Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo

Jamova cesta 2 1000 Ljubljana, Slovenija http://www3.fgg.uni-lj.si/

DRUGG – Digitalni repozitorij UL FGG http://drugg.fgg.uni-lj.si/

To je izvirna različica zaključnega dela.

Prosimo, da se pri navajanju sklicujte na bibliografske podatke, kot je navedeno:

Lavrenčič, M., 2014. Vpliv delno togih spojev na globalno stabilnost okvirjev. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo. (mentor Korelc, J., somentor Može, P.): 39 str.

Datum arhiviranja:09-10-2014

Jamova cesta 2 SI – 1000 Ljubljana, Slovenia http://www3.fgg.uni-lj.si/en/

DRUGG – The Digital Repository http://drugg.fgg.uni-lj.si/

This is original version of final thesis.

When citing, please refer to the publisher's bibliographic information as follows:

Lavrenčič, M., 2014. Vpliv delno togih spojev na globalno stabilnost okvirjev. B.Sc. Thesis. Ljubljana, University of Ljubljani, Faculty of civil and geodetic engineering. (supervisor Korelc, J., cosupervisor Može, P.): 39 pp.

Archiving Date: 09-10-2014

Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE GRADBENIŠTVO

Kandidat:

Diplomska naloga št.: 129/B-GR

Graduation thesis No.: 129/B-GR

Mentor:

Predsednik komisije: izr. prof. dr. Janko Logar

Somentor:

STRAN ZA POPRAVKE

Stran z napako

Vrstica z napako

Namesto

Naj bo

IZJAVA O AVTORSTVU

Podpisani Marko Lavrenčič izjavljam, da sem avtor diplomske naloge z naslovom »Vpliv delno togih spojev na globalno stabilnost okvirjev«.

Izjavljam, da je elektronska različica v vsem enaka tiskani različici.

Izjavljam, da dovoljujem objavo elektronske različice v digitalnem repozitoriju.

Ljubljana, september 2014

Marko Lavrenčič

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	624.014.2(497.4)(043.2)
Avtor:	Marko Lavrenčič
Mentor:	prof. dr. Jože Korelc
Somentor:	viš. pred. dr. Primož Može
Naslov:	Vpliv delno togih spojev na globalno stabilnost okvirjev
Tip dokumenta:	diplomska naloga - univerzitetni študij
Obseg in oprema:	39 str., 12 pregl., 34 sl., 1 pril.
Ključne besede:	delno togi spoji, delno nosilni spoji, stabilnost okvirjev, duktilnost,
	plastični členek, plastična nosilnost spojev, togostni koeficienti

Izvleček:

V diplomski nalogi ugotavljam kako delno togi spoji vplivajo na obnašanje jeklenih okvirjev. Celotna diplomska naloga je obravnavana na primeru okvirja, ki je del izmišljenega večetažnega objekta. Najprej so dimenzionirani nosilci in stebri, nato pa je, v prvem delu računa spojev, z uporabo komponentne metode, izračunana momentna nosilnost obravnavanih spojev. Ti so zasnovani kot vijačeni spoji prečka steber s podaljšano čelno pločevino. V drugem delu je prav tako po komponentni metodi izračunana začetna togost spojev $S_{j,ini}$. S pomočjo nosilnosti ter togosti je nato definiran graf moment-zasuk, ki določa obnašanje vozlišča. V programu SCIA Engineer 2013 je nato opravljena geometrijsko nelinearna numerična analiza, kjer so spoji modelirani kot nelinearne vzmeti. Kot rezultate opazujem faktor kritične obtežbe α_{cr} , horizontalni pomik zgornje etaže konstrukcije ter zasuke spojev. Pri osnovni zasnovi spoja nato spreminjam debelino čelne pločevine in opazujem kako se s tem spreminjajo prej navedene količine.

BIBLIOGRAPHIC - DOCUMENTALISTIC INFORMATION

UDC:	624.014.2(497.4)(043.2)
Author:	Marko Lavrenčič
Supervisior:	Prof. Jože Korelc, Ph. D.
Co-advisor:	Sen. Lect. Primož Može, Ph. D.
Title:	Influence of semi-rigid connections on global stability of frames
Document type:	Graduation Thesis – University studies
Notes:	39 p., 12 tab., 34 fig., 1 ann.
Key words:	semi-rigid connections, partial strength connections, frame stability, ductility, plastic hinge, plastic connection resistance, stiffness coefficient

Abstract:

Influence of semi-rigid connections on behaviour of steel frames is analyzed in this thesis. The entire thesis is based on a steel frame, part of a fictitious multi-storey building. Firstly the beams and columns are designed, which is followed by the first chapter concerning the connections, in which the moment capacity of the connections is calculated using the component method. The joints are designed as bolted extended end plate connections. In the following part the initial rotational stiffness of the connection $S_{j,ini}$ is calculated, also using the component method. Using moment capacity and stiffness, the moment-rotation diagram, which defines the behaviour of the connection, is defined. A geometrically nonlinear numerical analysis is then performed in SCIA Engineer 2013, where joints are modelled as nonlinear springs. From the results, the critical load coefficient α_{cr} , horizontal displacement of the upper storey and the rotation of joints are considered. Furthermore the thickness of the end plate is then altered and the effect on the results listed before is considered.

ZAHVALA

Za nasvete, napotke ter strokovno pomoč pri izdelavi diplomske naloge se zahvaljujem mentorju prof. dr. Jožetu Korelcu in predvsem somentorju viš. pred. Primožu Možetu. Zahvala gre tudi moji družini, ki me je med študijem vedno spodbujala in podpirala. Prav tako hvala vsem prijateljem sošolcem in sošolkam, s katerimi smo v zadnjih treh letih preživeli veliko lepih trenutkov.

KAZALO VSEBINE

S	STRAN ZA POPRAVKEI				
IZ	IZJAVA O AVTORSTVUII				
В	IBLIOGF	RAFSK	O – DOKUMENTACIJSKA STRAN IN IZVLEČEKII		
В	IBLIOGF	RAPHI	IC – DOCUMENTALISTIC INFORMATIONIV		
Z	AHVALA		V		
K	AZALO I	PREG	LEDNICVII		
K	AZALO S	SLIK	D		
1	Uvo	d			
2	Deli	tev sp	pojev		
	2.1	Nosi	ilnost		
	2.2	Togo	ost		
3	Obra	avnav	vana konstrukcija4		
	3.1	Mat	erial		
	3.2	Vpliv	vi na konstrukcijo4		
	3.3	Obte	ežne kombinacije		
	3.4	Račı	un po teoriji drugega reda		
	3.5	Kont	trola nosilnosti prečke		
	3.6	Kont	trola nosilnosti stebra		
4	Spoj	i			
	4.1	Zasn	iova spojev10		
	4.2	Mat	erial12		
	4.3	Nosi	ilnost spoja12		
	4.3.3	1	Odpornost natezne cone		
	4.3.2	2	Kontrola tlačene cone18		
	4.3.3	3	Strižni panel		
	4.3.4	4	Račun momentne kapacitete spoja22		
	4.3.	5	Kontrola vertikalnega striga22		
	4.3.0	6	Račun ojačitev22		
	4.3.	7	Kontrola zvarov		
	4.4	Rota	acijska togost spoja		
	4.4.3	1	Natezna cona26		

4.4	1.2	Strižna cona	28
4.4	1.3	Tlačna cona	29
4.5	Rota	acijska kapaciteta	29
4.6	Razv	vrstitev vozlišča	30
4.6	5.1	Nosilnost	30
4.6	5.2	Togost	30
5 Nu	merič	na analiza okvirja	31
5.1	Glol	balna analiza	31
5.2	2 Modeliranje vozlišč		32
5.3 Rezultati analize		32	
6 Zak	ključek	٢	38
Viri			39

KAZALO PREGLEDNIC

Preglednica 1: Komponente v spoju	11
Preglednica 2: Nosilnost nadomestnih T-elementov spoja konfiguracije 1	18
Preglednica 3: Nosilnost nadomestnih T-elementov spoja konfiguracije 2	24
Preglednica 4: Nosilnost obravnavanih spojev	30
Preglednica 5: Togost obravnavanih spojev	30
Preglednica 6: Pomik ter α_{cr} konstrukcije – vozlišča konfiguracije 1	33
Preglednica 7: Dvostransko vozlišče konfiguracije 1	33
Preglednica 8: Enostransko vozlišče konfiguracije 1	33
Preglednica 9: Pomik ter α_{cr} konstrukcije z ojačanimi vozlišči – konfiguracija 2, 3	34
Preglednica 10: Dvostransko vozlišče konfiguracije 2	34
Preglednica 11: Enostransko vozlišče konfiguracije 3	34
Preglednica 12: Rezultati za konstrukcijo s členkastimi podporami	37

KAZALO SLIK

Slika 1:Polno nosilna vozlišča (SIST EN 1993-1-8, 2005: str 55)	2
Slika 2: Delitev spojev glede na nosilnost	2
Slika 3: Delitev spojev glede na togost (Beg, 2011: str 22)	3
Slika 4: Geometrija obravnavanega okvirja	4
Slika 5: Vpliv globalnih nepopolnosti (SIST EN 1993-1-1, 2005: str 33)	5
Slika 6: Potek osnih sil v okvirju	6
Slika 7: Potek upogibnih momentov v okvirju	7
Slika 8: Geometrija spoja	10
Slika 9: Različne konfiguracije spoja	11
Slika 10: Komponente v spoju (The Steel Construction Institute, 2013:str 6)	12
Slika 11: Algoritem računanja nosilnosti	13
Slika 12: Definicije razdalj v spoju	15
Slika 13: Definicije nadomestnega T-elementa za vrsto vijakov nad pasnico prečke	15
Slika 14: Upogibna nosilnost čelne pločevine	16
Slika 15: Upogibna nosilnost pasnice stebra	17
Slika 16:Raznos tlačne sile (The Steel Construction Institute, 2013:str 20)	19
Slika 17:Delovanje momentov v nasprotni smeri (The Steel Construction Institute, 2013:str 22)	20
Slika 18: Delovanje momentov v isti smeri (The Steel Construction Institute, 2013:str 22)	20
Slika 19: Ravnotežje sil v spoju	21
Slika 20:Definicije dimenzij ojačitve (The Steel Construction Institute, 2013:str 29)	22
Slika 21:Definicije razdalj <i>m</i> (The Steel Construction Institute, 2013:str 30)	23
Slika 22:Površina efektivnega prereza	24
Slika 23: Mehanski model enostranskega vozlišča (da Silva, 2001: str 48)	26
Slika 24: Plastični členek v spoju (Beg, 2011: str 25)	29
Slika 25: 1. stabilnostna oblika	31
Slika 26: Poenostavljen bilinearni diagram moment-zasuk (SIST EN 1993-1-8, 2005: str 51)	31
Slika 27: Modeliranje vozlišč z vzmetmi (SIST EN 1993-1-8, 2005: str 57)	32
Slika 28: Računski model vzmeti oziroma odvisnost moment-rotacija spoja	32
Slika 29: Upogibni momenti v konstrukciji s spoji konfiguracije 2 ter 3 z različini debelinami čelne	
pločevine	33
Slika 30: Graf odvisnosti momentne kapacitete od debeline čelne pločevine	34
Slika 31: Graf odvisnosti začetne togosti spoja od debeline čelne pločevine	35
. Slika 32: Graf odvisnosti horizontalnega pomika konstrukcije od debeline čelne pločevine v spojih,	za
obtežno kombinacijo K2	35
Slika 33: Graf odvisnosti največjega zasuka v vozlišču od debeline čelne pločevine	36
Slika 34: Graf odvisnosti $lpha_{cr}$ od povprečne togosti spojev v okvirju	36

Ta stran je namenoma prazna

1 Uvod

Spoji so v jeklenih konstrukcijah ena izmed najpomembnejših komponent. Zato so jim projektanti vedno morali posvečati veliko pozornosti. Danes osnovni statični izračun konstrukcije ne zahteva več toliko časa kot nekoč, saj je na voljo veliko računalniških programov, ki omogočajo hitri račun. Prav tako je na voljo vedno več pripomočkov za detajlno računanje lastnosti spojev. Kljub temu pa sem se v tem diplomskem delu osredotočil na račun brez pomoči programov. Ob pisanju sem naletel na nekaj različnih metod računa spojev. Vse pa so se v svoji osnovi opirale na standard SIST EN 1993-1-8.

V SIST EN 1993-1-8 [1] je podana komponentna metoda računa nosilnosti in togosti spojev, kjer vsako komponento spoja analiziramo posebej. Sama metoda je zelo zamudna in ni primerna za račun večjih objektov brez uporabe računalniških pripomočkov. V okviru te diplomske naloge sem zato s to metodo obravnaval manjši jekleni okvir, ki je del izmišljenega večetažnega objekta.

Osredotočil sem se le na spoje steber-prečka. Za spoje med stebrom in temeljev sem predpostavil da so togi in polno nosilni. Vozlišča sem zasnoval kot delno toge spoje s čelno pločevino. Pri tem pa sem sledil navodilom podanim v SIST EN 1993-1-8 [1] ter Joints in Steel Construction Moment-Resisting Joints to Eurocode 3 [2].

J.M. Cabrero in E. Bayo [3] kot prednosti delno togih spojev navajata sposobnost zagotavljanja zadostne togosti pri obremenitvi z vetrom, zaradi česar ni potrebe po diagonalnih ojačitvah; njihova rotacijska togost pripomore k optimizaciji razporeda upogibnega momenta v konstrukciji, ter posledično k optimalni razporeditvi teže in upogibnega momenta; prav tako pripomorejo k povečanju odpornosti proti požaru in vibracijam. Posledično so konstrukcije z delno togimi spoji lažje, bolj učinkovite ter bolj ekonomične.

Eden izmed ciljev projektantov je, da čim bolj zreducirajo količino dela na gradbišču. Stroški materiala so namreč majhni v primerjavi s stroški dela. Glede na stroške so delno togi spoji zelo ekonomična rešitev. Členkasti spoji so sicer cenovno ugodnejši, je pa pri tem potrebno zagotoviti povezja v okvirju, ki zagotavljajo globalno stabilnost konstrukcije. [2]

V tej diplomski nalogi sem spoje modeliral kot delno toge ter preučeval vpliv njihove togosti na globalno stabilnost konstrukcije. Račun spoja sem izvedel po komponentni metodi, globalni račun konstrukcije pa s programom SCIA Engineer 2013. Vozlišča sem najprej obravnaval kot toga, brez vpliva na obnašanje konstrukcije, nato pa kot delno kontinuirna, modelirana kot nelinearne vzmeti, z vplivom na obnašanje konstrukcije kot celote.

2 Delitev spojev

Standard loči tri poenostavljene računske modele, s katerimi lahko obravnavamo vozlišča:

- členkasti, pri katerem se lahko predpostavi, da spoj ne prenaša upogibnih momentov
- kontinuirni, pri katerem se predpostavi, da vozlišča ne vplivajo na globalno analizo
- delno kontinuirni, pri katerem je pri globalni analizi konstrukcije treba upoštevati obnašanje vozlišč

Ker v diplomskem delu obravnavam delno toge spoje, moram te zasnovati kot delno vpeta vozlišča. Ta se med seboj ločijo glede na nosilnost in togost.

2.1 Nosilnost

Pri razvrstitvi glede na nosilnost spoja primerjamo nosilnost spoja ter nosilnost priključenega elementa. Glede na to razmerje ločimo 3 primere:

Polno nosilni spoj: spoj z momentno nosilnostjo, ki ne sme biti manjša od nosilnosti priključenega elementa. Poleg tega morata biti izpolnjena spodnja pogoja:

a) Vrh stebra		ali	$M_{j,Rd} \ge M_{b,pl,Rd}$
	₩ <i>W</i> I _{j,Rd}		$M_{j,Rd} \ge M_{c,pl,Rd}$
b) Vmesne etaže) M _{j,Rd}	ali	$M_{j,Rd} \ge M_{b,pl,Rd}$
	1		$M_{j,Rd} \ge 2M_{c,pl,Rd}$

Slika 1:Polno nosilna vozlišča (SIST EN 1993-1-8, 2005: str 55)

Nominalno členkast spoj: spoj, ki je sposoben razviti dovolj velike rotacije, da ga lahko modeliramo kot členek, hkrati pa ne sme prevzeti velikega momenta. Njegova projektna upogibna nosilnost ne sme preseči 25% projektne upogibne nosilnosti polno nosilnega vozlišča.

Delno nosilni spoj: spoj, ki ne izpolnjuje zahtev polno nosilnih ali nominalno členkastih vozlišč.

Slika 2: Delitev spojev glede na nosilnost

2.2 Togost

V SIST EN 1993-1-8 [1] je navedena razdelitev glede na začetno rotacijsko togost $S_{j,ini}$. Vozlišča so razdeljena v 3 kategorije. Vozlišče je togo, če je izpolnjen pogoj:

$$S_{j,ini} \ge k_b E I_b / L_b \tag{1}$$

kjer so:

$k_b = 8$ za d	okvirje, pri katerih povezja zmanjšajo vodoravne pomike za najmanj 80%
$k_b = 25$ za	druge okvirje, če je v vsaki etaži izpolnjen pogoj $K_b/K_c \ge 0,1$
K _b	srednja vrednost razmerja I_b/L_b za vse nosilce na vrhu obravnavane etaže
K _c	srednja vrednost razmerja I_c/L_c za vse stebre v obravnavani etaži
Ib	vztrajnostni moment nosilca
I _c	vztrajnostni moment stebra
L _c	višina etaže
L _b	razpon nosilca

Nominalno členkasta vozlišča so tista, ki morajo biti sposobna prevzeti notranje sile, ne da bi se pri tem v vozlišču pojavil večji upogibni moment. Prav tako morajo biti sposobna prevzeti zasuke, ki nastanejo ob nanosu obtežbe. V to kategorijo se uvrstijo tista vozlišča, pri katerih je izpolnjen pogoj:

$$S_{j,ini} \le 0.5 E I_b / L_b \tag{2}$$

Delno toga vozlišča so tista, ki ne izpolnjujejo zahtev za toga ali nominalno členkasta.

Slika 3: Delitev spojev glede na togost (Beg, 2011: str 22)

V [2] je razdelitev med togimi in delno togimi spoji s čelno pločevino definirana nekoliko drugače. Avtor navaja pričakovanje, da bo taka razdelitev v prihodnosti navedena tudi v nacionalnem dodatku k britanskem standardu. Za spoj se lahko predpostavi da je tog, če sta izpolnjena oba spodnja pogoja:

• za zgornjo vrsto vijakov je kritični 3. način porušitve, podan z izrazom (16) kjer pride do porušitve vijakov in ne čelne pločevine. To pomeni, da je treba uporabiti debele čelne pločevine in po možnosti še ojačati pasnico stebra.

• strižna sila v panelu stojine stebra ne sme preseči 80% projektne strižne nosilnosti stojine.

Če ta pogoja nista izpolnjena, moramo predpostaviti, da je spoj delno tog.

3 Obravnavana konstrukcija

Obravnaval sem preprost okvir, ki je del izmišljenega večetažnega objekta, ki se nahaja na območju Ljubljane. Jekleni okvirji so postavljeni na medsebojni razdalji 5 m. Na sliki 4 je prikazana geometrija posameznega okvirja. Vse dimenzije so v metrih.

Slika 4: Geometrija obravnavanega okvirja

3.1 Material

Celotna konstrukcija je iz jekla kakovosti S235. Pri računanju uporabim naslednje karakteristike materiala:

$f_y = 235 \text{ N/mm}^2$	napetost na meji tečenja
$f_u = 360 \text{ N/mm}^2$	natezna trdnost jekla
<i>E</i> = 210000 MPa	elastični modul
$\nu = 0,3$	Poissonov količnik
<i>G</i> = 81000 MPa	strižni modul
$\gamma = 78 \text{ kN/m}^3$	specifična teža

3.2 Vplivi na konstrukcijo

Na konstrukcijo delujejo zunanje obtežbe ter lastna teža. Ker primarni cilj diplomske naloge ni dimenzioniranje nosilne konstrukcije, nekaterih obtežb nismo upoštevali, druge pa smo poenostavili. Tako nisem upošteval obtežbe potresa ter namesto snega na strehi upošteval kar koristno obtežbo. Ostale obtežbe so upoštevane v skladu s standardom SIST EN 1991.

Pri računu obtežb predpostavim, da je objekt poslovnega značaja ter da se nahaja na področju, kjer je najmanj 15% površine pokrite s stavbami s povprečno višino več kot 15m.

Z računom po točkah 3 in 4 iz SIST EN 1991-1-4 [4] sem dobil tlak vetra na ploskev, ki znaša $w^{neto} = 0,295 \text{ kN/m}^2$. Nato pa z množenjem s širino 5m, ki odpade na en okvir še obtežbo, ki deluje na okvir po njegovi višini w = 1,475 kN/m. To sem nato preračunal v točkovne sile v vozliščih, skladno z višino, ki odpade na eno vozlišče.

Stropni konstrukciji sem predpostavil lastno težo 5 kN/m². Koristno obtežbo pa sem dobil iz standarda SIST EN 1991-1-1 [5], z upoštevanjem, da gre za poslovni objekt. $q = 3 \text{ kN/m^2}$. Ko obtežbi preračunam na okvir dobim, da na posamezen okvir odpade 25 kN/m stalne obtežbe in 15 kN/m koristne obtežbe. Lastno težo samega okvirja upošteva program avtomatsko, zato je tu ne navajam.

3.3 Obtežne kombinacije

Za vnos v program Scia Engineer ustvarim 4 obtežne kombinacije:

- K1: 1,35G + 1,5Q
- K2: $1,35G + 1,5Q + \psi_{0,w} 1,5W$
- K3: $1,35G + \psi_{0,w} 1,5Q + 1,5W$
- K4: G + 1,5W

kjer so:

- G ...lastna teža in stalna obtežba
- *Q* ...koristna obtežba
- W ...obtežba vetra

3.4 Račun po teoriji drugega reda

Za upoštevanje teorije drugega reda, moram na primeren način upoštevati vplive nepopolnosti na konstrukciji. Te SIST EN 1993-1-1 [6] loči na nadomestne globalne nepopolnosti ter lokalne nadomestne nepopolnosti. V skladu s temi navodili, lokalnih nepopolnosti običajno v globalni analizi ne upoštevamo, saj se njihov vpliv upošteva v kontroli stabilnosti posameznega elementa, kjer so zajete v uklonskih krivuljah. Globalne nepopolnosti pa upoštevamo vedno. Za tak pristop se odločim tudi v tem diplomskem delu, kjer jih upoštevam v obliki nadomestnega horizontalnega zamika okvirja.

$$\phi = \phi_0 \alpha_h \alpha_m = 0,00264 \text{ rad}$$
(3)

Slika 5: Vpliv globalnih nepopolnosti (SIST EN 1993-1-1, 2005: str 33)

preprostim izrazom z upoštevanjem kotnih funkcij:

$$x = h tg\emptyset = 2,635 \text{ cm} \tag{4}$$

Kar pretvorjeno na tekoči meter znaša 2,635 mm/m

					· ·	e	
h _b [mm]	b₅ [mm]	t _{fb} [mm]	t _{wb} [mm]	r _b [mm]	A [cm ²]	d₅ [mm]	c _b [mm]
400	180	13,5	8,6	21	84,5	331	373
Ι _γ [cm ⁴]	W _{pl,y} [cm ³]	i _y [cm]	ا [cm ⁴]	W _{pl,z} [cm ³]	i _z [cm]	Ι _t [cm ⁴]	l _ω [cm⁵]
23130	1307	16,5	1320	229	3,95	51,1	490000

3.5 Kontrola nosilnosti prečke

Za prečke izberem profil IPE 400. Njegove karakteristike so podane spodaj:

Ker računam prerez na plastično nosilnost, je potrebno zagotoviti, da je v 1. ali 2. razredu kompaktnosti [6]. Ker je tlačna sila v prečki odvisna le od obtežbe vetra, je njena vrednost zelo majhna. Zato v naslednjih korakih predpostavim, da je nosilec obremenjen le z upogibnim momentom in prečno strižno silo. Kontrole izvedem v skladu z [7].

Da je celoten profil v 1. razredu kompaktnosti zagotovim z upoštevanjem enačb za stojino v upogibu ter pasnico v tlaku, navedenimi v [7].

V program Scia vnesem izbrani profil ter z nelinearnim računom pri obremenitvi z obtežno kombinacijo K2 dobim notranje sile, kot so prikazane na slikah 6 in 7. Na najbolj kritični prečki so obremenitve:

$$N_{Ed} = -80 \text{ kN}$$
 $M_{Ed} = -263 \text{ kNm}$ $V_{Ed} = 220 \text{ kN}$
Ker plošča po celotni dolžini podpira nosilec, lahko predpostavim, da nevarnosti bočne zvrnitve ni, osno silo zanemarim in izvedem le kontrolo nosilnosti za upogibni moment.

$$M_{N,y,Rd} = M_{pl,y,Rd} = W_{pl,y}f_y = 307,1 \text{ kNm}$$
 (5)

Izkoriščenost prereza lahko nato izračunam po izrazu:

$$M_{Ed}/M_{pl,Rd} = 0.85 (6)$$

Z enačbami navedenimi v [7] zagotovim, da je profil kompakten tudi v strigu. Plastično strižno nosilnost prereza pa preverim po izrazu:

$$V_{pl,Rd} = A_v \frac{f_y}{\sqrt{3\gamma_{M0}}} = 50 \cdot \frac{23,5}{\sqrt{3} \cdot 1} = 689,6 \text{ kN} > V_{Ed} = 220 \text{ kN}$$
(7)

kjer je:

Ker

 $A_v = A - 2b_b t_{fb} + (t_{wb} + 2r_b)t_{fb} = 50,82 \text{ cm}^2$...strižni prerez nosilca

Ker velja $V_{Ed} < 0.5V_{pl,Rd}$ sledi, da ni potrebno izvesti kontrole interakcije za moment-prečna sila.

Slika 6: Potek osnih sil v okvirju

Slika 7: Potek upogibnih momentov v okvirju

3.6 Kontrola nosilnosti stebra

Z nelinearnim računom v programu SCIA Engineer pridem po krajšem iteracijskem postopku do profila stebra HEA 260. Njegove karakteristike so podane spodaj:

h _c	b _c	t _{fc}	t _{wc}	r _c	A	d _c	c _c
[mm]	[mm]	[mm]	[mm]	[mm]	[cm ²]	[mm]	[mm]
250	260	12,5	7,5	24	86,8	177	225
l _y	W _{pl,y}	i _y	l₂	W _{pl,z}	i _z	l _t	l _ω
[cm⁴]	[cm ³]	[cm]	[cm⁴]	[cm ³]	[cm]	[cm⁴]	[cm⁵]
10450	920	11,0	3670	430	6,5	52,4	516400

Da je tudi steber v 1. razredu kompaktnosti zagotovim z izpolnitvijo pogojev za stojino in pasnico v tlaku, navedenih v [7].

Potek notranjih sil je prikazan na slikah 6 in 7. Najbolj kritičen je drugi steber iz desne proti levi, kjer v prvi etaži dobim pri merodajni obtežni kombinaciji K2 in nelinearni analizi spodnje obremenitve:

$$N_{Ed} = -1250 \text{ kN}$$
 $M_{y,Ed} = 18 \text{ kNm}$ $V_{z,Ed} = 10 \text{ kN}$

Stabilnostno kontrolo upogibno in tlačno obremenjenega elementa izvedem po izrazih iz [6].

$$\frac{N_{Ed}}{\chi_y A f_y / \gamma_{M1}} + k_{yy} \frac{M_{y,Ed}}{\chi_{LT} W_{pl,y} f_y / \gamma_{M1}}$$
(8)

$$\frac{N_{Ed}}{\chi_z A f_y / \gamma_{M1}} + k_{zy} \frac{M_{y,Ed}}{\chi_{LT} W_{pl,y} f_y / \gamma_{M1}}$$
(9)

kjer so:

N_{Ed} , $M_{oldsymbol{y},Ed}$	projektne vrednosti notranjih sil
Α	ploščina prereza
$W_{pl,y}$	plastični odpornosti moment prereza
χ_y , χ_z	redukcijska faktorja za uklon
χ_{LT}	redukcijski faktor bočne zvrnitve
k_{yy} , k_{zy}	interakcijska faktorja

Izraz (8) preveri uklon okoli močne osi v kombinaciji z bočno zvrnitvijo, (9) pa uklon okoli šibke osi v kombinaciji z bočno zvrnitvijo.

Predpostavim, da je steber bočno podprt v višini etaž. Kritičen prerez stebra je v prvi etaži. Ker je bila narejena nelinearna analiza z geometrijskimi nepopolnostmi, upoštevam, da je uklonska dolžina $l_{uv} = l_{uz} = 400 \text{ cm}$.

Za določitev χ_y , χ_z , moram izračunati relativno vitkost prerezov: $\overline{\lambda_z} = l_{uz}/(i_z\lambda_1) = 0.655$ ter $\overline{\lambda_y} = l_{uy}/(i_y\lambda_1) = 0.387$

kjer je:

 $\lambda_1 = 93,9\epsilon = 93,9$

Za določitev faktorja nepopolnosti α moram določiti uklonske krivulje prereza. Določim jih glede na razmerje h/b profila ter osi uklona.

h _c /b _c	krivulja	uklon okoli osi	α
0.96	b	у-у	0,34
0,96	с	Z-Z	0,49

S tem lahko nato izračunam faktorja

$$\phi_y = 0.5(1 + \alpha(\overline{\lambda_y} - 0.2) + \overline{\lambda_y}^2) = 0.607$$

$$\phi_z = 0.5(1 + \alpha(\overline{\lambda_z} - 0.2) + \overline{\lambda_z}^2) = 0.826$$

ki sta potrebna za izračun redukcijskih faktorjev za uklon

$$\chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}}^{2}}} = 0,931$$
$$\chi_{z} = \frac{1}{\phi_{z} + \sqrt{\phi_{z}^{2} - \overline{\lambda_{z}}^{2}}} = 0,752$$

Za določitev redukcijskega faktorja bočne zvrnitve pa moram najprej določiti kritični moment bočne

zvrnitve
$$M_{cr} = C_1 \frac{\pi}{k_z L} \sqrt{E I_z G I_t + \frac{\pi^2 E I_z E I_\omega}{(k_\omega L)^2}} = 1846 \, kNm$$

kjer so:...koeficient, ki zajema vpliv poteka momentov vzdolž nosilca $\psi = -16/18 = -0.9$...koeficient, ki zajema vpliv poteka momentov vzdolž nosilca k_z , k_ω ...razmerje momentov med sosednjima točkama podpiranja l_ω ...uklonska koeficienta, konzervativno predpostavim da sta enaka 1 I_ω ...torzijski vztrajnostni moment pri ovirani torziji I_t ...torzijski vztrajnostni moment pri enakomerni torzijiL...razmik med bočnimi podporami

Tudi za bočno zvrnitev je potrebno določiti uklonsko krivuljo

h _c /b _c	krivulja	os zvrnitve	α
0,96	b	у-у	0,34

Iz tega dobim relativno vitkost:

$$\bar{\lambda}_{lt} = \sqrt{\frac{W_{pl,y}f_y}{M_{cr}}} = 0,359$$

Ker velja $\bar{\lambda}_{lt} \le 0,4$, bočna zvrnitev ne bo problematična in je faktor $\chi_{LT} = 1$

Za faktorje k_{yy} in k_{zy} velja:

$$k_{zy} = 0$$

$$k_{yy} = min \begin{cases} C_{my} (1 + (\overline{\lambda_y} - 0.2) \frac{N_{Ed}}{\chi_y A f_y / \gamma_{M1}} = 0.45 \\ C_{my} \left(1 + 0.8 \frac{N_{Ed}}{\chi_y A f_y / \gamma_{M1}} \right) = 0.61 \end{cases}$$
kjer je:
$$C_{my} = max \begin{cases} 0.6 + 0.4\psi = 0.24 \\ 0.4 \end{cases}$$

Vse izračunane količine lahko vstavim v izraza (8) in (9) ter dobim:

$$\frac{1250}{0,93 \cdot 86,8 \cdot 23,5/1} + 0,45 \cdot \frac{1800}{1 \cdot 920 \cdot 23,5/1} = 0,70 \le 1$$
$$\frac{1250}{0,75 \cdot 86,8 \cdot 23,5/1} = 0,82 \le 1$$

Plastično nosilnost prereza dobim po spodnjem izrazu:

$$M_{N,y,Rd} = M_{pl,y,Rd} \frac{1-n}{(1-0.5a)} = 94.5 \text{ kNm} \le W_{pl,y} f_y = 216.2 \text{ kNm}$$
(10)

kjer so:

$$n = \frac{N_{Ed}}{N_{pl,Rd}} = 0,62 \qquad \dots \text{nivo osne sile}$$
$$a = \frac{A - 2bt_f}{A} = 0,25$$

Ko zagotovim, da je profil kompakten v strigu, preverim plastično strižno nosilnost prereza po izrazu:

$$V_{pl,Rd} = A_v \frac{f_y}{\sqrt{3}\gamma_{M0}} = 390 \text{ kN} > V_{Ed} = 10 \text{ kN}$$
(11)

kjer je:

 $A_v = 28,4 \text{ cm}^2$... strižni prerez stebra, ki se izračuna z izrazom:

$$A_{\nu c} = A_c - 2b_c t_{fc} + (t_{wc} + 2r_c)t_{fc} \ge \eta h_{wc} t_{wc}$$
(12)

Ker velja $V_{Ed} < 0.5V_{pl,Rd}$ sledi, da ni potrebno izvesti kontrole interakcije za moment-prečna sila.

4 Spoji

4.1 Zasnova spojev

Geometrija spoja mora biti izbrana tako, da zagotavlja dovolj veliko duktilnost in rotacijsko kapaciteto, hkrati pa mora zagotoviti tudi dovolj nosilnosti. S tem namenom so v [2] podani nekateri standardni spoji in njihova geometrija. Spoje izvedemo s čelno pločevino, ki je vijačena na pasnico stebra, na njo pa je varjen nosilec. Čelno pločevino lahko izvedemo kot nepodaljšano, ali podaljšano. V našem primeru se odločimo za podaljšano čelno pločevino, s tremi vrstami vijakov. Zgornji dve sta namenjeni prevzemu upogibnega momenta, spodnja pa striga v spoju.

Slika 8: Geometrija spoja

Razdalje, ki so kotirane na sliki so sledeče:

g = 90 mm	p = 100 mm	$e_1 = 50 \text{ mm}$
$x_1 = 40 \text{ mm}$	$x_2 = 47 \text{ mm}$	$x_3 = 60 \text{ mm}$
$x_4 = 30 \text{ mm}$	y = 41 mm	$e_p = 55 \text{ mm}$
$b_p = 200 \text{ mm}$	$h_p = 520 \text{ mm}$	$e_c = 85 \text{ mm}$

Za debelino čelne pločevine izberem $t_p = 16$ mm.

Pri računu upoštevam vijake M24 8.8 ter njihove mehanske lastnosti: $f_{yb} = 640 \text{ N/mm}^2$ - napetost na meji tečenja vijaka $f_{ub} = 800 \text{ N/mm}^2$ - natezna trdnost vijaka Vse zvare v spoju predvidim kot polno nosilne. Kjer gre za T spoj med pločevinama, lahko polnonosilnost zagotovim z izpolnitvijo pogoja iz [7]:

$$a \ge 0.46t$$
 (13)
Z upoštevanjem pogoja (13) izberem:
 $a_1 = 7 \text{ mm}$
 $a_2 = 4 \text{ mm}$

Spoje v konstrukciji zasnujem na dva načina. Pri prvem vse spoje projektiram kot so prikazani na konfiguraciji 1, torej brez ojačitev. Pri drugem načinu pa vse spoje v konstrukciji ojačam. V tistih vozliščih, ki so dvostranska uporabim konfiguracijo 2, v robnih vozliščih, kjer je pomemben tudi strig v stojini stebra pa konfiguracijo 3.

Slika 9: Različne konfiguracije spoja

4.2 Material

Material uporabljen za elemente spoja ne sme biti bolj nosilen kot material nosilca in stebra. S tem zagotovimo, da je čelna pločevina šibki element spoja. [2] Za čelno pločevino in vse pločevine, ki jih uporabimo kot ojačitve, torej vzamemo jeklo kakovosti S235.

4.3 Nosilnost spoja

SIST EN 1993-1-8 [1] podaja komponentno metodo, s katero je potrebno modelirati vozlišče, da se določi njegove konstrukcijske lastnosti. Komponentna metoda sloni na modeliranju spoja z vrsto osnovnih komponent, katere morajo vsaka prenesti svoj del obtežbe, njihovo nosilnost pa se izračuna z izrazi podanimi v standardu. V [2] so komponente, ki jih je potrebno preveriti, prikazane na spodnji preglednici in sliki.

Oznaka	Komponenta	Oznaka	Komponenta
а	nateg vijaka	h	strižni panel stebra
b	upogib čelne pločevine	j	stojina in pasnica prečke v tlaku
с	upogib pasnice stebra	k	zvar med pasnico in čelno pločevino
d	stojina prečke v nategu	1	stojina stebra v prečnem tlaku
e	stojina stebra v nategu	m	zvar med stojino in čelno pločevino
f	zvar med čelno pločevino in pasnico	n	prestrig vijaka
g	zvar med čelno pločevino in stojino	р	bočni pritisk vijaka

Preglednica 1: Komponente v spoju

Slika 10: Komponente v spoju (The Steel Construction Institute, 2013:str 6)

Glavna potrebna lastnost momentnih spojev je, poleg tega da so sposobni prenesti obtežbo tudi ta, da so duktilni. To pomeni, da se morajo biti sposobni rotirati kot plastični členki pod obtežbo, za kar potrebujejo zadostno rotacijsko kapaciteto. [2] S tem zadostimo predpostavki o plastični razporeditvi sil med vijaki. Posledično se upogibni moment po nosilcu prerazporedi. Rotacija spoja se izvede v obliki plastičnih deformacij v duktilnih elementih spoja. Nosilnost spoja je določena z najmanjšo nosilnostjo ene izmed komponent. Naloga projektanta, ki dimenzionira te spoje je zagotoviti, da nosilnost narekuje porušni mehanizem komponente, ki je duktilna. Med duktilne porušitve priročnik [2] uvršča:

- upogib čelne pločevine
- upogib pasnice stebra
- strižna porušitev stojine stebra

Pri računu se uporabljajo varnostni faktorji v skladu s SIST EN 1993-1-8 [1] in SIST EN 1993-1-1 [6]:

 $\begin{aligned} \gamma_{M0} &= 1\\ \gamma_{M1} &= 1\\ \gamma_{M2} &= 1,25 \end{aligned}$

V naslednjih poglavjih obravnavam konstrukcijo z ojačanimi spoji. Osredotočim se na konfiguracijo spoja 2 ter dvostransko vozlišče, račun pa izvedem po korakih, ki so prikazani na spodnji sliki. To pomeni, da v prvem delu računa obravnavam neojačan spoj, v naslednjih korakih pa zasnujem ojačitve ter posledično spremenim nosilnosti izračunane že prej. Tak algoritem računa je kot najbolj optimalen podan v [2].

Slika 11: Algoritem računanja nosilnosti

4.3.1 Odpornost natezne cone

Potencialna sila v posamezni vrsti vijakov v natezni coni je omejena z enim izmed naslednjih porušnih mehanizmov:

- upogib čelne pločevine
- upogib pasnice stebra
- nateg stojine stebra
- nateg stojine prečke

Odpornost se izračuna najprej za vsako vrsto posebej ter nato še za skupine vrst, saj se pri skupini vijakov lahko pojavi drugačen odpovedni mehanizem. Tako je npr. odpornost druge vrste vijakov izračunana kot:

$$F_{t2,Rd} = \min \left\{ \begin{array}{c} \text{odpornost 2. vrste} \\ (\text{odpornost vrst 2 + 1}) - F_{t1,Rd} \end{array} \right\}$$

kjer je:

 $F_{ti,Rd}$...odpornost i-te vrste vijakov

Račun komponent v nategu se poenostavi z uvedbo nadomestnega T-elementa. To je element Toblike, za katerega se predpostavi, da ima enako odpornost, kot bi jo imela sama komponenta ter da so možni načini porušitve podobni pričakovanim načinom porušitve osnovne komponente, ki jo Telement nadomešča. To dosežemo tako, da je skupna sodelujoča širina Σl_{eff} nadomestnega Telementa taka, da je nosilnost njegovih pasnic enaka nosilnosti komponente, ki jo nadomešča. [1]

4.3.1.1 Čelna pločevina ali pasnica stebra v upogibu

Uporabljena metoda predpostavi plastično porazdelitev nateznih sil v vijakih. Ta pa se lahko zgodi le, če se v spoju lahko zgodi zadostna deformacija.

Ločeno se preveri čelno pločevino in pasnico stebra. Vsako vrsto vijakov se modelira kot nadomestni T element, za katerega se izračuna odpornost po treh različnih mehanizmih porušitve. Projektna

nosilnost pasnic nadomestnega T-elementa je določena kot minimalna vrednost med izrazi (14), (15), (16).

1. način porušitve: upogib pasnice T-elementa. Tak mehanizem je merodajen pri tankih pločevinah.

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m}$$
(14)

2. način porušitve: istočasna odpoved pločevine in vijakov. Merodajen je pri srednje debelih pločevinah.

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n(\Sigma F_{t,Rd})}{m+n}$$
(15)

3. način porušitve: porušitev vijakov. Merodajen je pri debelih pločevinah.

$$F_{T,3,Rd} = \Sigma F_{t,Rd} \tag{16}$$

kjer so:

$$M_{pl,1,Rd} = \frac{\sum L_{eff,1} t_f^2 f_y}{4}$$
(17)

...plastični odpornostni moment nadomestnega T-elementa pasnice stebra ali čelne pločevine za porušitev po prvem načinu

$$M_{pl,2,Rd} = \frac{\sum L_{eff,2} t_f^2 f_y}{4}$$
(18)

...plastični odpornostni moment nadomestnega T-elementa pasnice stebra ali čelne pločevine za porušitev po drugem načinu

$$L_{eff,1} = min \begin{cases} l_{eff,cp} \\ l_{eff,nc} \end{cases}$$
...sodelujoča dolžina nadomestnega T-elementa

$$L_{eff,2} = l_{eff,nc} \qquad \dots$$
sodelujoča dolžina nadomestnega T-elementa

kjer so:

l _{eff,nc}	sodelujoča dolžina poligonalne oblike
l _{eff,cp}	sodelujoča dolžina krožne oblike
t_f	debelina pasnice stebra (t_{fc}) ali čelne pločevine (t_p)
f_y	napetost na meji tečenja

$$\begin{split} F_{t,Rd} &= 0.9 f_{ub} A_s / \gamma_{M2} = 203,3 \text{ kN} \qquad \dots \text{natezna nosilnost vijaka [7]} \\ m &\qquad \dots \text{razdalja od središča vijaka do 20\% v radij oziroma zvar} \\ \text{med pasnico in stojino, prikazana na sliki 12} \\ m_p &= g/2 - t_{wb}/2 - 0.8\sqrt{2}a_2 = 36,2 \text{ mm} \\ m_c &= g/2 - t_{wc}/2 - 0.8r_c = 22,1 \text{ mm} \\ n &= min \begin{cases} e_p \\ e_c \\ 1,25m \end{cases} \qquad \dots \text{efektivna razdalja od središča vijaka do roba} \\ n_p &= 45,2 \text{ mm} \\ n_c &= 27,6 \text{ mm} \end{cases}$$

Na spodnji sliki so prikazane razdalje uporabljene pri računu sodelujočih dolžin.

Slika 12: Definicije razdalj v spoju

Za vrsto vijakov v čelni pločevini, nad pasnico prečke, se upošteva drugačen nadomestni T-element. Prikazan je na sliki 13. Razdalji *m* in *n* se nadomestiti z $m_x = x_1 - 0.8\sqrt{2}a_1 = 32,1$ mm ter $n_x = min \begin{cases} e_1\\ 1,25m_x \end{cases} = 40,1$ mm

Slika 13: Definicije nadomestnega T-elementa za vrsto vijakov nad pasnico prečke

Najzahtevnejša naloga v tem koraku je določitev sodelujoče dolžine nadomestnega T-elementa. L_{eff} je potrebno določiti za vsak nadomestni T-element posebej, kar pomeni najprej za stran spoja pri čelni pločevini nato pri pasnici stebra. Glede na lego vijakov so lahko merodajne različne oblike sodelujočih dolžin.

4.3.1.1.1 Stran prečke

Na strani čelne pločevine dobim merodajni dolžini $L_{eff,1}$ ter $L_{eff,2}$ za vrsto vijakov nad pasnico nosilca iz naslednjih izrazov:

$$L_{eff,nc} = min \begin{cases} \frac{b_p}{2} = 10,0\\ 4m_x + 1,25e_x = 19,1\\ 2m_x + 0,625e_x + e_p = 15,0\\ 2m_x + 0,625e_x + \frac{g}{2} = 14,0 \end{cases} = 10 \text{ cm}$$
(19)

$$L_{eff,cp} = min \begin{cases} 2\pi m_x = 20,2\\ \pi m_x + 2e_x = 20,1\\ \pi m_x + g = 19,1 \end{cases} = 19,1 \text{ cm}$$
(20)

Iz tega sledi $L_{eff,1} = L_{eff,2} = 10$ cm. Z izrazoma (17) ter (18) dobim $M_{pl,1,Rd} = M_{pl,2,Rd} = 150,4$ kNcm Odpornost za različne načine porušitve dobim po izrazih (14) do (16).

$$F_{T,1,Rd} = 187,6 \text{ kN}$$

 $F_{T,2,Rd} = 267,6 \text{ kN}$
 $F_{T,3,Rd} = 406,7 \text{ kN}$

Za drugo vrsto vijakov se sodelujočo dolžino nadomestnega T elementa izračuna iz mehanizmov, ki so merodajni za pare vijakov pod ojačitvijo ali pod pasnico prečke.

$$L_{eff,nc} = \alpha m_p = 23,5 \text{ cm}$$
(21)
$$L_{eff,cp} = 2\pi m_p = 22,7 \text{ cm}$$
(22)

kjer se vrednost $\alpha = 6,5$ odčita iz grafa 6.11 iz SIST EN 1993-1-8 [1] v odvisnosti od

$$\lambda_1 = \frac{m_1}{m_1 + e} = \frac{3.6}{3.6 + 5.5} = 0.40 \qquad \lambda_2 = \frac{m_2}{m_1 + e} = \frac{3.9}{3.6 + 5.5} = 0.42$$

kjer so:

 $m_1 = m_p$ $m_2 = x_2 - 0.8\sqrt{2}a_1 = 39 \text{ mm}$ $e = e_p$

Sledi torej $L_{eff,1} = 22,7$ cm ter $L_{eff,2} = 23,5$ cm Z izrazoma (17) ter (18) dobim $M_{pl,1,Rd} = 341,8$ kNcm ter $M_{pl,2,Rd} = 353,6$ kNcm Odpornost za različne načine porušitve dobim po izrazih (14) do (16).

$$F_{T,1,Rd} = 378,0 \text{ kN}$$

 $F_{T,2,Rd} = 312,8 \text{ kN}$
 $F_{T,3,Rd} = 406,7 \text{ kN}$

Merodajni odpornosti čelne pločevine na upogib dobim kot minimalno vrednost izmed različnih porušnih mehanizmov za vsako vrsto posebej.

Slika 14: Upogibna nosilnost čelne pločevine

4.3.1.1.2 Stran stebra

Račun sodelujočih širin ponovim še na strani pasnice stebra, kjer so merodajni drugačni mehanizmi plastifikacije. Za zgornjo vrsto vijakov dobim sodelujočo dolžino po naslednjem principu:

$$L_{eff,nc} = min \left\{ \frac{4m_c + 1,25e_c = 19,4}{2m_c + 0,625e_c + 0,5p = 14,2} \right\} = 14,2 \text{ cm}$$
(23)

$$L_{eff,cp} = min \begin{cases} 2\pi m_c = 13,9\\ \pi m_c + p = 15,9 \end{cases} = 13,9$$
(24)

Sledi torej $L_{eff,1} = 13,9$ cm ter $L_{eff,2} = 14,2$ cm Z izrazoma (17) ter (18) dobim $M_{pl,1,Rd} = 127,2$ kNcm ter $M_{pl,2,Rd} = 130,6$ kNcm Odpornost za različne načine porušitve dobim po izrazih (14) do (16).

$$F_{T,1,Rd} = 230,7 \text{ kN}$$

 $F_{T,2,Rd} = 278,6 \text{ kN}$
 $F_{T,3,Rd} = 406,7 \text{ kN}$

Za drugo vrsto so merodajni enaki mehanizmi plastifikacije, zato dobim tudi rezultate enake kot za prvo.

Za mehanizem, ki deluje okrog obeh vrst, kot skupine vijakov pa so sodelujoče dolžine:

$$L_{eff,nc} = 4m_c + 1,25e_c + p = 29,4 \text{ cm}$$
(25)

$$L_{eff,cp} = 2\pi m_c + 2p = 33.9 \text{ cm}$$
(26)

Sledi torej $L_{eff,1} = L_{eff,2} = 29.4$ cm Z izrazoma (17) tar (18) dohim M = M

Z izrazoma (17) ter (18) dobim $M_{pl,1,Rd} = M_{pl,2,Rd} = 270,3$ kNcm. Odpornost za različne načine porušitve obeh vrst kot skupine vijakov dobim po izrazih (14) do (16).

$$F_{T,1,Rd} = 490,3 \text{ kN}$$

 $F_{T,2,Rd} = 560,8 \text{ kN}$
 $F_{T,3,Rd} = 813,3 \text{ kN}$

Merodajni odpornosti pasnice stebra na upogib dobim kot minimalno vrednost izmed različnih porušnih mehanizmov za vsako vrsto posebej.

Slika 15: Upogibna nosilnost pasnice stebra

4.3.1.2 Stojina stebra in prečke v nategu

Odpornost nadomestnega T-elementa je odvisna ne samo od upogibne odpornost pasnice, ampak tudi od natezne odpornosti stojine. Račun se tudi tu izvede posebej za stran stebra in prečke. Za stran stebra dobimo natezno odpornost efektivne dolžine stojine za vrsto ali skupino vrst vijakov po enačbi:

$$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}}$$
(27)

kjer so:

 $\omega = 1$...redukcijski faktor za upoštevanje interakcije s strigom v panelu stojine, ki ga dobimo iz preglednice 6.3 iz SIST EN 1993-1-8 [1] v odvisnost od parametra β , ki zajame vpliv strižnih sil

 $b_{eff,t,wc}$...sodelujoča širina stojine stebra v nategu, ki je enaka sodelujoči dolžini nadomestnega T-elementa, s katerim je modelirana pasnica stebra (l_{eff}) .

Odpornost nadomestnih T-elementov dobim po izrazu (27).

1. vrsta:	$b_{eff,t,wc} = 13,9$ cm	 $F_{t,wc,Rd} = 244,2 \text{ kN}$
2. vrsta:	$b_{eff,t,wc} = 13,9 \text{ cm}$	 $F_{t,wc,Rd} = 244,2 \text{ kN}$
1.+2. vrsta:	$b_{eff,t,wc} = 29,4 \text{ cm}$	 $F_{t,wc,Rd} = 519,0 \text{ kN}$

Račun za stojino prečke se izvede samo za vrste vijakov, ki niso neposredno ob pasnici prečke, saj se predpostavi, da vse natezne napetosti v tistem območju prevzame pasnica. [2] V primeru obravnavanega spoja, ki ima samo dve vrsti vijakov v nategu, torej vse natezne napetosti prevzame pasnica prečke.

Končno nosilnost posamezne vrste vijakov torej dobim tako, da za vsako vrsto izpišem najmanjšo vrednost med porušnimi mehanizmi za upogib pasnice T-elementa. Te vrednosti nato primerjam z nosilnostjo stojine v nategu. Za boljšo predstavo si rezultate zapišem v preglednico, kot je predlagano v [2].

		Stran nosilca		Stran stebra	
		upogib čelne pločevine [kN]	nateg stojine nosilca[kN]	upogib pasnice stebra [kN]	nateg stojine stebra [kN]
Vi	rsta 1	187,5	/	230,7	244,2
Vı	rsta 2	309,9	/	230,7	244,2
1. in 2.	kot skupina	/	/	490,3	519
vrsta	1+2-F _{t1,Rd}	/	/	302,8	331,4

Preglednica 2: Nosilnost nadomestnih T-elementov spoja konfiguracije 1

Končne odpornosti dobim torej kot minimalne vrednosti izmed zgornjih za vsako vrsto posebej.

 $F_{t1,Rd} = 187,5 \text{ kN}$ $F_{t2,Rd} = 230,7 \text{ kN}$

4.3.2 Kontrola tlačene cone

Predpostavi se, da je celotna tlačna odpornost skoncentrirana na višini spodnje pasnice nosilca. Na strani stebra v njegovi stojini, na strani prečke pa v njeni pasnici in delu stojine.

Spoji s čelno pločevino prenašajo obtežbo preko natega v vijakih ter tlaka v spodnji pasnici nosilca. Če v nosilcu ni osne sile, sta si ti dve sili nasprotno enaki. V [2] avtor navaja, da je iz testov vidno, da je center rotacije blizu ali pa v spodnji pasnici nosilca. Zato lahko predpostavimo, da je celotna tlačna sila skoncentrirana na sredini spodnje pasnice.

4.3.2.1 Stojina stebra v prečnem tlaku

V okviru teh kontrol se preveri nosilnost stojine v tlaku ter nosilnost na uklon stojine stebra, kar je predvsem problem pri vitkih stojinah. Projektno nosilnost stojine stebra obremenjene s prečnim tlakom se izračuna z izrazom:

$$F_{c,wc,Rd} = min \begin{cases} \frac{\omega k_{wc} b_{eff,c,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = 436,7 \text{ kN} \\ \frac{\omega k_{wc} \rho b_{eff,c,wc} t_{wc} f_{y,wc}}{\gamma_{M1}} = 386,4 \text{ kN} \end{cases}$$
(28)

kjer so:

 $\omega = 1$...redukcijski faktor definiran enako kot v izrazu (27) $b_{eff,c,wc}$...sodelujoča širina pasnice stebra v tlaku

pri vijačenih spojih s čelno pločevino za vroče valjane profile velja

$$b_{eff,c,wc} = t_{fb} + 2\sqrt{2}a_1 + 5(t_{fc} + r_c) + s_p = 24.8 \text{ cm}$$

kjer je s_p dolžina raznosa obtežbe pod kotom 45° skozi čelno pločevino

Slika 16:Raznos tlačne sile (The Steel Construction Institute, 2013:str 20)

$$\rho = \begin{cases} 1 \text{ ; če } \bar{\lambda}_p \leq 0.72\\ (\bar{\lambda}_p - 0.2)/\bar{\lambda}_p^2 \text{ ; če } \bar{\lambda}_p > 0.72 \end{cases} = 0.88$$

...redukcijski faktor pri lokalnem izbočenju pločevin

$$\bar{\lambda}_p = 0.932 \sqrt{(b_{eff,c,wc} d_c f_y)/Et_{wc}^2} = 0.87$$
 ...vitkost pločevine

 $k_{wc} = 1$...redukcijski faktor, ki zajema vpliv velikosti največje vzdolžne normalne tlačne napetosti v stojini, naveden v točki 6.2.6.2(2) v SIST EN 1993-1-8 [1]. Standard dopušča, da se redukcijo zanemari in predpostavi $k_{wc} = 1$

4.3.2.2 Stojina in pasnica prečke v tlaku

Preveriti je treba nosilnost pasnice in sodelujočega dela stojine nosilca v tlaku. Za rezultanto tlačnih sil se lahko predpostavi, da deluje v središču pasnice stebra. Tlačno odpornost se izračuna po izrazu

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}} = 764,7 \text{ kN}$$
(29)

kjer so: $M_{c,Rd} = 307,15$ kNm ...plastična upogibna nosilnost prereza nosilca

$h_b = 250 \text{ mm}$	višina nosilca
$t_{fb} = 12,5 \text{ mm}$	debelina pasnice nosilca

4.3.3 Strižni panel

Prisotnost in velikost strižne sile v vozlišču je odvisna od vrste in obremenitve spoja. Če gre za enostransko vozlišče brez osne sile v prečki, potem lahko strižno obremenitev vzamemo enako tlačni sili $F_{c,Ed}$, ki je enaka seštevku nateznih sil. Pri dvostranskem vozlišču pa moramo biti pozorni na momenta v stikajočih prečkah. Če sta enaka in nasprotna en drugemu, je strižna obremenitev v spoju enaka nič. V obravnavanem dvostranskem vozlišču konfiguracije 2 torej ta kontrola ni potrebna. Če pa sta momenta različno velika, se strižna obremenitev izračuna po poenostavljenem izrazu [2]:

Slika 17:Delovanje momentov v nasprotni smeri (The Steel Construction Institute, 2013:str 22)

Za momenta, ki delujeta v enaki smeri pa po izrazu:

$$V_{wp,Ed} \doteq F_{c,Ed,1} + F_{c,Ed,2}$$

$$F_{c,Ed,1} \longrightarrow \Sigma F_{n,Ed,2}$$

$$\Sigma F_{n,Ed,1} \longleftarrow V_{wp,Ed} \longrightarrow \Sigma F_{c,Ed,2}$$

$$K_{wp,Ed} \longrightarrow F_{c,Ed,2}$$

$$M_{1} (M_{1} (M_{2} (M_{$$

Slika 18: Delovanje momentov v isti smeri (The Steel Construction Institute, 2013:str 22)

Za račun odpornost stojine stebra v strigu moramo najprej z izrazi iz [7] zagotoviti, da je le ta kompaktna v strigu.

$$\frac{d_c}{t_{wc}} = 23.6 \le 69\varepsilon = 69 \tag{32}$$

kjer so:

 $d_c = h_c - 2(t_{fc} + r_c) = 17,7$ cm ...ravna višina stojine stebra t_{wc} $\varepsilon = \sqrt{\frac{235}{f_{vc}}} = 1$

...debelina stojine stebra

Odpornost se izračuna po izrazu:

$$V_{wp,Rd} = \frac{0.9 f_{yc} A_{vc}}{\gamma_{M0} \sqrt{3}} = 350.9 \text{ kN}$$
(33)

kjer je:

 A_{vc} ...strižni prerez stebra, definiran z izrazom (12)

4.3.4 Račun momentne kapacitete spoja

Pri računu momentne kapacitete spoja se opiramo na ravnotežje sil v spoju. Natezne sile v vijakih in tlačna sila v spodnji pasnici morajo biti v ravnotežju, kot je zapisano v izrazu (34). Prav tako mora biti izpolnjen momentni ravnotežni pogoj (35). Ker je osna sila v prečki zelo majhna, jo tako kot pri računu nosilnosti prečke, tudi tu zanemarim.

Slika 19: Ravnotežje sil v spoju

$$\Sigma F_{ri} = F_{c,Rd} \tag{34}$$

kjer so:

 $F_{c,Rd} = 386,4 \text{ kN}$...tlačna sila, ki je enaka manjši izmed nosilnosti pasnice stojine v tlaku, stebra v prečnem tlaku, strižnega panela, kjer je ta kontrola relevantna ΣF_{ri} ...vsota sil v vseh vrstah vijakov v nategu

Ker je vsota potencialnih sil v vijakih $F_{t1,Rd} + F_{t2,Rd} = 418,2$ kN večja od $F_{c,Rd}$, je potrebno sile v vijakih reducirati, da se doseže ravnotežje. Redukcijo naredim v drugi vrsti vijakov in sicer silo zmanjšam za $F_{t1,Rd} + F_{t2,Rd} - F_{c,Rd} = 31,8$ kN.

Ko so določene sile v vijakih z upoštevanjem ravnotežja sil v horizontalni smeri, lahko zapišem še momentni ravnotežni pogoj, s katerim dobim tudi momentno kapaciteto spoja. Ravnotežje zapišem glede na središče tlačene pasnice.

$$M_{c,Rd} = \Sigma F_{ri,Rd} h_i = 147,5 \text{ kNm} = M_{Ed}$$

$$\tag{35}$$

kjer so:

 $F_{ri,Rd}$...reducirana natezna odpornost i-te vrste h_i ...oddaljenost i-te vrste vijakov od centra tlačene cone, kjer so: $h_1 = h_b - t_{fb}/2 + x_1 = 43,3 \text{ cm}$ $h_2 = h_1 - p = 33,3 \text{ cm}$

4.3.5 Kontrola vertikalnega striga

Odpornost vertikalnemu strigu nudijo vijaki, ki so namenjeni prenosu striga. Nosilnost vijaka je manjša izmed odpornosti proti prestrigu vijaka ter odpornosti na bočni pritisk pločevine, ki pa v tem primeru ni merodajen. Odpornost celotnega spoja je enaka dvakratni nosilnosti vijaka M24 8.8 na prestrig in je:

$$F_{\nu,Rd} = 2 \cdot 135,6 \text{ kN} = 271,2 \text{ kN} > F_{\nu,Ed} = 220 \text{ kN}$$
 (36)

Če nosilnost strižnih vijakov ne bi zadostovala za prevzem celotne obremenitve, lahko v računu upoštevamo tudi vijake, ki so v nategu. Njihovo nosilnost pa lahko zaradi kombinacije natega in striga konzervativno upoštevamo kot največ 28% nosilnost vijakov obremenjenih samo s strigom. [2]

4.3.6 Račun ojačitev

Obstaja več načinov ojačitve spoja. Pri odločitvi za tip ojačitve sem pri obravnavanem tipu spoja gledal, kateri člen ima najmanjšo nosilnost ter ga nato ojačal tako, da se je celotna nosilnost spoja povečala. Pri tem sem bil pozoren tudi na to, da bo merodajni člen še vedno tak, ki ima duktilno porušitev in tako omogoča vzpostavitev plastičnega členka v spoju.

Pri dvostranskem spoju sem se odločil za tlačne ter natezne ojačitve, kot je prikazano na konfiguraciji spoja 2 (slika 9). Tlačne ojačitve povečajo tlačno odpornost stojine stebra, natezne ojačitve pa povečajo upogibno nosilnost pasnice stebra ter natezno nosilnost njegove stojine.

Pri enostranskem spoju pa je merodajna tudi kontrola strižnih napetosti v stojini stebra. Zato sem tam stojino poleg tlačne in natezne ojačitve, ojačal še z dodatno pločevino, kot je prikazano na konfiguraciji spoja 3 (slika 9). Ta poveča strižno nosilnost ter do neke mere tudi natezno in tlačno nosilnost stojine stebra.

4.3.6.1 Natezna ojačitev

Natezne ojačitve morajo biti postavljene simetrično na obeh straneh stojine stebra. V vogalih jih je potrebno pristriči, da se prilagodijo radiju ali zvaru med stojino in pasnico. Račun ojačitev izvedem po postopku, ki je opisan v [2]. Najprej moram zadostiti pogoju glede širine ojačitve:

$$b_{sg} \ge \frac{0.75(b_c - t_{wc})}{2} = 9.5 \text{ cm}$$
 (37)

kjer je dimenzija b_{sg} definirana na spodnji sliki.

Izberem si torej $b_{sq} = 10$ cm in zadostim tudi spodnji enačbi.

$$2b_{sg} + t_{wc} = 20,75 \text{ cm} \ge 1,33g = 11,97 \text{ cm}$$
 (38)

Razdaljo b_{sn} nato dobim tako da od b_{sg} odštejem radij zaokrožitve stebra $r_c.$ $b_{sn}=$ 7,6 cm

Slika 20:Definicije dimenzij ojačitve (The Steel Construction Institute, 2013:str 29)

Ojačitev mora biti sposobna prenesti večjo izmed sil, ki so potrebne da se zagotovi zadostno natezno odpornost stojine stebra ter zadostno podporo pasnici stebra [2]. Te sile so zajete v spodnjih izrazih.

$$F_{s,Ed} = (F_{ri,Rd} + F_{rj,Rd} - \frac{L_{wt} t_{wc} f_{y,c}}{\gamma_{M0}})/2$$
(39)

$$F_{s,Ed} = \frac{m_1}{2} \left[\frac{F_{ri,Rd}}{m_1 + m_{2L}} + \frac{F_{rj,Rd}}{m_1 + m_{2U}} \right]$$
(40)

kjer so:

 $F_{ri,Rd} = 244,2 \,\mathrm{kN}$...efektivna natezna odpornost vrste vijakov nad ojačitvijo po izrazu (27) $F_{rj,Rd} = 244,2 \,\mathrm{kN}$...efektivna natezna odpornost vrste vijakov pod ojačitvijo po izrazu (27) $L_{wt} = 25,6 \,\mathrm{cm}$...dolžina stojine v nategu, ob predpostavljenem raznosu sile od vijakov kstojini pod kotom 60°...

$$\begin{split} m_{2U} &= m_{2L} = p/2 - t_s/2 - 0.8\sqrt{2}a_{ts} = 39.3 \text{ mm} \\ a_{ts} &= 5 \text{ mm} \qquad \dots \text{polnonosilni zvar izračunan po izrazu (13)} \\ m_1 &= m_c = 22.1 \text{ mm} \end{split}$$

Razdalje m so razložene na spodnji sliki:

Slika 21:Definicije razdalj m (The Steel Construction Institute, 2013:str 30)

Z izrazi (39) in (40) dobim rezultate:

$$F_{s,Ed} = max \begin{cases} (244,2+244,2-\frac{25,6\cdot0,75\cdot23,5}{1})/2 = 18,86 \text{ kN} \\ \frac{22,1}{2} \left[\frac{244,2}{22,1+39,3} + \frac{244,2}{22,1+39,3} \right] = 87,7 \text{ kN} \end{cases}$$

Iz večje izmed zgornjih obremenitev nato dobimo potreben prerez ojačitve z izrazom:

$$A_{sn} = b_{sn}t_s \ge \frac{F_{s,Ed}\gamma_{M0}}{f_{y,s}} = 3,73 \text{ cm}^2$$
 (41)

Iz zgornjega izraza vidim, da ni potrebna debela ojačitev, ampak se zaradi enostavnosti vseeno odločim za debelino $t_s = 1$ cm. S tem zagotovim da je debelina enaka debelini tlačne ojačitve, določene v naslednjem poglavju, katera mora biti kompaktna v tlaku. Torej izraz (41) preide v 7,6 cm² > 3,73 cm².

V [2] avtor navaja, da v spoju, ki ima natezno ojačitev zasnovano po tem postopku, nateg stojine stebra za vrste vijakov, ki so ob ojačitvi, ne more biti merodajen. Prav tako se pomembna sprememba zaradi natezne ojačitve zgodi tudi pri upogibni nosilnosti pasnice stebra. Mehanizmi plastifikacije se za obe vrsti spremenijo. Sodelujoče dolžine nadomestnih T-elementov sedaj dobim z upoštevanjem izrazov (21) in (22), le da tu namesto m_p upošetevam razdaljo $m_c = 22,1$ mm. Za prvo in drugo vrsto vijakov so sedaj merodajni enaki mehanizmi in tako dobim za obe rezultate:

$$L_{eff,nc} = \alpha m_c = 17,6 \text{ cm}$$
$$L_{eff,cp} = 2\pi m_c = 13,9 \text{ cm}$$

Iz tega sledi: $L_{eff,1} = 13,9$ cm ter $L_{eff,2} = 17,6$ cm Z izrazoma (17) ter (18) dobim $M_{pl,1,Rd} = 127,2$ kNcm ter $M_{pl,2,Rd} = 161,9$ kNcm Odpornost za različne načine porušitve dobim po izrazih (14) do (16).

$$F_{T,1,Rd} = 230,7 \text{ kN}$$

 $F_{T,2,Rd} = 291,2 \text{ kN}$
 $F_{T,3,Rd} = 406,7 \text{ kN}$

S tem se spremeni tudi preglednica 2 in sicer v sledečo obliko: Preglednica 3: Nosilnost nadomestnih T-elementov spoja konfiguracije 2

	Stran nosilca		Stran stebra	
	upogib čelne pločevine [kN]	nateg stojine nosilca[kN]	upogib pasnice stebra [kN]	nateg stojine stebra [kN]
Vrsta 1	187,5	/	230,7	/
Vrsta 2	309,9	/	230,7	/

Končne odpornosti dobim torej kot minimalne vrednosti izmed zgornjih za vsako vrsto posebej.

 $F_{t1,Rd} = 187,5 \text{ kN}$ $F_{t2,Rd} = 230,7 \text{ kN}$

4.3.6.2 Tlačna ojačitev

Tlačne ojačitve morajo biti, enako kot natezne, nameščene simetrično na obeh straneh stojine stebra. Nosilnost efektivnega prereza stojine in ojačitev mora biti vsaj enaka tlačni sili $F_{c,Ed}$. Efektivni prerez je križ, sestavljen iz obeh ojačitev ter dela stojine, ki sodeluje pri prevzemu tlaka, dolžine $b_{eff,c,wc}$. Potrebno je zagotoviti, da je prerez v 3. razredu kompaktnosti. Da lahko rešim izraz (42), si za debelino ojačitve t_s izberem 1 cm. Dimenzije v spodnjih izrazih so prikazane na sliki 22.

$$b_{sg}/t_s \le 14\varepsilon \tag{42}$$

Sledi torej $b_{sg} < 14$ cm. Izberem si dimenzijo $b_{sg} = 12$ cm. Površino efektivnega prereza dobimo iz izraza:

$$A_{s,eff} = b_{eff,c,wc} t_w + 2b_{sg} t_s = 42,58 \text{ cm}^2$$

$$+ b_{sg} t_{wc} b_{sg} + t_s$$

Slika 22:Površina efektivnega prereza

Novo nosilnost stojine stebra v prečnem tlaku nato dobimo po izrazu:

$$N_{c,Rd} = \frac{A_{s,eff} f_y}{\gamma_{M0}} = 1000,7 \text{ kN}$$
(44)

Preveriti moram tudi uklon ojačitev, kar storim z računom relativne vitkosti prereza.

$$\bar{\lambda} = \frac{l}{i_s \lambda_1} = 0,03 \tag{45}$$

kjer so: $\lambda_1 = 93.9\varepsilon = 93.9$ $l = 0.7c_c = 15.8 \text{ cm}$...uklonska dolžina ojačitve $i_s = \sqrt{I_s/A_{s,eff}} = 5.51 \text{ cm}$...vztrajnostni polmer prereza $I_s = (2b_{sg} + t_{wc})^3 t_s/12 = 1263.4 \text{ cm}^4$...vztrajnostni moment efektivnega prereza

Ker je $\overline{\lambda} < 0,2$, lahko zanemarim nevarnost uklona. V nasprotnem primeru bi ga moral upoštevati po standardnih enačbah za uklon.

Zvare, s katerimi je ojačitev privarjena na steber, naredim polnonosilne z uporabo enačbe (13)

Momentno kapaciteto spoja konfiguracije 2 lahko sedaj izračunam po enakih izrazih kot v poglavju 4.3.4. Zaradi ojačitev se nosilnost spoja poveča na $M_c = 158,1$ kNm. Torej vidim, da z vgradnjo ojačitev pri taki zasnovi spoja nisem pridobil veliko nosilnosti, saj so merodajni mehanizmi plastifikacije upogib čelne pločevine ter upogib pasnice stebra. Več nosilnosti bi lahko pridobil predvsem z vgraditvijo dodatnih pločevin za odebelitev pasnice stebra.

4.3.6.3 Strižna ojačitev panela z dodatno strižno pločevino

Dodatna strižna pločevina je potrebna le v robnih vozliščih, kjer je kritična kontrola striga. Tak spoj je prikazan na konfiguraciji 3. Privarim jo le na eno stran stojine, saj mi morebitna dodatna strižna pločevina tudi na drugi strani, po navodilih v standardu, ne bi več dodatno prispevala k strižnemu prerezu. Pločevina mora ustrezati naslednjim zahtevam navedenih v [1]:

- trdnost jekla mora biti enaka kot trdnost stebra.
- debelina t_s mora biti najmanj enaka debelini pasnice stebra t_{wc} .
- širina mora biti manjša od 40 εt_s in skupaj z zvari mora biti enaka notranji višini ravnega dela stojine d_c.
- dolžina mora biti vsaj taka, da pokrije celotno tlačno ter natezno cono stojine stebra.

Odločim se za debelino strižne ojačitve $t_s = 10 \text{ mm} > t_{wc} = 7,5 \text{ mm}$. Širino pločevine določim kot $b_s = d_c - 2\sqrt{2}a_s = 15,7 \text{ cm}$ kjer je $a_s = 0,7t_s = 7 \text{ mm}$...polnonosilni zvar v preklopnem spoju [7]

S tem se strižni prerez stebra poveča na $A_{vc,ojačan} = A_{vc} + b_s t_{wc} = 40,53 \text{ cm}^2$ Nosilnost panela v strigu pa tako znaša:

$$V_{wp,Rd} = \frac{0.9 f_{yc} A_{vc,ojačan}}{\gamma_{M0} \sqrt{3}} = 494.9 \text{ kN}$$
(46)

Strižna obremenitev panela $V_{wp,Ed}$ je enaka tlačni sili $F_{c,Ed} = 418,2$ kN, torej je nosilnost zadostna.

4.3.7 Kontrola zvarov

Ker sem že v osnovi vse zvare zasnoval kot polnonosilne, kontrola zvarov ni potrebna. V nasprotnem primeru pa bi bilo potrebno zagotoviti, da porušitev zvarov ni merodajna za nosilnost spoja, saj tak porušni mehanizem ni duktilen.

4.4 Rotacijska togost spoja

Rotacijsko togost spoja tako kot nosilnost računamo po komponentni metodi, kot je določeno v SIST EN 1993-1-8 [1]. Določimo jo iz podajnosti osnovnih komponent spoja, ki so zajeti v koeficientih elastične togosti k_i . Te koeficiente je potrebno ustrezno kombinirati v odvisnosti od vrste spoja, števila vrst vijakov v nategu, ojačitev ipd. Za primere, kot je obravnavani, ko osna sila v priključenem elementu ne presega 5% nosilnost prereza $N_{pl,Rd}$, se lahko začetna rotacijska togost $S_{j,ini}$ izračuna s spodnjim izrazom. Račun v celotnem poglavju je opravljen za dvostranski spoj konfiguracije 2.

$$S_{j,ini} = \frac{Ez^2}{\sum_i \frac{1}{k_i}}$$
(47)

kjer so:

k_i

 $z = z_{eq}$

...ročica $k_{3,1}$ $k_{4,1}$ $k_{5,1}$ $k_{10,1}$ $k_{3,2}$ $k_{4,2}$ $k_{5,2}$ $k_{10,2}$ k_{1} k_{2}

...togostni koeficient osnovne komponente i

Slika 23: Mehanski model enostranskega vozlišča (da Silva, 2001: str 48)

Togostni koeficienti k_i predstavljajo nadomestne rotacijske togosti vzmeti. Vsaka komponenta spoja je predstavljena s svojo vzmetjo. Avtorja v članku [8] navajata, da pride v drugačnih spojih, kot so na primer varjeni, do drugačnih povezav med vzmetmi. Skupna lastnost vsem spojem pa je, da se delijo na natezno, tlačno in strižno cono. Za račun togosti vozlišča prečka-steber s čelno pločevino in dvema ali več vrst vijakov v nategu je račun togostnih koeficientov k_i sestavljen iz računa koeficienta k_{eq} ter pri dvostranskih vozliščih z enakima in nasprotno usmerjenima momentoma k_2 , pri enostranskem spoju pa k_1 in k_2 . Za ročico z je potrebno upoštevati vrednost z_{eq} . [1] Vzmet, ki nadomešča komponente v tlaku, je zaporedno vezana z vzmetjo, ki nadomešča komponente v strigu. Skupaj pa sta nato vzporedno vezani z vzmetjo, ki nadomešča komponente v nategu. Ta je sestavljena iz vzporedno vezanih vzmeti, ki predstavljajo vsaka svojo vrsto vijakov v nategu. Kako so nadomestne vzmeti povezane v modelu, je predstavljeno na zgornji sliki. Vse vzmeti v nategu bi lahko predstavil tudi z eno samo vzmetjo, s togostnim koeficientom k_{eq} .

4.4.1 Natezna cona

Koeficient k_{eq} opisuje osnovne komponente, ki se nanašajo na vrste vijakov v nategu. Sestavljen je iz vzmeti, ki predstavljajo vsako vrsto vijakov v nategu in so med seboj vzporedno povezane. Določen je s spodnjim izrazom.

$$k_{eq} = \frac{\sum_{r} k_{eff,r} h_r}{z_{eq}} \tag{48}$$

kjer so:

 h_r ...razdalja r-te vrste vijakov do središča tlaka $k_{eff,r}$...efektivni togostni koeficient r-te vrste, znotraj katerega so upoštevani togostni koeficienti k_i osnovnih komponent

z_{eq} ...ekvivalentna ročica

Efektivni togostni koeficient se določi s spodnjim izrazom. Predpostavi se, da so vzmeti osnovnih komponent med seboj zaporedno vezane.

$$k_{eff,r} = \frac{1}{\sum_{i} 1/k_{i,r}} \tag{49}$$

Nadomestno ročico pa dobimo z izrazom:

$$z_{eq} = \frac{\sum_{r} k_{eff,r} h_r^2}{\sum_{r} k_{eff,r} h_r}$$
(50)

kjer so ročice:

 $h_1 = h_b - t_{fb}/2 + x_1 = 43,3 \text{ cm}$ $h_2 = h_1 - p = 33,3 \text{ cm}$

Pri računu vozlišč prečka-steber mora k_{eq} nadomestiti togostne koeficiente:

- stojina stebra v nategu (k_3)
- pasnica stebra v upogibu (k_4)
- čelna pločevina v upogibu (k_5)
- vijaki v nategu (k_{10})

Posamezne togostne koeficiente se izračuna po spodnjih izrazih.

Stojina stebra v nategu:

$$k_3 = \frac{0.7b_{eff,t,wc}t_{wc}}{c} = \frac{0.7 \cdot 13.9 \text{ cm} \cdot 0.75 \text{ cm}}{22.5 \text{ cm}} = 0.323 \text{ cm}$$
(51)

kjer so:

c...višina stojine med pasnicama $b_{eff,t,wc} = 13,9 \text{ cm}$...sodelujoča širina stojine stebra v nategu, ki je definirana enako kot v izrazu(27)

Koeficient k_3 ima enako vrednost za prvo in drugo vrsto vijakov v nategu.

Pasnica stebra v upogibu:

$$k_4 = \frac{0.9 l_{eff} t_{fc}^3}{m_c^3} = \frac{0.9 \cdot 13.9 \text{ cm} \cdot (1.25 \text{ cm})^3}{(2.21 \text{ cm})^3} = 2,272 \text{ cm}$$
(52)

kjer so:

 l_{eff} ...najmanjša efektivna dolžina za to vrsto vijakov izračunana po izrazih v poglavju 4.3.6.1 m_c ...razdalja določena na sliki 12

Koeficient k_4 ima enako vrednost za prvo in drugo vrsto vijakov v nategu.

Čelna pločevina v upogibu:

$$k_5 = \frac{0.9l_{eff}t_p^3}{m^3} \tag{53}$$

kjer so za zgornjo vrsto vijakov:

 $l_{eff} = 10 \text{ cm}$...najmanjša efektivna dolžina za to vrsto vijakov izračunana po izrazih v poglavju 4.3.1.1

 $m = m_x = 32,1 \text{ mm}$ $k_5 = 1,117$ cm

za drugo vrsto vijakov: $l_{eff} = 22,7 \text{ cm}$ $m = m_p = 36,7 \text{ mm}$ $k_5 = 1,771 \text{ cm}$

Vijaki v nategu:

$$k_{10} = \frac{1.6A_s}{L_b} = \frac{1.6 \cdot 3.53 \text{ cm}^2}{4.48 \text{ cm}} = 1.032 \text{ cm}$$
 (54)

kjer so:

 $A_{\rm s} = 3,53 \,{\rm cm}^2$...prerez skozi del stebla vijaka z navojem $L_b = t_{fc} + t_p + 2s + 0.5(m + k) = 44,75$ mm ...raztezna dolžina, za katero se vzame spenjalna dolžina ter polovična vsota višine glave vijaka in matice, kjer so: s = 4mm ...debelina podložke za navadni vijak M24 m = 21.5mm ...debelina matice za navadni vijak M24

			5	
k = 15mm	debelina glave	e vijaka za	navadni	viiak M24

Koeficient k_{10} ima enako vrednost za prvo in drugo vrsto vijakov v nategu.

Z izrazom (49) tako lahko izračunam:

 $k_{eff,1} = 1/(1/0.323 + 1/2.272 + 1/1.117 + 1/1.032) = 0.185 \text{ cm}$ $k_{eff,2} = 1/(1/0.323 + 1/2.272 + 1/1.771 + 1/1.032) = 0.197 \text{ cm}$

Z izrazom (50) dobim ekvivalentno ročico: $z_{ea} = (0.185 \cdot 43.3^2 + 0.197 \cdot 33.3^2) / (0.185 \cdot 43.3 + 0.197 \cdot 33.3) = 38.82 \text{ cm}$

Z izrazom (48) nato dobim: $k_{eq} = 0,185 \text{ cm} \cdot 43,3 \text{ cm} + 0,197 \text{ cm} \cdot 33,3 \text{ cm}/(38,8 \text{ cm}) = 0,376 \text{ cm}$

4.4.2 Strižna cona

Koeficient k_1 zajame obnašanje panela stojine stebra v strigu. Izračuna se ga po izrazu:

$$k_1 = \frac{0.38A_{vc}}{\beta z} = \infty \tag{55}$$

kjer so:

...strižni prerez stebra A_{vc}

3)

 $\beta = 0$...transformacijski parameter za dvostransko vozlišče, kjer sta momenta nasprotna enaka, kot je določeno v pregledinici 5.4 v SIST EN 1993-1-8 [1].

 $z = z_{eq}$...ročica

V primeru, ko je stojina ojačana s strižno ojačitvijo, kot je to pokazano v konfiguraciji spoja 3, se predpostavi, da velja $k_1 = \infty$.

4.4.3 Tlačna cona

Koeficient k_2 zajame obnašanje stojine stebra v tlaku. Za obravnavan spoj konfiguracije 2, ki ima tlačno ojačitev, velja $k_2 = \infty$. Za spoj brez tlačne ojačitve pa se izračuna po izrazu:

$$k_2 = \frac{0.7b_{eff,c,wc}t_{wc}}{c} \tag{56}$$

kjer so:

 $b_{eff,c,wc}$...sodelujoča širina v tlaku definirana enako kot v izrazu (28)c...višina stojine stebra med pasnicama

Vse tako izračunane osnovne koeficiente vstavim v izraz (47) ter dobim začetno rotacijsko togost:

$$S_{j,ini} = \frac{21000 \text{ kN/cm}^2 \cdot (38,8 \text{ cm})^2}{\frac{1}{0,376 \text{ cm}} + \frac{1}{\infty} + \frac{1}{\infty}} = 119 \text{ MNm/rad}$$

4.5 Rotacijska kapaciteta

Ker računam po geometrijsko nelinearni analizi z nelinearnimi vzmetmi, je potrebno zagotoviti, da imajo vozlišča zadostno rotacijsko kapaciteto, ki omogočijo razvoj plastičnih členkov. Tako zagotovimo, da ne pride do krhke porušitve. Da ima spoj zadostno rotacijsko kapaciteto lahko zagotovimo tako, da izpolnimo dva pogoja iz standarda [1]:

a) Upogibna nosilnost vozlišča je omejena z nosilnostjo

- pasnice stebra v upogibu ali
- čelne pločevine nosilca v upogibu

b) Debelina t pasnice stebra ali čelne pločevine zadošča pogoju

$$t \le 0.36d \sqrt{f_{ub}/f_y} = 16 \text{ mm}$$

$$\tag{57}$$

Kot je pokazano v zgornjih poglavjih, sta za spoje konfiguracije 2 ter 3 oba pogoja zadoščena. Pri delno nosilnih vozliščih v spoju nastanejo plastične deformacije oziroma plstični členek, kot je to prikazano na sliki 24. Če bi bil merodajen drug mehanizem porušitve, kot na primer odpoved vijakov v nategu, ki nimajo sposobnosti doseganja večjih plastičnih deformacij, bi prišlo do porušitve preden bi se lahko razvila nosilnost spodnjih vrst vijakov in s tem izračunana nosilnost ne bi bila izkazana.

Slika 24: Plastični členek v spoju (Beg, 2011: str 25)

4.6 Razvrstitev vozlišča

Glede na obravnavane kriterije v drugem poglavju, lahko tako izračunana vozlišča razvrstim po nosilnosti ter togosti. Za vozlišča katerih račun ni prikazan v zgornjih poglavjih, je le ta predstavljen v prilogi A.

4.6.1 Nosilnost

Za klasifikacijo spoja moram primerjati nosilnost prečke ter spoja. Nosilnost prečke na upogibni moment je $M_{b,pl,Rd} = 307,1$ kNm. Nosilnost vozlišča pa je odvisna od njegove vrste.

Preglednica 4: Nosilnost obravnavanih spojev

	Dvostransko vozlišče		Robno vozlišče	
	Konfiguracija 1	Konfiguracija 2	Konfiguracija 1	Konfiguracija 3
M _c [kNm]	147,5	158,1	122,4	158,1

Iz preglednice je razvidno, da noben spoj ni polno nosilen. Vse konfiguracije spojev pa imajo nosilnost večjo od $0,25M_{b,pl,Rd}$, kar pomeni da jih moramo uvrstiti med delno nosilne.

4.6.2 Togost

Kriterij za uvrstitev med toga vozlišča je podan z izrazom (1). V primeru obravnavane konstrukcije se izraz zapiše:

$$S_{j,ini} \ge k_b E I_b / L_b = 25 \cdot 21000 \frac{\text{kN}}{\text{cm}^2} \cdot \frac{33740 \text{ cm}^4}{700 \text{ cm}} = 253 \text{ MNm/rad}$$

Kriterij za nominalno členkasta vozlišča (2) pa se zapiše:

$$S_{j,ini} \le 0.5 E I_b / L_b = 0.5 \cdot 21000 \frac{\text{kN}}{\text{cm}^2} \cdot \frac{33740 \text{ cm}^4}{700 \text{ cm}} = 5 \text{ MNm/rad}$$

kjer je $K_b/K_c = 1,8$ za prvo etažo in = 1,4 za ostale.

Preglednica 5: Togost obravnavanih spojev

	Dvostransko vozlišče		Robno vozlišče	
	Konfiguracija 1	Konfiguracija 2	Konfiguracija 1	Konfiguracija 3
S _{j,ini} [MNm/rad]	72	119	40	119

Iz preglednice je razvidno, da noben izmed obravnavanih spojev ne dosega kriterijev za togo ali za členkasto vozlišče. Torej lahko vse spoje klasificiram kot delno toge.

Tudi po razvrstitvi v [2], predstavljeni v drugem poglavju, lahko spoje uvrstimo med delno toge.

5 Numerična analiza okvirja

Za ugotavljanje stabilnosti konstrukcije, jo moramo izmakniti iz ravnotežne lege ter ravnotežne enačbe zapisati v deformirani legi konstrukcije. Tako račun poteče po teoriji drugega reda. Ob računu stabilnosti v SCIA Engineer 2013, nam program sam izmakne konstrukcijo iz ravnotežne lege v različne deformirane lege. Za okvir najbolj neugodna je 1. stabilnostna oblika, prikazana na sliki 25.

Slika 25: 1. stabilnostna oblika

Glede na obnašanje konstrukcije nato program izračuna faktor α_{cr} , ki je definiran v spodnjem izrazu:

$$\alpha_{cr} = F_{cr}/F_{Ed} \tag{58}$$

kjer so:

 α_{cr} ... faktor, ki pove, za kolikokrat je treba povečati projektno obtežbo, da se doseže elastična kritična obtežba konstrukcije

 F_{Ed} ...projektna obtežba konstrukcije F_{cr} ...elastična kritična obtežba, ki povzroči globalno nestabilnost konstrukcije

Ob upoštevanju togih vozlišč, programsko orodje SCIA Engineer 2013 izračuna faktor kritične obtežbe $\alpha_{cr} = 11,36$.

5.1 Globalna analiza

V preglednici 5.1 v SIST EN 1993-1-8 [1] so podane metode globalne analize v odvisnosti od razvrstitve vozlišča. Ker so v obravnavanem primeru vsa vozlišča delno toga in delno nosilna, se morajo modelirati kot delno kontinuirna v elastično-plastični globalni analizi.

Pri določanju notranjih sil in momentov v vozlišču je potrebno upoštevati diagram upogibni momentzasuk vozlišča. Standard [1] določa, da se kot poenostavitev diagrama moment-zasuk lahko uporabi bilinearni diagram, pri katerem se prilagoditveni koeficient η določi iz preglednice 5.2. iz tega standarda. Za vozlišča prečka-steber je koeficient $\eta = 2$.

Slika 26: Poenostavljen bilinearni diagram moment-zasuk (SIST EN 1993-1-8, 2005: str 51)

5.2 Modeliranje vozlišč

Vsak spoj je potrebno modelirati kot nadomestno vzmet z rotacijsko togostjo, ki jo izračunamo z izrazom (47). Ker je za opis obnašanja vzmeti uporabljen bilinearen diagram moment-zasuk, moram uporabiti sekantno togost $S_{j,ini}/\eta$, kot je razloženo v poglavju 5.1. Kot je prikazano na spodnji sliki, moramo dvostranska vozlišča modelirati kot dve različni vzmeti, ki imata lahko tudi različni togosti.

Ko spoj kot vzmet vstavim v program, mu določim potek odvisnosti upogibni moment-zasuk. Ker so vsi obravnavani spoji le delno nosilni, se tam tvori plastični členek. To povzroči, da se moment prerazporedi na nosilec, kjer se poveča, v spoju pa se zmanjša na nivo, ki ga le-ta še lahko prenese, torej na plato prikazan na spodnjem grafu.

Slika 28: Računski model vzmeti oziroma odvisnost moment-rotacija spoja

5.3 Rezultati analize

Opravil sem nelinearno analizo, pri kateri se je za merodajno obtežno kombinacijo izkazala K2. Mrežo končnih elementov sem definiral tako, da je povprečo število KE na enem elementu (stebru oziroma prečki) 10.

V večini spojev v konstrukciji je dosežen plato grafa moment-zasuk, kar pomeni, da je dosežena upogibna nosilnost spoja ter da se tam tvori plastični členek. Posledica tega je razporeditev upogibnih momentov na nosilec, kot je prikazano na spodnjih slikah.

Slika 29: Upogibni momenti v konstrukciji s spoji konfiguracije 2 ter 3 z različini debelinami čelne pločevine

Vidim torej, da se z manjšanjem togosti vozlišč v konstrukciji veča upogibni moment v polju prečke.

Z namenom primerjave obnašanja konstrukcije z različnimi spoji, sem izdelal Excel-ov dokument, s pomočjo katerega sem nato hitreje izračunal momentno kapaciteto spoja M_c ter njegovo začetno togost $S_{j,ini}$. Parameter, ki sem ga spreminjal je bila debelina čelne pločevine t_p . Ob tem sem spremljal spreminjanje pomikov, zasukov ter faktorja α_{cr} . Rezultati so prikazani na spodnjih preglednicah, kjer sta:

ϕ_{max}	največji zasuk obravnavane konfiguracije spoja na konstrukciji
u_x	največji pomik v obravnavani konstrukciji v horizontalni smeri

t _p [mm]	togi spoji	20	18	16	14	12	10	členkasti spoji
u _x [mm]	3,9	17,5	17,8	20,6	24,7	31,1	64,8	323,4
α_{cR}	11,36	9,17	9,14	9,1	9,08	8,92	8,72	1,14

Preglednica 6: Pomik ter α_{cr} konstrukcije – vozlišča konfiguracije 1

t _p [mm]	20	18	16	14	12	10
M _c [kNm]	157,6	157,6	149,8	130,7	114,2	80,9
S _{j,ini} [MNm/rad]	76	74	72	69	64	56

7

7,3

7,8

9

11,9

Preglednica 7: Dvostransko vozlišče konfiguracije 1

Preglednica 8: Enostransko vozlišče konfiguracije 1

6,9

 $\Phi_{\text{max}} \; [\text{mrad}]$

t _p [mm]	20	18	16	14	12	10
M _c [kNm]	127,2	126,7	122,4	117,5	113,2	80,9
S _{j,ini} [MNm/rad]	41	41	40	39	37	34
$\Phi_{\sf max}$ [mrad]	9,2	9,3	9,5	9,8	10,6	13,5

t _p [mm]	togi spoji	20	18	16	14	12	10	členkasti spoji
u _x [mm]	3,9	12,3	12,6	21,3	34,2	49,6	75	323,4
α_{cr}	11,36	10,25	10,23	10,19	10,12	10	9,76	1,14

Preglednica 9: Pomik ter α_{cr} konstrukcije z ojačanimi vozlišči – konfiguracija 2, 3

Preglednica 10: Dvostransko vozlišče konfiguracije 2

t _p [mm]	20	18	16	14	12	10
M _c [kNm]	176,8	176,8	158,1	139,1	116,6	80,9
S _{j,ini} [MNm/rad]	126	124	119	112	101	84
$\Phi_{\sf max}$ [mrad]	5,1	5,1	6,1	7,4	8,9	11,4

Preglednica 11: Enostransko vozlišče konfiguracije 3

t _p [mm]	20	18	16	14	12	10
M _c [kNm]	176,8	176,8	158,1	139,1	116,6	80,9
S _{j,ini} [MNm/rad]	126	124	119	112	101	84
$\Phi_{\sf max}$ [mrad]	7,2	7,2	7,9	9,1	10,5	12,7

Iz rezultatov vidim, da pri manjših debelinah čelne pločevine pomiki ter zasuki konstrukcije začnejo hitreje naraščati. Obnašanje konstrukcije se takrat vedno bolj približuje obnašanju konzole, zato bi ustreznost takih spojev moral preveriti še s kontrolami pomikov v MSU. Do kakšne razlike v pomikih konstrukcije pride, priča že podatek, da je pomik konstrukcije z ojačanimi spoji z debelino $t_p = 10$ mm skoraj 21x večji od tistega pri konstrukciji s togimi spoji.

Na grafu na sliki 30 je prikazan potek momentne kapacitete spoja M_c v odvisnosti od debeline čelne pločevine t_p za različne tipe spoja. Iz grafa je razvidno, da se z manjšanjem debeline čelne pločevine manjšajo tudi razlike v momentni kapaciteti med različnimi konfiguracijami spoja. Prav tako vidimo, da naklon linije za konfiguracijo 1 pri manjši debelini začne ujemati z naklonom linije za konfiguracijo 2 ter 3. Pri večjih debelinah pa M_c ne narašča več. Takrat je namreč merodajen mehanizem za porušitev upogib pasnice stebra, pri manjši debelini pa upogib čelne pločevine

Slika 30: Graf odvisnosti momentne kapacitete od debeline čelne pločevine

Rezultati odvisnosti začetne togosti spoja $S_{j,ini}$ od debeline čelne pločevine t_p (slika 31), se za enostranski spoj konfiguracije 3 in dvostranski spoj konfiguracije 2 ne razlikujejo, saj imajo osnovne komponente v obeh primerih enako togost. Lepo je vidno, da se z manjšanjem debeline čelne pločevine manjša tudi razlika med različnimi spoji ter da bi vsi grafi z manjšanjem debeline t_p šli proti vrednosti 0.

Slika 31: Graf odvisnosti začetne togosti spoja od debeline čelne pločevine

Iz odvisnosti horizontalnega pomika u_x od debeline čelne pločevine (slika 32) lahko vidimo, da pri tanjših čelnih pločevinah pomiki hitreje naraščajo. Iz tega razloga ni priporočljivo uporabiti preveč tankih pločevin. Zanimiv pa je predvsem rezultat, ki kaže, da ima konstrukcija, v kateri so vgrajeni ojačani spoji konfiguracije 2 in 3, večje pomike kot konstrukcija s spoji konfiguracije 1, čeprav je togost zadnjih precej manjša od togosti ojačanih spojev.

Slika 32: Graf odvisnosti horizontalnega pomika konstrukcije od debeline čelne pločevine v spojih, za obtežno kombinacijo K2

Tudi pri odvisnosti zasuka od debeline čelne pločevine (slika 33) lahko vidimo, da vrednosti z večanjem debeline konvergirajo k določenim vrednostim. Kot je razvidno se najmanjši zasuki vedno zgodijo na dvostranskem vozlišču konfiguracije 2, največji pa na enostranskem konfiguracije 1. Vidno je tudi, da zasuk v dvostranskih spojih konfiguracije 1 narašča s skoraj identičnim naklonom kot pri enostranskih. Prav tako zasuk dvostranskih spojih konfiguracije 2 narašča s skoraj identičnim naklonom kot pri enostranskih spojih konfiguracije 3.

Slika 33: Graf odvisnosti največjega zasuka v vozlišču od debeline čelne pločevine

Na grafu iz slike 34 je prikazan faktor α_{cr} v odvisnosti od povprečne začetne togosti spojev v konstrukciji $S_{j,ini,povp}$, ki jo dobim kot $(S_{j,ini,enostransko} + S_{j,ini,dvostransko})/2$. V primeru konstrukcije z ojačanimi vozlišči konfiguracije 2 in 3 sta ti dve vrednosti enaki, kot je razvidno tudi iz preglednic z rezultati.

Iz poteka grafa je jasno razvidno, da se z zmanjševanjem togosti spoja manjša tudi faktor α_{cr} . Pri manjši togosti je padanje bolj strmo. Z manjšanjem togosti vozlišč se namreč manjša uklonska dolžina konstrukcije. Euler-jeva kritična sila, od katere je odvisen tudi faktor α_{cr} , pa se manjša s kvadratom uklonske dolžine. Iz poteka lahko sklepam tudi, da z večanjem togosti α_{cr} limitira proti vrednosti $\alpha_{cr} = 11,36$, kolikor je vrednost koeficienta pri okvirju s togimi spoji. Z manjšanjem togosti pa se α_{cr} bliža vrednost $\alpha_{cr} = 1$, kolikor je vrednost faktorja, če so vsi spoji členkasti in se konstrukcija obnaša kot konzola.

Slika 34: Graf odvisnosti α_{cr} od povprečne togosti spojev v okvirju

Kot je razvidno tudi iz slike 29 se z manjšanjem togosti spojev veča tudi moment v stebrih okvirja. Pri projektiranju takega okvirja bi torej moral na tem mestu še enkrat narediti kontrolo nosilnosti ter stabilnosti stebrov. Obe izvede kar program SCIA Engineer 2013 sam. Nosilnost preverja po enačbi 6.41 iz standarda SIST EN 1993-1-1 [5]. Za okvir s spoji konfiguracije 2 in 3 ter debelino čelne

pločevine $t_p = 16$ mm, program izračuna izkoriščenost prereza glede na plastično nosilnost 0,24. Kontrolo stabilnosti pa izvede po izrazih (8) in (9), kot v poglavju 3.6. Če v izraza vstavimo vse izračunane parametre se zapišeta:

$$\frac{1221}{0,93 \cdot 86,8 \cdot 23,5/1} + 1,008 \frac{2300}{1 \cdot 920 \cdot 23,5/1} = 0,64 + 0,09 = 0,73$$
$$\frac{1221}{0,75 \cdot 86,8 \cdot 23,5/1} + 0,605 \frac{2300}{1 \cdot 920 \cdot 23,5/1} = 0,79 + 0,06 = 0,85$$

Za okvir s členkastimi spoji dobimo izkoriščenost prereza glede na plastično nosilnost 3,99, kar je skoraj 4x preveč. Izraza za kontrolo stabilnosti pa se v tem primeru zapišeta:

$$\frac{1208}{0,93 \cdot 86,8 \cdot 23,5/1} + 1,058 \frac{20200}{0,92 \cdot 920 \cdot 23,5/1} = 0,64 + 1,09 = 1,73$$
$$\frac{1208}{0,75 \cdot 86,8 \cdot 23,5/1} + 0,926 \frac{20200}{0,92 \cdot 920 \cdot 23,5/1} = 0,79 + 0,95 = 1,74$$

Vidim torej, da se z manjšanjem togosti spojev večajo upogibni momenti v stebrih, kar povzroči, da so ti bolj nestabilni. Vplivi teorije drugega reda torej povečajo momente za približno 9x, če primerjam konstrukcijo s členkastimi spoji s tisto s spoji z debelino čelne pločevine $t_p = 16$ mm. Če pa primerjam momente v konstrukciji s členkastimi spoji s tistimi v konstrukciji s togimi spoji, pa vidim, da se ti povečajo za skoraj 14x. Ker se poveča momentna obremenitev je potrebno znova preveriti tudi stabilnost stebrov ter plastično nosilnost prereza. Obe v primeru konstrukcije s členkastimi spoji nista zadostni, zato bi moral uporabiti večji profil stebrov.

Za primerjavo rezultatov sem izvedel še račun konstrukcije, ki ima namesto vpetih, členkaste podpore. Rezultati so prikazani za konstrukcijo s spoji konfiguracije 2 in 3. Vidim, da je taka konstrukcija neprimerno manj stabilna kot konstrukcija s togimi spoji. Pomiki so veliko večji, koeficient α_{cr} , pa je zelo blizu vrednosti 1. Za konstrukcijo s členkastimi spoji program računa sploh ne more izvesti, saj gre za statično nestabilno konstrukcijo.

t _p [mm]	_	togi spoji	20	16	12	členkasti spoji
u _x [mm]	toge	3,9	12,3	21,3	49,6	323,4
α _{cr}	peupere	11,36	10,25	10,19	10	1,14
u _x [mm]	členkaste	14,5	41,3	70,7	202,4	konstrukcija ni
α _{cr}	podpore	3,05	2,81	2,79	2,75	stabilna

Preglednica 12: Rezultati za konstrukcijo s členkastimi podporami in spoji konfiguracije 2 in 3

6 Zaključek

Zasnova spoja ima velik vpliv na stroške izvedbe ter na obnašanje konstrukcije, kot sem se prepričal v diplomskem delu. Na računskem primeru sem skušal pokazati potek projektiranja okvirja z delno togimi spoji ter vpliv le teh na obnašanje jeklene konstrukcije. Okvir sem najprej dimenzioniral s togimi spoji, da sem dobil profile stebrov in prečk, ki sem jih potreboval za račun spoja. Nato sem s pomočjo priročnikov spoj zasnoval kot standardni vijačen spoj steber-prečka s čelno pločevino. Temu sem moral z uporabo komponentne metode, ki jo podaja standard, izračunati nosilnost ter rotacijsko togost.

Pri uporabi delno togih spojev je po mojem mnenju potrebno najti kompromis med manjšo porabo materiala v spoju, kar povzroči manjšo togost spojev ter med zadostno stabilnostjo konstrukcije kot celote. Glede na rezultate analize prikazane v poglavju 5.3 lahko rečem, da je za okvir obravnavanih dimenzij in spoji konfiguracije 1,2 in 3 temu zadoščeno, če je debelina čelne pločevine v spoju okrog 12 mm. V tem primeru v konstrukciji ne pride do prevelikih pomikov, zasuki v spojih pa so manjši od 10 mrad. Glede na dolžino računa samega spoja lahko v zaključku ugotovim tudi, da je postopek zelo dolgotrajen, s čimer se pod vprašaj postavlja smiselnost takega računa brez uporabe računalniških programov. Z uporabo računalniških programov, ki omogočajo detajlni račun spojev, bi do enakih ali podobnih rezultatov lahko prišel precej hitreje.

Viri

[1] SIST EN 1993-1-8, Evrokod 3: Projektiranje jeklenih konstrukcij – 1-8. del: Projektiranje spojev

[2] Joints in Steel Construction Moment-Resisting Joints to Eurocode 3. 2013. The Steel Construction Institute, The British Constructional Steelwork Association Limited

[3] Cabrero, J.M., Bayo, E. 2005. Development of practical design methods for steel structures with semi-rigid connections. Engineering Structures 2005, 27: 1125-1137

[4] SIST EN 1991-1-4, Evrokod 1: Vplivi na konstrukcije -1-4. del: Splošni vplivi – Vpliv vetra

[5] SIST EN 1991-1-1, Evrokod 1: Vplivi na konstrukcije – 1-1. del: Splošni vplivi – Prostorninske teže, lastna teža, koristne obtežbe stavb

[6] SIST EN 1993-1-1, Evrokod 3: Projektiranje jeklenih konstrukcij – 1-1. del: Splošna pravila in pravila za stavbe

[7] Beg, D., Pogačnik, A. 2009. Priročnik za projektiranje gradbenih konstrukcij po Evrokod standardih. Ljubljana, Inženirska zbornica Slovenije

[8] da Silva, L. S., Girao Coelho, A. 2001. A ductility model for steel connections. Journal of Constructional Steel Research 2001, 57: 45-70

Ostali viri:

Beg, D., Čermelj, B. 2011. Jeklene konstrukcije I 6.0 Spoji http://ucilnica1314.fgg.uni-lj.si/course/view.php?id=2216 (Pridobljeno 10. 8. 2014)

PRILOGA A: Tabelarni prikaz računa spoje z različnimi debelinami čelne pločevine

Natezna cona							p	rva+dru	uga vrsta			prva+dru	iga vrsta	
Upogib čelne	pločevine			Upogib pasni	ce stebra	3	F _{t,wc,R}	d=	390,3	kN		F _{t,wc,Rd} =	519,0	kN
n _x =	4,0	cm		m _c =	2,2	cm	b _{eff,t,v}	/c=	29,4	cm		b _{eff,t,wc} =	29,4	cm
m _x =	3,2	cm		e _c =	8,5	cm	β=1	->	$\omega = \omega_1 =$	0,752		β=0 ->	ω=	1
e _x =	5,0	cm		n=	2,8	cm								
n=	4,5	cm		Sodelujoče	dolžine				Določitev	končnih	odpor	nosti vrst vijakov		
m _p =	3,6	cm		prva vr	sta					Enostra	nsko vo	ozlišče		
Sodelujoče	dolžine			L _{eff,cp}	,				Stran r	nosilca		Stran	stebra	
prva vr	sta			$2\pi m_c =$	13,9	cm		upog	jib čelne	nateg s	tojine	upogib pasnice	nateg	stojine
L _{eff,cp}	2			$\pi m_c + p =$	15,9	cm		ploče	vine [kN]	nosilca	a[kN]	stebra [kN]	stebr	a [kN]
$2\pi m_x =$	20,2	cm		L _{eff,ne}	:		1. vrsta	2	91,0	/		230,7	22	5,8
$\pi m_x + 2e_x =$	20,1	cm		4m _c +1,25e _c =	19,4	cm	2. vrsta	3	61,7	/		230,7	22	5,8
$\pi m_x + g =$	19,1	cm		2m _c +0,625e _c +0,5p=	14,2	cm	1+2 vrsta		/	/		490,3	39	0,3
L _{eff,n}	c			L _{eff,cp} =	13,9	cm	1+2-Pr1		/	/		264,6	16	4,6
b _p /2=	10,0	cm		L _{eff,nc} =	14,2	cm								
4m _x +1,25e _x =	19,1	cm		L _{eff,1} =	13,9	cm	F _{t1,Rd} =		225,8	kN		F _{t2,Rd} =	164,6	kN
$2m_x$ +0,625 e_x + e_p =	15,0	cm		L _{eff,2} =	14,2	cm				Dvostra	nsko v	ozlišče		
$2m_x+0,625e_x+g/2=$	14,0	cm		druga vi	sta				Stran r	nosilca		Stran	stebra	
L _{eff,cp} =	19,1	cm		L _{eff,1} =	13,9	cm		upog	ib čelne	nateg s	tojine	upogib pasnice	nateg	stojine
L _{eff,nc} =	10,0	cm		L _{eff,2} =	14,2	cm		ploče	vine [kN]	nosilca	a[kN]	stebra [kN]	stebr	a [kN]
L _{eff,1} =	10,0	cm		prva+druga	a vrsta		1. vrsta	2	91,0	/		230,7	24	4,2
L _{eff,2} =	10,0	cm		$L_{eff,cp}=2\pi m_c+2p=$	33,9	cm	2. vrsta	3	61,7	/		230,7	24	4,2
druga vi	rsta			$L_{eff,nc}$ =4 π m _c +1,25e _c +p=	29,4	cm	1+2 vrsta		/	/		490,3	51	.9,0
$L_{eff,cp}=2\pi m_p=$	22,7	cm		L _{eff,1} =	29,4	cm	1+2-Pr1		/	/		259,6	28	8,3
$L_{eff,nc} = \alpha m_p =$	23,5	cm		L _{eff,2} =	29,4	cm								
m ₂ =	3,9	cm		Odpornost nadomest	nega T e	lementa	F _{t1,Rc}	E .	230,7	kN		F _{t2,Rd} =	230,7	kN
m1=	3,6	cm		prva vr	sta									
$\lambda_1 =$	0,40			M _{pl,1,Rd} =	127,2	kNcm				Tla	čna cor	าล		
$\lambda_2 =$	0,42			M _{pl,2,Rd} =	130,6	kNcm				Pasnica	prečke	v tlaku		
α=	6,50			F _{T,1,Rd} =	230,7	kN	M _{c,Rc}	-	30714,5	kNcm		F _{c,fb,Rd} =	794,7	kN
L _{eff,1} =	22,7	cm		-						Stojina	stebra i	v tlaku		×
L _{eff,2} =	23,5	cm		F _{T,2,Rd} =	278,6	kN	En	ostrans		e 0.700		Dvostrans	ko voziis	ce 1
	tiega i en	ementa		E -	406.7	LN	β=1	->	$\omega = \omega_1 =$	0,796		β=0 ->	ω= 1	1
Maland=	235.0	kNcm		druga vi	sta	No.	b."	=	25.6	cm		b _{eff a we} =	25.6	cm
Mala Rd=	235.0	kNcm		Mel 1 Rd=	127.2	kNcm	d=	=	17.7	cm		d=	17.7	cm
F _{T 1 Pd} =	293.0	kN		M _{pl 2 Rd} =	130.6	kNcm	λ=		0.885			λ=	0.885	
.,_,				F _{T.1.Rd} =	230,7	kN	ρ=		0,875			ρ=	0,875	
F _{T,2,Rd} =	291,0	kN					F _{c.wc.Rd} =	358,7	<	313,9		F _{c.wc.Rd} = 450,8	<	394,5
	•			F _{T,2,Rd} =	278,6	kN	F _{c,wc,R}	d=	313,9	kN		F _{c,wc,Rd} =	394,5	kN
F _{T,3,Rd} =	406,7	kN							•					
druga vi	rsta			F _{T,3,Rd} =	406,7	kN				Stri	žni pan	el		
M _{pl,1,Rd} =	534,1	kNcm		prva+druga	vrsta		A _{vc} =	-	28,74	cm ²		Obrem	enitev	
M _{pl,2,Rd} =	552,6	kNcm		M _{pl,1,Rd} =	270,3	kNcm	V _{wp,R}	d=	350,9	kN		Enostrans	ko vozliš	če
F _{T,1,Rd} =	590,6	kN		M _{pl,2,Rd} =	270,3	kNcm						F _v =	313,9	kN
				F _{T,1,Rd} =	490,3	kN						Dvostrans	ko vozliš	če
F _{T,2,Rd} =	361,7	kN									ļ	F _v =	0	kN
				F _{T,2,Rd} =	560,8	kN			Mo	omentna	карасі	teta spoja		×-
F _{T,3,Rd} =	406,7	ĸN		F -	045.5	1.55	En	ustrans	KO VOZIISČ	e		Dvostráns	KO VOZIIŠ	ce
				FT,3,Rd ⁼	813,3	KIN	F _c =		313,9	KN	ł	г _с =	394,5	KIN
	c	tojina pr	ečk				h -		43,5	cm		h.=	43,5	cm
prva vr	sta			druga vi	sta		ΣΕ.:	-	313.0	kN		ΣE.=	30/ 5	kN
Vse prevzame pa	isnica prei	čke		Vse prevzame pa	snica nre	ečke	E _{rt} =		225.8	kN		 F _{r1} =	230.7	kN
							F,-=		88,1	kN	1	F _{r2} =	163,7	kN
	S	tojina ste	ebr	a v nategu			M _c =		127,2	kNm	1	M _c =	154,5	kNm
Enostransko	vozlišče			Dvostransko	vozlišče							· · · · · · · · · · · · · · · · · · ·		
prva vr	sta			prva vr	sta					Vertikalı	ni strig	v spoju		
F _{t,wc,Rd} =	225,8	kN		F _{t,wc,Rd} =	244,2	kN	Fv,Ro	j=	135,6	kN	ł	Obrem	enitev	
D _{eff,t,wc} =	13,9	cm		D _{eff,t,wc} =	13,9	cm		_	271.0			V=	220	kN
β=1 ->	$\omega = \omega_1 =$	0,925		β=0 ->	ω= sta	1	Rd		2/1,2	KN		220	кN	UK
F _{t we} _{Pd} =	225.8	kN		F _{two Pd} =	244.2	kN								
b _{eff.t.wc} =	13.9	cm		b _{eff.t.wc} =	13.9	cm								
β=1 ->	$\omega = \omega_1 =$	0,925		β=0 ->	ω=	1								

Nosilnost vozlišča konfiguracije 1, $t_p = 20$ mm:

Nosilnost vozlišča konfiguracije 2 (dvostransko) in 3 (enostransko), $t_p = 20$ mm:

		Natez	'na	cona			Stoii	ina n	rečke v nate	ווספ		Stojina steh	ra v nate	σιι
Upogib čelne	pločevin	e		Upogib pasni	ce stebra		JUJ	nna p	rva vrsta	ъБи		prva	vrsta	Бu
n _x =	4.0	cm		m _c =	2.2	cm	Vse pre	evzan	ne pasnica p	orečke		Nateg ni n	nerodaje	n
m _x =	3,2	cm		e _c =	8,5	cm		dru	uga vrsta			druga	vrsta	
e _x =	5,0	cm		n=	2,8	cm	Vse pre	evzan	ne pasnica p	orečke		Nateg ni n	nerodaje	n
n=	4,5	cm		Sodelujoče	dolžine									
m _p =	3,6	cm		prva vr	sta				Določitev	končnik	n odpo	rnosti vrst vijakov	/	
Sodelujoče	e dolžine			$L_{eff,cp}=2\pi m_p=$	13,9	cm			Stran n	osilca		Stran	stebra	
prva v	rsta			$L_{eff,nc} = \alpha m_p =$	17,6	cm		up	ogib čelne	nateg s	tojine	upogib pasnice	nateg s	tojine
L _{eff} ,	cp			m ₂ =	3,9	cm		ploò	čevine [kN]	nosilca	a[kN]	stebra [kN]	stebra	[kN]
2πm _x =	20,2	cm		m ₁ =	2,2	cm	1. vrsta		291,0	/		230,7	/	
$\pi m_x + 2e_x =$	20,1	cm		$\lambda_1 =$	0,21		2. vrsta		361,7	/		230,7	/	
$\pi m_x + g =$	19,1	cm		$\lambda_2 =$	0,37							-		
L _{eff} ,	nc	-		α=	8,00		F _{t1,R}	Rd ⁼	230,7	kN		F _{t2,Rd} =	230,7	kN
b _p /2=	10,0	cm		L _{eff,1} =	13,9	cm					~			
4m _x +1,25e _x =	19,1	cm		L _{eff,2} =	17,6	cm				Tla	ična co	ona		
$2m_x+0,625e_x+e_p=$	15,0	cm		druga vi	rsta		Pas	nica	prečke v tla	ku		Stojina ste	bra v tlak	u
$2m_x+0,625e_x+g/2=$	14,0	cm		L _{eff,1} =	13,9	cm	M _{c,F}	Rd=	30715	kNcm		A _{s,eff} =	43,2	cm²
L _{eff,cp} =	19,1	cm		L _{eff,2} =	17,6	cm	F _{c,fb,}	Rd ⁼	794,7	kN		N _{c,Rd} =	1014,8	kN
L _{eff,nc} =	10,0	cm		Odpornost nadomest	inega I el	ementa				<u> </u>				
L _{eff,1} =	10,0	cm		prva vr	sta					Str 2	izni pa	nel		
L _{eff,2} =	10,0	cm		IVI _{pl,1,Rd} =	127,2	kNcm	A _{vc,oja}	ačan ⁼	40,5	cm ⁻		Obrem	enitev	
druga v	/rsta			IVI _{pl,2,Rd} =	161,9	kNcm	V _{wp,I}	Rd ⁼	494,9	KN		Enostrar	nski spoj	
$L_{eff,cp}=2\pi m_p=$	22,7	cm		F _{T,1,Rd} =	230,7	kN						F _v =	461,4	ĸN
L _{eff,nc} =0.III _p =	23,5	cm		F .=	201.2	LN						Dvostrar	nski spoj	4N
m ₂ =	3,9	cm		" T,2,Rd	291,2	KIN						'v [_]	0	KIN
$\lambda_{i} =$	0.40	cin		Ero ov=	406 7	kN			Mc	omentra	kanad	riteta snoia		
$\lambda_1 = \lambda_2$	0.42			druga vi	rsta	KIY	ΣE	.=	461.4	kN	кари	F.=	461.4	kN
<i>α</i> =	6 50			M _{el 1 Pd} =	127.2	kNcm	E-1	n =	230.7	kN		h₁=	43.3	cm
L _{aff 1} =	22.7	cm		Mol 2 Rd=	161.9	kNcm	Fra	=	230.7	kN		h ₂ =	33.3	cm
L _{eff 2} =	23.5	cm		FT 1 Pd=	230.7	kN	M	.=	176.8	kNm		2	55,5	em
Odpornost nadomes	stnega T e	lementa		1,1,10	200)			•	1,0,0					
prva v	rsta			F _{T,2,Rd} =	291,2	kN				Vertikal	ni strig	g v spoju		
M _{pl,1,Rd} =	235,0	kNcm					Fv,R	ld=	135,6	kN		Obremen	itev spoja	a
M _{pl,2,Rd} =	235,0	kNcm		F _{T,3,Rd} =	406,7	kN			•			V=	220	kN
F _{T,1,Rd} =	293,0	kN					F _{Rd}	,=	271,2	kN		> 220	kN	ОК
												-		
F _{T,2,Rd} =	291,0	kN												
F _{T,3,Rd} =	406,7	KN												
M ₋₁₁₀₄ =	534.1	kNcm												
M _{pl 2 Rd} =	552.6	kNcm												
F _{T.1 Rd} =	590.6	kN												
· , 2,104														
F _{T,2,Rd} =	361,7	kN												
F _{T,3,Rd} =	406,7	kN												

Togost spoja konfiguracije 1, $t_p = 20$ mm:

Togost spojev konfiguracije 2 in 3, $t_p = 20$ mm:

		Ivate	zna	cona				
Prv	a vrsta vij	akov		Drug	ga vrsta v	ijakov		
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm		
k ₃ =	0,323	cm	1	k ₃ =	0,323	cm		
			1					
m _c =	2,21	cm		m _c =	2,21	cm		
I _{eff} =	13,85	cm		l _{eff} =	13,85	cm		
k ₄ =	2,272	cm		k ₄ =	2,272	cm		
m=m _x =	3,21	cm		m=m _p =	3,62	cm		
I _{eff} =	10,00	cm		I _{eff} =	22,73	cm		
k ₅ =	2,181	cm	1	k ₅ =	3,457	cm		
A _s =	3,53	cm ²		A _s =	3,53	cm ²		
m=	2,15	cm	l	m=	0,40	cm		
k=	1,50	cm		k=	2,15	cm		
s=	0,40	cm		s=	1,50	cm		
L _b =	5 <i>,</i> 88	cm		L _b =	5,88	cm		
k ₁₀ =	0,961	cm		k ₁₀ =	0,961	cm		
	r	r	l.					
k _{eff,1} =	0,199	cm		k _{eff,2} =	0,206	cm		
h ₁ =	43,33	cm		h ₂ =	33,33	cm		
			1					
k _{eq} =	0,398	cm/rad		z _{eq} =	38,89	cm		
		Ctui	žna					
En	ostranski	snoi		Dv	ostranski	snoi		
β=	1	5005		β=	0	5651		
Z=	38,89	cm						
A _{vc} =	28,74	cm	1					
k ₁ =	0,281	cm	1	k ₁ =	nesl	končno		
		Tlad	ína c	ona				
En	ostranski	spoj		Dvostranski spoj				
b _{eff,c,wc} =	25,58	cm		b _{eff,c,wc} =	25,58	cm		
k ₂ =	0,597	cm		k ₂ =	0,597	cm		
_			1	_				
En	ostranski	spoj		Dvo	ostranski	spoj		
S _{i.ini} =	41	MNm/rad		S _{i.ini} =	76	MNm/rad		

	Natezna cona										
Prv	a vrsta vij	akov		Drug	ga vrsta vi	jakov					
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm					
k ₃ =	0,323	cm		k ₃ =	0,323	cm					
m _c =	2,21	cm		m _c =	2,21	cm					
l _{eff} =	13,85	cm		l _{eff} =	13,85	cm					
k ₄ =	2,272	cm		k ₄ =	2,272	cm					
m=m _x =	3,21	cm		m=m _p =	3,62	cm					
l _{eff} =	10,00	cm		l _{eff} =	22,73	cm					
k ₅ =	2,181	cm		k ₅ =	3,457	cm					
A _s =	3,53	cm ²		A _s =	3,53	cm ²					
m=	2,15	cm		m=	0,40	cm					
k=	1,50	cm		k=	2,15	cm					
s=	0,40	cm		s=	1,50	cm					
L _b =	5,88	cm		L _b =	5,88	cm					
k ₁₀ =	0,961	cm		k ₁₀ =	0,961	cm					
k _{eff,1} =	0,199	cm		k _{eff,2} =	0,206	cm					
h ₁ =	43,33	cm		h ₂ =	33,33	cm					
k _{eq} =	0,398	cm		z _{eq} =	38,89	cm					
		Stri	žna c	ona							
End	ostranski	spoj		Dve	ostranski	spoj					
β=	1			β=	0						
k ₁ =	nesk	končno		k ₁ =	nes	končno					
		Tla	čna c	ona							
End	ostranski	spoj		Dvo	ostranski	spoj					
k ₂ =	nesk	cončno		k ₂ =	nesk	cončno					
Ene	ostranski	spoj		Dve	ostranski	spoj					
Si ini=	126	MNm/rad		Si ini=	126	MNm/rad					

		Natez	zna cona			р	rva+dru	uga vrsta				prva+dri	uga vrsta	
Upogib čelne	pločevine		Upogib pasni	ce stebra	3	F _{t,wc,R}	d=	390,3	kN		F _{t,wr}	:,Rd=	519,0	kN
n _x =	4,0	cm	m _c =	2,2	cm	b _{eff,t,w}	-c=	29,4	cm		b _{eff}	t,wc=	29,4	cm
m.,=	32	cm	e_=	85	cm	ß=1	->	ω=ω.=	0.752		β=0	->	ω=	1
·x	5,2	cm		2,5		-1 P-1	L		5,. JL		P=0	· ·	<u>س</u>	
e _x =	5,0	cm	n=	2,8	cm			Dala Yu	Law X					
n=	4,5	cm	Sodelujoče	dolžine				Dolocitev	KONCNIH	odporr	iosti vrst	vijakov		
m _p =	3,6	cm	prva vr	sta					Enostra	nsko vo	zlišče			
Sodelujoče	dolžine		L _{eff,cp}	b				Stran r	osilca			Stran	stebra	
prva vr	sta		$2\pi m_c =$	13,9	cm		upog	ib čelne	nateg s	tojine	upogib	pasnice	nateg	stojine
Loff or			$\pi m_{+} p =$	15.9	cm		ploče	vine [kN]	nosilca	a[kN]	stebra	a [kN]	stebr	a [kN]
2πm –	20.2	cm		,-	*	1 vreta		27.2	/		22	0.7	22	59
27.111 _x -	20,2	CIII	-ett,no	: 		1. VISLA	2	.57,5	/		25	0,7	22	5,0
$\pi m_x + 2e_x =$	20,1	cm	$4m_{c}+1,25e_{c}=$	19,4	cm	2. vrsta	3	35,9	/		23	0,7	22	.5,8
$\pi m_x + g =$	19,1	cm	2m _c +0,625e _c +0,5p=	14,2	cm	1+2 vrsta		/	/		49	0,3	39	0,3
L _{eff,no}	:		L _{eff,cp} =	13,9	cm	1+2-Pr1		/	/		26	4,6	16	4,6
b _p /2=	10,0	cm	L _{eff.nc} =	14,2	cm									
4m.+1 25e.=	19.1	cm	L	13.9	cm	E=		225.8	kN		En	=	164.6	kN
$2m \pm 0.6250 \pm 0 =$	15,1	eme	-en,1	14.2	em	• t1,Rd		223,0			• t2,	ка	104,0	KIN
2111 _x +0,025e _x +e _p =	15,0	cm	Leff,2	14,2	cm				Dvostra	nsko vo	zliśće			
2m _x +0,625e _x +g/2=	14,0	cm	druga vr	rsta	1			Stran r	osilca			Stran	stebra	
L _{eff,cp} =	19,1	cm	L _{eff,1} =	13,9	cm		upog	ib čelne	nateg s	tojine	upogib	pasnice	nateg	stojine
L _{eff,nc} =	10,0	cm	L _{eff,2} =	14,2	cm		ploče	vine [kN]	nosilca	a[kN]	stebra	a [kN]	stebr	a [kN]
L _{eff.1} =	10,0	cm	prva+druga	a vrsta		1. vrsta	2	37,3	/		23	0,7	24	4,2
L=	10.0	cm	$L_{off} = 2\pi m + 2n =$	22.0	cm	2 vreta	2	35.9	,		22	0.7	2/	4.2
-ert,2-	10,0	cm	-еп,ср 27011с.2.р-	- 20 -		2. VISLD		1	· /		2.3	0.2		.,_
druga vi	std		L _{eff,nc} -4/lmc+1,25ec+p=	29,4	cm	1+2 vrsta		/	/		49	0,3	51	9,U
$L_{eff,cp}=2\pi m_p=$	22,7	cm	L _{eff,1} =	29,4	cm	1+2-Pr1		/	/		25	9,6	28	8,3
$L_{eff,nc} = \alpha m_p =$	23,5	cm	L _{eff,2} =	29,4	cm									
m ₂ =	3,9	cm	Odpornost nadomest	tnega T e	elementa	F _{t1,Rd}	=	230,7	kN		F _{t2}	Rd ⁼	230,7	kN
m₁=	3.6	cm	prva vr	sta										
λ	0.40		M	127.2	kNcm				Tlai	na con	2			
2	0,40		N1pi,1,Rd	127,2	Lintered				Descion					
∧ ₂ =	0,42		IVI _{pl,2,Rd} =	130,6	KINCM				Pasnica	огеске	/ таки			_
α=	6,50		F _{T,1,Rd} =	230,7	kN	M _{c,Rc}	i=	30714,5	kNcm		F _{c,fb}	o,Rd ⁼	794,7	kN
L _{eff,1} =	22,7	cm							Stojina s	tebra v	tlaku			
L _{eff,2} =	23,5	cm	F _{T,2,Rd} =	278,6	kN	En	ostrans	ko vozliščo	e		D	vostrans	ko vozliši	če
Odpornost nadomest	nega T ele	ementa				β=1	->	$\omega = \omega_1 =$	0,800		β=0	->	ω=	1
prva vr	sta		FT 2 Pd=	406.7	kN	kwc	-	1			kw	/c=	1	
M -	100.4	kNom	drugo yr	reto		h	-	25.2	cm		h	_	25.2	cm
11 pl,1,Rd	190,4	KINCIII		310		ett,c,w	/C	23,2	CIII		ett,e	c,wc [—]	25,2	CIII
IVI _{pl,2,Rd} =	190,4	kNcm	IVI _{pl,1,Rd} =	127,2	KNCM	u _{wc}	-	1/,/	cm		u,	/c ⁼	1/,/	cm
F _{T,1,Rd} =	237,3	kN	M _{pl,2,Rd} =	130,6	kNcm	$\lambda_p =$		0,878			$\lambda_{\rm p}$		0,878	
			F _{T,1,Rd} =	230,7	kN	ρ=		0,880			ρ	=	0,880	
F _{T,2,Rd} =	278,7	kN				F _{c.wc.Rd} =	355,2	<	312,5		F _{c.wc.Rd} =	443,8	<	390,5
			FT 2 Pd=	278.6	kN	Former	d=	312.5	kN		Ferm	e Rd=	390.5	kN
F=	406.7	LN.	1,2,10			C,WC,N	0	/-			C,wi	c,nu		
* T,3,Rd -	-00,7	KIN .	E -	400 7	Las				c	501			_	
druga vi	std		F _{T,3,Rd} =	406,/	KIN	-			Stri	201 pan	21	0.		
M _{pl,1,Rd} =	432,6	kNcm	prva+druga	a vrsta		A _{vc} =	:	28,74	cm⁴			Obrem	enítev	
M _{pl,2,Rd} =	447,6	kNcm	M _{pl,1,Rd} =	270,3	kNcm	V _{wp,R}	1 ⁼	350,9	kN		Er	nostrans	ko vozliši	če
F _{T,1,Rd} =	478,4	kN	M _{pl,2,Rd} =	270,3	kNcm						F,	/=	312,5	kN
	-	-	F _{T.1.Rd} =	490.3	kN						ים	vostrans	ko vozliši	če
Frank=	335.9	kN	1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,.							F	.=	0	kN
ı,∠,K0	000,0		E -	E60.9	LN			N.4.	montro	kanacii	teta seci	, 	Ľ	
F -	400 -	1.00	• T,2,Rd	500,8	NIN				mentina	Rapaci	cta spoja		he we live	×.
► _{T,3,Rd} =	406,7	κN				En	ostrans	KÖ VÖZİISCI			Di	vostrans	KÖ VÖZIÍŠ	ce
			F _{T,3,Rd} =	813,3	kN	F _c =		312,5	kN		F	=	390,5	kN
						h ₁ =		43,3	cm		h,	1=	43,3	cm
	St	tojina pre	ečke v nategu			h ₂ =		33,3	cm		h	2=	33,3	cm
prva vr	sta		druga vr	rsta		ΣF.,-	-	312.5	kN		ΣF	ri=	390.5	kN
Vse prevzamo pa	snica pro?	ke	Vse prevzamo pa	isnica pre	ečke	n		225 0	kN			.=	230.7	kN
vse prevzame pa	sinca piet		v se prevzanie pa	isinca pro	CONC	'r1		223,0			'r -	-	230,7	NIN LAN
						F _{r2} =		86,7	kN		F _{r.}	2=	159,7	kN
	S	tojina ste	ebra v nategu			M _c =		126,7	kNm		М	c ⁼	153,2	kNm
Enostransko	vozlišče		Dvostransko	vozlišče										
prva vr	sta		prva vr	sta					Vertikalr	ii strig v	r spoju			
F _{t,wc,Rd} =	225,8	kN	F _{t,wc,Rd} =	244,2	kN	Fv,Ro	1=	135,6	kN			Obren	nenitev	
b _{eff,t,wc} =	13,9	cm	b _{eff,t,wc} =	13,9	cm						V	=	220	kN
β=1 ->	$\omega = \omega_1 =$	0,925	β=0 ->	ω=	1	F _{Pd} =		271.2	kN		>	220	kN	ОК
druga vi	at a		druga vr	rsta		- Nu		· · ·		t			·	
	Std		ulue.	the second se										
E+	225 R	kN	Et.ung But	244.2	kN									
F _{t,wc,Rd} =	225,8	kN	F _{t,wc,Rd} =	244,2	kN									

1

->

ω=

Nosilnost vozlišča konfiguracije 1, $t_p = 18$ mm:

ω=ω₁= 0,925 β=0

 $\beta = 1$

->

Nosilnost vozlišča konfiguracije 2 (dvostransko) in 3 (enostransko), $t_p = 18$ mm:

									F					
		Natez	na	cona			Stoj	ina pr	ečke v nate	egu		Stojina steb	ra v nate	gu
Upogib čelne	e pločevin	e		Upogib pasni	ce stebra	_		prv	a vrsta	¥.		prva	vrsta	
n _x =	4,0	cm		m _c =	2,2	cm	Vse pre	evzam	e pasnica p	orečke		Nateg ni n	nerodaje	n
m _x =	3,2	cm		e _c =	8,5	cm		dru	ga vrsta			druga	vrsta	
e _x =	5,0	cm		n=	2,8	cm	Vse pre	evzam	e pasnica p	orečke		Nateg ni n	nerodaje	n
n=	4,5	cm		Sodelujoče	dolžine									
m _p =	3,6	cm		prva vi	rsta	1		1	Določitev	končnih	i odpo	rnosti vrst vijako	V	
Sodelujoče	e dolžine			$L_{eff,cp}=2\pi m_p=$	13,9	cm			Stran n	osilca		Stran	stebra	
prva v	vrsta			L _{eff,nc} =αm _p =	17,6	cm		upo	gib čelne	nateg s	tojine	upogib pasnice	nateg s	tojine
L _{eff,}	ср			m ₂ =	3,9	cm		ploče	evine [kN]	nosilca	a[kN]	stebra [kN]	stebra	ı [kN]
2πm _x =	20,2	cm		m1=	2,2	cm	1. vrsta		237,3	/		230,7	/	
$\pi m_x + 2e_x =$	20,1	cm		$\lambda_1 =$	0,21		2. vrsta		335,9	/		230,7		
$\pi m_x + g =$	19,1	cm		$\lambda_2 =$	0,37									
L _{eff,}	nc			α=	8,00		F _{t1,I}	Rd=	230,7	kN		F _{t2,Rd} =	230,7	kN
b _p /2=	10,0	cm		L _{eff,1} =	13,9	cm								
4m _x +1,25e _x =	19,1	cm		L _{eff,2} =	17,6	cm				Tla	ična co	ona		
$2m_x+0,625e_x+e_p=$	15,0	cm		druga v	rsta		Pas	inica p	orečke v tla	ku		Stojina ste	bra v tlal	(u
2m _x +0,625e _x +g/2=	14,0	cm		L _{eff,1} =	13,9	cm	M _c ,	_{Rd} =	30715	kNcm		A _{s,eff} =	42,9	cm ²
L _{eff,cp} =	19,1	cm		L _{eff,2} =	17,6	cm	F _{c,fb,}	Rd ⁼	794,7	kN		N _{c,Rd} =	1007,8	kN
L _{eff,nc} =	10,0	cm		Odpornost nadomes	tnega T el	ementa								
L _{eff,1} =	10,0	cm		prva vi	rsta					Str	ižni pa	nel		
L _{eff,2} =	10,0	cm		M _{pl,1,Rd} =	127,2	kNcm	A _{vc,oj}	ačan=	40,5	cm ²		Obrem	enitev	
druga v	vrsta			M _{pl,2,Rd} =	161,9	kNcm	V _{wp} ,	Rd ⁼	494,9	kN		Enostra	nski spoj	
$L_{eff,cp}=2\pi m_p=$	22,7	cm		F _{T,1,Rd} =	230,7	kN						F _v =	461,4	kN
L _{eff,nc} =αm _p =	23,5	cm			•	•						Dvostra	nski spoj	
m2=	3,9	cm		F _{T,2,Rd} =	291,2	kN						F _v =	0	kN
m1=	3,6	cm			<u>.</u>							•		
$\lambda_1 =$	0,40			F _{T.3.Rd} =	406,7	kN			Mo	omentna	a kapad	citeta spoja		
$\lambda_{2} =$	0,42			druga v	rsta		ΣF	d ⁼	461,4	kN		F _c =	461,4	kN
α=	6,50			M _{pl.1.Rd} =	127,2	kNcm	Frd	=	230,7	kN		h ₁ =	43,3	cm
L _{eff.1} =	22.7	cm		M _{pl.2.Rd} =	161.9	kNcm	Fro	,=	230.7	kN		h ₂ =	33.3	cm
L _{eff 2} =	23.5	cm		F _{T 1 Bd} =	230.7	kN	M	.=	176.8	kNm		_	/-	
Odpornost nadomes	stnega T e	elementa		1,2,100				-	,-			l		
prva v	rsta			F _{T.2.Rd} =	291,2	kN				Vertikal	ni strig	g v spoju		
M _{pl.1.Rd} =	190,4	kNcm					Fv,F	≀d=	135,6	kN		Obremen	itev spoja	a
M _{pl.2.8d} =	190,4	kNcm		F _{T.3.Rd} =	406,7	kN						V=	220	kN
F _{T 1 Bd} =	237.3	kN		.,_,_			F _R ,		271.2	kN		> 220	kN	ОК
172,100								-	, , , , , , , , , , , , , , , , , , ,					-
F _{T,2,Rd} =	278,7	kN												
F _{T,3,Rd} =	406,7	kN												
druga v	vrsta													
M _{pl,1,Rd} =	432,6	kNcm												
M _{pl,2,Rd} =	447,6	kNcm												
F _{T,1,Rd} =	478,4	kN												
F _{T,2,Rd} =	335,9	kN												
	1													
F _{T.3.Rd} =	406,7	kN												

		Nate	ezna	cona		
Prv	a vrsta vij	akov		Drug	<mark>ga vrsta v</mark> i	ijakov
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm
k ₃ =	0,323	cm		k ₃ =	0,323	cm
		1				
m _c =	2,21	cm		m _c =	2,21	cm
I _{eff} =	13,85	cm		l _{eff} =	13,85	cm
k ₄ =	2,272	cm		k ₄ =	2,272	cm
m=m_=	3.21	cm		m=m_=	3.62	cm
off=	10.00	cm		p off=	22.73	cm
k ₅ =	1.590	cm		k ₅ =	2.520	cm
	,				,	-
A _s =	3,53	cm ²		A _s =	3,53	cm ²
m=	2,15	cm		m=	0,40	cm
k=	1,50	cm		k=	2,15	cm
s=	0,40	cm		s=	1,50	cm
L _b =	5,68	cm		L _b =	5,68	cm
k ₁₀ =	0,995	cm		k ₁₀ =	0,995	cm
		1				
K _{eff,1} =	0,194	cm		K _{eff,2} =	0,203	cm
h ₁ =	43,33	cm		h ₂ =	33,33	cm
k _{eq} =	0,389	cm/rad		z _{eq} =	38,86	ст
		Stri	žna o	cona		
En	ostranski	spoj		Dvo	ostranski	spoj
β=	1			β=	0	
Z=	38,86	cm				
A _{vc} -	28,74	cm		k –	ncel	(aněno
к ₁ -	0,281	cm		к ₁ -	nesi	CONCILO
		Tlad	ćna c	ona		
En	ostranski	spoj		Dvo	ostranski	spoj
b _{eff,c,wc} =	25,18	cm		b _{eff,c,wc} =	25,18	cm
k ₂ =	0,588	cm		k ₂ =	0,588	cm
En	ostranski	spoj		Dve	ostranski	spoj
S _{i,ini} =	41	MNm/rad		S _{i,ini} =	74	MNm/rad

Togost spoja konfiguracije 1, $t_p = 18$ mm: Tog

Togost spojev konfiguracije 2 in 3, $t_p = 18$ mm:

		Nate	ezna (cona		
Prva	a vrsta vij	akov		Drug	<mark>ga vrsta v</mark> i	jakov
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm
k ₃ =	0,323	cm		k ₃ =	0,323	cm
m _c =	2,21	cm		m _c =	2,21	cm
l _{eff} =	13,85	cm		l _{eff} =	13,85	cm
k ₄ =	2,272	cm		k ₄ =	2,272	cm
m=m _x =	3,21	cm		m=m _p =	3,62	cm
l _{eff} =	10,00	cm		l _{eff} =	22,73	cm
k ₅ =	1,590	cm		k ₅ =	2,520	cm
A _s =	3,53	cm ²		A _s =	3,53	cm ²
m=	2,15	cm		m=	0,40	cm
k=	1,50	cm		k=	2,15	cm
s=	0,40	cm		s=	1,50	cm
L _b =	5,68	cm		L _b =	5,68	cm
k ₁₀ =	0,995	cm		k ₁₀ =	0,995	cm
k _{eff,1} =	0,194	cm		k _{eff,2} =	0,203	cm
h ₁ =	43,33	cm		h ₂ =	33,33	cm
k _{eq} =	0,389	ст		Z _{eq} =	38,86	ст
			v			
		Stri	żna c	ona		
End	ostranski	spoj		Dvo	ostranski	spoj
β=	1			β=	0	
k ₁ =	nesl	končno		k ₁ =	nesl	cončno
			v			
Env	ostranski	ГІас	cha c	ona	octranski	spoi
ka=	necl	cončno		k_=	necl	cončno
<u>"2</u>	neor	Concilo		112	neor	
Fno	ostranski	spoi		Dv	ostranski	spoi
Si in:=	124	MNm/rad		S _{i ini} =	124	MNm/rad
- <u>j</u> ,ini		, ruu		- ,,,,,		, ruu

Nosilnost vozlišča konfiguracije 1, $t_p = 14$ mm:

			Nate	zna	i cona				0	irva+dru	iga vrsta			1	prva+dri	iga vrsta	
aU	ogib čelne i	oločevine			U	pogib pasn	ice stebra	а	Ft wc B	ed=	390.3	kN		F _{t w}	c Bd=	519.0	kN
n	=	4.0	cm	•	m	1 =	22	cm	b	=	20 /	cm		h "	. =	29.4	cm
,	×	4,0	citi			·c	2,2	cin	~err,t,w	vc	23,4	0.752		err,	t,wc	23,4	
111	x-	3,2	cm		e	c-	8,5	cm	p=1	->	$\omega = \omega_1 =$	0,752		р=0	->	ω=	1
e,	=	5,0	cm		r	1=	2,8	cm									
n	=	4,5	cm			Sodelujoče	e dolžine				Določitev	končnih	odpori	<mark>iosti vrst</mark>	vijakov		
m	р=	3,6	cm	ļ		prva v	rsta			-		Enostra	insko vo	ozlišče			
9	Sodelujoče	dolžine				L _{eff,c}	ср.				Stran r	nosilca			Stran	stebra	
	prva vr	sta			2π	m _c =	13,9	cm		upog	ib čelne	nateg	stojine	upogib	pasnice	nateg	stojine
	L _{eff,cp}				πm	c+p=	15,9	cm	1	pločev	/ine [kN]	nosilc	a[kN]	stebr	a [kN]	stebr	a [kN]
2πr	n _x =	20,2	cm			L _{eff.r}	nc		1. vrsta	1	43,6		/	23	0,7	22	5,8
πm,+	-2e.=	20.1	cm		4m,+1	L,25e,=	19.4	cm	2. vrsta	2	89.4		/	23	0.7	22	5.8
πm.	+g=	19.1	cm	ŀ	2m.+0.62	5e.+0.5p=	14.2	cm	1+2 vrsta		/	,	/	49	03	39	0.3
70.13		15,1	cm		2		12.0	cm	1.2 0150		/	,	1	24	6.9	24	6,5
b.(∽eff,nc	10.0			-ef	f,cp ⁻	15,9	CIII	1+2-P11		/	/		34	0,8	24	0,8
0 _p /	2-	10,0	cm		∟efi	f,nc	14,2	cm					1				
4m _x +1	,25e _x =	19,1	cm	ŀ	L _{ef}	ff,1 ⁼	13,9	cm	F _{t1,Rd} =		143,6	kN		F _{t2}	,Rd ⁼	225,8	kN
2m _x +0,62	25e _x +e _p =	15,0	cm		L _{ef}	ff,2 ⁼	14,2	cm				Dvostra	insko vo	ozlišče			
2m _x +0,62	:5e _x +g/2=	14,0	cm			druga v	rsta	-			Stran r	nosilca			Stran	stebra	
L _{eff}	,cp=	19,1	cm		L _{et}	ff,1 ⁼	13,9	cm		upog	ib čelne	nateg	stojine	upogib	pasnice	nateg	stojine
L _{eff}	,nc ⁼	10,0	cm		L _{et}	ff,2 ⁼	14,2	cm		pločev	/ine [kN]	nosilc	a[kN]	stebr	a [kN]	stebr	a [kN]
L _{eff}	ы=	10,0	cm			prva+drug	a vrsta		1. vrsta	1	43,6		/	23	0,7	24	4,2
La		10.0	cm		Loff on=21	πm.+2p=	33.9	cm	2 vrsta	2	89.4		/	23	0.7	24	4.2
en	druga yr	sta		ŀ	$L_{off nc} = 4\pi m$	+1.25e.+n	= 294	cm	1+2 vrs+2				/	49	0.3	51	9.0
	2770 -	22.7		ŀ	Lett,nc - + / this		20,4	cin	1.2 0.1		/		,		0,5 C 0	27	5,0
Leff,cp-	2 <i>1</i> .000p	22,7	cm		Lef	ff,1 [—]	29,4	cm	1+2-Pr1		/	/		34	0,8	37	5,4
L _{eff,nc} =	αm _p =	23,5	cm		Let	ff,2 ⁼	29,4	cm					-				
m	2=	3,9	cm		Odpornos	st nadomes	stnega T e	elementa	F _{t1,Rc}	j=	143,6	kN		F _{t2}	,Rd ⁼	230,7	kN
m	1=	3,6	cm	ļ		prva v	rsta	-									
λ	I=	0,40			M _{pl}	,1,Rd ⁼	127,2	kNcm				Tla	čna cor	ia			
λ	2=	0,42			M _{pl}	,2,Rd=	130,6	kNcm				Pasnica	prečke	v tlaku			
α	=	6,50			F _{T,1}	L,Rd ⁼	230,7	kN	M _{c,Rd}	j=	30714,5	kNcm		F _{c,ft}	a,Rd ⁼	794,7	kN
L _{eff}	.1 ⁼	22,7	cm									Stojina	stebra v	v tlaku			
Left	, , , =	23.5	cm		F _T :	Rd=	278.6	kN	En	ostrans	ko vozlišč	e		D	vostrans	ko vozliš [,]	če
Odpornos	t nadomest	nega T ele	ementa		.,.	-,			β=1	->	ω=ω.=	0.809		β=0	->		1
oupoinos	prva vr	sta	ennenneu	ŀ	E		406 7	kN	kwc	=	1	0,005	-	p=0 kv	vc=	1	-
M	-	115.2	L(N) and		- 1,:	drugo v	400,7	No.	h	-	24.4		-	b	_	24.4	
IVI _{pl,:}	1,Rd-	115,2	KINCITI			uluga v	1314		D _{eff,c,v}	vc	24,4	cm	-	D _{eff,i}	c,wc [—]	24,4	CIII
IVI _{pl,:}	2,Rd	115,2	KNCM		IVI _{pl}	,1,Rd=	127,2	KNCM	u _{wc} -	-	17,7	cm		u,	vc ⁼	17,7	cm
F _{T,1}	,Rd ⁼	143,6	kN	ļ	M _{pl}	,2,Rd ⁼	130,6	kNcm	$\lambda_p =$	-	0,864			λ,	р —	0,864	
				ļ	F _{T,1}	L,Rd ⁼	230,7	kN	ρ=		0,890			ρ)=	0,890	
F _{T,2}	,Rd ⁼	257,8	kN						F _{c,wc,Rd} =	347,8	<	309,5		F _{c,wc,Rd} =	429,7	<	382,
					F _{T,2}	2,Rd ⁼	278,6	kN	F _{c,wc,R}	rd=	309,5	kN		F _{c,w}	c,Rd ⁼	382,4	kN
F _{T,3}	,Rd ⁼	406,7	kN	ĺ] [
	druga vr	sta			F _{T,3}	3,Rd=	406,7	kN				Stri	ižni pan	el			
M _{pL}	1.Rd ⁼	261.7	kNcm			prva+drug	a vrsta		A _{vc} =	-	28.74	cm ²			Obrem	enitev	
Mal	2 Pd=	270.8	kNcm		Mal	1. P.d=	270 3	kNcm	Vun R	d=	350.9	kN		F	nostrans	ko vozliš	če
рі,. F	=	290 /	LN .	•	м.	=	270.2	kNcm	wp,re	u	000,0			F	=	200 5	
• 1,1	,Kd	203,4	KIN		рі, Е	,2,Rd —	400.3	LN	1 1						<u></u>	303,5	X-
-			1.01	ŀ	• T,1	L,Rd [—]	490,5	KIN	4						vostrans		ce
F _{T,2}	,Rd ⁼	292,5	KN				1		-				I	F,	v=	0	KN
		-			F _{T,2}	2,Rd ⁼	560,8	kN			IVIO	omentna	карасі	teta spoja	a		
F _{T,3}	,Rd ⁼	406,7	kN	l	L			,	En	ostransl	ko vozlišč	e		D	vostrans	ko vozliši	če
					F _{7,3}	3,Rd ⁼	813,3	kN	F _c =	:	309,5	kN		F,	c=	382,4	kN
									h ₁ =	:	43,3	cm		h	1=	43,3	cm
		S	tojina pr	ečk	e v nategu				h ₂ =	:	33,3	cm		h	2=	33,3	cm
	prva vr	sta				druga v	rsta		ΣF _{ri}	=	309,5	kN		ΣF	ri=	382,4	kN
Vse pi	revzame pa	snica preò	čke		Vse p	revzame p	asnica pre	ečke	F _{r1} =	:	143.6	kN		F,	-1 ⁼	143.6	kN
									E _{ra} =	-	165.9	kN		F.		230.7	kN
		c	tojina st	ehr	a v nategu				• r2	_	117 5	kNm	1	N	-	120 1	kNm
	nostranska	vozliščo	cojina sti			wostranch			IVIC-		11/,5	KINIII	I		C	139,1	KINIT
-	prva vr	sta		ł		prva v	rsta					Vertikal	ni strig	v spoiu			
F	Bd=	225.8	kN	ŀ	F	c Bd=	244.2	kN	Fv Rr	d=	135.6	kN			Ohren	ienitev	
۰.,wo	=	12.0	cm	ŀ	۰.,w	c,nu =	12.0			-	_00,0		1	· ·	/=	220	ĿN
R. 1	r,wc	13,5 W=00 -	0.025	ŀ	P O	,,,wc	13,3	1	с.		271.2	LN	<u> </u>	<u> </u>	220	220 LN	
р=1	druga ur	w-w _l -	0,925	ł	р=0	druge u	ω= (rsta	1 -	Ŕď		2/1,2	KIN	1	-	220	KIN	UK
F		225 0	μM	ŀ	F		244.2	٤N									
' t,wo	., KU	12.0	CITE CITE	ŀ	t,w	с,ка —	12.0	C C C C	1								
D _{eff,1}	t,wc	13,9		ŀ	D _{eff}	,t,wc	13,9	cm 4	ł								
p=1	->	$\omega = \omega_1 =$	0,925		p=0	->	ω=	1	l								

F_{T,3,Rd}=

406,7

kΝ

Nosilnost vozlišča konfiguracije 2 (dvostransko) in 3 (enostransko), $t_p = 14$ mm:

vosimost vozi	ISCu K	onngu	rueije 2 (u	ostransko) m 5	(enostrai	isko,	,, c _p –	- 1 1 1				
		Natezi	na cona			Stoj	ina pre	čke v nate	egu		Stojina steb	ra v nate	gu
Upogib čelne	pločevin	e 🦷	Upog	ib pasnice stebra	3		prva	vrsta			prva	vrsta	
n _x =	4,0	cm	m _c =	2,2	cm	Vse pre	evzame	pasnica p	orečke		Nateg ni n	ierodajei	n
m _x =	3,2	cm	e _c =	8,5	cm		druga	a vrsta			druga	vrsta	
e _x =	5,0	cm	n=	2,8	cm	Vse pre	evzame	pasnica p	orečke		Nateg ni n	nerodajer	n
n=	4,5	cm	Sod	elujoče dolžine									
m _p =	3,6	cm		prva vrsta	-		1	Določitev	končnih	odpo	rnosti vrst vijakov	/	
Sodelujoče	dolžine		$L_{eff,cp}=2\pi r$	n _p = 13,9	cm			Stran n	osilca		Stran s	stebra	
prva v	rsta		L _{eff,nc} =αn	n _p = 17,6	cm		upog	ib čelne	nateg si	tojine	upogib pasnice	nateg s	tojine
L _{eff,c}	р		m2=	3,9	cm		pločev	vine [kN]	nosilca	ı[kN]	stebra [kN]	stebra	[kN]
2πm _x =	20,2	cm	m ₁ =	2,2	cm	1. vrsta	1	43,6	/		230,7	/	
$\pi m_x + 2e_x =$	20,1	cm	$\lambda_1 =$	0,21		2. vrsta	2	89,4	/		230,7	/	
$\pi m_x + g =$	19,1	cm	$\lambda_2 =$	0,37									
L _{eff,r}	ic	-	α=	8,00		F _{t1,R}	d ⁼	143,6	kN		F _{t2,Rd} =	230,7	kN
b _p /2=	10,0	cm	L _{eff,1} =	13,9	cm								
4m _x +1,25e _x =	19,1	cm	L _{eff,2} =	17,6	cm				Tla	čna co	ona		
$2m_x+0,625e_x+e_p=$	15,0	cm		druga vrsta		Pas	nica pr	ečke v tla	ku		Stojina ste	bra v tlak	u
2m _x +0,625e _x +g/2=	14,0	cm	L _{eff,1} =	13,9	cm	M _{c,F}	Rd=	30715	kNcm		A _{s,eff} =	42,3	cm ²
L _{eff,cp} =	19,1	cm	L _{eff,2} =	17,6	cm	F _{c,fb,}	Rd ⁼	794,7	kN		N _{c,Rd} =	993,7	kN
L _{eff,nc} =	10,0	cm	Odpornost na	adomestnega T e	elementa								
L _{eff,1} =	10,0	cm		prva vrsta					Stri	ižni pa	nel		
L _{eff,2} =	10,0	cm	M _{pl,1,Rd}	= 127,2	kNcm	A _{vc,oja}	_{ičan} =	40,5	cm ²		Obrem	enitev	
druga v	rsta		M _{pl,2,Rd}	= 161,9	kNcm	V _{wp,}	Rd ⁼	494,9	kN		Enostrar	iski spoj	
$L_{eff,cp}=2\pi m_p=$	22,7	cm	F _{T,1,Rd} =	230,7	kN						F _v =	374,3	kN
$L_{eff,nc} = \alpha m_p =$	23,5	cm									Dvostrar	nski spoj	
m2=	3,9	cm	F _{T,2,Rd} =	291,2	kN						F _v =	0	kN
m1=	3,6	cm											
$\lambda_1 =$	0,40		F _{T,3,Rd} =	406,7	kN			M	omentna	kapad	citeta spoja		
$\lambda_2 =$	0,42			druga vrsta		ΣF	i=	374,3	kN		F _c =	374,3	kN
α=	6,50		M _{pl,1,Rd}	= 127,2	kNcm	F _{r1}	=	143,6	kN		h ₁ =	43,3	cm
L _{eff,1} =	22,7	cm	M _{pl,2,Rd}	- 161,9	kNcm	F _{r2}	=	230,7	kN		h ₂ =	33,3	cm
L _{eff,2} =	23,5	cm	F _{T,1,Rd} =	230,7	kN	Ma	=	139,1	kNm				
Odpornost nadomes	tnega T e	lementa											
prva v	rsta		F _{T,2,Rd} =	291,2	kN				Vertikalı	ni strig	g v spoju		
M _{pl,1,Rd} =	115,2	kNcm				Fv,R	d=	135,6	kN		Obremen	itev spoja	9
M _{pl,2,Rd} =	115,2	kNcm	F _{T,3,Rd} =	406,7	kN			-			V=	220	kN
F _{T,1,Rd} =	143,6	kN				F _{Rd}	=	271,2	kN		> 220	kN	ОК
F _{T,2,Rd} =	257,8	kN											
-													
F _{T,3,Rd} =	406,7	kN											
M. –	261 7	kNom											
M . –	201,7	kNom											
F	270,8												
' T,1,Rd	203,4	KIN											
F _{T,2,Rd} =	292,5	kN											

		Nate	zna	cona					Nate	ezna	cona		
Prv	<mark>a vrsta vi</mark> j	akov		Dru	g <mark>a vrsta v</mark>	ijakov	Prv	<mark>a vrsta vi</mark> j	akov		Dru	ga vrsta vi	ijakov
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm	b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm
k ₃ =	0,323	cm		k ₃ =	0,323	cm	k ₃ =	0,323	cm		k ₃ =	0,323	cm
m _c =	2,21	cm		m _c =	2,21	cm	m _c =	2,21	cm		m _c =	2,21	cm
I _{eff} =	13,85	cm		I _{eff} =	13,85	cm	l _{eff} =	13,85	cm		l _{eff} =	13,85	cm
k ₄ =	2,272	cm		k ₄ =	2,272	cm	k ₄ =	2,272	cm		k ₄ =	2,272	cm
												,	
m=m _x =	3,21	cm		m=m _p =	3,62	cm	m=m _x =	3,21	cm		m=m _p =	3,62	cm
I _{eff} =	10,00	cm		I _{eff} =	22,73	cm	l _{eff} =	10,00	cm		l _{eff} =	22,73	cm
к ₅ =	0,748	cm		κ ₅ =	1,186	cm	k ₅ =	0,748	cm		k ₅ =	1,186	cm
Δ =	2 5 2	cm ²		Δ =	2 5 2	cm ²							
m=	2 15	cm		m=	0.40	cm	A _s =	3,53	cm ²		A _s =	3,53	cm ²
k=	1,50	cm		k=	2,15	cm	m=	2,15	cm		m=	0,40	cm
s=	0,40	cm		s=	1,50	cm	k=	1,50	cm		k=	2,15	cm
L _b =	5,28	cm		L _b =	5,28	cm	s=	0,40	cm		s=	1,50	cm
k ₁₀ =	1,071	cm		k ₁₀ =	1,071	cm	L _b =	5,28	cm		L _b =	5,28	cm
				<u> </u>			k ₁₀ =	1,071	cm		k ₁₀ =	1,071	cm
K _{eff,1} =	0,172	cm		K _{eff,2} =	0,188	cm						,	
h ₁ =	43,33	cm		h ₂ =	33,33	cm	k _{eff,1} =	0,172	cm		k _{eff,2} =	0,188	cm
k _{ea} =	0 354	cm/rad		Z _{on} =	38 76	cm	h ₁ =	43,33	cm		h ₂ =	33,33	cm
- eq	0,004	enyruu		-eq	30,70	C	-						
		Striž	ina (cona			k _{eq} =	0,354	cm		Z _{eq} =	<mark>38,76</mark>	ст
En	ostranski	spoj		Dv	ostranski	spoj							
β=	1			β=	0				Stri	žna c	ona		
Z=	38,76	cm					En	ostranski	spoj		Dv	ostranski	spoj
A _{vc} =	28,74	cm				, v	β=	1			β=	0	
к ₁ =	0,282	cm		к ₁ =	nes	koncno	k ₁ =	nesl	končno		k ₁ =	nes	končno
		Tlač	na o	cona									
En	ostranski	spoj		Dv	ostranski	spoj			Tla	čna c	ona		
b _{eff,c,wc} =	24,38	cm		b _{eff,c,wc} =	24,38	cm	En	ostranski	spoj		Dv	ostranski	spoj
k ₂ =	0,569	cm		k ₂ =	0,569	cm	K ₂ =	nes	končno		K ₂ =	nesi	končno
	·									1			
En	ostranski	spoj		Dv	ostranski	spoj	En	ostranski	spoj		Dv	ostranski	spoj
S _{j,ini} =	39	MNm/rad		S _{j,ini} =	69	MNm/rad	S _{j,ini} =	112	MNm/rad		S _{j,ini} =	112	MNm/rad

Togost spoja konfiguracije 1, $t_p = 14$ mm:

Togost spojev konfiguracije 2 in 3, $t_p = 14$ mm:

		Nate	zna cona			p	rva+dru	ga vrsta			prva+dr	uga vrsta	
Upogib čelne j	pločevine		Upogib pasni	ice stebra	1	F _{t,wc,R}	-=	390,3	kN		F _{t,wc,Rd} =	519,0	kN
n.=	4.0	cm	m.=	2.2	cm	b.".	.=	29.4	cm		b=	29.4	cm
••*	4,0	citi		2,2	citi	-en,t,w	C .	23,4	0.750		-en,t,wc	23,4	cini
m _x =	3,2	cm	e _c =	8,5	cm	β=1	->	$\omega = \omega_1 =$	0,752		β=0 ->	ω=	1
e _x =	5,0	cm	n=	2,8	cm								
n=	4,5	cm	Sodelujoče	dolžine				Določitev	končnih	odpori	nosti vrst vijakov		
m _o =	3,6	cm	prva vi	rsta					Enostra	nsko vo	ozlišče		
Sodelujoče	dolžine	-						Stran n	osilca		Strar	stehra	
50001030000			-ett,c	p	-			Juann	USIICa		Juan	Т	
prva vrs	sta		$2\pi m_c =$	13,9	cm		upogi	b čelne	nateg s	tojine	upogib pasnice	nateg	stojine
L _{eff,cp}			$\pi m_c + p =$	15,9	cm		pločev	ine [kN]	nosilca	a[kN]	stebra [kN]	stebr	a [kN]
$2\pi m_{y} =$	20.2	cm	Leff.n			1. vrsta	10)5,5	/		230,7	22	25,8
πm +2e -	20.1	cm	4m +1 25e -	10.4	cm	2 yrsta	21	12.6	. /		230.7	22	5.8
htty:20x-	20,1	CIII	4m _c +1,25c _c =	19,4	CIII	2. VISLd	Ζ.	,	/		230,7	22	.3,8
$\pi m_x + g =$	19,1	cm	$2m_c+0,625e_c+0,5p=$	14,2	cm	1+2 vrsta		/	/		490,3	39	90,3
L _{eff,nc}			L _{eff,cp} =	13,9	cm	1+2-Pr1		/	/		384,8	28	34,8
b _p /2=	10,0	cm	L _{eff.nc} =	14,2	cm								
4m +1 25e =	10.1	cm	L	13.9	cm	F		105 5	k N		E.e.e.=	212.6	k N
2	15,1	CIII	-en,1-	13,5	citi	t1,Rd		105,5	KIN		t2,Rd	212,0	KIN
2m _x +0,625e _x +e _p =	15,0	cm	L _{eff,2} =	14,2	cm				Dvostra	nsko vo	ozlišče		
2m _x +0,625e _x +g/2=	14,0	cm	druga v	rsta				Stran n	osilca		Stran	stebra	
L _{eff,cp} =	19,1	cm	L _{eff,1} =	13,9	cm		upogi	ib čelne	nateg s	tojine	upogib pasnice	nateg	stojine
L =	10.0	cm		14.2	cm		pločev	ine [kN]	nosilca	a[kN]	stebra [kN]	stebr	a [kN]
-eπ,nc	10,0	cin	-en,2	14,2	citi		p			-[]	220.7	24	÷ []
L _{eff,1} =	10,0	cm	prva+drug	a vrsta		1. vrsta	- 10	15,5	/		230,7	24	14,2
L _{eff,2} =	10,0	cm	$L_{eff,cp}=2\pi m_c+2p=$	33,9	cm	2. vrsta	21	12,6	/		230,7	24	14,2
druga vr	sta		$L_{eff,nc}$ =4 π m _c +1,25e _c +p=	29,4	cm	1+2 vrsta		/	/		490,3	51	9,0
$I_{\pi} = 2\pi m =$	22.7	cm	-# 4=	29.4	cm	1+2-Pr1		/	/		384.8	41	35
-еп,ср -готор	22,7	cini	-en,1	20,4	em	1.2.111		/	/		504,0	41	.5,5
L _{eff,nc} = αm_p =	23,5	cm	L _{eff,2} =	29,4	cm								-
m ₂ =	3,9	cm	Odpornost nadomes	tnega T e	lementa	F _{t1,Rd}	=	105,5	kN		F _{t2,Rd} =	212,6	kN
m1=	3,6	cm	prva vi	rsta									
λ.=	0.40		Mel 1 Rd=	127.2	kNcm				Tlač	čna cor	a		
) _	0,10		M –	120.0	liblem				Docnico r	aročko	v tloku	_	
N2-	0,42		pl,2,Rd	150,0	KINCITI				r asilica j	JIECKE			
α=	6,50		F _{T,1,Rd} =	230,7	kN	M _{c,Rd}	-	30714,5	kNcm		F _{c,fb,Rd} =	794,7	kN
L _{eff,1} =	22,7	cm							Stojina s	stebra v	v tlaku		
L _{eff 2} =	23.5	cm	$F_{T,2,Bd} =$	278.6	kN	End	ostransk	ko vozlišče	5		Dvostran	ko vozliš	če
Odnornost nadomest	nega T ele	ementa	.,_,	· ·		B-1	->	ω=ω.=	0.814		β-0 ->	ω-	1
oupornost nudornese	negu i ek	menta	5	400 7	Las	p=1	-	w=w]=	0,014		p=0		-
prva vrs	sla		r,3,Rd	406,7	KIN	KWC	=	1			KWC=	1	
M _{pl,1,Rd} =	84,6	kNcm	druga v	rsta		b _{eff,c,w}	-c=	24,0	cm		b _{eff,c,wc} =	24,0	cm
M _{pl,2,Rd} =	84,6	kNcm	M _{pl,1,Rd} =	127,2	kNcm	d _{wc} =	:	17,7	cm		d _{wc} =	17,7	cm
E	105 5	μN	M	130.6	kNcm	λ =		0.856			λ =	0.856	
- 1,1,Kd	103,3	N.V.	стрі,2,ка	130,0	Lat	, op		0,000			хчр	0,005	
			FT,1,Rd	230,7	KN	ρ=		0,895				0,895	
F _{T,2,Rd} =	249,4	kN									ρ=		378,3
						F _{c,wc,Rd} =	344,0	<	307,9		ρ= F _{c,wc,Rd} = 422,6	<	
FT a Pd=			F _{T,2,Rd} =	278,6	kN	F _{c,wc,Rd} =	344,0 d ⁼	< 307,9	307,9 kN		ρ= F _{c,wc,Rd} = 422,6 F _{c,wc,Rd} =	< 378,3	kN
1,3,10	406.7	kN	F _{T,2,Rd} =	278,6	kN	F _{c,wc,Rd} = F _{c,wc,Rd}	344,0 _d =	< 307,9	307,9 kN		ρ= F _{c,wc,Rd} = 422,6 F _{c,wc,Rd} =	< 378,3	kN
drugo yr	406,7	kN	F _{T,2,Rd} =	278,6	kN	F _{c,wc,Rd} =	344,0 _d =	< 307,9	307,9 kN	žni pap	ρ= F _{c,wc,Rd} = 422,6 F _{c,wc,Rd} =	< 378,3	kN
druga vr	406,7 sta	kN	F _{T,2,Rd} = F _{T,3,Rd} =	278,6	kN kN	F _{c,wc,Rd} = F _{c,wc,Rd}	344,0 _d =	< 307,9	307,9 kN Strii	žni pan	ρ= F _{c,wc,Rd} = 422,6 F _{c,wc,Rd} = el	< 378,3	kN
druga vr M _{pl,1,Rd} =	406,7 sta 192,3	kN kNcm	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug	278,6 406,7 a vrsta	kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$	344,0 d ⁼	< 307,9 28,74	307,9 kN Strii cm ²	žni pan	$\rho = \\ F_{c,wc,Rd} = 422,6 \\ F_{c,wc,Rd} = \\ el \\ Obrem \\ Obr$	< 378,3 1enitev	kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} =	406,7 sta 192,3 198,9	kN kNcm kNcm	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} =	278,6 406,7 a vrsta 270,3	kN kN kNcm	F _{c,wc,Rd} = F _{c,wc,Rt} A _{vc} =	344,0 d ⁼	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN	žni pan	ρ= F _{c,wc,Rd} = 422,6 F _{c,wc,Rd} = el Obrer Enostran	< 378,3 nenitev ko vozliši	kN če
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T.1.Rd} =	406,7 sta 192,3 198,9 212,6	kN kNcm kNcm kN	$F_{T,2,Rd}$ = $F_{T,3,Rd}$ = prva+drug $M_{pl,1,Rd}$ = $M_{ol,2,Rd}$ =	278,6 406,7 a vrsta 270,3 270,3	kN kN kNcm	$F_{c,wc,Rd} = F_{c,wc,Rt}$	344,0 d= 	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN	žni pan	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$	378,3 array nenitev ko vozliš 307,9	kN če kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} =	406,7 sta 192,3 198,9 212,6	kN kNcm kNcm kN	F _{7,2,Rd} = F _{7,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{7,2,0,d} =	278,6 406,7 a vrsta 270,3 270,3 490 3	kN kN kNcm kNcm	$F_{c,wc,Rd} = F_{c,wc,Rt}$	344,0 d=	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN	žni pan	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$	<pre>< 378,3 nenitev ko vozliš 307,9 ko vozliš </pre>	kN če kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} =	406,7 sta 192,3 198,9 212,6	kN kNcm kN kN	$F_{T,2,Rd}= \\ F_{T,3,Rd}= \\ prva+drug \\ M_{pl,1,Rd}= \\ M_{pl,2,Rd}= \\ F_{T,1,Rd}= \\ $	278,6 406,7 270,3 270,3 270,3 490,3	kN kNcm kNcm kN	F _{c,wc,Rd} = F _{c,wc,Rt} A _{vc} = V _{wp,Rc}	344,0 d=	< 307,9 28,74 350,9	307,9 kN Stri cm ² kN	žni pan	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran	 378,3 nenitev ko vozliš 307,9 ko vozliš 	če kN če
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} =	406,7 sta 192,3 198,9 212,6 274,8	kN kNcm kNcm kN kN	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ prva+drug \\ M_{pl,1,Rd} = \\ M_{pl,2,Rd} = \\ F_{T,1,Rd} = \\ \\ F_{T,1,Rd} = \\ \\ \\ \end{array}$	278,6 406,7 270,3 270,3 490,3	kN kNcm kNcm kN	F _{c,wc,Rd} = F _{c,wc,Rd} A _{wc} = Vwp,Rc	344,0 d=	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN	žni pan	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$	 378,3 nenitev ko vozliš 307,9 ko vozliš 0	če kN če kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} =	406,7 sta 192,3 198,9 212,6 274,8	kN kNcm kN kN	$F_{T,2,Rd} = \\F_{T,3,Rd} = \\Prva+drug \\M_{pl,1,Rd} = \\M_{pl,2,Rd} = \\F_{T,1,Rd} = \\F_{T,2,Rd} = \\F$	278,6 406,7 270,3 270,3 490,3 560,8	kN kNcm kNcm kN	F _{c,wc,Rd} = F _{c,wc,R} d A _{vc} = V _{wp,Rc}	344,0 d=	< 307,9 28,74 350,9 Mc	307,9 kN Strii cm ² kN	žni pan kapaci [,]	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja	 378,3 378,3 anenitev ko vozliš 307,9 ko vozliš 0 	če kN če kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} =	406,7 sta 192,3 198,9 212,6 274,8 406,7	kN kNcm kNcm kN kN kN	$F_{T,2,Rd} = \\F_{T,3,Rd} = \\Prva+drug \\M_{pl,1,Rd} = \\M_{pl,2,Rd} = \\F_{T,1,Rd} = \\F_{T,2,Rd} = \\F$	278,6 406,7 270,3 270,3 270,3 490,3 560,8	kN kNcm kNcm kN kN	F _{c,wc,R} a ⁼ F _{c,wc,R} a A _{vc} = V _{wp,Rc}	344,0 d ⁼	< 307,9 28,74 350,9 Mc wo vozlišča	307,9 kN Strii cm ² kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran	<pre>< 378,3 nenitev ko vozliš 307,9 ko vozliš 0 ko vozliš</pre>	če kN če kN če
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} =	406,7 sta 192,3 198,9 212,6 274,8 406,7	kN kNcm kN kN kN kN kN	F _{7,2,Rd} = F _{7,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{7,1,Rd} = F _{7,2,Rd} = F _{7,2,Rd} =	278,6 406,7 270,3 270,3 270,3 490,3 560,8	kN kNcm kNcm kN kN kN		344,0 d ^d	< 307,9 28,74 350,9 Mc co vozlišče 307,9	307,9 kN Striz cm ² kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$ teta spoja Dvostran $F_c=$	<pre>< 378,3 nenitev ko vozliš 307,9 ko vozliš 0 ko vozliš 378,3</pre>	kN če kN če če če
$\frac{druga vr}{M_{pl,1,Rd}=}$ $M_{pl,2,Rd}=$ $F_{T,1,Rd}=$ $F_{T,2,Rd}=$ $F_{T,3,Rd}=$	406,7 sta 192,3 198,9 212,6 274,8 406,7	kN kNcm kN kN kN kN	$F_{T,2,Rd} = \\F_{T,3,Rd} = \\Prva+drug \\M_{pl,1,Rd} = \\M_{pl,2,Rd} = \\F_{T,1,Rd} = \\F_{T,2,Rd} = \\F_{T,2,Rd} = \\F_{T,3,Rd} = \\F$	278,6 406,7 270,3 270,3 490,3 560,8 813,3	kN kNcm kNcm kN kN kN	F _{c,wc,Rd} = F _{c,wc,Rd} = A _{vc} = V _{wp,Rc} Enc	344,0 d ⁼	< 307,9 28,74 350,9 Mc so vozlišča 307,9	307,9 kN Striz cm ² kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ b =	 378,3 a78,3 anenitev iko vozliš 307,9 iko vozliš 0 ko vozliš 378,3 43,2 	kN če kN če kN če
$\frac{druga vr}{M_{pl,1,Rd}=}$ $M_{pl,2,Rd}=$ $F_{T,1,Rd}=$ $F_{T,2,Rd}=$ $F_{T,3,Rd}=$	406,7 sta 192,3 198,9 212,6 274,8 406,7	kN kNcm kN kN kN kN	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ Prva+drug \\ M_{p ,1,Rd} = \\ M_{p ,2,Rd} = \\ F_{T,1,Rd} = \\ F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ F_{T,$	278,6 406,7 270,3 270,3 490,3 560,8 813,3	kN kNcm kNcm kN kN kN	F _{C,WC,R} a ⁼ F _{C,WC,R} a ⁼ A _V c ⁼ V _{WP,R} c	344,0 d=	< 307,9 28,74 350,9 Mc co vozlišče 307,9 43,3	307,9 kN Strii cm ² kN mentna kN cm	žni pan kapaci [,]	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$ teta spoja Dvostran $F_c=$ $h_1=$	 378,3 378,3 aoenitev iko vozliš 307,9 iko vozliš 0 0 ko vozliš 378,3 43,3 	če kN če kN če kN če kN če kN če kN
$\frac{druga vr}{M_{pl,1,Rd}=}$ $M_{pl,2,Rd}=$ $F_{T,1,Rd}=$ $F_{T,2,Rd}=$ $F_{T,3,Rd}=$	406,7 sta 192,3 198,9 212,6 274,8 406,7	kN kNcm kNcm kN kN kN	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ Prva+drug \\ M_{pl,1,Rd} = \\ M_{pl,2,Rd} = \\ F_{T,1,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ F_{T,$	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3	kN kNcm kNcm kN kN kN	F _{c,wc,Rd} = F _{c,wc,Rd} = A _{vc} = V _{wp,Rd} Enc F _c = h ₁ = h ₂ =	344,0 d=	< 307,9 28,74 350,9 Mc co vozlišć 307,9 43,3 33,3	307,9 kN Striž cm ² kN omentna e kN cm cm	žni pan kapaci [,]	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja $Dvostran$ $F_{c}=$ $h_{1}=$ $h_{2}=$	 < 378,3 arenitev ko vozliš 307,9 ko vozliš 0 378,3 43,3 33,3 	če kN če kN če kN če kN če cm cm cm
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = P _{T,3,Rd} =	406,7 sta 192,3 198,9 212,6 274,8 406,7 \$ \$	kN kNcm kNcm kN kN kN	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = F _{T,3,Rd} =	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3	kN kNcm kNcm kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rc}$ $V_{wp,Rc}$ $F_{c} = h_{1} = h_{2} = \Sigma F_{r} = \Sigma F_{r}$	344,0 d= i= ostransk	< 307,9 28,74 350,9 Mc co vozlišče 307,9 43,3 33,3 307,9	307,9 kN Strii cm ² kN e kN cm kN cm kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$ teta spoja $Dvostran F_c=$ $h_1=$ $h_2=$ $\Sigma F_n=$	 378,3 arenitev ko vozliš 307,9 ko vozliš 307,9 ko vozliš 378,3 43,3 33,3 378,3 	če kN če kN če kN če kN če kN če kN
druga vr Mpi,1,Rd= Mpi,2,Rd= F_7,1,Rd= F F Pr,2,Rd= P	406,7 sta 192,3 198,9 212,6 274,8 406,7 Sta snica pred	kN kNcm kNcm kN kN kN cojina pro	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,3,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Vse prevzame po	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,R}$ $A_{vc} = V_{wp,Rc}$ $F_{c} = h_{1} = h_{2} = \Sigma F_{r}^{-1}$	344,0 d= i= i=	< 307,9 28,74 350,9 Mc co vozliščí 307,9 43,3 33,3 307,9 105 5	307,9 kN Strii cm ² kN omentna e kN cm cm kN kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ $h_{1}=$ $h_{2}=$ $\Sigma F_{ri}=$ $F_{r}=$	 378,3 arenitev iko vozliš 307,9 iko vozliš 307,9 iko vozliš 378,3 378,3 33,3 378,3 105 5 	če kN če kN če kN če kN če kN če kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F Vse prevzame pa	406,7 sta 192,3 198,9 212,6 274,8 406,7 Sista Sista	kN kNcm kN kN kN kN kN	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Veckev nategu Vse prevzame part	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rd}$ $F_{c} = h_1 = h_2 = h_2 = \sum F_{rd} = h_2 = f_{rd}$	344,0 d=	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN kN cm cm kN cm kN kN kN kN	žni pan	$\rho =$ $F_{c,wc,Rd} = 422,6$ $F_{c,wc,Rd} =$ el Obrer Enostran: $F_v =$ Dvostran $F_v =$ teta spoja Dvostran $F_c =$ $h_1 =$ $h_2 =$ $\Sigma F_r =$ $F_{r1} =$ $E = -$	 378,3 378,3 307,9 iko vozliš iko vozliko vozliš iko voz	če kN če kN če kN če kN cm cm kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F F F Variation F Variation F Variation F	406,7 sta 192,3 198,9 212,6 274,8 406,7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	kN kNcm kN kN kN kN	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = V vse prevzame providence	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rc}$ $Enco$ $F_{c} = h_1 = h_2 = \Sigma F_{r1} = F_{r2} = F_{r$	344,0 d= i= ostransk	< 307,9 28,74 350,9	307,9 kN Striž cm ² kN kN cm cm kN kN kN kN kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ $h_{1}=$ $h_{2}=$ $\Sigma F_{ri}=$ $F_{r1}=$ $F_{r2}=$	 378,3 378,3 307,9 ko vozliš 307,9 ko vozliš 307,9 ko vozliš 378,3 33,3 378,3 105,5 212,6 	če kN če kN če kN če kN če kN če kN čm kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F F P P Vse prevzame pa	406,7 sta 192,3 198,9 212,6 274,8 406,7 \$ \$ sta snica pred	kN kNcm kN kN kN kN kN cojina pre	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = State Vse prevzame pa bbra v nategu	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3 813,3	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{v,c} = V_{wp,Rc}$ $Enco$ $F_{c} = h_1 = h_2 = \Sigma F_{r1} = F_{r2} = F_{r2} = M_{c} = M_{c} = 0$	344,0 a ⁼ ; ; ; ; ; ; ; ; ; ; ; ; ;	< 307,9 28,74 350,9	307,9 kN Striž cm ² kN kN kN kN kN kNm	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$ teta spoja Dvostran $F_c=$ $h_1=$ $h_2=$ $\Sigma F_{rl}=$ $F_$	 < 378,3 378,3 307,9 iko vozliš 307,9 iko vozliš 0 378,3 378,3 378,3 378,3 378,3 378,3 378,3 378,3 378,3 105,5 212,6 116,6 	če kN če kN če kN če kN če kN kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F Vse prevzame pa Enostransko	406,7 sta 192,3 198,9 212,6 274,8 406,7 Sta snica pred Svozlišče	kN kNcm kN kN kN kN cojina pre	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Sčke v nategu druga v Vse prevzame pa Sbra v nategu Dvostransko	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3 813,3 srsta asnica pre	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Ra} = F_{c,wc,Ra}$ $A_{vc} = V_{wp,Rc}$ $V_{wp,Rc}$ $F_{c} = h_{1} = h_{2} = \Sigma F_{r1} = F_{r2} = M_{c} = M_{c} = 0$	344,0 a ⁼ ; ; ; = ; ;	< 307,9 28,74 350,9 Mo Co Vo 2liščí 307,9 43,3 307,9 105,5 202,4 113,2	307,9 kN Strii cm ² kN kN kN kN kN kN kN kN	žni pan	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_v=$ Dvostran $F_v=$ teta spoja $Dvostran F_c=$ $h_1=$ $h_2=$ $\Sigma F_{ri}=$ $F_{ri}=$ $F_{ri}=$ $F_{ri}=$ $M_c=$	 378,3 378,3 307,9 iko vozliš 307,9 iko vozliš 307,9 iko vozliš 307,9 3378,3 33,3 378,3 378,3 105,5 212,6 116,6 	če kN če kN če kN če kN cm cm kN kN kN kN
druga vr MpI,1,Rd= MpI,2,Rd= F_T,1,Rd= F_T,2,Rd= F Prote vrs Vse prevzame pa Enostransko prva vrs	406,7 sta 192,3 198,9 212,6 274,8 406,7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	kN kNcm kN kN kN kN tojina pro	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Version F _{T,3,Rd} = Version	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3 ssnica pre	kN kNcm kNcm kN kN kN kN	$F_{c,wc,Ra} = F_{c,wc,R}$	344,0 = = = = = :	< 307,9 28,74 350,9 Mc co vozliščí 307,9 43,3 307,9 105,5 202,4 113,2	307,9 kN Strii cm ² kN kN cm kN cm kN kN kN kN kN kN Vertikal	kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja $Dvostran F_{c}= h_{1}= h_{2}= \Sigma F_{ri}= F_{r2}= M_{c}= v spoju$	 < 378,3 378,3 307,9 ko vozliš 307,9 ko vozliš 307,9 ko vozliš 307,9 105,5 212,6 116,6 	če kN če kN če kN čc kN kN kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F Provide	406,7 sta 192,3 198,9 212,6 274,8 406,7 S sta S sta S vozlišče sta 225,8	kN kNcm kN kN kN kN kN	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = V F _{T,3,Rd} = V Vse prevzame pa Ebra v nategu Dvostransko prva vi F _{t,wc,Rd} =	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3 ssnica pre vozlišče sta 244,2	kN kNcm kNcm kN kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rc}$ $F_{c} = h_1 = h_2 = \Sigma F_{r_1} = F_{r_2} = M_c = M_c = F_{v,Rd}$	344,0 = = = = = = = = =	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN omentna kN cm cm kN kN kN kN kN kN kN kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ $422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ $h_{1}=$ $h_{2}=$ $\Sigma F_{r1}=$ $F_{r2}=$ $M_{c}=$ v spoju Obrer	 378,3 378,3 307,9 iko vozliš 307,9 iko vozliš 378,3 105,5 212,6 116,6 nenitev 	če kN če kN če kN cm cm kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Vse prevzame pa Enostransko prva vrs F _{t,wc,Rd} = D _{frr} =	406,7 sta 192,3 198,9 212,6 274,8 406,7 406,7 Sista Sista Sista Sista Sista 225,8 13,9	kN kNcm kNcm kN kN kN tojina pre	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ Prva+drug \\ M_{pl,1,Rd} = \\ M_{pl,2,Rd} = \\ F_{T,1,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ F_{T,$	278,6 406,7 a vrsta 270,3 270,3 490,3 560,8 813,3 813,3 813,3 sta sasnica pres	kN kNcm kNcm kN kN kN kN kN kN	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rd}$ $F_{c} = 0$ $F_{c} = 0$ $F_{c} = 0$ $F_{c} = 0$ $F_{r} = 0$	344,0 = = = = = = =	< 307,9 28,74 350,9	307,9 kN Striž cm ² kN kN cm cm kN kN kN kN vertikaln kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}=$ 422,6 $F_{c,wc,Rd}=$ el Obrer Enostran: $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ $h_{1}=$ $h_{2}=$ $\Sigma F_{r1}=$ $F_{r2}=$ $M_{c}=$ v spoju Obrer V=	 378,3 378,3 307,9 iko vozliš 307,9 iko vozliš 307,9 iko vozliš 378,3 378,3<td>če kN če kN če kN če kN če kN kN kN kN kN kN</td>	če kN če kN če kN če kN če kN kN kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Prva vrs Vse prevzame pa Enostransko Prva vrs F _{L,wc,Rd} = B _{eff,L,wc} =	406,7 sta 192,3 198,9 212,6 274,8 406,7 406,7 Sista snica pred sta 225,8 13,9 ()-10 - 10	kN kNcm kNcm kN kN kN kN kN cojina pre	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ Prva+drug \\ M_{pl,1,Rd} = \\ M_{pl,2,Rd} = \\ F_{T,1,Rd} = \\ F_{T,2,Rd} = \\ F_{T,$	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3 813,4 81	kN kNcm kNcm kN kN kN cčke	$F_{c,wc,Rd} = F_{c,wc,Rd}$ $A_{vc} = V_{wp,Rc}$ $F_{c} = 0$ $F_{c} = 0$ $F_{c} = 0$ $F_{c} = 0$ $F_{r} = 0$ $F_{r} = 0$ $F_{r} = 0$ $F_{r} = 0$	344,0 = 	< 307,9 28,74 350,9 28,74 350,9 43,3 307,9 105,5 202,4 113,2 135,6 271,2 271,2 271,2	307,9 kN Striž cm ² kN kN cm cm kN kN kN kN kNm Vertikalr kN	žni pan kapaci	$\rho=$ $F_{c,wc,Rd}= 422,6$ $F_{c,wc,Rd}=$ el Obrer Enostran $F_{v}=$ Dvostran $F_{v}=$ teta spoja Dvostran $F_{c}=$ $h_{1}=$ $h_{2}=$ $\Sigma F_{r1}=$ $F_{r2}=$ $M_{c}=$ v spoju Obrer V=	 378,3 378,3 307,9 ko vozliš 30,9 43,3 378,3 43,3 378,3 /ul>	če kN če kN če kN čc kN cm cm kN kN kN kN kN kN
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Vse prevzame pa Enostransko prva vrs F _{t,wc,Rd} = B=1	406,7 sta 192,3 198,9 212,6 274,8 406,7 406,7 Sta snica pred sta 225,8 13,9 ∞=∞₁=	kN kNcm kNcm kN kN kN kN cojina pre	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = C Vse prevzame provector vse prevzame provector C Dvostranske prva vu F _{t,wc,Rd} = b _{eff,t,wc} = β=0	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3 813,3 rsta assnica prec sta 244,2 13,9 0	kN kNcm kNcm kN kN kN kN kN cm 1	$F_{c,wc,Rd} = F_{c,wc,R}$ $A_{vc} = V_{wp,Rc}$ $V_{wp,Rc}$ $F_{c} = h_1 = h_2 = \sum F_{rc} = h_1 = h_2 = \sum F_{rc} = M_c = M_c = F_{rc} = M_c $	344,0 a ⁼ = = = = = = = = =	< 307,9 28,74 350,9	307,9 kN Striž cm ² kN kN cm cm kN kN kN kN kN kN kN kN kN kN	žni pan kapaci	$\rho = \\ F_{c,wc,Rd} = 422,6$ $F_{c,wc,Rd} = 0$ el Obrer Enostran $F_v = $ Dvostran $F_v = $ teta spoja $Dvostran$ $F_c = $ $h_1 = $ $h_2 = $ $\Sigma F_{r1} = $ $F_{r2} = $ $M_c = $ v spoju $Obrer$ $v = $ 220	 < 378,3 378,3 307,9 iko vozliš /ul>	kN če kN če kN če kN oK
druga vr M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,1,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = Prva vrs Vse prevzame pa Enostransko prva vrs F _{L,wc,Rd} = Deff,t,wc= β=1 -> C	406,7 sta 192,3 198,9 212,6 274,8 406,7 5 sta snica pred snica pred sta 225,8 13,9 ω=ω ₁ = sta	kN kNcm kNcm kN kN kN cojina pre kk kN com 0,925	F _{T,2,Rd} = F _{T,3,Rd} = prva+drug M _{pl,1,Rd} = M _{pl,2,Rd} = F _{T,2,Rd} = F _{T,2,Rd} = F _{T,3,Rd} = State Vse prevzame pa brostranska prva vu F _{t,wc,Rd} = b _{eff,t,wc} = β=0 -> c	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3 813,4 814,2 813,9 814,2 815,2 81	kN kNcm kNcm kN kN kN kN ečke kN cm 1	$F_{c,wc,Rd} = F_{c,wc,R}$ $A_{vc} = V_{wp,Rc}$ $V_{wp,Rc}$ $F_{c} = h_1 = h_2 = \Sigma F_{r1} = F_{r2} = F_{r2} = M_c = F_{r2} = F_{$	344,0 a ⁼ ; ; ; ; ; ; ; ; ; ; ; ; ;	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN kN kN kN kN kN kN kN kN kN	kapaci	$\rho = \\ \hline \rho = \\ \hline F_{c,wc,Rd} = 422,6 \\ \hline F_{c,wc,Rd} = \\ \hline 0 \\ \hline F_{c,wc,Rd} = \\ \hline 0 \\ \hline $	 < 378,3 378,3 307,9 iko vozliš iko vozliš 307,9 iko vozliš /ul>	kN če kN če kN če kN oK
$\begin{array}{c c} druga vr\\ M_{pl,1,Rd}= \\ M_{pl,2,Rd}= \\ \hline\\ F_{T,2,Rd}= \\ \hline\\ F_{T,2,Rd}= \\ \hline\\ F_{T,3,Rd}= \\ \hline\\ \\ \hline\\ \\ \hline\\ \\ \\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ $	406,7 sta 192,3 198,9 212,6 274,8 406,7 406,7 S sta snica pred sta 225,8 13,9 ω=ω ₁ = sta 225,8	kN kNcm kNcm kN kN kN tojina pro	$F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ Prva+drug \\ M_{pl,1,Rd} = \\ M_{pl,2,Rd} = \\ F_{T,1,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,2,Rd} = \\ F_{T,3,Rd} = \\ F_{T,4,Rd} = \\ F_{T,$	278,6 406,7 270,3 270,3 270,3 490,3 560,8 813,3 813,4 813,5 81	kN kNcm kNcm kN kN kN kN ečke	$F_{c,wc,Rd} = F_{c,wc,R}$	344,0 = = = = = = = = =	< 307,9 28,74 350,9	307,9 kN Strii cm ² kN kN kN kN kN kN kN kN kN kN	kapaci	$\rho =$ $F_{c,wc,Rd} = 422,6$ $F_{c,wc,Rd} =$ el Obrer Enostran $F_v =$ Dvostran $F_v =$ teta spoja Dvostran $F_c =$ $h_1 =$ $h_2 =$ $\Sigma F_r =$ $F_{r_1} =$ $F_{r_2} =$ $M_c =$ v spoju Obrer V = 220	 378,3 378,3 307,9 iko vozliš 307,9 iko vozliš 307,9 iko vozliš 307,9 iko vozliš 105,5 212,6 116,6 	kN če kN če kN čc kN oK

Nosilnost vozlišča konfiguracije 1, $t_p = 12$ mm:

ω=ω₁= 0,925

β=1

->

β=0

ω=

->

1

Nosilnost vozlišča	konfiguracije 2	(dvostransko) in 3	(enostransko), $t_p = 12$ mm:
--------------------	-----------------	--------------------	-------------------------------

		0		J (a l a l a l					U				
		Natez	zna	cona			Stoj	ina prečke v	nategu		Stojina stek	ora v nate	gu
Upogib čelne	<mark>e pločevin</mark>	e		Upogib pasni	ce stebra			prva vrst	a		prva	vrsta	
n _x =	4,0	cm		m _c =	2,2	cm	Vse pre	evzame pasi	nica prečl	ke	Nateg ni r	nerodaje	n
m _x =	3,2	cm		e _c =	8,5	cm		druga vrst	a		druga	vrsta	
e _x =	5,0	cm		n=	2,8	cm	Vse pre	evzame pasi	nica prečl	ke	Nateg ni r	nerodajer	n
n=	4,5	cm		Sodelujoče	dolžine								
m _p =	3,6	cm		prva vr	sta	1		Dolo	čitev kon	nčnih odpo	rnosti vrst vijako	v	
Sodelujoče	e dolžine			$L_{eff,cp}=2\pi m_p=$	13,9	cm		St	ran nosilo	ca	Stran	stebra	
prva v	rsta			L _{eff,nc} =αm _p =	17,6	cm		upogib če	lne nat	eg stojine	upogib pasnice	nateg s	stojine
L _{eff,}	cp			m2=	3,9	cm		pločevine	[kN] no	osilca[kN]	stebra [kN]	stebra	a [kN]
2πm _x =	20,2	cm		m ₁ =	2,2	cm	1. vrsta	105,5		/	230,7	/	,
$\pi m_x + 2e_x =$	20,1	cm		$\lambda_1 =$	0,21		2. vrsta	212,6		/	230,7	/	,
$\pi m_x + g =$	19,1	cm		$\lambda_2 =$	0,37								
L _{eff,}	nc			α=	8,00		F _{t1,R}	d ⁼ 10	<mark>5,5 kl</mark>	N	F _{t2,Rd} =	212,6	kN
b _p /2=	10,0	cm		L _{eff,1} =	13,9	cm							
4m _x +1,25e _x =	19,1	cm		L _{eff,2} =	17,6	cm				Tlačna co	ona		
$2m_x+0,625e_x+e_p=$	15,0	cm		druga vi	rsta		Pas	nica prečke	v tlaku		Stojina ste	bra v tlak	ku
2m _x +0,625e _x +g/2=	14,0	cm		L _{eff,1} =	13,9	cm	M _{c,F}	ad= 30	715 kN	cm	A _{s,eff} =	42,0	cm ²
L _{eff,cp} =	19,1	cm		L _{eff,2} =	17,6	cm	F _{c,fb,}	_{Rd} = 79	4,7 kl	N	N _{c,Rd} =	986,6	kN
L _{eff,nc} =	10,0	cm		Odpornost nadomest	tnega T el	ementa							
L _{eff,1} =	10,0	cm		prva vr	sta					Strižni pa	inel		
L _{eff,2} =	10,0	cm		M _{pl,1,Rd} =	127,2	kNcm	A _{vc,oja}	_{ičan} = 40	0,5 cn	n ²	Obrem	enitev	
druga v	vrsta			M _{pl,2,Rd} =	161,9	kNcm	V _{wp,I}	_{Rd} = 49	4,9 kl	N	Enostra	nski spoj	-
$L_{eff,cp}=2\pi m_p=$	22,7	cm		F _{T,1,Rd} =	230,7	kN					F _v =	318,1	kN
$L_{eff,nc}=\alpha m_p=$	23,5	cm									Dvostra	nski spoj	-
m2=	3,9	cm		F _{T,2,Rd} =	291,2	kN					F _v =	0	kN
m1=	3,6	cm											
$\lambda_1 =$	0,40			F _{T,3,Rd} =	406,7	kN			Mome	ntna kapa	citeta spoja		
$\lambda_2 =$	0,42			druga vi	rsta		ΣFr	_i = 31	8,1 kl	N	F _c =	318,1	kN
α=	6,50			M _{pl,1,Rd} =	127,2	kNcm	F _{r1}	= 10	5,5 kl	N	h ₁ =	43,3	cm
L _{eff,1} =	22,7	cm		M _{pl,2,Rd} =	161,9	kNcm	F _{r2}	= 21	2,6 kl	N	h ₂ =	33,3	cm
L _{eff,2} =	23,5	cm		F _{T,1,Rd} =	230,7	kN	M _c	= 11	.6,6 kN	<mark>lm</mark>			
Odpornost nadomes	stnega T e	elementa			1	_							
prva v	rsta			F _{T,2,Rd} =	291,2	kN			Verl	tikalni stri	g v spoju		
M _{pl,1,Rd} =	84,6	kNcm			1	_	Fv,R	d= 13	5,6 kl	N	Obremen	itev spoja	a
M _{pl,2,Rd} =	84,6	kNcm		F _{T,3,Rd} =	406,7	kN					V=	220	kN
F _{T,1,Rd} =	105,5	kN					F _{Rd}	= 27	1,2 kl	N	> 220	kN	OK
E -	240.4	Las											
F _{T,2,Rd} =	249,4	KN											
F	406.7	LN.											
druga v	(rsta	RIV											
M _{pl.1.Rd} =	192,3	kNcm											
M _{pl.2.Rd} =	198,9	kNcm											
F _{T,1.Rd} =	212,6	kN	1										
, -,													
F _{T,2,Rd} =	274,8	kN	1										
F _{T,3,Rd} =	406,7	kN											

		Nate	ezna	cona		
Prv	a vrsta vij	akov		Drug	ga vrsta v	ijakov
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm
k ₃ =	0,323	cm		k ₃ =	0,323	cm
m _c =	2,21	cm		m _c =	2,21	cm
I _{eff} =	13,85	cm		I _{eff} =	13,85	cm
k ₄ =	2,272	cm		k ₄ =	2,272	cm
	•					•
m=m _x =	3,21	cm		m=m _p =	3,62	cm
I _{eff} =	10,00	cm		I _{eff} =	22,73	cm
k ₅ =	0,471	cm		k ₅ =	0,747	cm
			1			
A _s =	3,53	cm ²		A _s =	3,53	cm ²
m=	2,15	cm		m=	0,40	cm
k=	1,50	cm		k=	2,15	cm
s=	0,40	cm		s=	1,50	cm
L _b =	5,08	cm	l.	L _b =	5,08	cm
k ₁₀ =	1,113	cm		k ₁₀ =	1,113	cm
k _{eff,1} =	0,153	cm		k _{eff,2} =	0,173	cm
h ₁ =	43,33	cm		h ₂ =	33,33	cm
			1			
k _{eq} =	0,320	cm/rad		Z _{eq} =	38,66	cm
		C 1.1	~			
En	ostronski	Stri	zna o	cona	ostronski	cnoi
β=	1	300	ł	β=		300
z=	38,66	cm		- P=	Ŭ	
A _{vc} =	28,74	cm				
k ₁ =	0.282	cm	Ì	k ₁ =	nes	končno
+	-,			-		
		Tlad	ćna o	ona		
En	ostranski	spoj		Dve	ostranski	spoj
b _{eff,c,wc} =	23,98	cm		b _{eff,c,wc} =	23,98	cm
k ₂ =	0,560	cm		k ₂ =	0,560	cm
En	ostranski	spoj		Dve	ostranski	spoj
S _{i.ini} =	37	MNm/rad		S _{i ini} =	64	MNm/rad

Togost spoja konfiguracije 1, $t_p = 12$ mm:

Togost spojev konfiguracije 2 in 3, $t_p = 12$ mm:

		Nate	ezna o	cona		
Prva	<mark>a vrsta v</mark> i	jakov				
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm
k ₃ =	0,323	cm		k ₃ =	0,323	cm
m _c =	2,21	cm		m _c =	2,21	cm
I _{eff} =	13,85	cm		l _{eff} =	13,85	cm
k ₄ =	2,272	cm		k ₄ =	2,272	cm
m=m _x =	3,21	cm		m=m _p =	3,62	cm
I _{eff} =	10,00	cm		l _{eff} =	22,73	cm
k ₅ =	0,471	cm		k ₅ =	0,747	cm
A _s =	3,53	cm ²		A _s =	3,53	cm ²
m=	2,15	cm		m=	0,40	cm
k=	1,50	cm		k=	2,15	cm
s=	0,40	cm		s=	1,50	cm
L _b =	5,08	cm		L _b =	5,08	cm
k ₁₀ =	1,113	cm		k ₁₀ =	1,113	cm
k _{eff,1} =	0,153	cm		k _{eff,2} =	0,173	cm
h ₁ =	43,33	cm		h ₂ =	33,33	cm
k _{eq} =	0,320	cm		z _{eq} =	38,66	ст
			~			
		Stri	zna c	ona		
Enc	ostranski	spoj		Dvo	ostranski	spoj
β=	1			β=	0	
к ₁ =	nesi	koncho		к ₁ =	nesi	concho
		Tla	čna o	002		
End	ostranski	spoi		Dv	ostranski	spoi
k ₂ =	nesl	končno		k ₂ =	nesl	cončno
2				-		
End	ostranski	Dvo	ostranski	spoj		
S _{i ini} =	101	MNm/rad		S _{i ini} =	101	MNm/rad

Nosilnost vozlišča konfiguracije 1, $t_p = 10$ mm:

		Nate	zna cona			p	irva+dru	iga vrsta	1			prva+dru	iga vrsta	
Upogib čelne	pločevine		Upogib p	asnice stebra	a .	F _{t,wc,R}	td=	390,3	kN		F _{t,wc,Rd} =		519,0	kN
n _x =	4,0	cm	m _c =	2,2	cm	b _{eff,t,w}	vc=	29,4	cm		b _{eff,t,wc} =		29,4	cm
m _v =	3.2	cm	e _c =	8.5	cm	β=1	->	$\omega = \omega_1 =$	0.752		β=0	->	ω=	1
e =	5,0	cm	n-	2.0	cm	p=1			0)/ 52		P=0	<u> </u>	ω_	L -
c _x -	3,0	cm	-ii- Sodolui	2,0 očo dolžino	CIII			Določitov	končnih	odpor	nocti urc	tuijakov	_	
n-	4,5	CIII	Joueiuj					Dolocitev	Enestre	oupon				
IIIp-	3,0	cm		d VISLd			1	Church	Enosua	IISKU V	JZIISCE	Churren	at a la un	
Sodelujoce	doizine			eff,cp	r	4		Stran	IOSIICa		<u> </u>	Stran	stebra	
prva vr	sta		$2\pi m_c =$	13,9	cm	4 1	upog	ib čelne	nateg s	tojine	upogib	pasnice	nateg	stojine
L _{eff,ci}	p		$\pi m_c + p =$	15,9	cm		ploce	vine [kN]	nosilc	a[kN]	stebr	a [kN]	stebr	a [kN]
$2\pi m_x =$	20,2	cm	I	eff,nc	-	1. vrsta	7	73,3	/		23	50,7	22	:5,8
$\pi m_x + 2e_x =$	20,1	cm	4m _c +1,25e _c =	19,4	cm	2. vrsta	1	47,7			230,7		22	5,8
$\pi m_x + g =$	19,1	cm	2mc+0,625ec+0,5	p= 14,2	cm	1+2 vrsta		/	/		490,3		39	0,3
L _{eff.n}	c		L _{eff.cp} =	13,9	cm	1+2-Pr1		/	/		41	7,1	31	7,1
b _p /2=	10,0	cm	L _{eff.nc} =	14,2	cm									
4m.+1.25e.=	19.1	cm	Loff 1=	13.9	cm	Ett pat		73.3	kN		E.	ed=	147.7	kN
2m +0.625e +e =	15.0	cm	-en,i	14.2	cm	- <u>ti,ka</u>		7 3,3	Ducatio	naka w	enližže	,Ru	<u> </u>	
$2m_x \cdot 0,025c_x \cdot c_p$	14.0	cm	−eπ,2−	14,2	CIII		<u> </u>	Strop r	DVOSLIG	IISKO V	JZIISCE	Stran	ctobra	
2111 _x +0,023e _x +g/2-	14,0	cm	uru		1		Stran no:		USIICa		Stidii		stepra	
L _{eff,cp} =	19,1	cm	L _{eff,1} =	13,9	cm	4 1	upogib čelne		nateg stojine		upogib pasnice		nateg stojine	
L _{eff,nc} =	10,0	cm	L _{eff,2} =	14,2	cm		ploce	vine [kN]	nosilc	a[KN]	stebr	a [kN]	stebra [kN]	
L _{eff,1} =	10,0	cm	prva+d	ruga vrsta		1. vrsta	7	73,3	/		23	:0,7	24	4,2
L _{eff,2} =	10,0	cm	$L_{eff,cp}=2\pi m_c+2p$	= 33,9	cm	2. vrsta	1	47,7	/		23	0,7	24	4,2
druga vi	rsta		$L_{eff,nc}$ =4 π m _c +1,25e	_c +p= 29,4	cm	1+2 vrsta		/	/		49	1 0,3	51	9,0
$L_{eff.cp} = 2\pi m_p =$	22,7	cm	L _{eff.1} =	29,4	cm	1+2-Pr1		/	/		41	7,1	445.7	
$L_{eff,nc} = \alpha m_n =$	23.5	cm	L _{eff 2} =	29.4	cm								·	<u> </u>
m _e =	3.9	cm	Odpornost nador	nestnega T e	lementa	Euro	.=	73.3	٧N		E.	=	1/7 7	4N
m -	2,5	cm	- Caponiosci nador	nestnega i e	liente	- 11,RC	1	73,5	KIN		- 12	.,ка	147,7	N.V.
1	5,0	CIII			1.1.1				T 1-	¥				
$\lambda_1 =$	0,40		IVI _{pl,1,Rd} -	127,2	KINCM									
λ ₂ =	0,42		M _{pl,2,Rd} =	130,6	kNcm			1	Pasnica	prečke	v tlaku			
α=	6,50		F _{T,1,Rd} =	230,7	kN	M _{c,Rc}	i=	30714,5	kNcm		F _{c,f}	b,Rd ⁼	794,7	kN
L _{eff,1} =	22,7	cm							Stojina	stebra	v tlaku			
L _{eff,2} =	23,5	cm	F _{T,2,Rd} =	278,6	kN	En	ostrans	ko vozlišč	e		D	vostrans	ko vozliš	če
Odpornost nadomest	tnega T ele	ementa				β=1	->	$\omega = \omega_1 =$	0,819		β=0	->	ω=	1
prva vr	sta		F _{T,3,Rd} =	406,7	kN	kwc	=	1			k١	NC=	1	
M _{pl,1,Rd} =	58,8	kNcm	dru	ga vrsta		b _{eff,c,v}	vc=	23,6	cm		b _{eff}	,c,wc=	23,6	cm
M _{pl.2.Rd} =	58,8	kNcm	M _{pl.1.Rd} =	127,2	kNcm	d _{wc} =	-	17,7	cm		d	wc=	17,7	cm
F _{T1Pd} =	73.3	kN	M _{pl 2 Rd} =	130.6	kNcm	λ.=	-	0.849			2		0.849	
1,2,10	.,.		F _{z 4 pd} =	230.7	kN	0=		0,900			(<u>ר</u>	0.900	
F=	242.2	L'NI	- 1,1,Rd	200,7		F -	240.2	0,500	206.2		F -	115.6	0,500	274.1
• T,2,Rd	242,2	KIN		270.0	Lat	c,wc,Rd	340,2	205.2	300,3		c,wc,Rd	415,0	274.4	374,1
			FT,2,Rd=	278,6	KIN	F _{c,wc,R}	Rd ⁼	306,3	KIN		F _{C,W}	/c,Rd ⁼	374,1	KIN
F _{T,3,Rd} =	406,7	kN		-	1	-								
druga vi	rsta	-	F _{T,3,Rd} =	406,7	kN			1	Stri	žni pan	el			
M _{pl,1,Rd} =	133,5	kNcm	prva+d	ruga vrsta	7	A _{vc} =	-	28,74	cm ²			Obrem	enitev	
M _{pl,2,Rd} =	138,1	kNcm	M _{pl,1,Rd} =	270,3	kNcm	V _{wp,R}	d=	350,9	kN		E	nostrans	ko vozliš	če
F _{T,1,Rd} =	147,7	kN	M _{pl,2,Rd} =	270,3	kNcm] [F	v=	306,3	kN
			F _{T,1,Rd} =	490,3	kN	1					C	vostrans	ko vozliš	če
F _{T.2.8d} =	259,9	kN				1					F		0	kN
.,_,			FT 2 Pd=	560.8	kN			M	omentna	kapaci	teta spo	a		
Frand=	406.7	kN	.,2,10			En	ostrans	ko vozlišč	e		Г Г	vostrans	ko vozliš	če
- 1,3,KQ			F	010.0	LN	F		306.3	LN		r		27/ 1	LN
			• T,3,Rd	013,3	KIN	- d		300,3	KIN		<u> </u>	c ⁻	374,1	KIN
			v. .			11-		43,3	cm			-1-	43,3	cm
	S	tojina pr	ečke v nategu			n ₂ =		33,3	cm		n	2=	33,3	cm
prva vr	sta		drug	ga vrsta		ΣF _{ri}	=	306,3	kN		Σ	F _{ri} =	374,1	kN
Vse prevzame pa	asnica prei	ca prečke Vse prevzame pasnica prečke F _{r1} = 73,3 kN		F _{r1} =		73,3	kN							
		F _{r2} = 147,7 kN		kN		F	r2 ⁼	147,7	kN					
	S	itojina ste	ebra v nategu			M _c =	-	80,9	kNm		N	۸ _c =	80,9	kNm
Enostransko	vozlišče		Dvostrar	nsko vozlišče										
prva vr	sta		prv	a vrsta					Vertikalı	ni strig	v spoju			
F _{t,wc,Rd} =	225,8	kN	F _{t,wc,Rd} =	244,2	kN	Fv,Ro	=	135,6	kN			Obrem	nenitev	
b _{eff,t,wc} =	13,9	cm	b _{eff,t,wc} =	13,9	cm					L	١	/=	220	kN
β=1 ->	$\omega = \omega_1 =$	0,925	β=0 ->	ω=	1	F _{Rd} =	-	271,2	kN		>	220	kN	ОК
druga vi	rsta		drug	ga vrsta										
F _{t,wc,Rd} =	225,8	kN	F _{t,wc,Rd} =	244,2	kN	1								
b _{eff.t.wc} =	13.9	cm	b _{eff.t.wc} =	13.9	cm	1								
β=1 ->	ω=ω.=	0,925	β=0 ->	ω=	1	1								
						1								

Odpor

F_{T,3,Rd}=

406,7

kΝ

Nosilnost vozlišča konfiguracije 2 (dvostransko) in 3 (enostransko). $t_n = 10$ mm:

SIIIOSt VOL	insca n	onnge	$114030 \ge (0.0000)$	1 ansko	/ III 5 (cnosuai	13KO)	$, \iota_p -$	- 101				
		Natez	na cona			Stoj	ina preò	čke v nate	egu		Stojina steb	ira v nate	gu
Upogib čelne	<mark>pločevin</mark>	ie 👘	Upogib pas	nice stebra	1		prva	vrsta			prva	vrsta	
n _x =	4,0	cm	m _c =	2,2	cm	Vse pre	evzame	pasnica p	orecke		Nateg ni merodajen		
m _x =	3,2	cm	e _c =	8,5	cm		druga vrsta				druga		
e _x =	5,0	cm	n=	2,8	cm	Vse pre	Vse prevzame pasnica prečke				Nateg ni n	nerodaje	n
n=	4,5	cm	Sodelujo	če dolžine				- · · ··					_
m _p =	3,6	cm	prva	vrsta	1			Dolocitev	KONCHIP	ι οαρο	rnosti vrst vijakov	/	
Sodelujoce	e dolžine		$L_{eff,cp}=2\pi m_p=$	13,9	cm			Stran n	osilca		Strans	stebra	
prva v	rsta		$L_{eff,nc} = \alpha m_p =$	17,6	cm		upogi	ib čelne	nateg stojine		upogib pasnice nate		toj
L _{eff,c}	p	1	m ₂ =	3,9	cm		piocev	/ine [kN]	nosiica	a[KN]	I] stebra [kN] s		. [KI
$2\pi m_x =$	20,2	cm		2,2	cm	1. vrsta	1. vrsta 73,3		/		230,7	/	
$\pi m_x + 2e_x =$	20,1	cm	$\lambda_1 =$	0,21		2. vrsta	2. vrsta 147,7		/		230,7	/	
$\pi m_x + g =$	19,1	cm	$\lambda_2 =$	0,37									_
L _{eff,i}	nc		α=	8,00		F _{t1,F}	Rd ⁼	73,3	kN		F _{t2,Rd} =	147,7	k
b _p /2=	10,0	cm	L _{eff,1} =	13,9	cm								
4m _x +1,25e _x =	19,1	cm	L _{eff,2} =	17,6	cm				Tla	ična co	ona		
2m _x +0,625e _x +e _p =	15,0	cm	druga	vrsta	-	Pas	inica pre	ečke v tla	ku		Stojina ste	bra v tlak	u
2m _x +0,625e _x +g/2=	14,0	cm	L _{eff,1} =	13,9	cm	M _{c,i}	_{Rd} =	30715	kNcm		A _{s,eff} =	41,7	СІ
L _{eff,cp} =	19,1	cm	L _{eff,2} =	17,6	cm	F _{c,fb,}	F _{c,fb,Rd} =		kN		N _{c,Rd} =	979,6	k
L _{eff,nc} =	10,0	cm	Odpornost nadome	estnega T el	ementa								
L _{eff,1} =	10,0	cm	prva	vrsta					Str	nel			
L _{eff,2} =	10,0	cm	M _{pl,1,Rd} =	127,2	kNcm	A _{vc,oja}	ačan=	40,5	cm ²		Obrem	enitev	
druga vrsta		M _{pl,2,Rd} =	161,9	kNcm	V _{wp,}	Rd ⁼	494,9	kN		Enostranski spoj			
$L_{eff,cp}=2\pi m_p=$	22,7	cm	F _{T,1,Rd} =	230,7	kN						F _v =	220,9	k
$L_{eff,nc}=\alpha m_p=$	23,5	cm									Dvostrar	nski spoj	
m2=	3,9	cm	F _{T,2,Rd} =	291,2	kN						F _v =	0	k
m1=	3,6	cm											
$\lambda_1 =$	0,40		F _{T,3,Rd} =	406,7	kN			M	omentna	a kapa	citeta spoja		
$\lambda_2 =$	0,42		druga	vrsta		ΣF	ri=	220,9	kN		F _c =	220,9	k
α=	6,50		M _{pl,1,Rd} =	127,2	kNcm	F _{r1}	=	73,3	kN		h ₁ =	43,3	C
L _{eff,1} =	22,7	cm	M _{pl,2,Rd} =	161,9	kNcm	F _{r2}	!=	147,7	kN		h ₂ =	33,3	C
L _{eff,2} =	23,5	cm	F _{T,1,Rd} =	230,7	kN	M	.=	80,9	kNm				
dpornost nadomes	stnega T e	elementa									•		
prva v	rsta	-	F _{T,2,Rd} =	291,2	kN				Vertikal	ni strig	g v spoju		
M _{pl,1,Rd} =	58,8	kNcm			-	Fv,F	Rd=	135,6	kN		Obremen	itev spoja	3
M _{pl,2,Rd} =	58,8	kNcm	F _{T,3,Rd} =	406,7	kN						V=	220	k
F _{T,1,Rd} =	73,3	kN				F _{Rc}	-	271,2	kN		> 220	kN	С
F _{T,2,Rd} =	242,2	kN											
F _{T,3,Rd} =	406,7	кN											
M=	132 5	kNom	1										
M	120 1	kNor	1										
F	1/7 7	KINCIII											
• T,1,Rd	147,7	KIN											
F _{T.2.Rd} =	259.9	kN											
	,		1 1										

-		•	U	· P			 -				U	P			
Natezna cona							Natezna cona								
Prva vrsta vijakov				Druga vrsta vijakov			Prva vrsta vijakov				Dru	ijakov			
b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm	b _{eff,t,wc} =	13,85	cm		b _{eff,t,wc} =	13,85	cm		
k ₃ =	0,323	cm		k ₃ =	0,323	cm	k ₃ =	0,323	cm		k ₃ =	0,323	cm		
					1					1					
m _c =	2,21	cm		m _c =	2,21	cm	m _c =	2,21	cm		m _c =	2,21	cm		
l _{eff} =	13,85	cm		I _{eff} =	13,85	cm	l _{eff} =	13,85	cm	1	l _{eff} =	13,85	cm		
k ₄ =	2,272	cm		k ₄ =	2,272	cm	k ₄ =	2,272	cm		k ₄ =	2,272	cm		
											,				
m=m _x =	3,21	cm		m=m _p =	3,62	cm	m=m _x =	3,21	cm	1	m=m _p =	3,62	cm		
l _{eff} =	10,00	cm		I _{eff} =	22,73	cm	l _{eff} =	10,00	cm	1	I _{eff} =	22,73	cm		
k ₅ =	0,273	cm		k ₅ =	0,432	cm	k _s =	0.273	cm		k _s =	0.432	cm		
		2				2	5	- / -	-			-, -			
A _s =	3,53	cm ²		A _s =	3,53	cm²	A _s =	3.53	cm ²		A _s =	3.53	cm ²		
ni- k=	2,15	cm		- -	0,40	cm	m=	2.15	cm		m=	0.40	cm		
S=	0,40	cm		s=	1,50	cm	k=	1,50	cm		k=	2,15	cm		
L _b =	4,88	cm		L _b =	4,88	cm	s=	0.40	cm		s=	1.50	cm		
k ₁₀ =	1,159	cm		k ₁₀ =	1,159	cm	L _b =	4.88	cm		L _b =	4.88	cm		
							k ₁₀ =	1.159	cm		k ₁₀ =	1,159	cm		
k _{eff,1} =	0,124	cm		k _{eff,2} =	0,149	cm	10	_,			10	_,			
h ₁ =	43,33	cm		h ₂ =	33,33	cm	k _{eff.1} =	0,124	cm		k _{eff.2} =	0,149	cm		
							h ₁ =	43,33	cm		h ₂ =	33,33	cm		
k _{eq} =	0,268	cm/rad		Z _{eq} =	38,52	cm		ļ	Į			ļ	1		
		Chui	×				k _{ea} =	0,268	cm		Z _{eg} =	38,52	cm		
En	ostranski	snoi			ostranski	snoi									
β=	1	300		β=	0	500	Strižna cona								
Z=	38,52	cm					En	ostranski	spoj		Dv	ostranski	spoj		
A _{vc} =	28,74	cm					β=	1			β=	0			
k ₁ =	0,283	cm		k ₁ =	nes	končno	k ₁ =	nesl	končno	1	k ₁ =	nes	končno		
	-	-		-	-										
Tlačna cona						Tlačna cona									
Enc	ostranski	spoj		Dvi	ostranski	spoj	En	ostranski	spoj		Dv	ostranski	spoj		
D _{eff,c,wc} =	23,58	cm		D _{eff,c,wc} =	23,58	cm	k ₂ =	nesl	končno		k ₂ =	nes	končno		
к ₂ =	0,550	ст		к ₂ =	0,550	cm		-				-			
Enostranski spoj				Dv	ostranski	spoi	Enostranski spoj Dvostranski					spoj			
S _{i,ini} =	34	MNm/rad		S _{i,ini} =	56	MNm/rad	S _{j,ini} =	84	MNm/rad	1	S _{j,ini} =	84	MNm/ra		
"															

Togost spoja konfiguracije 1, $t_p = 10$ mm:

Togost spojev konfiguracije 2 in 3, $t_p = 10$ mm: