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Abstract	

The	paper	presents	an	automatic	procedure	for	the	correction	of	bridge	weigh–in‐motion	

(B‐WIM)	measurements,	which	are	used	to	determine	the	axle	loads	of	heavy	vehicles	

using	instrumented	bridges.	According	to	the	European	Specifications	for	Weigh‐in‐

Motion	criteria,	using	this	procedure	the	weighing	results	could	be	improved	by	up	to	one	

accuracy	class.	Whereas	measurements	performed	on	steel	structures	provide	reliable	

information	about	the	global	behaviour	of	individual	bridges,	which	is	accounted	for	in	the	

B‐WIM	algorithms,	cracks	that	are	present	in	concrete	structures	can,	depending	on	their	

locations	with	respect	to	installed	strain	transducers,	amplify	or	reduce	the	response.	In	

the	present	work	special	care	was	taken	to	detect	and	calibrate	any	strain	transducer	

which	showed	a	disproportional	response.	The	accuracy	of	the	method	was	investigated	

numerically	in	relation	to	the	extensive	data	which	were	available	in	the	case	of	a	



reinforced	concrete	bridge	(motorway	underpass),	located	near	Ljubljana,	Slovenia,	and	

then	validated	by	a	one‐to‐one	comparison	of	the	B‐WIM	weighing	results	and	the	

statically	weighed	test	vehicles.	
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1 Introduction	

Weighing	of	vehicles	in	motion	is	an	important	source	of	reliable	traffic	loading	

information,	which	can	be	used	to	support	infrastructure	management	(	[1],	[2],	[3]),	

traffic	policing,	and	vehicle	weight	enforcement	[4].	For	this	purpose,	some	countries	use	

static	weigh	stations.	However,	such	solutions	are	space	demanding,	interrupt	the	flow	of	

traffic,	introduce	delays	into	the	transportation	network,	and	are	expensive	to	operate.	If	

vehicle	weight	enforcement	is	the	primary	reason	for	static	weighing,	which	is	common	in	

many	countries	around	the	world,	then	it	is	likely	that	the	resulting	data	will	not	provide	

useful	insight	into	the	traffic	loading	on	specific	road	sections.		

The	most	common	and	effective	alternative	to	static	weighing	consists	of	weigh‐in‐motion	

(WIM)	systems.	Since	they	weigh	vehicles	at	highway	speed	they	are	less	accurate	than	

their	static	alternative,	but	they	have	the	advantage	of	being	able	to	capture	the	entire	

traffic	flow	on	a	road	section.	Two	main	families	of	WIM	systems	exist	[5]:	pavement	WIM	

systems,	and	bridge	(B‐WIM)	systems.	Since	early	days,	pavement	systems	have	been	the	

dominant	group	of	devices	on	the	market.	They	measure	wheel	loads	by	means	of	

weighing	detectors	of	different	technologies	that	are	embedded	into	the	smooth	road	

surface.	In	most	cases	the	width	of	the	sensors	is	less	than	the	footprint	of	a	tyre.	For	this	

reason	accurate	velocity	measurements	are	needed	in	order	to	integrate	the	sensor	

responses	into	the	axle	loads	[5].	Being	under	the	direct	pressure	of	tyres,	pavement	WIM	



systems	can	deteriorate	relatively	quickly,	as	does	the	pavement.	This	changes	its	

smoothness	and	directly	affects	the	accuracy	of	the	results	obtained.	On	the	other	hand,	

the	main	idea	of	B‐WIM	systems	is	to	put	most	of	the	measurement	devices	under	the	

bridge	[6],	[7].	In	early	years	axle	detectors	were	needed	on	the	road	surface	to	capture	

information	about	vehicle	velocity	and	axle	configurations	[8],	but	over	the	last	decade	

these	have	been	almost	completely	replaced	by	sensors	that	are	placed	under	the	bridge.	

Although	such	a	Free‐of‐Axle	Detector	(FAD)	set‐up	provides	less	precise	information	

about	the	axles	of	vehicles,	having	all	the	sensors	removed	from	the	road	surface	greatly	

improves	the	durability	of	installation,	and	reduces	traffic	delays	during	installation	and	

maintenance.		

Bridge	WIM	(B‐WIM)	systems	use	instrumented	bridges	to	weigh	vehicles	at	highway	

speeds.	The	basic	principle	has	not	changed	for	over	30	years	[9].	A	bridge	is	

instrumented	with	strain	transducers	and	in	some	cases	other	additional	sensors	which	

measure	the	bridge	response	caused	by	heavy	vehicles	driving	over	it.	During	the	first	20	

years	of	their	existence,	and	with	the	exception	of	a	simpler	version	which	was	widely	

used	in	Australia	[10],	B‐WIM	systems	were	not	important	players	on	the	market.	

However,	in	more	recent	years	considerable	progress	has	been	made.	Since	the	first	

attempts	by	Moses	[9],	some	intensive	research	has	been	performed	over	the	last	two	

decades,	see	[3],	[5],	[11],	[12],	[13],	[14],	[15],	[16]	and	[17].	As	a	result	B‐WIM	systems	

have	been	improved	up	to	the	point	where	they	can	compete	successfully	with	pavement	

systems.	Today	B‐WIM	systems	can	be	applied	to	most	types	of	bridges	(beam	and	slab,	or	

slab	only,	integral	or	simply	supported,	culverts	to	long	span	bridges,	etc.)	as	long	as	the	

effective	influence	lines	used	for	weighing	are	shorter	than	about	40	m	[18].	A	number	of	

different	algorithms	have	also	been	developed	(using	full	dynamic	bridge‐vehicle	

interaction	[19],	MFI	–	Moving	Force	Identification	[20],	wavelets	[21],	and	multiple‐

sensors,	etc.),	but	they	have	not	yet	been	implemented	in	any	commercially	available	B‐

WIM	system.	

The	algorithms	for	post‐processing	the	measured	response	of	WIM	systems	are	based	on	



the	classical	theory	of	elasticity.	The	axle	loads	are	sought	by	minimising	the	difference	

between	the	calculated	bridge	response,	obtained	by	superimposing	the	influence	lines	

multiplied	by	the	unknown	axle	loads,	and	the	measured	strain	response.	This	proved	to	

be	an	efficient	procedure	for	most	structures	that	were	analysed.	These	algorithms	have	

been	well	optimised,	and	further	improvement	of	the	accuracy	of	weighing	results	can	

only	be	sought	for	in	the	development	of	advanced	procedures	for	processing	the	

recorded	data,	and	in	better	calibration	of	the	structural	parameters	such	as	the	influence	

lines.	

After	the	raw	signal	has	been	smoothed	and	filtered	by	standard	mathematical	tools,	the	

recorded	responses	of	the	sensors,	which	are	placed	in	line	orthogonally	to	the	driving	

direction	(Figure	1,	right),	should	capture	the	distribution	of	strains	across	the	bridge.	

This	is	not	always	true	as	the	gauge	factors	may	vary	from	one	sensor	to	another.	This	can	

be	mostly	attributed	to	differences	in	the	quality	of	sensor	production	and	the	precision	of	

their	installation,	particularly	the	exact	orientation	of	the	gauges.	Certain	corrections	of	

gauge	factors	can	compensate	for	such	irregularities,	and	reduce	the	errors	in	weighing	

results.	Such	corrections	were	initially	performedin	a	heuristic	trial‐and‐error	method.	

Although	the	results	were,	in	most	cases,	satisfactory,	there	is	a	clear	demand	for	the	

automated	calculation	of	sensor	correction	factors.		

By	means	of	the	proposed	procedure	sensors	with	disproportional	responses,	which	are	

caused	by	different	sources	of	 imperfections,	 can	be	detected	and	calibrated	 in	order	 to	

achieve	higher	quality	input	for	the	B‐WIM	measurements	and	it	should	be	possible	for	it	

to	be	 applicable	 to	 various	 arrangements	 of	 sensors	 on	 slab	bridges.	 Its	 effectiveness	 is	

demonstrated	by	the	example	of	a	reinforced	concrete	slab	bridge	(forming	a	motorway	

underpass).	Static	weighing	results	were	used	to	validate	the	method,	which	is,	however,	

limited	to	transversely	symmetrical	bridges	with	more	than	one	driving	lane.	



2 Definition	of	the	problem	

Regardless	of	the	algorithm	used,	today	most	B‐WIM	systems	process	the	results	of	strain	

measurements	recorded	at	times	of	vehicle	crossings,	and	convert	this	information	into	

axle	loads.	In	the	case	of	steel	girders,	and	sometimes	also	in	the	case	of	steel	

reinforcement,	strains	can	be	measured	by	means	of	strain	gauges,	but	in	most	cases	

detachable	strain	transducers	have	to	be	mounted	onto	the	soffit	of	the	bridge	

superstructure.	An	example	of	two	different	types	of	installation	is	shown	in	Figure	1.	

	

Figure	1:	Strain	gauges	installed	on	a	steel	orthotropic‐deck	bridge	(left),	and	a	typical	strain	

transducer	set‐up	on	a	reinforced	concrete	bridge	(right).	

A	properly	set‐up	and	calibrated	B‐WIM	system	should	be	able	to	measure	the	realistic	

response	of	bridges	under	vehicle	loadings,	and	thus	yield	axle	loads	that	are	within	a	few	

percent	of	their	statically	weighed	values	[22].	Yet,	experience	has	show	that,	particularly	

in	the	case	of	reinforced	concrete	bridges,	the	achieved	accuracy	is	frequently	

unsatisfactory.	One	of	the	main	reasons	for	this	is	that	the	strain	sensors	do	not	

necessarily	provide	the	information	which	is	expected	(i.e.	the	global	bridge	

response/strains	under	vehicle	loadings).	Whereas	strain	gauges	installed	by	experienced	

technicians	can,	in	most	cases,	measure	strains	that	comply	with	the	assumptions	of	the	B‐

WIM	algorithm,	the	quality	of	the	output	from	strain	transducers	is	less	consistent	since	it	

depends	on	two	important	factors:	

i) The	transducers	are	fixed	to	the	bridge	either	by	means	of	2.5	cm	long	steel	anchors	

which	are	drilled	into	the	concrete,	or	else	to	mounting	plates	that	are	glued	onto	the	



concrete	or	steel	surface.	The	sensors	are	then	secured	by	bolts	with	washers,	which,	

depending	on	the	skill	and	consistency	of	the	technician,	can	significantly	affect	the	

measured	signals.	

ii) Reinforced	concrete	structures	are	frequently	not	completely	intact,	and	usually	

exhibit	a	considerable	number	of	cracks.	Most	of	them	are	very	thin,	and	are	difficult	

to	detect	and	avoid	during	the	installation	process.	Thus,	instead	of	measuring	the	

global	strains	of	the	structure	as	expected	by	the	B‐WIM	algorithm,	a	strain	

transducer	may	record	a	local	strain	response.	Based	on	the	authors'	experience,	and	

the	results	of	performed	measurements,	such	a	response	can,	in	the	case	of	reinforced	

concrete	structures,	be	up	to	4	times	greater	if	the	sensor	is	installed	across	a	crack,	

or	equal	to	only	about	one	quarter	of	the	expected	value	if	there	is	a	crack	just	outside	

the	sensor.	

Finally,	the	locations	of	the	sensors,	as	well	as	the	quality	of	their	production	and	to	some	

extent	their	malfunctioning	(calibration	which	fades	over	time),	can	have	similar	negative	

effects	that	have	to	be	accounted	for.	

A	typical	response	that	was	recorded	by	means	of	the	B‐WIM	system	which	is	installed	on	

a	reinforced	concrete	integral	slab	bridge	(an	underpass)	with	a	6.0	m	span	that	is	located	

on	the	A2	motorway	near	Ljubljana,	Slovenia,	is	presented	in	Figure	2.	Twelve	equally	

spaced	strain	transducers	were	located	under	the	bridge	in	order	to	measure	its	response	

beneath	the	two	driving	lanes	and	the	hard	shoulder	(Figure	1,	right).	The	average	

maximum	amplitudes	of	the	individual	strain	transducer	responses,	calculated	from	over	

4	months	of	traffic	(approximately	150	thousand	heavy	vehicles),	are	shown	beneath	the	

slab	in	Figure	2.	To	obtain	this	diagram,	the	raw	responses	due	to	the	vehicles	in	one	lane	

only	(without	multiple‐presence	events)	were	first	processed	by	standard	mathematical	

procedures	in	order	to	remove	the	high	frequency	noise.	Then,	before	averaging,	the	

response	of	each	individual	event	(the	driving	of	a	single	heavy	vehicle	over	the	bridge)	

was	normalized	so	that	the	sum	of	the	responses	of	all	twelve	sensors	was	equal	to	one.		



	

Figure	2:	Cross	section	of	one	half	of	the	investigated	motorway	slab	bridge,	showing	the	average	

responses	of	all	twelve	strain	transducers.	

Clearly,	the	measured	response	in	Figure	2	does	not	match	the	anticipated	transverse	

distribution	of	strains	in	a	slab	[23],	from	which	the	average	lateral	positions	of	the	

vehicles	should	be	evident.	In	this	case	the	maximum	response	was	detected	by	sensor	

number	8	regardless	of	whether	vehicles	were	driving	in	the	main	lane	or	in	the	

overtaking	lane.	A	subsequent	check	revealed	that	this	transducer	had	been	positioned	

over	a	0.2	mm	wide	crack.	It	will	be	shown	later	that	the	overlooking	of	such	damage	can	

have	a	significant	effect	on	the	accuracy	of	the	B‐WIM	measurement	results,	particularly	if	

multiple‐presence	events,	with	vehicles	in	more	than	one	lane	at	the	same	time,	need	to	be	

successfully	accounted	for	[24].	

The	development	of	an	algorithm	for	the	automatic	detection	of	correction	factors	is	

based	on	the	assumption	that	the	response	of	the	structure	is	similar	for	all	types	of	

conventional	heavy	traffic,	i.e.	that	the	response	of	the	transducers	depends	linearly	on	

the	total	weight	of	a	vehicle	on	the	bridge.	The	validity	of	this	assumption	can	be	

statistically	confirmed.	The	complete	set	of	collected	normalized	data	(382	823	trucks	on	

the	1st	lane	and	23	478	trucks	on	the	2nd	lane)	was	divided	into	five	classes,	separately	for	

each	lane,	depending	on	the	level	of	maximum	measured	strain.	The	averaged	responses	

were	evaluated	for	each	class	separately.	Boundaries	between	individual	classes	were	

selected	at	every	20th	percentile	of	the	maximum	strains,	which	means	that	each	curve	

represents	the	average	values	of	76	564	vehicles	in	lane	1	and	4	696	vehicles	in	lane	2	



(Figure	3).	The	curves	are	almost	identical,	which	confirms	the	validity	of	the	assumption	

that	the	observed	anomaly	does	not	depend	on	the	level	of	loading.	The	differences	are	

slightly	greater	in	lane	2,	which	can	be	explained	by	the	considerably	smaller	size	of	the	

sample.	

		 	

Figure	3:	The	five	classes	of	maximum	measured	strain	 for	each	lane:	the	average	response	of	 the	
normalized	measurements.		

3 Procedure	for	the	determination	of	optimal	correction	factors	

In	this	chapter	the	theoretical	background	of	the	method	is	presented	and	illustrated	by	

means	of	an	example.	

3.1 Primary	definitions	and	assumptions	

Let	 , , . . . , 	denote	the	responses	of	 	collinear	strain	sensors	positioned	at	distances	

, , . . . , 	from	the	edge	of	the	bridge.	We	need	to	determine	coefficients	

, , . . . , 0	in	such	a	manner	that	the	corrected	strain	response	

⋅ , ⋅ , … , ⋅ 	 (1) 

leads	to	accurate	values	of	the	vehicle/axle	weights.	

The	solution	of	the	task	should	be	based	on	earlier	experience	as	well	as	on	the	properties	

of	the	bridge.	For	this	reason	a	short	monolithic	slab	bridge	was	investigated,	so	that	it	can	

be	assumed	that,	due	to	the	constant	cross	section	and	boundary	conditions,	the	average	

of	the	corrected	responses	for	the	driving	and	overtaking	lanes	should	be	similar.	An	even	

more	important	assumption	is	concerned	with	the	expected	response	of	the	structure:	the	



largest	response	of	the	structure	should	be	recorded	under	the	vehicle,	i.e.	under	its	

wheels,	and	should	decrease	as	the	distance	from	the	wheel	increases.	The	model	

describing	the	relationship	between	the	lateral	coordinate	of	the	sensor	and	the	response	

is	clearly	nonlinear.	In	order	for	a	model	to	be	applicable	to	day‐to‐day	B‐WIM	

measurements,	it	is	of	the	greatest	importance	that	it	should	be,	on	the	one	hand,	

sufficiently	simple,	while	simultaneously	fitting	both	the	empirical	and	theoretical	results	

well.	Although	the	dynamic	response	is	measured,	by	means	of	numerical	studies	it	has	

been	observed	that	a	quadratic	or	even	higher‐degree	polynomial	is	not	the	most	

appropriate.	Thus,	the	proposed	model	is	based	on	a	linear	combination	of	a	Gaussian	

function,	a	constant,	and	a	linear	term.	Formally,	the	model	is	defined	in	two	manners;	(i)	

for	the	generalized	response	of	a	bridge	under	a	vehicle	it	is	assumed	that	

; , , ,
√

exp ,	 (2)	

and	(ii)	in	the	case	of	a	more	detailed	consideration	of	two	wheels	acting	at	the	same	

lateral	position	that	

; , , ,
√

exp
.

exp
.

,	

	 (3)	

where	 ∈ , ,	and	 	‐	 	have	to	be	estimated	from	the	sample.	Without	the	first	two	

terms,	 	and	 	would	describe	the	mean	and	the	standard	deviation	of	the	sample.	

However,	such	a	model	would	be	restricted	to	the	unit	L2	norm.	To	overcome	this	

constraint	the	terms	with	 	and	 	are	added,	which	permit	non‐unity	and	linear	

dependency	to	be	incorporated	into	the	model.	Note	that	the	measured	data	have	already	

been	subjected	to	a	normalization	procedure	during	the	pre‐processing	of	the	signal.	A	

small	but	important	contribution	of	the	first	two	terms	can	therefore	be	expected	from	

(2),	whereas	the	Gaussian	part	of	(2)	‐	the	density	function	of	the	normal	distribution	‐	

makes	a	major	contribution	to	the	shape	of	the	response	curve.	The	parameter	 	also	



serves	for	the	calibration	of	the	generalized	response	function	 .	The	coefficients	 	

in	Equation	(3)	have	a	similar	role	as	in	Equation	(2).	In	the	case	of	the	more	detailed	

response	(3),	the	expected	shape	due	to	point	loads	at	the	positions	of	the	wheels	is	taken	

into	account,	allowing	the	function	 	to	have	two	separate	peaks.	The	value	1.05	

represents	one	half	of	the	distance	(in	meters)	between	the	centres	of	tyres	on	an	average	

axle	of	a	heavy	commercial	vehicle.	This	enforces	the	occurrence	of	peaks	at	a	distance	

corresponding	to	the	truck	width.	Due	to	normalization	of	the	measured	response,	the	L2	

norm	of	 	should	still	have	a	value	close	to	unity.	This	is	why	the	third	term	in	(3)	

represents	the	average	value	of	the	two	Gaussian	functions.	

Note	that	the	more	detailed	shape	function	should	provide	better	results,	but	only	if	the	

sensors	are	placed	closely	enough	together	with	respect	to	the	truck	width,	which	for	

practical	reasons	(the	limited	number	of	available	measurement	channels)	is	not	always	

feasible.	Sparser	placement	of	sensors	also	means	that	any	malfunctioning	of	the	sensors	

will	be	more	difficult	to	compensate	for.	

3.2 Correction	factors	of	the	measured	response:	the	basic	procedure	

All	the	numerical	investigations	were	performed	on	data	that	were	recorded	by	the	B‐

WIM	system	installed	on	the	bridge	VA0028	[17].	The	system	consists	of	twelve	sensors	at	

centre‐to‐centre	distances	of	1.05	m.	In	order	to	provide	an	input	for	the	proposed	

correction,	the	load	distribution	factors	were	computed	for	data	recorded	in	August	2013,	

when	the	system	captured	29	788	events	with	vehicles	having	a	gross	weight	of	more	than	

3.5	tons	(trucks)	in	the	driving	lane	(Lane	1),	and	779	in	the	overtaking	lane	(Lane	2).	

Validation	of	the	coefficients	was	performed	on	the	62	vehicles	that	were	weighed	

statically	during	the	period	between	September	2013	and	June	2014.		

The	numerical	analyses	presented	here	were	performed	in	a	Matlab	computing	

environment	[25].	Non‐linear	regression	[26]	was	first	run	for	each	event,	which	can	

generally	be	described	as	a	procedure	where	in	the	case	of	each	event	 	( 1, 2, . . . ,

,	and	 ,	 	are	the	numbers	of	events	in	the	driving	and	overtaking	lanes,	



respectively)	we	seek	for	such	parameters	 , , 	, 	which	would	result	

in	the	best	fit	between	the	responses	 , , . . . , 	and	the	regression	function	

(2)	is	based	on	the	least	square	method.	Note	that	the	detailed	shape	function	(3)	could	

also	have	been	applied,	but	it	was	found	to	be	unsuitable	for	the	available	data	due	to	the	

disproportional	measurements	provided	by	one	sensor,	which	will	be	further	discussed	in	

the	following	section.	As	the	problem	is	nonlinear	an	iterative	procedure	is	needed.	At	

each	 	the	quotients:	

, for		 ; , , , 		 (4)		

which	serve	for	the	calibration	are	evaluated.	The	data	were	assembled	and	the	results	were	

computed	separately	for	each	lane.	The	average	values	of	 	for	all	events	 	were	then	

evaluated	for	each	lane	in	order	to	obtain	the	coefficients	 	and	 	for	each	strain	sensor.	

They	are	presented,	for	the	given	example	of	bridge	VA0028,	in	Table	1.	

Table	1:	Average	scaling	coefficients	kj	for	both	lanes	obtained	by	nonlinear	regression	applying	

Equation	(2).	

Sensor	 		 	1		 	2		 	3		 	4		 	5		 	6		 	7		 	8		 	9		 	10		 	11		 	12		

		 	1.31	 	1.07		 	1.51		 	0.70	 	1.257		0.81	 	1.94	 	0.60	 	1.47	 	1.30		 	1.50		 	0.86		

		 	0.64	 	0.12		 	0.42		 	0.27	 	0.68	 	0.89	 	2.66	 	0.71	 	1.50	 	0.98		 	0.88		 	0.44	



	 	

Figure	4:	Corrected	response	for	the	two	lanes.	

In	the	following,	the	upper	indices	1	and	2	denote	the	two	driving	lanes	of	the	bridge.	

Finally,	the	similarity	of	the	two	curves	is	checked.	Figure	4	presents	the	average	corrected	

responses	 	and	 	of	each	lane,	separately,	after	the	correction	factors	 	and	 	have	

been	applied:	

∑ ⋅
,				

∑ ⋅
.		 	(5)	

It	is	clear	that	the	obtained	curves,	while	being	much	smoother	than	the	originals,	are	still	

less	similar	than	expected.	On	a	bridge	with	a	constant	cross‐section	across	its	whole	width,	

as	in	this	example,	it	could	be	expected	that	the	response	in	the	two	lanes	would	be	similar	

with	respect	to	height	and	width,	and	that	the	strains	would	be	dispersed	transversely	in	

similar	ways.	Naturally,	differences	cannot	be	avoided	towards	the	two	free	edges	of	the	

slab,	but	these	sensors	are	less	important	for	weighing,	and	contribute	considerably	less	to	

the	accuracy	of	the	results.	

In	 order	 to	 be	 able	 to	 assess	 the	 similarity	 of	 the	 two	 curves	 a	 numerical	 algorithm	 is	

needed.	The	difference	between	the	average	fitted	responses	for	each	lane	was	determined	

by	comparing	the	parameters	corresponding	to	the	approximation	of	the	response	curves	

shown	in	Figure	4.	



Table	2:	Comparison	of	the	corrected	responses	between	the	two	lanes.	

		 	 		 	 / 	

0.30870		 	1.51780		 	0.34258		

Note	that	the	individual	 ⋅ ,	 1, . . , ,	at	fixed	events	 ,	for	 1, 2	

corresponding	to	both	lanes	are	exactly	the	function	values	 	at	 	for	parameters	

, , , 	in	accordance	with	our	model	(2).	This	stems	directly	from	

Equation	(4).	After	averaging,	the	mean	values	 and	 	cannot	be	obtained	directly	from	

Equation	(2),	but	they	are	very	close	to	the	values	of	our	model	at	each	node	 	for	some	

parameters	 	and	 ,	respectively.	This	is	due	to	the	small	variation	of	the	

coefficients	 	and	 .	Consequently,	the	same	shape	function	will	be	used	to	approximate	

the	average	curves	in	Figure	4.	The	nonlinear	regression‐based	fitted	parameters	from	

model	(2)	will	be	denoted	by	 	and	 , i 1,… , 4.	The	parameters	 	determine	the	

‘width	of	the	bell’	of	the	model	based	on	the	probability	density	function	of	normal	

distribution.	From	Table	2	only	a	low	degree	of	similarity	can	be	observed	between	the	

two	curves	since	the	relative	difference	between	the	two	parameters	(34%)	is	relatively	

large.	

3.3 Detection	and	calibration	of	a	sensor	with	a	disproportional	response	

The	reason	for	the	low	degree	of	similarity	between	the	results	for	the	two	lanes	is	that	

any	sensor	can	provide	values	that	are	far	from	the	expected	ones.	This	could	be	due	to	a	

faulty	sensor	or,	as	in	the	present	example,	a	crack	in	the	concrete	located	between	the	

anchors	of	the	sensor.	In	order	to	identify	a	sensor	providing	disproportional	signals	it	is	

necessary	to	repeat	the	basic	procedure	from	Section	3.2	N	times,	and	for	each	repetition	

to	leave	out	the	measurements	of	one	sensor.	For	example,	in	the	lth	calculation	the	

measurements	 , . . . , , , . . . , 	are	accounted	for	by	the	calculation	of	 1	

coefficients	 , 	of	the	strain	sensors	positioned	at	lateral	positions	



, . . . , , . . . , .	The	results	of	the	standard	deviations	 	for	each	lane	and	the	

relative	absolute	differences	between	the	lanes	for	these	N	calculations	are	assembled	in	

Table	3.		

Table	3:	Comparison	of	the	driving	and	the	overtaking	lanes;	the	correction	coefficients	and	

responses	were	computed	without	considering	the	data	of	one	sensor.	

excluded	sensor	 	 / 		

1	 0.34533		

2	 0.34470		

3	 0.35829		

4	 0.33072		

5	 0.31183		

6	 0.41785		

7	 0.27471		

8	 0.04975		

9	 	0.69248		

10	 0.35371		

11	 0.35913		

12	 0.36244		

Figure	5	presents	a	few	corrected	responses	that	fit	the	model,	but	they	were	computed	

without	considering	the	data	recorded	by	the	second,	fifth,	eighth,	and	eleventh	sensor,	

respectively.	From	Table	3	and	Figure	5	it	can	be	seen	that	the	resemblance	between	the	

curves	increases	dramatically	if	the	data	recorded	by	the	malfunctioning	8th	sensor	are	

eliminated.	The	calculation	excluding	the	8th	sensor	gives	eleven	values	 , 	for	each	of	

the	two	lanes,	see	Table	4.	They	serve	as	the	most	appropriate	basis	for	the	determination	

of	the	final	correction	factors.	



		

Figure	5:	Average	corrected	responses;	the	correction	factors	are	computed	from	the	original	data	

without	considering	one	sensor.	

Now	the	individual	coefficients	for	the	eleven	sensors	have	to	be	evaluated,	independently	

of	the	driving	lane.	They	are	obtained	by	averaging	the	coefficients	 , 	for	the	two	lanes.	

The	exceptions	to	this	rule	are	sensors	1	and	2,	where	the	coefficients	derived	from	lane	1	

were	 assumed.	 From	 Table	 4	 a	 higher	 discrepancy	 can	 be	 observed	 between	 the	 two	

coefficients,	and	from	the	graph	entitled	‘Elimination	of	8th	sensor’	in	Figure	5	it	is	clear	that	

the	corrected	response	of	the	first	two	sensors	in	lane	2	(shown	by	a	dotted	line)	is	higher	

than	that	of	the	third	and	fourth	sensors,	which	are	closer	to	the	vehicle.	As	this	is	not	in	

agreement	with	the	primary	assumption	that	the	response	of	the	structure	should	decrease	

with	increasing	distance	from	the	vehicle,	these	two	coefficients	will	hereafter	be	neglected.	

It	should	be	noted	that	the	distance	between	the	two	sensors	and	the	overtaking	 lane	 is	

large,	which	means	that	the	measured	values	are	unreliable;	indeed	they	are	extremely	low	

and	sometimes	even	negative.		



Table	4:	Coefficients	after	eliminating	the	data	provided	by	the	8th	sensor.	

Sensor	 	 1	 2	 3	 4	 5	 6	 7	 9	 10	 11	 12	

	 0.088	 0.927	 1.753	 0.807	 1.321	 0.750	 1.539	 0.853	 0.698	 0.988	 1.503	

	 5.487	 2.794	 1.299	 0.406	 0.748	 0.668	 1.550	 0.962	 0.921	 1.340	 0.858	

	 0.088	 0.927	 1.526	 0.607	 1.035	 0.709	 1.545	 0.908	 0.809	 1.164	 1.181	

Now	we	need	to	determine	the	correction	factor	for	the	eliminated	sensor,	by	returning	to	

the	individual	computations	of	the	basic	algorithm	without	the	data	relating	to	the	eighth	

sensor.	For	the	parameters	 	of	each	computation	 	( 1,2, . . . , ),	the	

function	value	 	is	calculated	using	Equation	(2)	at	position	 ,	and	the	quotient	

.	 (6)	

The	average	coefficients	of	the	eighth	sensor	( 0.403,	 0.390)	are	then	evaluated	

for	each	lane.	By	averaging	them,	 0.397,	the	individual	coefficient	for	the	

eighth	sensor	is	determined.	The	coefficients	 ,	for	 1, . . . , 	serve	as	scaling	factors	for	

each	measured	record	of	the	corresponding	strain	gauge.	The	corrected	responses	

⋅ , ⋅ , . . . , ⋅ 	 (7)	

can	be	applied	directly	in	the	weighing	procedure.	Although	they	lead	to	more	accurate	

weighing	results,	it	was	decided	to	further	improve	them	by	the	procedure	described	in	

the	sequel.	

On	the	scaled	data	(7)	nonlinear	regression	was	once	again	applied,	but	this	time	the	more	

detailed	model	which	allows	for	two	peaks	was	used	(3).	For	each	corrected	measurement	

	( 1, 2, . . . , )	the	procedure	presented	in	Section	3.2	is	repeated,	and	the	



correction	factors	are	obtained.	The	final	correction	factors	
∗
	are	presented	in	Table	5	

and	were	obtained	as	a	result	of	the	complete	procedure.	

Table	5:	Final	correction	factors.	

Sensor	 		 	1		 	2		 	3		 	4		 	5		 	6		 	7		 	8		 	9		 	10		 	11		 	12		

∗
	 	2.02	 	1.01		 	1.15		 	0.58	 	1.05	 	0.63	 	1.45	 	0.39	 	0.87	 	0.82		 	1.22		 	1.24		

The	curves	of	the	average	response	which	apply	in	the	case	of	the	regression	function	(3),	

using	the	coefficients	from	Table	5,	are	very	similar	in	shape	to	those	obtained	in	the	case	

of	the	regression	function	(2),	using	the	coefficients	from	Table	4.	In	both	cases	a	one‐peak	

curve	is	obtained,	and	the	error	in	the	measured	gross	weight	of	the	vehicles	has	been	

only	slightly	reduced.	The	reason	for	this	lies	in	the	sparse	mesh	of	the	sensors,	where	

only	one	or	a	maximum	of	two	sensors	are	positioned	between	the	wheels,	see	Figure	2.	In	

most	cases	the	maximum	response	is	detected	between	the	wheels,	where	sensors	

measure	the	response	due	to	the	effect	of	two	wheels.	If	there	are	more	sensors	between	

the	wheels,	then	those	beneath	the	centre	of	the	truck	would	probably	capture	lower	

values	than	those	under	the	wheels,	which	would	result	in	a	response	with	two	peaks.	

4 The	effect	of	correction	factors	on	the	accuracy	of	WIM	results	

In	order	to	demonstrate	the	effect	of	correction	factors	on	the	accuracy	of	WIM	results,	the	

proposed	method	was	validated	using	measurement	data	obtained	on	the	investigated	

motorway	underpass.	Over	a	period	of	ten	months,	the	SiWIM®	[15]	system	was	also	

used	as	a	pre‐selection	tool	to	detect	vehicles	that	are	very	likely	overloaded.	During	this	

period,	traffic	police	patrols	pulled	off	the	motorway	62	vehicles	of	different	axle	

configurations	and	weighed	them	with	portable	static	weighing	pads	at	a	rest	area	that	is	

located	3	km	beyond	the	bridge,	see	Figure	6.	Although	the	results	of	weighing	by	means	

of	portable	scales	are	less	accurate	than	those	obtained	at	permanently	installed	weighing	



stations,	they	can	nevertheless	still	be	taken	as	a	reference	for	the	estimation	of	the	

accuracy	of	the	treated	WIM	system	[5].	

	

Figure	6:	The	instrumented	underpass	(left),	and	the	static	weighing	of	vehicles	(right).	

The	first	18	vehicles	(observed	during	the	first	two	days	of	static	measurements)	were	

used	to	calibrate	the	system	according	to	the	European	specification	for	weigh‐in‐motion	

systems	[5].	This	provided	the	initial	set‐up	of	the	system.	The	remaining	44	vehicles	were	

used	to	investigate	the	accuracy	of	the	proposed	method.	It	should	be	noted	that,	for	the	

purposes	of	this	study,	these	two	groups	could	be	merged.	The	vehicles	were	divided	into	

two	groups	in	order	to	fulfil	the	requirements	for	the	calibration	procedure	and	

determination	of	the	calibration	factors,	see	[27]	and	[28].	The	averaged	lateral	

distribution	curves	were	compiled	independently	by	averaging	the	382	823	and	23	478	

lateral	distribution	curves	that	were	obtained	in	the	case	of	lanes	1	and	2,	respectively.	

In	order	to	compare	errors	in	the	measured	weights	of	different	types	of	vehicles	with	

different	gross	weights	and	axle	loads,	the	relative	error,	E,	of	the	numerical	results	was	

calculated	for	the	44	vehicles,	

, 		i 1, 2, . . . , ,		 	(8)	

where	wWIM	is	the	gross	vehicle	weight	(GVW),	the	individual	axle	weights	and	the	axle	

group	weights	being	calculated	with	SiWIM®	procedure,	and	wStat	being	the	static	

reference	values.	The	axle	groups	consisted	of	axles	that	were	spaced	up	to	1.8	m	apart.	



The	total	load	corresponding	to	an	individual	axle	group	is	equal	to	the	sum	of	all	the	axle	

loads	in	the	group.	n	is	the	number	of	all	loading	cases,	i.e.	44	GVW,	54	individual	axles	

and	64	axle	groups.	

Table	6	summarises	the	statistical	parameters	obtained	for	the	44	vehicles.	The	weights	

and	the	corresponding	errors	were	evaluated	for	two	cases:	(i)	without	correcting	the	

measured	data,	i.e.	by	using	the	measured	data	directly,	and	(ii)	with	the	corrected	

measured	data,	i.e.	data	that	were	obtained	after	multiplication	with	the	factors	given	in	

Table	5.	

Table	6:	Mean	and	standard	deviation	of	the	relative	errors	before	and	after	applying	the	correction	

factors;	n	is	the	size	of	the	data	sample.	

		 	 Uncorrected	 After	correction	

Criteria	 n	 Mean	 Standard	deviation	 Mean	 Standard	deviation	

Gross	Weights	 44	 ‐0.0168	 0.0535	 0.0038 0.0423	

Axle	Groups	 54	 ‐0.0112	 0.0705	 0.0110 0.0619	

Individual	Axles	 64	 ‐0.0259	 0.0641	 0.0063 0.0584	

In	Figure	7	a	comparison	of	the	absolute	relative	errors	of	the	numerically	estimated	GVW	

for	all	44	vehicles	is	presented.	The	absolute	errors	are	sorted	by	magnitude.	The	benefit	

of	the	proposed	algorithm	is	clear	since	the	average	and	the	most	strongly	deviating	

weighing	results	are	substantially	improved.	The	maximum	absolute	GVW	error	decreases	

from	17.7%	to	8.4%,	and	the	95th	percentile	of	the	GVW	errors	decreases	from	11.1%	to	

7.4%.	According	to	the	European	specifications	for	weigh‐in‐motion	[5]	a	significant	

enhancement	of	one	accuracy	class	was	achieved	for	all	three	criteria	(GVW,	individual	

axles,	and	axle	groups).	The	gross	weights	and	the	axles	groups	advanced	from	class	C(15)	

to	B(10).	and	the	individual	axles	from	class	B(10)	to	B+(7).	



	

Figure	7:	Absolute	relative	GVW	errors	sorted	by	magnitude.	

5 Conclusions	

The	paper	presents	a	novel	procedure	for	the	automatic	correction	of	bridge	strain	

response	measurements	that	are	used	for	weighing	heavy	vehicles	in	motion.	The	

procedure	applies	smooth	shape	functions	which	approximate	well	the	lateral	strain	

response	of	the	bridge	superstructure.	One	of	the	key	elements	of	the	proposed	procedure	

is	its	ability	to	detect	sensors	with	a	disproportional	response.	Based	on	the	assumed	and	

fitted	shape	functions	the	correction	factors	for	the	measured	response	were	determined.	

These	correction	factors	notably	reduced	the	errors	of	the	axle	and	gross	weights	of	the	

heavy	vehicles	calculated	by	the	bridge	weigh‐in‐motion	system.	According	to	the	

European	specifications	for	WIM,	a	significant	enhancement	of	one	accuracy	class	was	

achieved	when	the	procedure	was	applied.	The	procedure	is	fairly	general	and	can	be	

directly	applied	to	similar	concrete	reinforced	slab	bridges	with	at	least	two	driving	lanes.	

For	a	more	precise	shape	of	the	response	a	denser	mesh	of	sensors	is	needed.	
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