input, thus allowing the 

selection of more reliable and less scattered data. This procedure considerably simplifies the 

modeling effort since it no longer requires nonlinear regression, achieving one of the thesis goals. 
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An alternative approach is offered that is very attractive for design work since it does not require 

any special nonparametric fitting techniques or know-how and can be used without extensions. 

Both parametric and nonparametric models show excellent agreement with the wind tunnel 

experiments. This result represents an important scientific contribution, as presented in the attached 

paper: a nonparametric modeling of unsteady self-excited forces based on the relations between 

the flutter derivatives. 

The research hypothesis was proven by the successful mathematical reformulation of wind self-

excited forces. Numerical validation was used to validate the transformation of RFs. The presented 

models are now suitable for implementation in the floating bridge dynamic equation of motion. 

Additional experimental tests were conducted to investigate different fitting possibilities for flutter 

derivatives, such as parametric and nonparametric fits. This research offers the possibility of 

introducing more accurate state-of-the-art self-excited formulations into floating bridge projects. 

Such an implementation will allow immediate feedback regarding the aeroelastic performance, 

thus resulting in an efficient design process. The developed models allow for accurate and 

economically designed bridges that meet the high industry criteria. The proposed formulation is an 

alternative way to implement the time-domain calculation of self-excited wind loads. 

Nonparametric fitting can be further utilized to improve the uncertainty, leading to important 

project savings. Future research is needed to confirm these ideas with various cross-sections. The 

author hopes that interested readers will find this work inspiring and helpful in their professions. 

The new bridges discussed offer hope for a sustainable future. Innovations such as these often 

require out-of-the-box thinking and new ideas to be investigated.  
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8 EXTENDED ABSTRACT IN SLOVENIAN 

8.1 Uvod 

V nadaljevanju je predstavljen povzetek doktorske disertacije v slovenskem jeziku. Eden od ciljev 

norveškega ministrstva za promet (Statens vegvesen) je izvedba projekta E39, izgradnje 

neprekinjene obalne avtoceste med mestoma Kristiansand in Trondheim, dolge približno 1100 km. 

Potovalni čas z osebnim vozilom danes znaša 21 ur in bo z vzpostavitvijo neprekinjene cestne 

povezave skrajšan na 11 ur. Cilj bo dosežen z zamenjavo trajektov z mostovi in tuneli. Premostitev 

širokih in globokih fjordov predstavlja svojevrsten inženirski izziv, saj trenutno premostitvene 

rešitve, ki bi premoščale razdalje več kilometrov brez vmesnega temeljenja, še ne obstajajo. V ta 

namen se izvajajo študije izvedljivosti in razvoj različnih tehnoloških rešitev za premostitev 

fjordov. V študijah izvedljivosti so bile preučevane štiri glavne možnosti premostitev z izvedbo: 

mostov z ekstremnimi razponi, visečega mostu na plavajočih pontonih, podvodnih tunelov in 

večpontonskih plavajočih mostov, prikazanih na sliki 1-1. Za vsak fjord je bila narejena presoja 

najustreznejših rešitev in s tem izbrana najprimernejša tehnologija premostitve. Raziskovalno delo 

je potekalo vzporedno s projektantskim delom avtorja na raznih študijah izvedljivosti premostitev 

fjordov. Raziskovalna naloga se ukvarja z razvojem novih konceptov plavajočih mostov, ki 

združuje multidisciplinarne inženirske strokovnjake s področja konstruiranja mostov, pomorske 

inženirje, raziskovalce in programerje. Disertacija navaja pregled vseh pomembnih dinamičnih 

obremenitev plavajočih mostov, kot je obtežba valov in turbulentnega vetra. Za konstruiranje 

mostov so potrebna nova numerična orodja za analizo, ki celovito obravnavajo zahtevne dinamične 

odzive. Sočasno delovanje različnih obtežb je pomembno pri razumevanju zapletenih dinamičnih 

odzivov, ki jih spremlja nelinearen odziv. Za konkreten problem je bila uporabljena nelinearna 

časovna integracija, v katero so bile vgrajene nove kombinacije dinamičnih obtežb. Pomanjkanje 

razpoložljivih numeričnih orodij in literature s tega področja delno odpravlja to doktorsko delo. 

Vse predstavljene dinamične obtežbe so bile vgrajene v komercialno programsko kodo RM Bridge, 

ki je bila večkrat uporabljena pri snovanju plavajočih mostov. Glavno delo avtorja je bilo razvijanje 

zahtevane programske razširitve za izračun dinamike vetra in valov, sestavljeno je bilo iz 

teoretičnega raziskovanja, načrtovanja algoritmov, implementacije kode in obsežnega testiranja. 

Razvoj in testiranje numeričnih orodij sta potekala postopoma v večletnih razvojnih etapah. Tako 

razvita numerična orodja omogočajo izvedbo različnih vrst plavajočih mostov in so na voljo 

konstruktorjem za nadaljnje delo. V tem delu predstavljeni in razviti numerični modeli so primerni 

za izračun kompleksnih scenarijev dinamičnih obremenitev. Predstavljeno delo ima dodano 

raziskovalno vrednost in je namenjeno bodočim raziskovalcem, investitorjem, konstruktorjem in 

programerjem. 

Pregled raziskav 

Za računanje nelinearnih odzivov mostov so pogosto uporabljene metode časovne integracije, v 

tem delu je bila uporabljena priljubljena Newmarkova metoda. Pregled hidrodinamičnih obtežb je 
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predstavljen v tretjem poglavju, uvedba vetrne dinamične obremenitve je predstavljena v četrtem 

poglavju. Obremenitve okolja na most lahko dodatno razdelimo na konstantne, časovno odvisne 

obremenitve in samovzbujajoče (self-excited) obremenitve. Za ustrezno izbiro izračunov v časovni 

[3] ali frekvenčni domeni [4] je pogosto potrebno matematično preoblikovanje obremenitve. 

Samovzbujajoče vetrovne in valovne obremenitve so po definiciji linearne frekvenčno odvisne 

funkcije in predstavljajo harmonično superpozicijo posameznih frekvenc. Takšnih obremenitev ni 

mogoče neposredno uporabiti v Newmarkovi integracijski shemi, saj vrednosti ni mogoče izraziti 

kot časovno odvisne ali pomično odvisne matrike konstrukcije. Te obtežbe je mogoče uvesti v 

časovno integracijo s pomočjo matematične operacije konvolucijske transformacije [6]. V tem delu 

je uporabljena klasična integracija konvolucije, ki izračuna silo kot konvolucijski integral za vsa 

pretekla gibanja. Vrednotenje obtežb v vsakem časovnem koraku lahko v praksi predstavlja 

časovno intenziven izračun. Sprogramiran vmesnik konvolucije hidrodinamičnih sil je bil posebej 

razvit v komercialni programski opremi za dinamične časovne integracije [2] [3]. 

Hidrodinamični učinki so dobro raziskani v pomorskem inženiringu. V zadnjih nekaj desetletjih je 

bilo zgrajenih več naftnih ploščadi v razburkanem Severnem morju. V pomorskem inženiringu so 

na voljo različne hidrodinamične formulacije obremenitev, primerne za uporabo pri analizi 

plavajočih struktur [9] [7]. Dinamična analiza vetra je skupek srednje vetrne hitrosti, turbulentnega 

vetra in gibanja strukture. Gibanje strukture samovzbujajočih sil vetra je mogoče opisati z linearno 

kvazistatično metodo QSS (Quasi-Steady State), ki predpostavlja poenostavljen teoretični model 

interakcije, modeliran s konstantnimi matrikami aerodinamičnega dušenja in aerodinamične 

togosti. Model QSS se pogosto uporablja za aproksimativni izračun odziva mostov pri nizkih 

hitrostih vetra in je bil uspešno vgrajen v Newmarkovo shemo [4]. Pomanjkljivost metode QSS je 

neprimernost za raziskovanje nestabilnosti omahovanja, ki se izraža v odstopanju od v vetrovniku 

izmerjenih sil.  

Cilji raziskav 

Srčiko doktorskega dela predstavlja nadgradnja interakcije QSS z bolj natančnim modelom, ki 

temelji na odvodih omahovanja (flutter derivatives). Takšna formulacija je bolj natančna in je v 

skladu z eksperimentalnimi rezultati. Predstavljen je model interpolacije aeroelastičnih sil 

racionalnih funkcij, katerega različni primeri so v aeroelastičnih raziskavah dobro poznani in 

nudijo natančnejše podatke. Aeroelastično modeliranje prinaša nekaj izzivov, ki predstavljajo 

težave pri sami uporabi matematično zahtevne metode. Neposredno programiranja racionalnih 

funkcij ni mogoče vgraditi v obstoječe časovne domene komercialnih orodij. Raziskava preučuje 

alternativne možnosti matematičnih formulacij, ki lahko uporabijo že obstoječo funkcionalnost 

hidrodinamične analize brez dodatnega komercialnega razvoja. Hipoteza je dokaz primerne 

formulacije elastičnih sil v dinamičnih enačbah gibanja. Dokazovanje poteka s pomočjo 

numeričnega testiranja in primerjave z rezultati iz vetrovnika. Predstavljen je nov model 

aeroelastičnih sil vetra, ki omogoča aeroelastično modeliranje na že sprogramiranem vmesniku 

hidrodinamičnih konvolucij. Praktičen namen raziskave je najti eventualno poenostavitev teorije v 

praksi in ohraniti natančnost modelov za bodoči izračun plavajočih mostov. 
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8.2 Časovna integracija 

To poglavje prikazuje osnove dinamičnih izračunov plavajočih konstrukcij. Prikazani so možni 

algoritmi časovne integracije, primerni za reševanje dinamičnih enačb gibanja. Najprej sta 

pojasnjeni dve skupini izračuna odziva mostu, frekvenčna domena in formulacija časovne domene, 

predstavljeni v reglednici 2-1. Opisani metodi sta primerni za izračun linearnih odzivov, za izračun 

nelinearnih odzivov pa so primernejše metode časovne domene. Frekvenčne metode temeljijo na 

rezultatih modalne linearne dekompozicije lastnih vrednosti in dajejo pomembno referenčno 

vrednost pri testiranju časovnih metod, podrobno so predstavljene v poglavju 5. Frekvenčni pristop 

je v projektiranju priljubljen, saj razpolaga z nazornimi informacijami o individualnem prispevku 

posameznih nihajnih oblik. Omenjene metode so računsko učinkovite in vgrajene v razna orodja 

na tržišču.  

Pri metodah časovne domene se enačbe gibanja rešujejo s časovno integracijo korak za korakom, 

rezultati so časovno odvisni pomiki gibanja vozlišč. Časovne integracijske metode so 

najprimernejše za reševanje kompleksnih nelinearnih in sklopljenih enačb gibanja. Te metode so 

potencialno najprimernejši kandidat za dinamično analizo plavajočih mostov, saj ponujajo 

natančne rezultate. Raziskave in predstavljeni algoritmi temeljijo predvsem na nadgradnji časovne 

integracije s posameznimi dinamičnimi obtežbami vetra in valov, ki je podrobneje prikazana v tem 

poglavju. Linearne enačbe gibanja mostne konstrukcije se lahko zapišejo v naslednji obliki: 

 ( ) ( ) ( ) ( )extt t t t+ + =Mu Cu Ku f .  (8.1) 

M, C in K so strukturne masna, dušilna in togostna matrika, 𝐟ext je vektor zunanje obremenitve, 

�̈�, �̇�, 𝐮 so vektorji vozliščnih pospeškov, hitrosti in premikov, 𝑡 je čas. Upoštevajoč geometrijske 

nelinearnosti, nelinearne (in neelastične) materialne modele, gibljive mase, nelinearno strukturno 

dušenje, se nelinearne dinamične enačbe oblikujejo kot: 

 ( ) ( ) ( ) ( ) ( )( ) ( )ext ,t t t t t+ + =M u C u u F u f u,u,u .  (8.2) 

Pri nelinearni analizi visečih mostov so pogosti učinki velikih deformacij, ki so opisani s teorijo 

tretjega reda. Prisotni so lahko tudi materialna nelinearnost, časovno odvisne mase in dušenja. 

Zunanje obremenitve hidrodinamične in vetrne sile se lahko naknadno izrazijo kot dodatki matrike 

mase, dušenja in togosti. Prikazana je izpeljava Newmarkove metode reševanja dinamičnih enačb 

za linearne (8.1) in za nelinearne sisteme (8.2). Predstavljene so priporočene vrednosti β in γ, ki 

uravnavajo natančnost metode in numerično dušenje. Razumevanje metode lahko v praksi 

pripomore k uspešnemu numeričnemu reševanju dinamičnih enačb. Numerično reševanje 

plavajočih sistemov ni vedno trivialno in uspešno, zato je poleg teoretičnih osnov podanih tudi 

nekaj izkušenj z računanjem dejanskih odzivov plavajočih mostov. Kompleksnost je v 

obremenitvah, ki so nelinearne ali odvisne od izračunanega pomika in zahtevajo dovolj majhen 

časovni korak za pravilen izračun. Izbrani časovni koraki in dolžina analize morajo tudi ustrezati 

različnim konvolucijskim transformacijam. Predstavljenih je nekaj možnosti spreminjanja 
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različnih parametrov za doseganje stabilne numerične sheme, ki pomagajo poiskati pravo 

ravnotežje med hitrim, natančnim in stabilnim reševanjem odziva.  

8.3 Hidrodinamične obtežbe 

Potopljeni deli plavajočega mostu so v neposrednem stiku z morjem, izpostavljeni so statičnim in 

hidrodinamičnim obtežbam. Statična obtežba, kot je vzgonska sila, je posledica Arhimedovega 

vzgona in daje podporo mostu. Poglavje obravnava dinamične obtežbe, kot so hidrodinamična 

togost, valovi, samovzbujajoče sile konstrukcije in morski tokovi. Hidrodinamične obremenitve 

pomembno prispevajo k odzivu plavajočih mostov in bistveno spreminjajo njihove dinamične 

lastnosti. Predstavljene so tudi osnove linearne potencialne teorije v hidrodinamiki, ki se lahko 

uporabi za opis hitrosti gibanja podvodnih delcev. Sprememba potenciala pa povzroči obtežbe na 

samo konstrukcijo, opisane s hidrodinamičnimi silami. Posledica sile valovanja je gibanje morske 

površine in posledica samovzbujajoče sile so pomiki konstrukcije v morju. V tem delu so opisani 

le hidrodinamični pojavi, pomembni za globalni odziv, vsekakor je poznanih še več pojavov, 

navedeni so v literaturi [9]. Osnovna predpostavka je ločeno modeliranje posameznih učinkov 

obtežbe, ki so matematično modelirani v »hidrodinamičnem vozlišču«. Hidrodinamično vozlišče 

je nato dodeljeno vozlišču posameznega pontona, ki predstavlja šest dodatnih vezanih dinamičnih 

enačb. 

Obtežba valov 

V splošnem obstajajo različni mehanizmi nastajanja valov, kot so veter, potres, podvodni plazovi, 

astronomska plima itd. Trenutno univerzalni matematični model, ki bi pokrival vse scenarije 

gibanja valov, ne obstaja, zato se uporabljajo različni poenostavljeni modeli. Valovanje morske 

gladine na odprtem morju lahko v grobem razdelimo na [30]: morske valove kot posledico 

lokalnega vetra (wind sea waves) in enakomerne valove z daljšimi periodami (swell waves). Za 

modeliranje obeh se lahko uporabljajo isti matematični modeli, vendar z različnimi vhodnimi 

podatki predstavljajo ločen obtežbeni primer. Valovi se lahko opišejo kot prostorska nihanja 

morske gladine, samo gibanje pod gladino pa lahko matematično opišemo s potencialom. Nihanje 

gladine predstavlja zapleten sistem valov in se lahko opiše kot superpozicija različnih 

trigonometričnih nihanj višin. Vsak val je opisan z enodimenzionalno višino proste površine, ki 

povzroči vodoravno in navpično gibanje podvodnih delcev. Posamezen val je trigonometrična 

funkcija, definirana z valovnim številom, valovno frekvenco in amplitudo vala, kar je prikazano na 

sliki 3-3 in sliki 3-5. Modeliranje trigonometrične superpozicije valov je najpogosteje opisano v 

frekvenčni domeni s spektrom valov 𝑆ξ,θ. Prostorski valovi imajo značilnosti glavne smeri 

valovanja θ in porazdelitve okoli glavne smeri, opisane s funkcijo porazdelitve 𝐷. Fouriereva 

transformacija omogoča modeliranje frekvenčno odvisnih obtežb ali enakovredne časovno odvisne 

obtežbe, prikazane na sliki 3-9. Homogeni valovi so pogosto opisani z linearnim stacionarnim 

Gaussovim modelom [20]. Obtežba valov se lahko modelira s šestimi komponentami sile 𝑛 ∈

{1. . .6} , izračunih kot:  
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𝐅wave je vektor obtežbe valov, 𝐹𝑛 je kompleksna prenosna funkcija, 𝑆ξ,θ je spekter valov, 휀𝑖𝑗  je 

naključno število spektra belega šuma, 𝜙𝑖𝑗 je kot med realnim in imaginarnim delom prenosne 

funkcije, valovno število je 𝑘𝑖 = 𝜔𝑖
2/𝑔, 𝛳 je smer valovanja, 𝜔 je frekvenca valovanja, x in y sta 

prostorski koordinati. 

Obtežba gibanja pontona 

Gibanje pontona na morski gladini oddaja valove, ki posledično odvzemajo energijo dinamičnim 

sistemom. Matematični opis hidrodinamične samovzbujajoče sile je možen z dodajanjem matrik 

hidrodinamične mase in hidrodinamičnega dušenja. Sile so frekvenčno odvisne vrednosti gibanja, 

ki jih zaznamuje različna intenziteta pri različnih frekvencah nihanja, prikazana na sliki 3-10. V 

frekvenčni domeni se sile pogosto modelirajo kot produkt prenosne funkcije in Fouriereve 

transformacije pomikov, definirano kot 𝐆hy(𝜔) = 𝐇hy(𝜔)𝐆𝑣(𝜔). Matematično je možno 

pretvoriti formulacijo v časovno domeno s Cumminsovo enačbo:  

 ( ) ( ) ( ) ( )hy hy hy

0 0

2
( ) cos ( )

t

t t t d d      




=  + − − q M u C u ,  (8.4) 

kjer je 𝐪hy hidrodinamični vektor obtežbe radiacije valov, 𝐌hy hidrodinamična masna matrika, 𝐂hy 

je hidrodinamična matrika dušenja, �̈� in �̇� sta vektorja pospeška in hitrost gibanja objekta. 

Vzgon in stabilnost 

Hidrostatična sila je časovno konstantna in daje mostu potrebno vzgonsko silo. Po Arhimedovem 

zakonu so hidrostatične sile enake volumnu pontona izpodrinjene vode:  

 buy hullg=F V ,  (8.5) 

kjer 𝐅buy predstavlja navpično silo vzgona, 𝜌 je gostota vode, 𝑔 je gravitacijski pospešek in 𝑽hull 

je volumen plavajočega pontona. Projektna zahteva je, da je sila dviga vzgona vedno višja od 

največje možne kombinacije negativne navpične obremenitve na ponton. Presežene sile vzgona se 

lahko prevzamejo z napenjanjem kablov v morsko dno, s tem se poveča dinamična stabilnost 

sistema, prikazanega na sliki 3-11. Hidrodinamična stabilnost pontona je odvisna od pomikov in 

se pogosto modelira z linearno togostjo 𝐊hy.  

Viskozno dušenje 

Viskozno dušenje morskih tokov je hidrodinamična sila, ki je posledica podvodnih morskih tokov. 

Obtežba ima tako statično kot tudi dinamično komponento obtežbe, prikazano na sliki 3-12. 
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Hidrodinamična sila je definirana na podlagi relativne hitrosti med strukturnim gibanjem in 

hitrostjo toka 𝑉rel = 𝑉stream − 𝑉elem𝑓int in je opisana kot: 

 exp

cur rel

1

2
dF C DV= ,  (8.6) 

kjer je 𝜌 gostota vode, 𝐶𝑑 koeficient vleka, 𝐷 presek potopljenega elementa, 𝑓int faktor interakcije 

in 𝑒𝑥𝑝 = 2 eksponent hitrosti. Viskozno dušenje ima pomemben vpliv na nizkofrekvenčne odzive 

horizontalnih nihajnih oblik. Obtežba je prisotna pri vseh potopljenih elementih, kot so pontoni in 

podvodni pritrdilni kabli.  

Reševanje časovnih enačb 

Opisane hidrodinamične obtežbe je možno opisati z dinamičnimi enačbami gibanja kot: 
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Konstantne matrike so pomaknjene na levo stran dinamične enačbe in se rešujejo eksplicitno. 

Nelinearne in frekvenčno odvisne obremenitve so umeščene na desno stran.  

8.4 Vetrne obtežbe 

Dinamična obtežba vetra je posledica aerodinamičnega upora zraka na konstrukcijo. Vetrne 

obtežbe se pogosto opišejo kot superpozicija obremenitev I) osrednje vetrne hitrosti, II) turbulence, 

III) samovzbujajočih sil in IV) vrtinčenja vetra, kar je prikazano na sliki 4-1. Modeliranje sil 

dinamične obremenitve vetra je možno v skladu s predpostavkami kvazistacionarne (QSS) teorije 

aerodinamike [54]. Predstavljene formulacije obtežb so primerne za vgraditev v končne elemente 

linijskih konstrukcij [6]. Popularni model QSS temelji na predpostavki razvitega in stacionarnega 

vetra okoli prečnega preseka. Bistvena prednost omenjenega modela so enostavni in lažje dostopni  

aerodinamični parametri. Formulacija je bila vgrajena v aktualne izračune plavajočih mostov s 

časovno domeno. V poglavju so obravnavane posamezne komponente s poudarkom na 

samovzbujajočih silah, ki so posledica gibanja mostu. V dinamičnih raziskavah dobro poznani 

aeroelastični modeli so uspešno uporabljeni v aeroelastičnih analizah omahovanja mostov [25][46]

[72]. Meritve v vetrovniku potrjujejo, da aeroelastični modeli natančneje popisujejo interakcijo 

mostu v primerjavi s poenostavljenimi kvazistacionarnimi modeli. Natančnost se lahko odraža 

predvsem v natančnejših numeričnih analizah odziva in dodatni možnosti aeroelastične analize 

omahovanja. V najnovejših raziskavah je razširjena uporaba racionalnih funkcij za interpretacijo 

odvodov omahovanja v časovni domeni. Matematična formulacija racionalnih funkcij žal ni 

primerna za uporabo v trenutno predlagani shemi analize dinamike plavajočih mostov. Izpeljanih 

izrazov ni mogoče vgraditi brez dodatnega programiranja v različne komercialne kode. Raziskava 

preučuje možnosti uporabe racionalnih funkcij v obstoječi časovni shemi. Za pristop časovne 
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integracije je potrebno pretvoriti frekvenčno odvisne aeroelastične sile v časovno odvisne s 

postopkom konvolucije. Podobna teoretična ozadja veljajo za transformacijo aeroelastičnih in za 

transformacijo hidrodinamičnih samovzbujajočih sil, kar pomeni, da obstajajo enake 

transformacije z različnimi vhodnimi podatki sil. Cilj raziskave je preoblikovanje aeroelastičnih 

modelov v obliko, primerno za uporabo v hidrodinamični konvoluciji. Posamezne razlike obeh 

matematičnih pristopov je možno rešiti z razvojem novega aeroelastičnega modela.   

Turbulentni veter 

Vektor hitrosti vetra se deli na konstantni in časovno spremenljiv turbulentni vektor, definiran kot 

𝐔(𝑡) = 𝐕 + 𝐯(𝑡). Vetrni vektor je opisan s tremi komponentami, opisanimi v levosučnem 

kartezičnem koordinatnem sistemu. Tako je smer 𝑢(𝑡) vzdolž vetra, 𝑤(𝑡) horizontalna in 𝑣(𝑡) 

vertikalna obratna smer gravitacije. V splošnem so dizajnirane lastnosti vetrov odvisne predvsem 

od orografske pozicije mostov in so pogosto opisane kot funkcije višine, hrapavosti terena v okolici 

ter izbranega modela. Potrebni podatki za simuliranje vetrne turbulence v prostoru so: osrednja 

hitrost vetra, turbulenca, spektri, koherence in prostorske koordinate. Na sliki 4-2 je prikazana 

Fouriereva transformacija vetrnih spektrov v časovno odvisno turbulenco. Poglavje prikazuje način 

modeliranja turbulence v časovni metodi z uporabo simulacije Monte Carlo kot: 

 ( ) ( ) ( )
M N

ij ,

1 1

2 cosk k i k

j k

t t   
= =

=  +v S .  (8.8) 

𝐒ij(𝜔𝑘) je matrika spektrov vozlišč, Δ𝜔 frekvenčni korak, 𝜓 naključno število, k predstavlja 

frekvence, j predstavlja prostorska vozlišča. Vhodni podatki spektralne energije vetrne turbulence, 

prikazane na sliki 4-3, opisujejo količino energije pri različnih frekvencah. Tako sintetizirani 

signali prikazanega vhodnega spektra ne reproducirajo natančno, vendar je to možno doseči za 

povprečno vrednost več simulacij, kar je prikazano na sliki 4-7. Opisana metoda je bila 

sprogramirana v časovno analizo in je bila prilagojena za izračun vetrne turbulence na 5 km dolge 

plavajoče mostove. Enačba (8.8) predstavlja precejšen računski izziv, saj bi izračun turbulence 

trajal kar mesec dni. Glavni razlog za to so razmeroma dolgi računski časi, ki so potrebni za uspešno 

transformacijo, pogojeno z diskretizacijo časa, frekvence in prostora. Zato je bil koncept izračuna 

enačbe (8.8) razvit s posebej prilagojenim algoritmom z izboljšavami na več nivojih. Primarno 

zmanjšanje števila vozlišč je bilo možno z uvedbo ločene vetrne mreže, pri čemer se je izračunana 

turbulenca projicirala na gosto mrežo končnih elementov mostu, kar je prikazano na sliki 4-4 desno. 

Takšen pristop omogoča neodvisno število končnih elementov in vozlišč, uporabljenih pri vetrni 

analizi za natančno transformacijo. Predstavljeni pristop bistveno zmanjša število vozlišč, in sicer 

s 40000 na 1000, kar kvadratno zmanjša računski čas. Dodatne izboljšave algoritma so bile 

narejene na interpolaciji frekvenc izračuna korelacijskih spektrov, ki je bil narejen na prej 

določenih frekvencah. Dodatna optimizacija je bila dosežena z aplikacijo hitrega Fourierevega 

algoritma, ki omogoča bistveno hitrejši izračun kot klasični Fourierev algoritem. Dodatni paralelni 

izračun je naknadno pospešil numerične simulacije. Po uvedbi zgoraj opisanih izboljšav se je čas 

računanja zmanjšal na približno 15 min, kar omogoča učinkovitejši izračun dinamike mostov. 
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Modeliranje sil 

Aerodinamične sile vetra se modelirajo z dimenzionalnimi koeficienti vleka, dviga in momenta. 

Brezdimenzijska formulacija omogoča prenos sil, izmerjenih v vetrovniku, na realne velikosti 

mostov. Definicija aerodinamičnih sil izhaja iz Bernoullijeve enačbe primerjave energij zastojne 

točke tlaka in kinetične energije vetra. Obremenitev vetra je definirana za dolžino segmenta enega 

metra kot: 
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kjer je 𝐅mean vektor vetrne obtežbe, ρ gostota zraka, V  laminarna osrednja hitrost vetra in B širina 

preseka prečnega preseka. Vektor osrednje hitrosti vetra je tako določen na podlagi povprečnega 

kota 𝛼 in povprečne hitrosti vetra. Pri dinamični analizi vetra se spreminjata vpadni kot vetra in 

velikost vektorja hitrosti, sestavljenega iz osrednje hitrosti, turbulentne hitrosti in hitrosti 

deformacij segmenta. V splošnem lahko formulacijo linearizirano, saj je doprinos kvadratnih 

vektorjev hitrosti zanemarljiv. Linearizirano formulacijo lahko opišemo kot: 
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  (8.10) 

Linearna kvazistatična analiza je bila uporabljena za vrsto dinamičnih analiz v dosedanjih študijah 

izvedljivosti plavajočih mostov [8] [41] [90] [99]. Implementacija v Newmarkovo časovno 

integracijsko shemo je bila narejena kot: 

 ( ) ( ) ( )qss qss mean buf t+ + + + = +Mu C C u K K u F F v .  (8.11) 

Zgoraj prikazano kvazistatično modeliranje interakcije vetra je moč opisati s kvazistatičnimi 

matrikami dušenja 𝐂qss in togosti 𝐊qss. Te so teoretična izpeljanka zgoraj opisanega analitičnega 

modela in so pogosto uporabljene za dinamične vetrne analize. Žal takšno modeliranje odstopa od 

dejanskih aeroelastičnih meritev v vetrovniku, predvsem za frekvenčno odvisno gibanje mostu. V 

nadaljevanju je predlagana izboljšava z aeroelastičnimi modeli kot primernejšimi kandidati, ki bi 

dali natančnejše rezultate odzivov plavajočih mostov [6] [73] [95]. 

Aeroelastično modeliranje interakcije 
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Na začetku 20. stoletja je gradnja dolgih visečih mostov nudila stroškovno učinkovito rešitev. 

Razvita teorija drugega reda je bila ključna za analizo visečih konstrukcij in je omogočala do 30 % 

prihranka materiala, kar je vodilo do vitkejših mostov. Vitki mostovi so bili precej bolj dovzetni za 

dinamične vibracije, kar je povzročilo nekaj porušitev mostov. Najbolj odmevna je bila porušitev 

mostu Tacoma Narrows leta 1940, ki je bila posledica zelo nizke hitrosti vetra, komaj 𝑉 = 17 𝑚/𝑠. 

Podrobna preiskava je pokazala, da se je most porušil zaradi takrat še neznanega pojava, ki je 

povzročil nestabilno nihanje mostu. Osnovna teorija aeroelastike je bila razvita v 60. letih 20. 

stoletja in je bila posledica razvoja vesoljske industrije. Teorija je bila sprva narejena na osnovi 

teoretične nestabilnosti aerodinamične plošče in je omogočila raziskavo aeroelastičnih kritičnih 

hitrosti vetra, poznana je kot Scanlanova teorija nestabilnosti [22]. Vhodni podatki so linearno 

frekvenčno odvisne funkcije, izražene z brezdimenzijskimi odvodi omahovanja (flutter 

derivatives). Koeficienti za turbulentne prečne preseke se lahko izmerijo v vetrovniku ali pa se 

izračunajo s pomočjo računalniške dinamike tekočin (CFD). Aeroelastična formulacija, 

uporabljena pri preverjanju nestabilnosti omahovanja, je zapisana kot: 
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𝛫 = 𝜔𝛣/𝑉 je reducirna frekvenca in 𝜔 = 2𝜋𝑓 je frekvenca pomikov, odvodi omahovanja 

predstavljajo vlek 𝑃𝑖
∗, vzgon 𝐻𝑖

∗ in 𝐴𝑖
∗ moment z indeksom 𝑖 = (1,2,...,6). Oznaka * označuje 

odvode omahovanja kot funkcije brezdimenzijske reducirane hitrosti �̂� = 𝐾2 = ωΒ/𝑉. Meritve v 

vetrovniku so bile izmerjene z diskretnimi točkami v omejenem območju reduciranih frekvenc, kar 

zahteva interpolacijo in ekstrapolacijo podatkov. Direktno reševanje enačbe 

 ( )( ) ( )( ) ( )se se mean buf t + + + + = +Mu C C u K K u F F v   (8.13) 

v časovni domeni ni mogoče, saj vsebuje aeroelastične matrike v odvisnosti od frekvenc. V tej 

raziskavi je bila raziskana nova možnost formulacije s pomočjo numerične konvolucije preko 

zgodovine hitrosti z uporabo enakih algoritmov kot pri hidrodinamični analizi gibanja mostu. 

Predlagani sistem aeroelastičnih matrik je mogoče vključiti v časovno domeno kot: 

 

( ) ( ) ( )

( ) ( )( )

se,v se,v mean buf

se se,v

0 0

2
                                               cos  ( )

t

t

t d d  −    


 





+ − + − = + +

 −  

Mu C C u K K u F F v

C C u
  (8.14) 

Konstantni matriki 𝐂se,v
∞  in 𝐊se,v

∞  sta podani na levi strani enačbe, frekvenčno odvisna matrika 

[𝐂se(𝜔) − 𝐂se,v
∞ ] je pomaknjena na desno stran enačbe. V dosedanjih raziskavah uporabljene 

interpolacijske funkcije temeljijo na izrazih s teoretično izpeljavo časovnega modela. Iz tega 

razloga so bile polinomske interpolacije pogosto uporabljane za frekvenčne modele, nikoli pa za 

časovne. Ker je predlagani format enačbe (8.14) precej splošen in omogoča uporabo številnih novih 
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interpolacijskih funkcij, predstavlja novost na tem področju. Demonstracija uporabe enačbe (8.14) 

je nadalje izpeljana na primeru interpolacije racionalnih funkcij kot primer parametrične 

interpolacije, velikokrat uporabljene v raziskavah. V nadaljevanju bodo predstavljene tudi 

neparametrične interpolacije z uporabo polinomske interpolacije. 

Modeliranje aeroelastičnih sil v časovni domeni 

Zvezno funkcijo, ki opisuje odvode omahovanja, je možno preoblikovati v časovno odvisno 

funkcijo. Funkcija mora biti zvezna in mora konvergirati h končni vrednosti. Direktno vrednotenje 

enačbe (8.12) veljala samo za eno frekvenco harmoničnega gibanja. Z uvedbo superpozicije je 

možna razširitev veljavnosti za vse periodične ter aperiodične sisteme. Z uporabo Fouriereve 

transformacije je tako možno izraziti aeroelastične sile v frekvenčni domeni kot produkt prenosne 

matrike in Fouriereve transformacije pomikov kot 𝐆q(ω) = 𝐅se(ω)𝐆u(ω). Aeroelastična prenosna 

matrika je definirana z analitično rešitvijo v frekvenčni domeni, predstavljeni v kompleksni ravnini, 

in se za odvode omahovanja zapiše kot: 
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V splošnem poteka transformacija iz frekvenčne domene v časovno v dveh korakih. Najprej se 

izračuna Fouriereva transformacija prenosne matrike 𝐅se kot 
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1
( ) ( )
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i tt e d 
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= I F , (8.16) 

kjer je 𝑰se impulzni odziv aeroelastičnih sil. Nato se izračuna konvolucija z integracijo impulzne 

sile preko celotne zgodovine pomikov 

 u se( ) ( ) ( )t t d  


−

= −q I u . (8.17) 

Dobljene aeroelastične sile so tako izračunane v odvisnosti od celotne zgodovine pomikov. Iz 

enačbe (8.17) je razvidno, da je postopek konvolucije treba izračunati v vsakem koraku, saj se 

vektor hitrosti spreminja v časovnointegracijski metodi. 

Racionalne funkcije 

Racionalne funkcije (rational functions) in indicialne funkcije (indicial functions) se običajno 

uporabljajo za interpoliranje razpršenih meritev odvodov omahovanja. Obe funkciji sta posebej 

prilagojeni za transformacije v časovno domeno, saj omogočata analitične rešitve. Opremljeni 

izrazi imajo priročne lastnosti, saj težijo h konstantni vrednosti pri neskončnih frekvencah ∞, kar 

omogoča analitično rešitev konvolucije. Podrobneje je predstavljen sistem z eno prostostno stopnjo 

na primeru popularnih racionalnih funkcij, v mnogo raziskavah uporabljen izraz:  
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Kadar je 𝑎1 interpolacijski koeficient, je 𝑑𝑙 koeficient prileganja pola in N je število izbranih polov. 

Za praktično uporabo se prilegajo približno od dva do trije poli. Koeficienti v povezavi z 

vztrajnostjo 𝑎3 so praviloma zanemarjeni. Interpolacijska racionalna funkcija se prilega 

kompleksnemu vektorju sile, kar zahteva postopek hkratne interpolacije realnih in imaginarnih 

delov. Nelinearna regresijska interpolacija zahteva učinkovit numerični pristop, ki je povzet v 

nadaljevanju zapisa. Najprej se izberejo koeficienti 𝑎i, preostali koeficienti pa se izračunajo z 

linearno regresijo. Nato se z uporabo nelinearne regresije poišče 𝑑𝑙. Tretji korak sledi, ko je 

dosežen optimalni niz vrednosti 𝑑𝑙, potem se ponovno uporabi nelinearna regresija za iskanje vseh 

koeficientov hkrati. Ta metoda zahteva kar nekaj pozornosti, saj vsak začetek ne vodi do uspešne 

konvergence. Prilagajanje izhodiščne vrednosti, parametrov konvergence in komplicirani končni 

izrazi konvolucije nakazujejo precej zahteven postopek. Za uspešno uporabo prikazanih postopkov 

so v splošnem potrebne dobre teoretične osnove in osnove nelinearne regresije. Navedeni 

argumenti predstavljajo pogosto oviro pri uporabi časovnih modelov v praksi in v dosedanjih 

dinamičnih analizah plavajočih mostov. Po uspešni interpolaciji lahko koeficiente uporabimo v 

razvitih izrazih. Razvite izraze je mogoče analitično rešiti skladno s postopki Fouriereve 

transformacije (8.16) in konvolucije preko pomikov (8.17). Dobljen analitični izraz za konvolucijo 

preko pomikov je: 

 .  (8.19) 

 

Izraz ima koeficiente, ki so povezani z neskončnim prispevkom in so rezultat konstantnih 

vrednosti. Frekvenčni prispevek se izračuna z eksponentnim integralom. Prispevek z neskončnim 

in frekvenčnim deležem je prikazan na sliki 3-8. Alternativno je aeroelastične sile mogoče 

izračunati s konvolucijo preko zgodovine hitrosti. Na aeroelastični prenosni matriki, deljeni z 

vrednostjo 𝑖𝜔, se analogno ponovi matematični postopek transformacije in vodi v izraz: 

 .  (8.20) 

 

Nekoliko spremenjen izraz ima tako neskončni delež kot tudi frekvenčno odvisen delež, ki je 

razrešen z integralom preko zgodovine hitrosti. Izpeljani so tako delitev na neskončne in 

frekvenčno odvisne deleže kakor tudi razmerja med transformacijami. Predstavljeni izrazi so 

primerni kandidati za vgraditev v Newmarkovo časovno integracijo. Nadalje je treba izraze 

spremeniti v izraze, ki jih bo mogoče vgraditi v dosedanje sheme dinamične analize plavajočih 

mostov, predstavljene v tem delu. 
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Novi postopek 

Predstavljen je nov izračun aeroelastičnih sil s postopkom numerične transformacije aeroelastičnih 

sil v časovno domeno. Glavni namen razvitega postopka je možnost vgradnje v do zdaj uporabljeno 

integracijsko shemo. Prednost razvitega postopka so dodatne možnosti uporabe različnih 

interpolacijskih funkcij, kot so polinomi, kubični zlepki, racionalne funkcije, povprečna 

interpolacija itd. Teh ni bilo mogoče uporabiti z do zdaj opisanimi postopki, saj so vse 

interpolacijske funkcije morale imeti analitično rešitev. Ideja numerične transformacije prihaja iz 

hidrodinamičnega modeliranja in predstavlja tudi ciljno končno formulacijo izrazov. Za 

uporabljene interpolacijske funkcije velja, da zavzemajo zvezne numerične vrednosti. Tako 

interpolirane vrednosti tvorijo prenosno aeroelastično funkcijo, sestavljeno iz neskončnega in 

frekvenčno odvisnega dela. Neskončni deli imajo analitično rešitev, frekvenčno odvisni deli pa so 

izračunani z numerično transformacijo v časovno domeno, saj analitična rešitev ni mogoča. 

Poskrbljeno mora biti, da interpolacijske vrednosti konvergirajo h končni vrednosti, kar je mogoče 

naknadno doseči z numerično korekcijo ekstrapoliranih vrednosti. Tako razvit postopek je bil razvit 

v konvolucijo preko pomikov: 

 . (8.21) 

in hkrati v izraz za konvolucijo preko hitrosti: 

 . (8.22) 

Prikazana je teoretična izpeljava zgornjih izrazov, ki temelji na teoriji realnih dinamičnih sistemov. 

Narejene predpostavke so skladne s postavkami, narejenimi pri razvoju racionalnih funkcij. Izraza 

(8.22) in (8.25) se lahko uporabita za modeliranje tako parametričnih kot neparametričnih 

interpolacijskih funkcij. Za demonstracijo je prikazan primer parametričnega modeliranja 

racionalnih funkcij z vstavljanjem   
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   (8.23) 

v nov postopek numerične konvolucije preko pomikov (8.21). Dobimo enak rezultat kot za 

analitično rešitev racionalnih funkcij v enačbi (8.19). Enakost velja za vstavljene izraze 
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   (8.24) 

v nov postopek numerične konvolucije preko hitrosti (8.22)  dobimo enak rezultat kot za analitično 

rešitev racionalnih funkcij v enačbi (8.20). Vsi štirje izrazi analitične in nove numerične rešitve so 

bili testirani numerično in dajejo povsem enak rezultat, kar dokazuje pravilno izpeljane izraze.  

Posebej pomembna teoretična izpeljava simetrije realnih dinamičnih sistemov opisuje razmerje 

med zveznim frekvenčno odvisnim dušenjem ter frekvenčno odvisno togostjo, izraženo kot: 

 .  (8.25) 

To velja tudi za zvezni opis odvodov omahovanja. Razmerje je bilo v nadaljevanju dokazano na 

primeru racionalnih funkcij in tudi za poljubno interpolacijsko funkcijo. Razmerje je veljavno tako 

v posameznih meritvah kot tudi v korespondenčnih interpolacijah. Dokaz je osnova za nadaljnji 

razvoj neparametričnega modeliranja aeroelastičnih sil s poljubnimi interpolacijskimi funkcijami. 

To omogoča neodvisno interpolacijo aeroelastičnega dušenja in aeroelastične togosti ter uporabo 

polinomske linearne regresije. Polinomske interpolacije višjih redov lahko divergirajo zunaj 

razpoložljivih podatkov, zato se ekstrapolacije korigirajo z zvezno funkcijo prehoda. Zvezna 

korekcija se lahko opravi z izrazom   

   (8.26) 

za območja ekstrapolacij. Neskončne konstantne vrednosti so lahko določene v višini vrednosti 

zadnjih razpoložljivih interpolacijskih podatkov. Sprememba je potrebna pri vseh divergentnih 

interpolacijskih funkcijah in je lahko opravljena numerično. Bistvena prednost neparametričnega 

modeliranja je izognitev nelinearni regresiji in s tem bistveno poenostavljen postopek modeliranja.  

Vrednotenje aeroelastičnih modelov 

Poleg numeričnih simulacij, izvedenih v tej raziskavi, so bili narejeni tudi laboratorijski preizkusi 

v vetrovniku na trondheimski univerzi na Norveškem [59]. Predstavljeni so podatki za 

aerodinamični presek mostu Hardanger na Norveškem [71]. Prerez je bil pomanjšan v razmerju 

1 : 50, nanj so bili pritrjeni detajli ograj. Vetrovnik ima moderen servomehanizem, ki lahko 

generira različna gibanja segmenta mostu in hkrati meri aeroelastično silo, kar je prikazano na sliki 

4-10. Najprej so bili narejeni harmonični vsiljeni pomiki pri različnih reduciranih hitrostih za 

izračun odvodov omahovanja. Diskretne točke so bile nato interpolirane z racionalnimi funkcijami 

kot predstavniki parametričnega modela, kjer sta bila uporabljan dva pola N=2 za dobro natančnost. 

Prileganji posameznih interpolacijskih krivulj sta prikazani na sliki 4-12 in sliki 4-13, kjer je vidno 
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zelo dobro prileganje obeh krivulj. Razlike je možno opaziti v ekstrapolacijskih vrednostih, ki niso 

del testiranja in posledično nimajo vpliva na rezultate. V splošnem je točnost izmerjenih odvodov 

omahovanja neposredno odvisna od točnosti meritev, načina preizkusa in vetrovnika. Pomembna 

lastnost v tej raziskavi uporabljenih odvodov omahovanja je izredno nizek raztros posameznih 

meritev, kar naznanja dobro izmerjene in reprezentativne odvode omahovanja. Nadaljnje testiranje 

je bilo narejeno na primeru večharmonskega odziva, kjer so bile izmerjene aeroelastične sile v 

spektru pomikov med 0,25 in 2,5 Hz z amplitudami 16 mm in 2,4°. Gre za najzahtevnejši test 

aeroelastičnih modelov, ki ga je možno rešiti le z ustrezno modeliranimi frekvenčno odvisnimi 

silami. Gibanje segmenta je simulirana superpozicija naključno izbranih faz, amplitud in frekvenc 

in je prikazano na sliki 4-15. Preizkus posameznih modelov je bil sestavljen iz treh faz testiranja: 

1. faza je numerično primerjala analitične izraze (8.19) in (8.20) ter nova numerična postopka 

(8.21) in (8.22). Za vhodne podatke vseh modelov so bile uporabljene racionalne funkcije. 

Časovno odvisni rezultati se povsem ujemajo in so prikazani na sliki 4-14. To potrjuje 

pravilno matematično formulacijo in implementacijo modelov. 

2. faza je primerjala parametrični model racionalnih funkcij in neparametrični model 

individualne polinomske interpolacije ter ju primerjala z meritvami iz vetrovnika. Na sliki 

4-16 je prikazano dobro ujemanje sil dviga in momenta, kar potrjuje primernost 

neparametričnih modelov. Sila vleka se ne ujema za vse modele zaradi nelinearne 

karakteristike, zato so linearni modeli neprimerni. 

3. faza je numerično testiranje v programskih jezikih MATLAB in RM Bridge, ki je primerjano 

z rezultati iz vetrovnika. Obe kodi se dobro ujemata z meritvami v skladu s teorijo. 

8.5 Frekvenčna analiza 

Tehnike modalne dekompozicije so široko uporabljane in priljubljene v različnih inženirskih 

disciplinah. Poleg prikazanih časovnih metod integracije ponujajo dodaten vpogled v razumevanje 

odziva mostu, informacijo o najpomembnejših frekvencah, nihajnih oblikah in participacije mase. 

Rezultate je enostavno interpretirati in ne potrebujejo dodatne statistične obdelave časovnih 

signalov. Frekvenčne metode so v primerjavi s časovno domeno precej manj računsko potratne. To 

poglavje ponuja kratko predstavitev metode linearne modalne dekompozicije, v nadaljevanju 

imenovane frekvenčna metoda. Frekvenčna metoda je bila uporabljena pri končni primerjavi 

rezultatov s časovno metodo in tako uporabljena za odkrivanje morebitnih napak pri implementaciji 

dinamičnih obtežb. Podan je postopek modalne dekompozicije, ki je bil narejen upoštevajoč 

zunanje vplive vseh obtežb okolja. Predlagani postopek dekompozicije je izveden v dveh korakih. 

Prvi korak je dekompozicija mostu skupaj s frekvenčno odvisno hidrodinamično maso, drugi korak 

pa modeliranje preostalih obtežb okolja. Nelinearni sistem mostu je aproksimiran s tangentno 

togostjo 𝐊nl, ki je posledica velikih deformacij mostu pod stalnimi obtežbami. Za linearizirani 

sistem je mogoče izračunati lastne vrednosti plavajočih sistemov kot: 
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Ker so prispevki hidrodinamične mase relativno veliki, je treba zajeti maso pri posameznih 

frekvencah, zato je postopek izračuna frekvence iterativen in podan s shemo na sliki 5-1. Tako 

pridobljene lastne vrednosti so primerne za izračun v drugem koraku izračuna interakcije preostalih 

obtežb, ki predstavljajo obtežbo in hkrati spreminjajo dinamične karakteristike mostu. Dodane 

obtežbe so v splošnem nesimetrične vezane dinamične enačbe, ki jih ni mogoče razrešiti s 

klasičnimi lastnimi tehnikami realne vrednosti. Predstavljen je sistem lastnih vrednosti 

nesimetričnih vezanih dinamičnih enačb, ki daje kompleksne vrednosti modalnih vektorjev: 

 .  (8.28) 

Na desni strani enačbe so obtežbe valov in vetra, na levi strani so interakcijske vrednosti 

spremembe dušenja in togosti. V poglavju je prikazan postopek izračuna deležev posameznih 

matrik interakcije in nakazan postopek reševanja enačb. Prikazan je primer postopka izračuna 

nestabilnosti omahovanja pri naraščajočih hitrostih vetra. Podan je tudi pregled postopka 

dinamičnega izračuna vetrne obtežbe, uporabljenega v naslednjem poglavju. 

8.6 Primer plavajočega visečega mostu 

Prikazan je praktični primer dinamične analize iz študije izvedljivosti plavajočega mostu. Študija 

izvedljivosti je bila izvedena za 5 km širok fjord Bjørnafjorden z morskim dnom na globini 0,6 km. 

Predstavljeni primer visečega mostu s temeljenjem »Tension Leg Platform« prikazuje atraktivno 

premostitev. Koncept mostu je bil razvit v sodelovanju med NPRA in skupino svetovalcev: Aas-

Jakobsen, COWI, Johs Holt, Moss Maritime, Wind OnDemand, Aker Solutions, NGI in Plan 

arkitekter. Posebna pozornost je bila namenjena kombiniranim vplivom dinamičnega vzbujanja 

različnih obtežb, ki so bili predmet preučevanja omenjenih raziskav. Ta disertacija ponuja pregled 

različnih dinamičnih obremenitev na plavajoče mostove. Zaradi kompleksnosti vseh obtežb in 

samega primera je bila narejena demonstracija za najbolj dominantno obtežbo vetra. Pri analizi sta 

bili upoštevani kvazistatična interakcija in radiacija valov: 
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Rezultati dinamičnega odziva mostu so prikazani na sliki 6-7 in sliki 6-8. Iz rezultatov je razvidno, 

da gre za dobro ujemanje v horizontalni in srednje dobro ujemanje v vertikalni smeri. Bistveno 

natančnejša časovna domena daje možnost vpogleda v nelinearnost sistema. Zaključen primer 

ponazarja pomembnost časovne integracije pri nelinearni analizi plavajočih mostov. Možnosti 

vgraditve aeroelastičnih modelov bi lahko nadalje izboljšale natančnost odzivov, kar je prikazano 

v tej raziskavi. 

8.7 Zaključek 

Predstavljeno modeliranje okolijskih obremenitev je bilo uspešno vgrajeno v časovno integracijo 

odziva mostov. Newmarkova integracijska shema je primerna za reševanje vezanih nelinearnih 
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dinamičnih enačb gibanja. Različne obremenitve so bile dodane k dinamičnim enačbam in so na 

razpolago za nadaljnje inženirsko in raziskovalno delo. Razvoj modelov je spremljalo intenzivno 

testiranje razvitih modelov. Raziskave so potekale vzporedno z delom v praksi, ki je omogočalo 

vpogled v izzive inženirsko zahtevnega področja in možnost izboljšav. Sam razvoj plavajočih 

mostov in spremljajočih metod predstavlja pionirsko delo in je sad večletnega dela več skupin.  

Glavni cilji raziskave so bili uspešno doseženi z raziskovalno nalogo, za vse obtežbe valov in vetra 

so bili uspešno vgrajeni v časovnointegracijsko metodo. Testiranje je potekalo vzporedno z 

različnimi študijami izvedljivosti. Trenutno vgrajeni model kvazistatične interakcije vetra je bil 

vgrajen v časovno domeno in ponuja sprejemljivo natančnost v zgodnjih fazah študije izvedljivosti. 

Izveden je bil glavni cilj študije, ki prikazuje primernost aeroelastičnih modelov v uporabljeni 

časovnointegracijski shemi. Cilj je bil dosežen z uvedbo novega postopka numerične konvolucije, 

ki omogoča simuliranje aeroelastičnih sil brez dodatnih posegov v komercialne kode, s čimer je 

bila potrjena hipoteza. Primer interpolacije aeroelastičnih sil z racionalnimi funkcijami je bil 

demonstriran v uporabljeni časovni shemi. Prikazan je nov način modeliranja aeroelastičnih sil z 

neparametričnim interpoliranjem, ki predstavlja pomemben znanstveni prispevek. Primer 

polinomske interpolacije bistveno poenostavi postopek, saj omogoča linearno regresijo in 

nadomešča težavne nelinearne regresijske sheme. Primera racionalne funkcije in polinomske 

interpolacije sta bila testirana v vetrovniku in dajeta spodbudne rezultate za nadaljnjo uporabo 

predstavljenih modelov v časovni shemi. 

Ta raziskava odpira vrata natančnejšim aeroelastičnim modelom za direktno apliciranje v projekte 

plavajočih mostov. Predstavljene izboljšave bodo omogočile takojšnje povratne informacije o 

aeroelastičnih lastnostih in so bistvene za učinkovito zasnovo mostu. Razviti modeli lahko 

omogočajo natančen dinamični izračun, ki vodi do ekonomično oblikovanega mostu. Delo 

zainteresiranemu bralcu ponuja vrsto referenc, uporabljenih pri raziskovanju, z navdihujočimi 

plavajočimi mostovi. 
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