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Analytical-numerical solution of elliptical interface crack problem
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Abstract. The problem of elliptical interface crack, located between two bonded dissimilar elastic
half spaces, is considered. To obtain a solution of the problem, the traction boundary
pseudodifferential equations are used. An analytical-numerical method for solving these equations
is proposed. Strain energy release rates along the crack contours are calculated for some examples.
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numerical method, strain energy release rate.

1. Formulation of the problem

Let a region G in the plane x3 = 0 of an infinite elastic solid be occupied by a flat crack. Let
the material of the upper half space (x3 > 0) be defined by the Poisson’s ratio v; and the shear
modulus 1, while the material of the lower half space (x5 < 0) has the Poisson’s ratio vy
and the shear modulus w,. Furthermore, let the loads applied to the crack surfaces be equal in
magnitude and opposite in directions

xt(x) = £(f1(x), h(x), (x)),

where x = (x, x»).
The interface crack problem can be reduced to the following traction boundary pseudodif-
ferential equations in the crack area (Willis, 1972; Goldstein, 1979)

P A(D)[u(x)] = t(x), xe(G and [ux)]=0, x¢G, (D

where [u(x)] = ([u1(x)], [ua(x)], lu3(x)]) are the crack opening displacements and A(D) is
a matrix pseudodifferential operator with the symbol

" g—en; emm din
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In (1) and (2) the following notations are used
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P¢; is the restriction operator to the crack area G
AD)ux)] = F (A@[EE)D,

where [i(£)] = ng[u(x)]e”"f"dx is the Fourier transform, (x,&) = x1& + x&. and
F7YZ(&) = 1/2n)? fRz g(&) e "5 d£ is the inverse Fourier transform.
The solvability of the system, given by (1), in the Sobolev spaces 1(x) € H_y,»(G),

{1
[u(x)] €H 2 (G) was proved by Goldstein and Shifrin (1981).
In what follows, our considerations will be restricted to the case when G is an elliptical
region
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Without loss of generality, we assume that a> < a.

2. Solution: Analytical-numerical method

A number of papers have been devoted to the elliptical crack problem, dealing with the case
of elliptical crack located in an infinite, homogeneous, elastic solid and subjected to the static
polynomial loads (Vijayakumar and Atluri, 1981: Nishioka and Atluri, 1983: Borodachev,
1981; Martin, 1986a;b). An analytical method, recently developed for the same problem by
Kaptsov and Shifrin (1991: 1995; 1996), was possible to apply for the solution of more
complex problems; in particular, to the problem of elliptical crack subjected to an arbitrary
time-harmonic loads (Kaptsov and Shifrin, 1991; Shifrin, 1996a;b: 1997). The aim of this
paper is to extend the approach of Kaptsov and Shifrin to the solution of elliptical interface
crack problem. In this section, the basic features of the proposed analytical-numerical method
are presented.



Let us first denote the pseudodifferential operator with the symbol |£| by A and the pseudo-

differential operator with the symbol |£|~! by A~'. Using these notations, equations (1) can
be rewritten as
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Further, it is assumed, that the applied loads may be represented by the infinite power series

nx) = ZA xx"_ZAU J’|y9.

i, j=0 i, j=0
tg(x) Z AU V| y')g (4)
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where A;“Jl, A*2 and A*3 are constants, and y; are defined as
Xj .
== j=12
1
Let us look for the solution of (3) in the following form
(1) (x)] = Z Bl T\,
[uz(x)] = Z B2, TI(x), 5)
pag=0
[u3(x)] = Z B i),
p.g=0

. 1 .
where B}, B.m;‘ B;q are constants, and functions Tp;:z(x} are defined as

T2 x) =y ¥3\/1 — 1 — 53 (6)



Let us introduce the following notations
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Uri(x) and R/ (x) are polynomials of order p + . Explicit expressions for these func-
tions were obtained by Kaptsov and Shifrin (1995; 1996). For reader’s convenience, they are
provided in Appendix. Functions L7?(x) and L?(x) can be expanded into infinite power
series. Explicit expressions for these series are also given in Appendix.

Substituting (4) and (5) into equations (3), and using (7), we obtain
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Equations (8) represent equalities of infinite power series. By equating the coefficients of the
same power on the left hand side with the coefficients on the right hand side, we obtain an
infinite system of linear algebraic equations, where constants B:,q. B;{q and R,iq are unknowns.

For solving (8) numerically, finite systems of linear equations, with p+¢ < Nandi+j <
N . are considered.



3. Calculation of the strain energy release rate

In this section, the procedure to determine the strain energy release rate is presented. Let us
assume, that the infinite system of (8) was solved (for a particular Joading conditions) and,
consequently, the values of constants B:7 ; Bﬁq and B;’;q are known. The aim is, to express the
strain energy release rate J as a function of these constants.

Elliptical crack contour may be defined as

xy =ajcosf and xy =apsinf. (9)

At a point (a; cos#, a; sinf), projections of a vector ([u;(x)], [u2(x)]) on the directions
([u,(x)]) and ([u,(x)]) (directions normal and tangential to the crack contour, respectively)
may be expressed as

[1)(x)]az cos @ + [ua(x)]a; siné
(a? sin® 6 + a2 cos? §)1/2

[un{x)] =

]

(10)
—[u1(x))ay sin@ + [uz(x)]a; cos B

(a'f sin® 0 + a3 cos?9)/2

[u:(x)] =

It is known (Rice, 1988; Wang, Shin and Suo, 1992), that the crack opening displacements
have the following asymptotics near the crack contour
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where s is a distance between a point x and the crack contour, K = K + i Ky is the complex
stress intensity factor, while ¢ and . are defined as

[uz(xX)] + i [un(x)] =
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It is convenient to introduce a function

@2(x) = /1 — ¥} — 33,

such that T;{fz(x) = yf }’g GOJ’{ 2 (x). Asymptotics of the function quf 2(x) in the vicinity of the

crack contour is the following

2
9i(x) ~ 5/ ﬁ(a%sin29+a§coszﬂ)”4. (13)
142



The crack opening displacements (5) and (10) may be written now as

[uj(x)] = ['uf,?(x)]wi’z(x), j=1,23,
[ (0)] = L) () " (), (14)
i (x)] = [ (x)]ga’* (x),

where [u(x)], [u; (x)] and [u}(x)] are infinite power series.

From (10). (12) and (13) it follows, that K at a point x, with x belonging to the crack
contour (i.e. at s = 0), can be expressed as

o [ [—=[ul(x)]la; sind + [u)(x)]as cos O
K= — > =3 e : (15)
2 Vaa (aj sin~ 6 + a5 cos? 0)'/4

It also follows from (5), (13) and (14), that for point .x of the crack contour [u‘}(.\'}}. j=1,2;
can be expressed as '
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By inserting (16) into (15), the expression for K;; may be given as follows
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Using (11), (13) and (14), the following relation, valid in the vicinity of the crack contour,
can be obtained
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Considering the equality between the moduli of the left hand side and the right hand side of
(18), we may obtain the following expression
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Table I. Dependence of Jx = Ju/ o2a on number of equations N. Penny-shaped

crack withradius a; vy = vy =031 s o =1:4.
N 0 I 2 3 4 5
Jo  0.265579  0.275671 0.269958 0.274720 0.271015 0.274313
N 6 7 8 9 10 11
Jo 0271510 0.274080 0.271804 0.273927 0.272000 0.273817
N 12 13 14 15 16 17
J. 0272141 0273735 0272248 0273670 0.272332  0.273618
N I8 19 20 21
Jo  0.272400 0.273575 0.272456  0.273539

where x is a point on the crack contour. With (5), (13) and (14), we can express [ug’(x)]2 as

o0
WP = > B, B, cos"™" 6sin?t" g,

pg “mn
p.q.m.n=>0

while the expression for [urg()c)]2 can be obtained through (10), (14) and (16).
Finally, by using (17) and (19), it is possible to calculate the strain energy release rate, J,
as (Salganik, 1963; Wang, Shih and Suo, 1992)

- &
4 cosh’(re)

”

= 1
(K + K + 5 Kin (20)

4. Examples

The procedure described in Sections 2 and 3 was transformed into a computer code. In this
section, the results for the normal uniform loading conditions

t(x) =(0,0,0)

are presented as an example.

As already mentioned in Section 2, the infinite system of (8) needs to be truncated in
order to be solved numerically. Accordingly, finite systems of equations, with p +¢ < N
and i + j < N, were used to calculate the strain energy release rates presented below. To
illustrate stabilization of the results with the growth of N, dependence of J, = Ju;/o%a on
N (for a particular case of penny-shaped crack of radius a and materials with the following
characteristics: Poisson’s ratios are v; = v, = 0.3 and shear moduli ratio is pt;: > = 1:4) is
given in Table 1. Results in Table 1 indicate, that the connection between the normal and the
shear crack opening displacements in (1) is weak. It is therefore possible to obtain reasonable
results even when the infinite system of linear (8) is replaced by the finite system of equations
of the low order. At the same time, the convergence of the results to the limiting value (when
increasing N) is slow.

The results of the calculations, performed by the authors for nonhomogenous solids with
various material constants and elliptical cracks with various semi-axes ratios show, that type
of the results convergence for those cases is very similar to one presented in Table 1.
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Figure 1. Nondimensional strain energy release rates versus shear moduli ratio foras :ay = 1: 2;vp = v = 0.3,

In Figures 1-6 the nondimensional strain energy release rate

J(p)
ola,

Julp) = 21
is presented. Here J (@) is the strain energy release rate at a point of the crack contour defined
by a polar angle ¢, where

X2 d>
@ = arctan — = arctan (— tan 9) .
X1 aj
Angle € was introduced in (9).

Figures | and 2 show the dependence of J, on the shear moduli ratio (u,: w,) at different
points of the crack contour (at ¢ = 0. 7/16, 7/8, w/4 and 7 /2). Results are presented for
the case when the Poisson’s ratios are v; = v, = 0.3, and the semi-axes of elipse are defined
asa;: a; = 2 (Figure 1) and a;: a; = 4 (Figure 2) respectively. Note, that for p»: p; = 1 the
results are identical to the analytical solutions of the problem of an elliptical crack embedded
in a homogeneous solid.

Figures 3-6 show the dependence of J, on the angle ¢ for four types of nonhomogeneous
solids with different material constants. Functions J,(¢) are presented on the interval 0 <
¢ < /2 for elliptical cracks with the following semi-axis ratios: a;: a» = 1.2, 4, 8 and 16.

Closed form solutions for the interface crack problems were obtained by Salganik (1963)
for the case of plane strain problem, and by Mossakovskii and Rybka (1964), Willis (1972)
and Kassir and Bregman (1972) for the case of penny-shaped crack. Comparison of results
obtained by analytical-numerical method with the exact solutions is presented in Figures 3-6
for these two cases. In the above mentioned papers the analytical solutions are provided in
different forms. To enable comparison with the present results, the values obtained by using
exact expressions were transformed to the nondimensional strain energy rates /..

It can be observed, that for the case of penny-shaped cracks the results of the analytical-
numerical method are practically identical to the analytical solutions. Note. that the exact
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Figure 2. Nondimensional strain energy release rates versus shear moduli ratio foras : a; = 1: 4;v) = vp = 0.3,
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Figure 3. Nondimensional strain energy release rates for vy = 0.2;vp =045 ) 1y = 11 4,

solutions for function J,(¢) are constants for penny-shaped cracks. They are shown in Figures

3—-6 only at one point (at ¢ = 7 /4).
It can be also seen from Figures 3—6, that the results for elongated elliptical cracks (a;: a; =

16) at the tip of the shorter semi-axis are slightly lower of the corresponding exact plain strain

solutions.
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Appendix
Expressions for functions U (x) and R;;q(x), obtained by Kaptsov and Shifrin (1995, 1996).
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In the above expressions, the square brackets denote the integer part of the value, E (k)
and K (k) are the complete elliptical integrals, where k? is defined as k* = (.aI — az)/a,,
2F(a, b; c; z) is the hypergeometric function, (a), is the Pochhammer symbol ((a)q = 1,
(a), =a(a+1)...(a+n—1)), double factorial is defined as (2[ + D)!!' =1.3.5... (21 + 1),

with (=D)!! = 1, and H (s) is defined as H(s) = Ié :i; ig 4



Function L{?(x) can be expanded into the power series as follows:

ATy (x)
LMy = —EE2
: ) r).r|

1 1—1 ¢ 2 +l g I

= — 1 pyl 7 i1 —y2 —y2 —yPH! 48
: L=y} —»3
! n 2k+p—=1 _2n=2k+q

= E; Z( 1) (3 _”}n Z kl{ﬂ' ).’ Y Vs

n=()
l el a3 i)
nogl '..£+_n+| 2n-2h+yq
*‘HZO( D" (5 —n)y th A

Analogously, the power series expression for the function L (x) is

Lf{f 4 - n 2 —n), 2k+p | 2n-2k+g-|
2 (%) I %( 1) f n) Z k'(n ol » ¥5
oG n 1
- T G P gy
— e k!'(n —k)!
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