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Abstract. The problem of crack of elliptical shape located between two
bonded dissimilar elastic half spaces and subjected to arbitrary loads
is considered. A solution is obtained by using corresponding traction
boundary pseudodifferential equations. Resulting equations are then
solved by means of an analytical-numerical method. Strain energy re-
lease rates along the crack contours are presented for elliptical cracks
with different ratios of semiaxes, and for half spaces with different ra-
tios of elastic constants. For special cases the results are compared with
the available exact solutions.

1 Introduction

Solutions of the three-dimensional interface crack problems play an important
role in the strength evaluation of composite structures. However, up to now only
few such problems have been solved.

Available analytical solutions are restricted exclusively to the penny-shaped
crack. In particular, the problem of the penny-shaped crack subjected to normal
uniform load was considered in [4] and [3]. An analytical expression for the strain
energy was obtained in [4], and the stress intensity factors and the strain energy
release rates were calculated in [3]. The shear load case was solved in [11], where
an analytical expression for the strain energy was derived. Recently, the problem
of interface penny-shaped crack subjected to uniform normal and shear loads was
reconsidered in [6]; however, no numerical results concerning stress intensity factors
or strain energy release rates were given.



Solutions of interface crack problems posess a square root and oscillating sin-
gularity near the crack contour. It is extremely difficult to extract this kind of
singularity by means of numerical calculations. This is the reason why there are no
accurate numerical solutions in the vicinity of a crack front for the three-dimensional
interface crack problems. At the same time, the asymptotic of the solution near
the crack contour is its most important characteristic, since it defines the possi-
bility of the crack growth. Therefore. obtaining new accurate solutions for the
three-dimensional interface cracks is of present research interest.

An analytical-numerical method for solving elliptical interface crack problem
was developed by the authors in [7]. Examples considered in [7] were restricted to
the uniform normal loading conditions. The objective of this work is to apply the
method developed in |7] to the elliptical interface cracks subjected to the uniform
as well as to the non-uniform shear loads.

2 Analytical-numerical method

In this section we briefly recall the analytical-numerical method developed in
[7]-

Let a region G in the plane x3 = 0 of an infinite elastic solid be occupied by a
flat crack. Material of the half space x3 > 0 is defined by a shear modulus x; and
Poisson’s ratio v1, and of the half space z3 < 0 by g2 and o, respectively. Suppose,
that the loads applied to the crack surfaces are equal in magnitude and opposite in
directions:

+t{z) = £ (41 (z) , Lo () , L3 (),

where x = (z1, x3).
As it was shown in [11], the problem can be reduced to the following traction
boundary pseudodifferential equations with respect to the crack opening displace-

ments [u(z)] = ({u1(x)], [u2(x)], [ua(x)]):
PoA(D)[u(z) =t(z), z€G and [u(z)]=0, z&G. (2.1)

P is a restriction operator to the crack area GG, and A (D) is a matrix pseudodif-
ferential operator with the symbol
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and constants g, dand e are expressed by the shear moduli and Poisson’s ratios as
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Recall, that the pseudodifferential operator acts on vector-functions [u{x)] as
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where [u (§)] = / [u(x)] ¢ (7€) 47 is the Fourier transform, (x,£) = x1€1 + x9€o,
RZ
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and F~1 (3 (&) = G(&) e &8 d¢ is the inverse Fourier transform.
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Suppose, that G is an elliptical region
x? 2
GzEla={$: —;+—~:§1}

(]';1 ﬂrz
and assume, without loss of generality, that as < a;.
Suppose also, that the applied loads may be represented by the infinite power
series

tolz) = Y AF ol o) = Z Ayl k=1,2,3, (2.2)
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where A:‘J’f are constants and y, are defined as
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It is now possible to look for the solution of (2.1) in the following form:
[y, (x)] = E BE T%(x), k=123 (2.3)
p,g=0
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where B;;q are constants, and functions Ty ~(x) are defined as
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As shown in [7], substitution of (2.2) and (2.3) into (2.1} leads to the system
of equations of the form
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Functions U??(x) and Rr 4 (x} are polynomials of order p + q. Explicit expressions
for UP?(z) and R (x) were obtained in [1] and (2] (they are also provided in [7]).
Functions L7%(x) and IL(z) may be decomposed into an infinite power series as
shown in [7].
Equations {2.4) represent equalities of infinite power series. By equating coef-

ficients on the left hand side with the corresponding coeflicients on the right hand



side, one obtains an infinite system of linear algebraic equations with the constants
B;fq as unknowns. To solve this infinite system of linear equations numerically, it
has to be truncated and reduced to the finite system p+qg < N, i+j < N.
Once the constants B;fq are obtained, it is possible to calculate the strain energy
release rates along the crack contour as described below (see [7] for details).
On the elliptical crack contour, which may be written in a parametric form as

X1 =a;cosé, xs=apsind,

we define functions [uf(z)] as

[u.g(-.r)] = Z Bﬁq cos? @ sin?8, k=1, 2, 3.
p.g=0

The stress iutensity factor Kj;; at a point * = (a; cos8, azsin#) may be then
expressed as (see |7))

PO r — [ud(x)] a1 sin @ + [uf(z)] az cosh (2.5)
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Let us further define a function [u%(z)] and a constaut ¢ as
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respectively. As it is shown in [7], the values of K7 + K? ; (where Ky and K7 are
stress intensity factors at a point z) can be then written in the following form
K} + Kj;
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Finally, by using {2.5), (2.6) and the formula for the strain energy release rate
J (see e.g. [5], [9]), we can calculate the value of J at a point x of the crack contour
as
1
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3 Numerical examples and verification of results

3.1 Shear load in the direction of larger semiaxis. Let us begin with a
uniform shear load of the following type:

t(z)=1(7,0,0).

Results of the strain energy release rate calculations are presented in dimensionless
form

=—F (3.1)
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Figure 1 Shear load in the direction of larger semiaxis. Dimensionless strain
energy release rates for 1y — v = 0.3, 41t uz = 1: 4.
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Figure 2 Shear load in the direction of larger semiaxis. Dimensionless strain
energy release rates for v; = v = 0.3, 413 : 2 = 1: 10,

where  is a polar angle in the plane (z, z2)

Iy 45)
@ = arctan — = arctan (— tan 9) .

I a1
As mentioned above, in the numerical procedure the infinite system of linear
algebraic equations is truncated and reduced to the finite system of equations with
p+qg < N and i+ j < N. In order to illustrate stabilization of results with increase
of N, a dependence of numerical values J.(¢) on N is given in Table 1. Results are
presented at three points {(y = 0, ¢ = /4 and ¢ = 7/2) for a particular case of a
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Figure 3 Shear load in the direction of larger semiaxis. Dimensionless strain
energy release rates for vy = 02,00 = 0.4, 41 : g2 = 1: 1.

penny-shaped crack of radius a. Poisson’s ratio of both materials is v, = vy = 0.3
and the shear moduli ratio is pq 1 uo = 1: 4.

Convergence character of J,(y) presented in Table 1 is analogous to the one
obtained for the case of normal load (see [7]). Convergence of the results for other
types of shear loads, for different nonhomogeneous solids with various material
constants, and for elliptical cracks with different semiaxes ratios are similar to the
one presented in Table 1.

Graphs of functions J,(p) for three tvpes of nonhomogeneous solids and for
elliptical cracks with the semiaxes ratios ay : a3 = 1,2,4,8,16 are presented on
Figures 1-3 on an interval 0 < ¢ < 7 /2.

For elongated elliptical cracks, the value J,(7/2) have to converge to the value
of Jia, which is a dimensionless strain energy release rate for the interface crack of
antiplane shear with the length 2a,. According to [10] and [8]

T
Jea = .
i 2”3‘:

It can be seen from Figures 1-3, that J.(w/2) for elliptical crack with a; : ay = 16
i¢ only slightly lower then J,,.

For a penny-shaped crack the results obtained by analytical-numerical method
may be verified as follows. According to [11], J.(y) fill the interval

41+ (P - [ RN . i ) Q] ,
Jec = {(g —e)me(l+ &%) + d}? d+ (m(l_\-u) g+c RN (3.2)

where 0 < A < 1. It follows from (3.2}, that the extreme values of J,. occur when
A =0 and when A = 1. These values are equal to
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Table 1 Dependence of J. on the number of equations N for the uniform

shear load acting in the direction of axis r;. Penny-shaped crack: v = vy =
0.3, 000 tpz =114

(N[ 700) | Ju(w/d) [T/ [N [ T0) [ Julm/A) [ a(7/2) |
0 [|0.3766 | 0.3186 | 0.2605 | L1 || 0.3842 | 0.3244 0.2646 —‘
1] 0.3859 | 0.3257 | 0.2655 || 12 || 0.3820 | 0.3232 | 0.2644
2 | 0.3798 | 0.3217 | 0.2635 || 13 || 0.3841 | 0.3243 | 0.2646
3 || 0.3851 | 0.3250 | 0.2650 | 14 || 0.3821 | 0.3233 0.2644
4 || 0.3808 | 0.3224 | 0.2640 || 15 | 0.3840 | 0.3243 | 0.2646
5 | 0.3847 | 0.3247 | 0.2648 || 16 || 0.3822 | 0.3234 | 0.2645
| 6 || 0.3813 | 0.3228 0.2642 || 17 || 0.3839 | 0.3243 (.2646
7 || 0.3845 | 0.3246 | 0.2647 || 18 || 0.3823 | 0.3234 | 0.2645
8 || 0.3816 | 0.3230 | 0.2643 || 19 || 0.3839 | 0.3242 | 0.2646
9 || 0.3843 | 0.3245 0.2646 || 20 || 0.3824 | 0.3234 0.2645
| 10 )) 0.3819 0.3231 (.2644 l 21 || 0.3838 | 0.3242 0.2646
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Figure 4 Shear load in the direction of smaller semiaxis. Dimensionless strain
energy release rates for 11 = 0.4, 00 = 0.2, 41 - po = 1: 4.
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respectively. It is shown on Figures 1-3, that the extreme values of J,. are very

close to the corresponding values obtained by analytical-numerical method.

There is another possibility to compare our results with analytical solution for
a penny-shaped crack. For a crack with radius a subjected to uniform load, the
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Figure 5 Shear load in the direction of smaller semiaxis. Dimensionless strain
energy release rates for v, = 04,10 = 0.2, 17 1 po2 = 1: 10.
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Figure 6 Shear load in the direction of smaller serniaxis. Dimensionless strain
energy release rates for 11 = 0.2, = 0.4, 1 : g2 = 1: 10,

following formula is valid

(3.3)



Table 2 Uniforin shear load. The average of the dimensionless strain energy
release rates J,. for a penny-shaped crack.

| Poisson’s ratios ‘ Shear moduli || Formula (3.5) ] Analytical-numerical method |
vi =03, v =03 | prip2=1:4 0.3244 0.3243
v =03, =03 | p1:p2=1:10 0.2830 0.2827
=021 =04| pr:ipuz=1:4 0.3340 0.3334
=02, =04 | 1 :pu2=1:10 0.2955 0.2946
v =04, =02 | pr:pu2=1:4 0.3104 0.3104
=041 =02 | 12 =1:10 0.2665 0.2665

T —o—afaz=! -—O0—afa2=2 -——ala2=4 |

—o—at:az2=16 B 1/J%
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11J-
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Figure 7 Torsicnal load. Dimensionless strain energy release rates for vy =
vo =03, p1:p2=1:4

where £ is the total strain energy. Let us now introduce an average of the dimen-
sionless strain energy release rates along the crack contour as

29
— 1
0

From (3.3}, (3.4) and the analytical expression for E, given in [11], one obtains

7 20+ @
T (g-e)me(l4e2)+d’
Comparison of J, values obtained by analytical formula (3.5) and by numerical
integration of function J,(y) within the analytical-numerical method is presented
in Table 2. One can see good agreement between exact and numerically obtained
results.

(3.5)

3.2 Shear load in the direction of smaller semiaxis. Consider now a
uniform shear load acting in the direction of smaller semiaxis

t(x) = (0,7,0).
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Figure 8 Torsional load. Dimensionless strain energy release rates for v =
0.2, = 0.4, 41 : sn = 1:10.
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Figure 9 Torsional load. Dimensionless strain energy release rates for 1 =
04,02 =024y : u2=1:10.

Graphs of functions J. (), where J.{¢) is defined according to {3.1), are presented
on Figures 4-6.

For this type of load, the value J,{m/2) obtained for elongated elliptical crack
have to be close to the value of strain energy release rates J,, for the interface crack



of inplane shear with the length 2as. According to (5]

mn{g® — d*)
49
One can see from Figures 4-6 that J.(x/2) for elliptical crack with a; : a, = 16 is
only slightly lower than .J,;.
For a circular crack, the extreme and the average value of the strain energyv
release rate do not depend on a direction of the load and can be calculated by the
formulae presented above. The values of J2, and J]. are indicated on Figures 4-6.

Jﬂ -

(1 + 4¢?).

3.3 Torsional load. Finally, let us consider a torsional load of the form
T T
t(l‘) = (— ag.l,g‘ azﬂfl, 0)
as an example of nonhomogeneous load.

For this loading ease, the range of the values of function J.{) is becoming very
large when the crack has a shape of elongated ellipse. It is therefore difficult to
present results for different semiaxis ratios on the same figure. For this reason, we
rather present dependence of 1/.J.{ip) with respect to ¢ on an interval 0 < ¢ < w/2
on Figures 7-9.

For the case of torsional load, the analytical results are known only for the
penny-shaped crack. According to (8], the dimensionless values of strain energy
release rates J,; are equal to

8p1
J* —_ R
¢ 1 7T

Since J,, do not depend on the angle y, it is shown only at one point on Figures
7-9. The values J,, exactly coincide with the results obtained by the analytical-
numerical method.
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