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Kinematically exact curved and twisted strain-based beam

P. Češarek, M. Saje, D. Zupan∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1115 Ljubljana,
Slovenia

Abstract

The paper presents a formulation of the geometrically exact three-dimensional beam
theory where the shape functions of three-dimensional rotations are obtained from strains
by the analytical solution of kinematic equations. In general it is very demanding to
obtain rotations from known rotational strains. In the paper we limit our studies to the
constant strain field along the element. The relation between the total three-dimensional
rotations and the rotational strains is complicated even when a constant strain field
is assumed. The analytical solution for the rotation matrix is for constant rotational
strains expressed by the matrix exponential. Despite the analytical relationship between
rotations and rotational strains, the governing equations of the beam are in general
too demanding to be solved analytically. A finite-element strain-based formulation is
presented in which numerical integration in governing equations and their variations is
completely omitted and replaced by analytical integrals. Some interesting connections
between quantities and non-linear expressions of the beam are revealed. These relations
can also serve as useful guidelines in the development of new finite elements, especially
in the choice of suitable shape functions.

Keywords: strain measure, constant strain, non-linear beam theory, three-dimensional
beam, three-dimensional rotation

1. Introduction

Beam elements have played a very important role in modeling engineering struc-
tures. Their applicability is, however, strongly dependent on the accuracy, robustness
and efficiency of the numerical formulation. This is particularly important in studying
initially curved and twisted beams, which are well known to differ considerably in their
behaviour with respect to straight elements. That is why the mathematical modelling
of initially curved and twisted beams has been a special subject of research both in
past and at present, see, e.g. the recent publications by Atanackovic and Glavardanov
(2002), Atluri et al. (2001), Gimena et al. (2008), Kapania and Li (2003), Kulikov and
Plotnikova (2004), Leung (1991), Sanchez-Hubert and Sanchez Palencia (1999), Yu et
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al. (2002). Among various existing non-linear beam theories Reissner’s ‘geometrically
exact finite-strain beam theory’ (Reissner, 1981) is the most widely used one. Several
finite-element formulations have been proposed for the numerical solution of its govern-
ing equations, see, e.g. Cardona and Géradin (1988), Ibrahimbegovic (1995), Jelenić and
Saje (1995), Ritto-Corrêa and Camotim (2002), Schulz and Filippou (2001), Simo and
Vu-Quoc (1986), to list just a few among the more often cited works.

Another important issue in any finite element formulation is the choice of the pri-
mary interpolated variables. Most of the above cited approaches use displacements and
rotations or solely rotations as the interpolated degrees of freedom. Because the spatial
rotations are elements of the multiplicative SO (3) group, the configuration space of the
beam is a non-linear manifold. That is why the way the rotations are parametrized and
interpolated is crucial. In the displacement-rotation-based formulations, the evaluation
of strains, internal forces and moments requires the differentiation of the assumed kine-
matic field which decreases the accuracy of the differentiated quantities compared to the
primary interpolated variables which might be very important in materially non-linear
problems.

By contrast, if the strains are taken to be the interpolated variables, the additive-
type of interpolation can be used without any restrictions. By such an approach the
determination of internal forces and moments do not require the differentiation. Instead,
the fundamental problem of a strain-based formulation now becomes the integration of
rotations from the given interpolated strains. In the three dimensions, the derivative
of the rotations with respect to parameter equals the product of a rotation-dependent
non-linear transformation matrix and the rotational strain. In general such a system of
differential equations cannot be integrated in a closed form. This is probably the main
reason why, in the three-dimensional beam theories, the total strain field or even solely
the rotational strain is very rarely chosen as the primary variable. Some authors integrate
the strain-displacement relations and employ the results for proposing a more suitable
interpolation for the three-dimensional rotations. Tabarrok et al. (1988) assumed an
analytically integrable curvature distribution to develop a more suitable interpolation
for displacements and rotations in order to describe properly the rigid-body modes of
arbitrarily curved and twisted beam. Choi and Lim (1995) employed the solution of the
linearized strain-displacement relations to obtain the finite-elements for constant and
linear shape of varied strains. Schulz and Filippou (2001) proposed an interesting non-
linear Timoshenko beam element where the displacements and both the infinitesimal
(incremental) curvatures and the infinitesimal rotations are interpolated. In Schulz and
Filippou (2001) the reduced integration has to be used to avoid shear locking. Santos et
al. (2010) introduced a hybrid-mixed formulation in which the stress-resultants, the dis-
placements and the rotations are taken as independent variables. The pure strain-based
formulation was proposed by Zupan and Saje (2003) who developed the spatial beam
finite-element formulation of the Reissner–Simo beam theory in which the total strain
vectors are the only interpolated variables. Such a formulation is locking-free, objective
and a standard additive-type of interpolation of an arbitrary order is theoretically con-
sistent and can be used for both total strains and their variations. In Zupan and Saje
(2003) a numerical method (the Runge-Kutta method) is used for the integration of the
total rotations from the given total rotational strains, which is due to the complicated
form of the kinematical equations.

It has already been noted in the analysis of planar frames that the strain-based
2



beam formulations are numerically efficient and well applicable in various problems. In
particular, applications of the strain-based elements to the dynamics (Gams et al., 2007),
and to the statics of the reinforced concrete frame with the strain localization (Bratina
et al., 2004) and the reinforced concrete frame in fire (Bratina et al., 2007) show the
advantages of both higher-order and a simple constant strain element. The constant-
strain elements are especially important for the efficient numerical modeling of strain-
softening in concrete. The same should equally apply to the three-dimensional beam
structures. In the paper we follow and extend the ideas of the planar case and develop
a robust and efficient three-point finite element with 24 degrees of freedom based on
Reissner’s beam theory. In order to obtain an exact analytical solution for the rotations
in terms of the rotational strain, we limit our studies to the constant strain field along the
element. It is important to point out that integrating the constant strain field results in
a non-linear, linked form of rotations and displacements. This immediately suggests that
the classical additive-type of interpolation of the rotation and displacement field, in which
the displacements are interpolated by using only nodal displacements, and the rotations
only nodal rotations, is not the most natural choice. This has also been observed by Borri
and Bottasso (1994) by using the helicoidal approximation, and by Jelenić and Papa
(2011) who studied the genuine linked interpolation functions for the three-dimensional
linearized Timoshenko beams. In contrast to Borri and Bottasso (1994) and Jelenić and
Papa (2011), the finite-element formulation employed here is based on the strain field
rather than on the displacement-rotation field, which results in different types of finite
elements and considerable differences in the overall numerical implementation.

The analytical relationship between the rotations and the rotational strains is given
in the exact analytical form, which enables us to perform the integration in governing
equations and their variations analytically. An interesting observation then follows that
the analytical approach, although based on the assumption of the constant strain field
over the finite element, suggests the integrals must be decomposed into the total ro-
tational operator at the end-point of the beam and the arc-length dependent operator
along the beam. A special study is made in searching the form of these operators and
their similarity with respect to the Rodrigues formula. The similarity between the terms
is also exploited to reduce the computational cost of the proposed algorithm. The results
can serve as useful guidelines for choosing suitable shape functions for various quantities
in the development of new, higher-order interpolation beam formulations. The present
finite element is free of any numerical integration or numerical differentiation error, the
only error of the element being the assumed strain field. One of distinguishing charac-
teristics of the present element is the mathematically proved convergence of the discrete
solution to the exact one by reducing the element length. This means that a sufficiently
fine mesh of the present elements give accurate results of the geometrically and materi-
ally non-linear beam theory without any limitations set on the magnitude of rotations,
displacements and strains. The efficiency and the accuracy of the proposed approach is
demonstrated by numerical examples.

2. Geometry, rotations and skew-symmetric matrices

The geometrically exact finite-strain beam theory assumes that an arbitrary config-
uration of the beam is described by (see Figure 1):
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(i) the position vector
⇀
r (x) of the beam axis, and

(ii) the orthonormal base vectors

{
⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)

}
attached to the planes of

the cross-sections.

O 1
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)x*

G1( )x
*
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gg

*

**

G3( )x
*

G2( )x
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*

|
C

cross-section
axis

Figure 1: Model of the three-dimensional beam.

“x” is the arc-length parameter of the centroidal axis of the beam axis connecting the

centroids, C, of the cross-sections in the undeformed configuration, vectors
⇀

G2 (x) and
⇀

G3 (x) point along the principal axes of inertia of the cross-section, and
⇀

G1 (x) is its

normal:
⇀

G1 =
⇀

G2 ×
⇀

G3. Note that
⇀

G1 is generally not colinear with the tangent to the

beam axis, d
⇀
r

dx (Figure 1). Vectors

{
⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)

}
define the basis of the local

coordinate system.
We further introduce a reference point O and a triad of fixed orthonormal base vectors{

⇀
g 1,

⇀
g 2,

⇀
g 3

}
, which define the global coordinate system (X,Y, Z). The relationship

between the local and the global bases is represented by rotation matrix R (x).
Abstract vectors have to be expressed with respect to any basis to obtain their compo-

nent (coordinate) representations, here marked by a bold-face font, and equipped with an
index denoting the basis used. The coordinate transformation between two component
forms of a vector

⇀
v is represented by the rotation matrix:

vg = RvG. (1)

For the parametrization of the three-dimensional rotations, we here employ the ro-
tational vector ϑg (Argyris, 1982) whose length equals the angle of rotation and its
direction is colinear with the axis of rotation. If we introduce a skew-symmetric matrix
Θ

Θ =

 0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0

 (2)

composed from components {ϑ1, ϑ2, ϑ3} of the vector ϑg, the rotation matrix is expressed
by the Rodrigues formula

R = I+
sinϑ

ϑ
Θ+

1− cosϑ

ϑ2
Θ2, (3)
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where I is the identity matrix, and ϑ = ∥ϑg∥ =
√

ϑ2
1 + ϑ2

2 + ϑ2
3. An alternative to the

Rodrigues formula for the rotation matrix is the matrix exponential:

R = I+Θ+
1

2!
Θ2 +

1

3!
Θ3 + . . .+

1

n!
Θn . . . = exp (Θ) , (4)

which can be found more convenient to employ in some cases.
Note also that

Θu = ϑ× u (5)

for every u, which means that the cross vector product ϑ × u can be replaced by the
matrix product Θu whenever needed. The above holds for arbitrary two vectors. It
is thus suitable to introduce the skew-symmetric operator S, which maps an arbitrary
vector into the skew-symmetric matrix S (v):

S : v 7→S (v)

S (v) =

 0 −v3 v2
v3 0 −v1

−v2 v1 0

 . (6)

Vector v is called the axial vector of the skew-symmetric matrix S (v).

3. Strain vectors, equilibrium and constitutive equations

The geometrically exact finite-strain beam theory introduces two strain vectors (Reiss-
ner, 1981): (i) the translational strain vector γG , and (ii) the rotational strain vector
κG. When expressed with respect to the local basis, their components have physical
interpretation: γG1 is the extensional strain, γG2 and γG3 are shear strains; κG1 is the
torsional strain, κG2 and κG3 are the bending strains (curvatures).

The relations between the strains, displacements and rotations are derived from the
condition that the strains and stresses are consistent with the virtual work principle
for any internal forces and any magnitude of deformation. This condition yields the
following relationships between the variations of kinematic vector variables (rg ,ϑg ) and
the variations of strain vectors (γG ,κG)

δγG = RT
(
δr ′

g − δϑg × r ′
g

)
(7)

δκG = RT δϑ′
g. (8)

By integrating equations (7) and (8) with respect to the variations and following the
approach of Reissner (1981), we obtain the relation between the strain measures, dis-
placements and rotations:

γG = RTr ′
g + cG (9)

κG = TTϑ′
g + dG, (10)

where

TT = I− 1− cosϑ

ϑ2
Θ+

ϑ− sinϑ

ϑ3
Θ2
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is the transformation matrix between κG and ϑ′
g. Note that the integration is not

straightforward due to different bases in which the relative variations of strain and rota-
tional vectors are introduced. For the details of the derivation, see, e.g. Ibrahimbegovic
(1997). Vector functions cG (x) and dG (x) are the unknown variational constants, which
we have to express with the known strain and kinematic fields in the initial state of the
beam. cG and dG are, in a general case, dependent on x, yet they do not change during
the deformation of the beam. From (9)–(10) it follows that any sufficiently smooth ini-
tial state of strain can be applied, which is sufficient to describe practically any initially
curved and twisted beam.

The equilibrium equations of an infinitesimal element of a beam are given by the
following set of differential equations:

ng = −N ′
g (11)

mg = −M ′
g − r ′

g ×Ng. (12)

The two stress resultants, the force Ng and the moment Mg, depend both on the
external distributed force and moment vectors ng and mg per unit of the undeformed
length of the axis, and on the deformed shape of the axis, described by its position vector
rg.

On the other hand, the stress resultants are dependent on strain vectors γG and κG

as determined by the constitutive equations

NG = CN (γG,κG) (13)

MG = CM (γG,κG) . (14)

4. Governing equations of the strain-based formulation

The complete set of the beam equations consists of the constitutive equations (13)–
(14), the equilibrium equations (11)–(12) and the kinematic equations (9)–(10) set with
respect to the global basis:

RCN (γG,κG)−Ng = 0 (15)

RCM (γG,κG)−Mg = 0 (16)

N ′
g + ng = 0 (17)

M ′
g +mg − S (Ng)R (γG − cG) = 0 (18)

r ′
g − R (γG − cG) = 0 (19)

ϑ′
g − T−T (κG − dG) = 0. (20)

The related static boundary conditions are:

S0 +Ng (0) = 0 (21)

P 0 +Mg (0) = 0 (22)

SL −Ng (L) = 0 (23)

PL −Mg (L) = 0. (24)

6



Here, S0, P 0, SL, PL are vectors of the external point loads at the boundaries x = 0
and x = L. In (18) the use of the skew-symmetric matrix S replaces the vector product
(see equation (5)).

Equations (17)–(20) constitute a system of four first-order ordinary differential equa-
tions. If we assume that ng, mg, γG and κG are known analytic functions of x, the
formal solutions of these equations read

Ng (x) = Ng (0)−
∫ x

0

ng (x̃) dx̃ (25)

Mg (x) = Mg (0) +

∫ x

0

[
S (Ng (x̃))R (x̃) (γG (x̃)− cG (x̃))−mg (x̃)

]
dx̃ (26)

rg (x) = r0g +

∫ x

0

R (x̃) (γG (x̃)− cG (x̃)) dx̃ (27)

ϑg (x) = ϑ0
g +

∫ x

0

T−T (x̃) (κG (x̃)− dG (x̃)) dx̃. (28)

Equations (25) and (26) are evaluated at x = L and inserted in the static boundary
conditions at the right boundary of the beam. The fulfilment of the displacement and
rotation boundary conditions at x = L places additional requirements on strain vectors:

rg (L)− r0g −
∫ L

0

R (x) (γG (x)− cG (x)) dx = 0 (29)

ϑg (L)− ϑ0
g −

∫ L

0

T−T (x) (κG (x)− dG (x)) dx = 0. (30)

Once equations (17)–(20) have been solved by the integration, see equations (25)–(28),
the complete set of the equations of the strain-based formulation of the geometrically
exact three-dimensional beam then consists of the algebraic equations (15) and (16), the
kinematic conditions (29)–(30) and the static boundary conditions (21)–(24):

f1 = RCN (γG,κG)−Ng = 0 (31)

f2 = RCM (γG,κG)−Mg = 0 (32)

f3 = rLg − r0g −
∫ L

0

R (γG − cG) dx = 0 (33)

f4 = ϑL
g − ϑ0

g −
∫ L

0

T−T (κG − dG) dx = 0 (34)

f5 = S0
g +N0

g = 0 (35)

f6 = P 0
g +M0

g = 0 (36)

f7 = SL
g −N0

g +

∫ L

0

ng dx = 0 (37)

f8 = PL
g −M0

g −
∫ L

0

[
S (Ng)R (γG − cG)−mg

]
dx = 0. (38)

Equations (31)–(38) along with the auxiliary relations (25)–(28) constitute the set of
eight equations for eight unknowns: (i) boundary kinematic vectors r0g, ϑ0

g, rLg , ϑL
g ,
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(ii) boundary equilibrium stress resultants N0
g, M0

g, and (iii) strain vector functions
γG (x) and κG (x). Formulation (31)–(38) thus employs the strains as the only unknown
functions of x.

The system of equations (31)–(38) is in general too demanding to be solved analyt-
ically. The approach where the strain vectors are approximated by an arbitrary order
interpolation and the kinematic vectors obtained by the numerical integration based on
(27)–(28) was presented by Zupan and Saje (2003). In the present paper, our goal is to
avoid the numerical integration along the beam element completely. This is achieved by
assuming that the strains are constant.

5. Constant strain finite-element formulation

Let Ω denote the given skew-symmetric matrix composed from the components of
the curvature vector κG (Ω = S (κG)). Its definition (Argyris, 1982):

Ω = RTR′

represents a linear differential equation for R (x). When the skew-symmetric matrix Ω
is independent of x, and thus the curvature vector κG constant, the analytical solution
can be found from the following result.

Let κG be the constant curvature vector and Ω = S (κG) the corresponding skew-
symmetric matrix. Then

R (x) = R0R̄ (xκG) = R0 exp (xS (κG)) (39)

is the solution of the initial value problem

R′ (x) = R (x)Ω, R (0) = R0.

Here R̄ (xκG) denotes the exponential map (see equation (4)) composed from skew-
symmetric matrix xS (κG), i.e.

R̄ (xκG) = I+ xS (κG) +
1

2!
x2S2 (κG) + . . .+

1

n!
xnSn (κG) + . . .

Proof: The proof is straightforward, if the exponential form (4) of the rotation matrix
is employed. The differentiation of the presumed solution with respect to x gives

R′ (x) = R0
d

dx
R̄ (xκG) .

The derivative of R̄ (xκG) with respect to x is (see (4) and (6)):

d

dx
R̄ (xκG) =

d

dx

(
I+ xS (κG) +

1

2!
x2S2 (κG) + . . .+

1

n!
xnSn (κG) + . . .

)
= S (κG) + xS2 (κG) +

1

2!
x2S3 (κG) + . . .+

1

(n− 1)!
xn−1Sn (κG) + . . .

=

(
I+ xS (κG) +

1

2!
x2S2 (κG) + . . .+

1

(n− 1)!
xn−1Sn−1 (κG) + . . .

)
S (κG)

= R̄ (xκG)S (κG) .
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Thus,
R′ (x) = R0R̄ (xκG)S (κG) = R (x)Ω.

By evaluating R (x) at x = 0, we obtain

R (0) = R0R (0κG) = R0I = R0.

This concludes the proof.
In standard approaches only infinitesimal and/or incremental rotational vectors are

allowed to be interpolated due to the non-linearity of three-dimensional rotations. A
standard beam element with a linearly interpolated incremental rotational vector would
thus also result in constant strains but with only an approximate total rotation field.
In contrast, the exact rotation field is obtained here. The solution (39) shows that the
total rotational operator is the product of the rotation at the boundary point of the
beam, x = 0, and the relative arc-length, x, dependent rotation. This multiplicative
decomposition is also inherited by the linearization, as shown in Appendix A, and thus
seems to be natural. The idea of expressing the rotations with respect to the local
coordinate system attached to a point on the element is typical for the co-rotational beam
elements, see, e.g. Crisfield (1990), Battini and Pacoste (2002). Such a decomposition of
rotations was also used in the rotation interpolation by Crisfield and Jelenić (1999) to
obtain the strain-objective numerical formulation of the geometrically exact beam.

It is now obvious that the rotation boundary condition (34) can be substituted by a
direct (not integral) expression. Once the rotation matrix R (x) is at hand, we are able
to extract the components of the corresponding rotational vector ϑg (x) at any point
x. Due to its numerical stability, the Spurrier algorithm (Spurrier, 1978) is used. The
algorithm, however, cannot be expressed as an explicit function of the components of
R (x). Therefore, we will use the symbolic notation

ϑg (x) = Spurrier (R (x)) . (40)

By inserting (39) into (40) we obtain the relationship between the rotational vector and
the constant rotational strain vector κG as

ϑg (x) = Spurrier
(
R0R̄ (xκG)

)
.

Thus, equation (34) can be rewritten as

f4 = ϑL
g − ϑ0

g − Spurrier
(
R0R̄ (LκG)

)
+ Spurrier (R0) = 0.

Although discretized, the algebraic consistency conditions (31)–(32) cannot be ana-
lytically satisfied for any x. Here we employ the collocation method and demand their
satisfaction only at the midpoint of the beam. Not alike the Galerkin method, the col-
location avoids integrating continuous governing equations multiplied with the shape
functions along the length of the beam. The evaluation of such integrals demands an
additional computational cost, which is avoided by the present approach. The complete
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set of the discretized equations now reads

f1 = R
(
L
2

)
CN (γG,κG)−Ng

(
L
2

)
= 0

f2 = R
(
L
2

)
CM (γG,κG)−Mg

(
L
2

)
= 0

f3 = rLg − r0g −
∫ L

0

R dx (γG − cG) = 0

f4 = ϑL
g − ϑ0

g − Spurrier
(
R0R̄ (LκG)

)
+ Spurrier (R0) = 0 (41)

f5 = S0
g +N0

g = 0

f6 = P 0
g +M0

g = 0

f7 = SL
g −N0

g +

∫ L

0

ng dx = 0

f8 = PL
g −M0

g −
∫ L

0

S (Ng)R dx (γG − cG) +

∫ L

0

mg dx = 0.

Without the loss of generality the midpoint of the beam, chosen here for the collocation
point, can also be applied in beams with the non-uniform cross-section only that the
resultant geometrical properties should be provided with respect to the midpoint of the
axis of the beam. These characteristics can be evaluated in advance during the data
pre-processing. We further assume a linear variation of the external distributed force
and moment vectors ng and mg over the beam:

ng (x) = n0
g +

nL
g − n0

g

L
x (42)

mg (x) = m0
g +

mL
g −m0

g

L
x. (43)

Equations f1 and f2 now assert that the equilibrium and the constitutive internal
forces are equal at the midpoint of the beam, but not outside. In contrast the equilibrium
equations are satisfied at any cross-section, x, using (25)–(26).

We are now able to express the integrals
∫ L

0
R dx,

∫ L

0
ng dx,

∫ L

0
S (Ng)R dx and∫ L

0
mg dx in an exact analytical form. By employing (39) and the Rodrigues formula (3)

we obtain

W (x) =

∫ x

0

R (x̃) dx̃ = R0

∫ x

0

R̄ (x̃κG) dx̃

= R0

[
xI+

1− cosxκ

κ2
S (κG) +

xκ− sinxκ

κ3
S2 (κG)

]
. (44)

Thus,

W (L) = R0

[
LI+

1− cosLκ

κ2
S (κG) +

Lκ− sinLκ

κ3
S2 (κG)

]
.

Integrals
∫ L

0
ng dx and

∫ L

0
mg dx are trivial and are therefore omitted here. Upon in-

serting (42) in (25) and integrating we obtain

Ng (x) = N0
g − n0

g x−
nL

g − n0
g

2L
x2.
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The easiest way to express the integral
∫ L

0
S (Ng (x))R (x) dx, when Ng (x) is a low

order polynomial in x, is to employ the integration by parts∫ L

0

S (Ng (x))R (x) dx =
[
S (Ng (x))W (x)

]L
0
−
∫ L

0

S (Ng (x))
′ W (x) dx

=
[
S (Ng (x))W (x)

]L
0
−
[
S (Ng (x))

′ V (x)
]L
0

+

∫ L

0

S (Ng (x))
′′ V (x) dx,

where

V (x) =

∫ x

0

W (x̃) dx̃

= R0

[
1

2
x2I+

xκ− sinxκ

κ3
S (κG) +

x2κ2 + 2(cosxκ− 1)

2κ4
S2 (κG)

]
(45)

U (x) =

∫ x

0

V (x̃) dx̃

= R0

[
1

6
x3I+

x2κ2 + 2 (cosxκ− 1)

2κ4
S (κG)

+
−6xκ+ x3κ3 + 6 sinxκ

6κ5
S2 (κG)

]
. (46)

Evaluating the terms at x = L and x = 0 gives∫ L

0

S (Ng (x))R (x) dx = S (Ng (L))W (L) + S
(
nL

g

)
V (L)

− 1

L
S
(
nL

g − nL
g

)
U (L) . (47)

Note that the computational cost of this exact integration is about the same as for the
3-point numerical Gaussian integration; the latter may, however, result in a substantial
error, which is due to the trigonometric terms sinxκ and cosxκ in the integrand, see
equations (45)–(46). The computational cost can further be reduced, if the similarity
between the terms R, W, V, and U is considered (see Appendix A).

It is interesting to observe the analytical expression for displacements along such a
finite element. From (27) and (44) we have

rg (x) = r0g +W (x) (γG − cG)

= r0g + R0

[
xI+

1− cosxκ

κ2
S (κG) +

xκ− sinxκ

κ3
S2 (κG)

]
(γG − cG)

= r0g + R0W̄ (x)W−1 (L) (rLg − r0g)

=
[
I−W (x)W−1 (L)

]
r0g +W (x)W−1 (L) rLg . (48)

Equation (48) represents an explicit interpolation-like form that could be interpreted
as a linked (rotation dependent) interpolation of the total displacement field. Such a
non-linear interpolation could be used for the approximation of displacements in the
displacement-based formulations.
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5.1. Linearization

Despite the analytical relationships between the displacements, rotations and strains
have been obtained, the remaining equations of the geometrically non-linear beam are
too demanding to be solved analytically. Newtons’ iteration method is used instead. For
that purpose the linearization of the governing equations is needed. Equations (31)–(38)
will be varied at r0g, ϑ

0
g, N

0
g, M

0
g, r

L
g , ϑ

L
g , γG, κG in ‘directions’ δr0g, δϑ

0
g, δN

0
g, δM

0
g,

δrLg , δϑ
L
g , δγG, and δκG. The deduction of the variations of the equations is simplified,

if variations of some of the quantities are prepared in advance.
Function Ng (x) depends on N0

g and ng (x). When the loading is deformation-
independent, ng (x) does not depend on the unknown functions, and so

δNg (x) = δN0
g. (49)

The variation of the derivative of the rotational vector, ϑ′
g, is given by equation (8):

δϑ′
g = RδκG. (50)

By integrating equation (50) with respect to x and employing (44), we obtain

δϑg (x) = δϑ0
g +

∫ x

0

R (x̃) dx̃ δκG = δϑ0
g +W (x) δκG. (51)

The variation of the rotation matrix is obtained from equation (39)

δR = δR0R̄ (xκG) + R0 δR̄ (xκG) .

Since R0 is dependent only on δϑ0
g, we can apply a well known formula for the variation

of the rotation matrix (δR = δΘR) resulting in

δR = S
(
δϑ0

g

)
R0R̄ (xκG) + R0 δR̄ (xκG)

= S
(
δϑ0

g

)
R+ R0 δR̄ (xκG) . (52)

The variation in the second term will be prepared separately. Because R̄ (xκG) is ex-
pressed in terms of the additive strain vector κG, the linearization of the corresponding
rotation matrix follows directly from the definition of the directional derivative

δR̄ (xκG) =
d

dα

∣∣∣∣
α=0

R̄ (xκG + αxδκG) . (53)

After taking the derivative with respect to α and evaluating the result at α = 0, we
obtain

δR̄ (xκG) =
sinxκ

κ
S (δκG) +

1− cosxκ

κ2
[S (δκG)S (κG) + S (κG)S (δκG)]

+
xκ cosxκ− sinxκ

κ3
(κG · δκG)S (κG) (54)

+
xκ sinxκ+ 2 (cosxκ− 1)

κ4
(κG · δκG) S

2 (κG) ,

12



where (κG · δκG) denotes the scalar product of vectors κG and δκG, and κ denotes the
Euclidean norm of vector κG.

In order to write δR̄ as a product of an operator and δκG, we first multiply δR in
(52) by an arbitrary vector u. The first term of (52) can be rewritten as

S
(
δϑ0

g

)
Ru = δϑ0

g × Ru = −Ru×δϑ0
g = −S (Ru) δϑ0

g. (55)

The second term can be expressed as a direct linear form in δκG

R0 δR̄ (xκG)u = R0QR (x;κG,u) δκG,

where the matrix QR (x;κG,u) is independent on the varied unknowns; it is presented
in Appendix A by an analytical formula. The final expression for the variation of the
rotation matrix in terms of the primary unknowns then reads

δRu = −S (R (x)u) δϑ0
g + R0QR (x;κG,u) δκG. (56)

The linearization of the constitutive equations gives

δNC
G = δCN = CγγδγG + CγκδκG (57)

δMC
G = δCM = CκγδγG + CκκδκG. (58)

Here the components of matrices Cγγ , Cγκ, Cκγ , and Cκκ are the partial derivatives of
CN and CM with respect to the components of γG and κG :

Cγγ =

[
∂CN

i

∂γj

]
, Cγκ =

[
∂CN

i

∂κj

]
Cκγ =

[
∂CM

i

∂γj

]
, Cκκ =

[
∂CM

i

∂κj

]
.

The matrix C =

[
Cγγ Cγκ

Cκγ Cκκ

]
is the cross-section constitutive tangent matrix.

We will vary Mg (x) in the format as expressed by the exact integration (see (26)
and (47))

Mg (x) = M0
g +

∫ x

0

S (Ng (x̃))R (x̃) dx̃ (γG − cG)−
∫ x

0

mg (x̃) dx̃

= M0
g + M̃ (x) (γG − cG)− xm0

g − x2
mL

g −m0
g

2L
, (59)

where

M̃ (x) =

∫ x

0

S (Ng (x̃))R (x̃) dx̃ = S (Ng (x))W (x) + S (ng (x))V (x)

− 1

L
S
(
nL

g − nL
g

)
U (x) .

After a lengthy derivation the linearization of (59) can be expressed as

δMg (x) = δM0
g + M̃N (x) δN0

g + M̃ϑ (x) δϑ
0
g + M̃κ (x) δκG + M̃ (x) δγG, (60)

13



where

M̃N (x) = −S (W (x) (γG − cG))

M̃ϑ (x) = −S (Ng (x))S (W (x) (γG − cG))− S (ng (x))S (V (x) (γG − cG))

+
1

L
S
(
nL

g − n0
g

)
S (U (x) (γG − cG))

M̃κ (x) = S (Ng (x))R0QW (x;κG,γG − cG)

+ S (ng (x))R0QV (x;κG,γG − cG)

− 1

L
S
(
nL

g − n0
g

)
R0QU (x;κG,γG − cG) .

Matrices QW (x;κG,γG − cG), QV (x;κG,γG − cG) and QU (x;κG,γG − cG) along with
the details of the linearization are presented in Appendix A.

After these preparations have been completed, the variations of the equations of the
beam are easily derived and are as follows:

δf1 (x) = δR
(
L
2

)
CN (γG,κG) + R

(
L
2

)
δCN − δNg (x) (61)

δf2 (x) = δR
(
L
2

)
CM (γG,κG) + R

(
L
2

)
δCM − δMg (x) (62)

δf3 = δrLg − δr0g − δW (L) (γG − cG)−W (L) δγG (63)

δf4 = δϑL
g − δϑ0

g −W (L) δκG (64)

δf5 = δN0
g (65)

δf6 = δM0
g (66)

δf7 = −δN0
g (67)

δf8 = −δMg (L) . (68)

Equation (64) is obtained by evaluating (51) at x = L. The substitution of relations (49),
(56), (57), (58) and (60) into (61)–(68) yields the variations of the governing equations
with respect to the variations of the primary unknowns.

5.2. Linked interpolation of displacements

Variations of unknown quantities derived in the previous section allow us to present
the linked interpolation of incremental (variational) displacement field. In the present
element, it follows implicitly from the assumed strain field, however it is interesting to
present it also in the explicit form. From (48) and the results presented in Appendix A
we have

δrg (x) =
[
I−W (x)W−1 (L)

]
δr0g +W (x)W−1 (L) δrLg

+ δ
[
W (x)W−1 (L)

] (
rLg − r0g

)
. (69)

The variation of the operator W (x)W−1 (L) is obtained by the product rule:

δ
[
W̄ (x)W−1 (L)

]
= δW (x)W−1 (L) +W (x) δW−1 (L) .

It is suitable to introduce the multiplicative decomposition

W (x) = R0W̄ (x) (70)
14



since the variation of the rotation matrix is well known

δR0 = S
(
δϑ0

g

)
R0 (71)

and the variation of the operator W̄ (x) is relatively simple. The derivation of the explicit
formula for δW̄ (x) is presented in Appendix A. It is shown that when δW̄ (x) is multiplied
by an arbitrary vector u, the product δW̄ (x)u can be written as

δW̄ (x)u = QW (x;κG,u) δκG, (72)

where the matrix QW (x;κG,u) is independent on variations and can be expressed by a
closed Rodrigues-like formula. See Appendix A for further details. From (71) and (72)
we get (see also (55))

δW (x)W−1 (L)
(
rLg − r0g

)
= −S

(
W (x)W−1 (L)

(
rLg − r0g

))
δϑ0

g

+ R0QW

(
x;κG,W

−1 (L)
(
rLg − r0g

))
δκG.

Variation of the inverse in the last term follows from the definition of the inverse matrix:

W (L)W−1 (L) = I → δW−1 (L) = −W−1 (L) δW (L)W−1 (L) .

After considering decomposition (70) we have

δW−1 (L) = −W−1 (L)
(
δR0W̄ (L) + R0δW̄ (L)

)
W−1 (L)

= −W−1 (L)
(
S
(
δϑ0

g

)
W (L) + R0δW̄ (L)

)
W−1 (L) .

Applying the above result to the vector argument and considering (72) finally gives

R0W̄ (x) δW−1 (L)
(
rLg − r0g

)
= W (x)W−1 (L)S

(
rLg − r0g

)
δϑ0

g

−W (x)W−1 (L)R0QW

(
L;κG,W

−1 (L)
(
rLg − r0g

))
δκG.

For clarity the variational displacement is now written as

δrg (x) = J1 (x) δr
0
g + J2 (x) δr

L
g + J3 (x) δϑ

0
g + J3 (x) δκG. (73)

where

J1 (x) = I−W (x)W−1 (L)

J2 (x) = W (x)W−1 (L)

J3 (x) = W (x)W−1 (L)S
(
rLg − r0g

)
− S

(
W (x)W−1 (L)

(
rLg − r0g

))
J4 (x) = R0QW

(
x;κG,W

−1 (L)
(
rLg − r0g

))
−W (x)W−1 (L)R0QW

(
L;κG,W

−1 (L)
(
rLg − r0g

))
.

Note that in the rotation-displacement-based formulations, the variation of the strain
vector δκG should be replaced by the derivative of the rotational vector, i.e. δκG =
RT δϑ′

g. The derivative of the variation of the rotational vector can be obtained from
assumed (standard) interpolation of variational rotations. The resemblance of the present
result (73) with the interpolations proposed by Borri and Bottasso (1994) and Jelenić
and Papa (2011) can be observed.
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6. Convergence

In this section we will show that the proposed finite-element solution converges to
the exact solution of the problem. Let us consider that the proposed finite element
occupying an arbitrary interval [x, x+ h] taken anywhere on the domain of the beam,
[x, x+ h] ⊂ [0, L]. h denotes the length of the element. The discrete consistency and
kinematic equations of the finite element on the interval [x, x+ h] can be written as

f1 = R
(
x+ h

2

)
CN (γG (x+ h/2) ,κG (x+ h/2))−Ng

(
x+ h

2

)
= 0 (74)

f2 = R
(
x+ h

2

)
CM (γG (x+ h/2) ,κG (x+ h/2))−Mg

(
x+ h

2

)
= 0 (75)

f3 = rg (x+ h)− rg (x)−
∫ x+h

x

R (ξ) dξ (γG (x+ h/2)− cG) = 0 (76)

f4 = R (x+ h)− R (x)− R (x)R (hκG)− R (x) = 0. (77)

Note that the equilibrium equations are not considered here as they have been satisfied
exactly during the construction of the above equations, while the strain vectors γG and
κG are assumed to be constant along the element. Without the loss of generality, the
value at the midpoint x + h/2 can be taken as the reference value. Observe also that
equation (77) is written in terms of the rotation matrix rather than in terms of the
rotational vector as in (41). The convergence of the discretized rotation matrix results
in the convergence of its real eigenvector – the rotational vector ϑg.

Let us assume that the length of the element tends to zero, h → 0. Then it is easy to
prove that the discrete equations (74)–(77) of the present element converge to the exact
equations (31)–(34). Taking the limit of (74) and (75) gives:

lim
h→0

f1 = R (x) CN (γG (x) ,κG (x))−Ng (x) = 0 (78)

lim
h→0

f2 = R (x) CM (γG (x) ,κG (x))−Mg (x) = 0. (79)

Taking the limit of equation (76) yields the trivial identity. If instead it is first divided
by h and since the integral of the rotation matrix exists - see equation (44), we can write

f3

h
=

rg (x+ h)− rg (x)

h
− W (x+ h)−W (x)

h
(γG (x+ h/2)− cG) = 0.

From the Fundamental Theorem of Calculus follows that function W (x+ h) is differen-
tiable at h = 0 and that W′ (x) = R (x). Thus, the limit of the above expression does
exist and results in

lim
h→0

f3

h
= r′g (x)− R (x) (γG (x)− cG) . (80)

Analogously, we divide the matrix equation (77) by h:

f4

h
=

R (x+ h)− R (x)

h
− R (x)R (hκG)− R (x)

h

=
R (x+ h)− R (x)

h

− R (x)

(
S (κG) +

1

2!
hS2 (κG) + . . .+

1

n!
hn−1Sn (κG) + . . .

)
.
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The limit of the above expression for h → 0 reads

lim
h→0

f4

h
= R′ (x)− R (x)S (κG) . (81)

Equations (78)–(81) are exactly the same equations as the equations of the continuous
(non-discretized) problem. Thus we have proven that the numerical solution of the finite-
element mesh of the present elements converges to the exact analytical solution of the
kinematically exact beam by reducing the length of elements.

7. Numerical examples

We now present the results of several numerical tests to demonstrate the performance,
accuracy and the advantages of the proposed formulation. In the first set of the problems,
we present some standard beam finite-element tests and compare the results of the pro-
posed formulation to the results obtained by others. In the second set, we demonstrate
that the solution is applicable for strain-localization problems.

Since the integrals in the tangent stiffness matrix and in the residual vector are
evaluated exactly, the only approximation in the present formulation stems from the
assumption that the strains are constant along an element. Thus the formulation gives
exact results whenever the problem is such that strains are constant. When the exact
solution for the strains is not constant, the accuracy of the present numerical model can
be enhanced only by increasing the number of elements. We wish to stress that even
fine meshes behave very economically in terms of the computational time, which is due
to the firm theoretical basis and the possibility of efficient computer coding. Numerical
tests were performed in the Matlab computing environment.

The present element has 24 total degrees of freedom. The boundary equilibrium stress
resultants N0

g and M0
g and the strain vectors γG and κG are allowed to be considered

as the internal degrees of freedom. In the numerical implementation, they are therefore
condensed at an element level. The number of external degrees of freedom thus remains
12, as it is typical for conventional three-dimensional beam elements.
For the analysis of the post-critical behaviour of the structures we have implemented an
arc-length method, where the arc-length parameter depends only on the translational
degrees of freedom.

7.1. Standard beam finite-element tests

In the following five standard examples, only a linear elastic material is employed,
whose relationships between the stress-resultants and the strain measures are given by

NG =

 EA1 0 0
0 GA2 0
0 0 GA3

γG, MG =

 GJ1 0 0
0 EJ2 0
0 0 EJ3

κG.

E and G denote elastic and shear moduli of material; A1 is the cross-sectional area; J1
is the torsional inertial moment of the cross-section; A2 and A3 are the effective shear

areas in the principal inertial directions
⇀

G2 and
⇀

G3 of the cross-section; J2 and J3 are the

centroidal bending inertial moments of the cross-section about its principal directions
⇀

G2

and
⇀

G3.
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Table 1: Free-end displacements and rotation under an in-plane point moment.

model uX uZ ϑY

present, linear ne = 1 or 5 0.000000 −14.285714 0.285714
exact linear Zupan and Saje (2006) 0.000000 −14.285714 0.285714
present, non-linear ne = 1 or 5 −1.355002 −14.188797 0.285714
exact non-linear Saje and Srpčič (1986) −1.355002 −14.188797 0.285714

ne = number of elements.

7.1.1. Cantilever beam under end moment

We consider a straight in-plane cantilever, subjected to a point moment at its free
end (Figure 2). The analytical solution (Saje and Srpčič, 1986) of the exact non-linear
equations of the beam shows that the beam deforms into a circular arc.

We compare our numerical results obtained by a single iteration step (linear solution)
with the analytical solution of the linearized Reissner beam theory, see, e.g. Zupan and
Saje (2006). We also compare the converged numerical results (non-linear solution) to
the exact non-linear solutions obtained by Saje and Srpčič (1986).

We took the following geometric and material properties of the cantilever:

E = 2.1 · 104, A1 = 20, J1 = 6.4566,

G = 1.05 · 104, A2 = 16, J2 = 1.6667,

L = 100, A3 = 16, J3 = 666.66.

The applied free-end moment was MY = 100.
In Table 1 the displacements and the rotation at the free end are displayed and

compared to the exact results both for the linear and the non-linear beam theory. As it
has been expected, a complete agreement between the results of the exact and numerical
linear and non-linear analyses is observed. It is also worth noticing that a single finite
element suffices to achieve the results equal to the exact ones in all significant digits. The
obvious reason for such a high accuracy is a complete exactness of the present element
for beams with a constant curvature.

X

Y

Z

O

MY

G2

*
G3

*

G1

*

*

Figure 2: The cantilever under free-end moment.
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7.1.2. Bending of 45◦ cantilever

X

Y

Z

O

F
*

Figure 3: Cantilever 45◦ bend.

This standard beam finite-element test was first presented by Bathe and Bolourchi
(1979). It includes all modes of deformation of a structure: bending, shear, extension
and torsion. The cantilever with the centroidal axis in the form of the circular arc with
the central angle π/4 and radius R = 100 is located in the horizontal plane (X,Y ) and
subjected to a point load in the Z direction at the free-end (Figure 3). Material data
and the geometric properties of the cross-section of the beam are:

E = 107, G = E/2,

A1 = 1, A2 = A3 = 5/6,

J1 = 1/6, J2 = J3 = 1/12.

For comparison reasons we model the beam with 8 initially straight or curved el-

Table 2: Free-end position of the cantilever 45◦ under out-of-plane force.

F = 300 F = 600
formulation load steps ni rX rY rZ rX rY rZ

present, straight single 7 22.32 58.83 40.03 15.81 47.23 53.27
6 equal 6 · 5 22.32 58.83 40.03 15.81 47.23 53.27

Zupan and Saje (2003)∗ single 6 22.28 58.78 40.16 15.74 47.15 53.43
Bathe and Bolourchi (1979) 60 equal 22.5 59.2 39.5 15.9 47.2 53.4
Simo and Vu-Quoc (1986)∗ 300, 2 · 150 27 22.33 58.84 40.08 15.79 47.23 53.37
Cardona and Géradin (1988)∗ 6 equal 6 · 7 22.14 58.64 40.35 15.55 47.04 53.50
Crivelli and Felippa (1993)∗ 6 equal 22.31 58.85 40.08 15.75 47.25 53.37

present, curved single 8 22.25 58.85 40.07 15.65 47.29 53.33
Zupan et al. (2009)∗∗ 6 equal 5 22.14 58.54 40.47 15.61 46.89 53.60
Zupan and Saje (2003)∗∗ single 6 22.24 58.77 40.19 15.68 47.14 53.47

number of elements: 8; type of element: ∗linear, straight, ∗∗linear, curved;
ni = number of iterations.
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Table 3: Number of floating point operations.

formulation one element one iteration total

present, straight ne = 8 2750 131600 904650
ne = 16 2750 270400 1573360
ne = 32 2750 530200 3087860
ne = 64 2750 1010800 5949070
ne = 128 2750 2050000 11992840

Zupan and Saje (2003)∗ ne = 8 6060 184330 1044900
ne = 16 6060 374510 2119460
ne = 32 6060 746400 4219140
ne = 64 6060 1493040 8422670
ne = 128 6060 2971600 16805560

ne = number of elements, ∗ straight, linear interpolation, numerical integration.

ements. Table 2 displays the comparison of the results of the present element to the
results of the others. No theoretically exact result is available for this problem, but we
can conclude that the present results are in good agreement with the others.

The present results for a single load step were obtained in 7 iterations for the accuracy
tolerance 10−9. For the results obtained by 6 equal load steps and the same tolerance
in each step, 5 iterations were needed per load step and the results are identical to the
one-step solution in all significant digits. The required number of iterations indicate the
efficiency of the proposed approach. The results also indicate the path-independency of
the present formulation.

In order to demonstrate the computational efficiency of the present formulation, we
also compare the number of floating point operations needed for the generation of the
tangent stiffness matrix and the residual vector with a similar formulation of Zupan and
Saje (2003) applying linear polynomial interpolation and the numerical integration. The
number of the floating point operations was counted by function flops as incorporated in
the older versions of the Matlab software. We also compare the number of the floating
point operations needed to perform one iteration of Newton’s method and the total
number of iterations. The comparisons in Table 3 confirm the computational efficiency
of the proposed formulation.
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7.1.3. Stability of a deep circular arch

In this example we consider an elastic beam shaped as deep circular arch. The un-
deformed centroidal axis of the beam corresponds to the central angle 215◦ of a circle
with radius R = 100 and lies in the XZ-plane. The arch is clamped at one end, and sup-
ported at the other where the rotation about the Y direction is allowed. The remaining
geometric and material properties of the arch are:

EJ2 = EJ3 = GJ1 = 106,

EA1 = GA2 = GA3 = 108.

X

Y

145°

Z

O

F
*

G2

*

G1

*

G3

*

Figure 4: Deep circular arch.

First, wee consider the in-plane buckling stability of the arch subjected to the point
load F acting at the top of the arch (Figure 4). Buckling of the arch occurs at highly
deformed configuration and has been studied by many authors. The comparison with
the results of Ibrahimbegovic (1995), Zupan and Saje (2003) and Simo (1985) for the
critical force is presented in Table 4. The results are compared to the reference solution
of DaDeppo and Schmidt (1975) which was proved to be accurate in three significant
digits: Fcr = 897. We can observe a substantial difference between the results of the
straight and curved elements unless a sufficiently large number of straight elements is
employed. This is both due to the curved initial geometry and the highly deformed shape
of the beam at the critical state.

This classical example has been traditionally studied as an in-plane problem. We
need to stress the additional complexity of this problem due to the critical point found
at a much lower magnitude of the applied load, at approximately Fcr = 244. This
critical point represents a bifurcation point. It has been reported by de Souza Neto and
Feng (1999) that the popular criteria for the prediction of the path-direction used in
commercial finite-element codes might fail in the presence of bifurcation points. This
was confirmed by studying this problem with several commercial codes. In contrast, by
using the present three-dimensional non-linear beam element, we are able to detect the
bifurcation point and follow both the in-plane and the out-of-plane path. In addition to
the well known in-plane primary path, the secondary out-of-plane branch has also been
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Table 4: Critical force of a deep circular arch.

curved elements
ne present Zupan and Saje (2003)∗ Ibrahimbegovic (1995)∗∗

20 906.57 897.34 897.5
40 899.69 897.29
80 897.87 897.29

ne = number of elements; ∗ linear, ∗∗ 3-point elements.

straight elements
ne present Zupan and Saje (2003)∗ Simo (1985)∗ Ibrahimbegovic (1995)∗∗

917.16 907.31 906
902.16 899.80 905.28
898.49 897.86

ne = number of elements; ∗ linear, ∗∗ 3-point elements.

investigated. The load-deflection curve of the secondary path is shown in Figure 5a.
Figure 5b presents the deformed shapes of the arch for the reference values of the applied
force: F = 244 (the out-of-plane buckling force), F = 334 (at the maximum out-of-plane
deflection) and F = 897, which is the in-plane buckling force.
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Figure 5: (a) Load-deflection curve for out-of-plane buckling of deep circular arch, and (b) deformed
shapes of the arch.

7.1.4. Cantilever, bent to a helical form

This example, first studied by Ibrahimbegovic (1997), shows the ability of the present
formulation to consider properly large three-dimensional rotations. A straight, initially
in-plane cantilever is subjected simultaneously to a point moment and an out-of-plane
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point force at the free end as depicted in Figure 6. The geometric and material properties
are the same as in Ibrahimbegovic (1997):

EJ2 = EJ3 = GJ1 = 102,

EA1 = GA2 = GA3 = 104,

L = 10.

X

Y

Z

O
FY

*

MY

*
L

Figure 6: Cantilever, bent to a helical form.
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Figure 7: Deformed beam.

Two loads, MY = 200πλ and FY = 50λ, are applied at the free-end of the beam
in 1000 steps with the loading factor λ ranging from 0 to 1. In the present case the
beam was modelled by a mesh of 200 elements. The deformed shape of the cantilever is
presented in Figure 7. The beam is bent into a tight helical form with the maximum out-
of-plane displacement uY = −0.077 in the final configuration. The cantilever free-end
displacement uY as a function of loading factor λ is shown in Figure 8a. The result is
almost identical to the ones presented by other authors, see, e.g. Ibrahimbegovic (1997),
Battini and Pacoste (2002).

Note that this example is highly complex. While the free-end rotation is increasing
with λ, the out-of plane displacements are oscillating, as shown in Figure 8a. Hence the
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Figure 8: Free-end displacement, uY , vs. loading factor, λ: a) present element; b) commercially available
codes.

problem demonstrates the ability of the formulation to consider properly large (more than
2π) rotations together with the oscillating displacements. The analyses of Ibrahimbegovic
(1997) show the importance of the suitable parametrization of rotations in order to obtain
the correct results. As shown in Figure 8b, several commercially available codes fail, when
the direction of the out-of-plane displacement changes. This failure has been observed at
an early stage of deformation, at rotation angle being roughly 2π/3 and 2π, respectively.
In contrast, the present element shows excellent performance, regardless of the magnitude
of the applied load.

7.1.5. Twisted cantilever beam
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Figure 9: Pretwisted beam for an angle of π/2.

The initially twisted cantilever was presented by MacNeal and Harder (1985) among
tests for the finite element accuracy. The cross-sections of the cantilever are twisted
about an initially straight centroidal axis as shown in Figure 9. The initial twist angle
is a linear function of the arc-length x with its value set to 0 at the clamped end and to
π/2 at the free-end. The remaining geometric and material characteristics of the beam
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are:

L = 12, h = 1.1, t = 0.32,

E = 29 · 106, ν = 0.22.

The aim of this test is to find out if the present finite element is capable of considering
the initially non-planar configuration of the beam properly. Although the test should be
interesting both in practical applications and in assessing the beam element accuracy, it
has rarely been used so far. We wish to stress that such a twisted beam element is not
available in commercial codes. If we wish to model such structural elements, we need to
employ the shell finite elements, which raises the computational costs.

We consider two separated load cases with forces FY = 1 and FZ = 1 applied at the
free end. Results for the free-end displacements in the direction of the related applied
force are compared to results of others in Table 5.

Due to a small magnitude of the applied forces the linear and non-linear solutions
coincide. Our results converge to the exact (linear) solution based on the Reissner beam
theory as presented by Zupan and Saje (2006, Appendix D). The differences between
the theoretical solutions of MacNeal and Harder (1985) and Zupan and Saje (2006) stem
from the differences in the two beam theories. The comparison of the numerical and
analytical results of the same beam theory, shows that the numerical results are accurate
in all significant digits.

7.1.6. Cantilever under follower loads

The non-conservative follower-type of loads need to be sometimes considered. We
now demonstrate that the present approach can consider the follower loads properly. For
comparison reasons, we follow the study by Kapania and Li (2003) and present the results
of a cantilever beam subjected to two different types of uniformly distributed loads: (i)
conservative and (ii) follower ones (Figure 10).

Table 5: Free-end displacements of a π/2-pretwisted cantilever.

FZ = 1 FY = 1
formulation ne uZ error (%) uY error (%)

present 3 0.005221 3.83 0.001679 4.00
12 0.005416 0.24 0.001744 0.29
24 0.005426 0.06 0.001748 0.06
36 0.005428 0.02 0.001749 0.00
48 0.005429 0.00 0.001749 0.00

Zupan and Saje (2003) 12 0.005429 0.00 0.001750 0.06
Ibrahimbegovic (1995) 24× 4 0.005411 0.33 0.001751 0.11
Dutta and White (1992) 12 0.005402 0.50 0.001741 0.46
MacNeal and Harder (1985) 0.005424 – 0.001754 –
exact linear Zupan and Saje (2006) 0.005429 0.00 0.001749 0.00

ne = number of elements.
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Figure 10: Cantilever under (i) uniformly distributed conservative load λ
⇀
p Y and (ii) uniformly dis-

tributed follower load λ
⇀
p 2.

The following properties of the beam were taken in our study:

EJ2 = EJ3 = 2.5 · 106 EA1 = 3 · 105

GA2 = GA3 = 2.4 · 105 GJ1 = 5 · 106.

l=0

l=2

l=5

l=10

l=15
l=25

l=0

l=2

l=5l=10

l=15

l=25

Conservative distributed load Follower distributed load

Figure 11: Deformed shapes of cantilever under uniformly distributed loads.

The finite-element mesh of 100 elements was used to obtain the results. The load
pY = p2 = λEJ3

L3 was applied in 25 steps (λ = 1, . . . , 25). Results are shown in Figures
11 and 12, where the deformed shapes and the normalized tip deflections are presented
with respect to the load factor. The present result are in an excellent agreement with
the ones presented by Kapania and Li (2003).
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Figure 12: Normalized tip deflections of a cantilever beam.

7.1.7. Star-shaped dome
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Figure 13: Geometry of the star-shaped dome.

The present approach is well convenient for the analysis of complex spatial struc-
tures. Here we show the results of the stability analysis of the 24 member star-shaped
dome depicted in Figure 13. The supports of the dome allow free rotations but restrain
translational motion. The dome is subjected to vertical load λF1, F1 = 1, at the central
node 1, and to vertical loads λF2 = λF1

2 at nodes 2, 3, 4, 5, 6 and 7. All 24 members
have the same material and cross-sectional properties:

E = 3.03 · 103, h = 3.17,

G = 1.096 · 103, t = 1.

Each member of the dome was modelled by 10 elements. We followed the equilibrium
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Figure 14: Load-deflection curve for (a) vertical displacement at node 1, (b) horizontal displacement at
node 2, and (c) vertical displacement at node 2.

path of the structure with the arc-length method. The results for the load-deflection
curves at nodes 1 and 2 are compared to those of Meek and Tan (1984) and Chan (1992)
in Figure 14. Our results are in best agreement with the results of the ‘Joint oriented
method’ by Chan (1992).

7.2. Strain localization

In this example we wish to demonstrate the applicability of the present constant-
strain element in modelling the strain localization as a consequence of the softening of a
material. We assume the following stress-strain law of material:

σ (ε) =


σy

εy
ε 0 ≤ |ε| ≤ εy (hardening)

σy

εu − εy
(εu − ε) sign (ε) εy < |ε| < εu (softening)

0 |ε| ≥ εu,

where ε(y, z) = γ1 − yκ3 + zκ2 is the extensional axial strain of an arbitrary fiber (y, z)
of the cross-section, and σ the corresponding axial stress. σy is the yield stress and εy
the corresponding strain; εu is the ultimate strain where material loses all strength. The
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constitutive axial force and the bending moments are given by well known relations

N1 =

∫∫
A
σ (ε (y, z)) dydz

M2 =

∫∫
A
zσ (ε (y, z)) dydz

M3 =

∫∫
A
yσ (ε (y, z)) dydz.

The integrals over the cross-section are evaluated analytically as proposed by Zupan
and Saje (2005). The shear stress resultants N2, N3 and the torsional moment M1

are assumed to be linearly dependent on shear and torsional strains: N2 = GA2γ2,
N3 = GA3γ3, M1 = GJ1κ1 (see Section 7.1).

The numerical simulations have been performed with the present formulation as well
as with the formulation proposed by Zupan and Saje (2003).

We consider a cantilever beam with the rectangular cross-section presented in Figure
15. The geometric and material properties of the beam are

L = 100, h = 5, t = 2,

A2 = A3 = 8.3333, J1 = 20.8333, G = 7692,

σy = 50, εy = 0.0025, εu = 0.0075.

O

X

Y

Z

L

G3

*

G2

*

G1

*

cross section:

G2

*

G3

*

h

t

FZ

*

Figure 15: Cantilever beam made of non-linear softening material.

First we consider the case where a point load FZ = −λF̄ , F̄ = 1, is applied at
the free-end of the cantilever. For comparison we first present the results of the strain-
based formulation of Zupan and Saje (2003) obtained by the mesh of four elements with
five interpolation points per element. Shortly after the maximum load capacity of the
cross-section nearest to the support is reached, the step of the arc-length method begins
decreasing (Figure 16(a)) and the analysis eventually fails. In the last converged step, we
can observe the spatial oscillation of the bending strain κ2 over the elements close to the
support (Figure 16(b)), which leads to the non-physical solution and the computational
failure of the analysis.

The present formulation overcomes the problem and gives full solution for the un-
loading path. Note that the results are dependent on the length of the element where the
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Figure 16: Results obtained with higher-order elements: (a) load-deflection curve for the free-end of the
cantilever, and (b) the spatial oscillation of bending strain κ2 along the length of the cantilever beam
after the critical load is reached.

strain localization occurs. The load-deflection curves for various lengths of the localized
element (L1) are presented in Figure 17(a). The variation of the bending strain κ2 along
the length of the cantilever, with L1 = 15, at the peak load λ = 5.267, is presented in
Figure 17(b). The localization of κ2 in the element at the support is evident.
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Figure 17: Results obtained with the present elements: (a) load-deflection curve for the free-end of the
cantilever, and (b) the variation of bending strain κ2 along the length of the cantilever beam at the
critical load.

The present formulation can also properly consider the spatial three-dimensional be-
haviour of the beam. This is demonstrated by simultaneously applying two point loads
FY = −λF̄ and FZ = −λF̄ at the free-end of the cantilever. The length of the element
close to the support is this time taken to be L1 = 10. The load-displacement curves are
presented in Figure 18. The variation of the strain components γ1, κ2 and κ3 over the
beam axis at the peak load λ = 1.758 are presented in Figure 19. From Figure 19 the
localization of the translational and bending strains at the support is clearly observed.
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Figure 18: Load-deflection curve for the free-end of the cantilever.
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8. Conclusions

We presented the finite-element formulation of the geometrically exact spatial beam
formulation with constant strains. The advantage of this new formulation is that the
equations can be analytically integrated, which considerably improves the formulation
and excludes the numerical integration as the source of error in the numerical solution.
The essential points of the formulation are as follows:

(i) The exact rotational strain – rotation relationship is employed, relating the constant
strain and the non-linear rotation field.

(ii) Subject to the condition of the constant strains over the axis of the beam the
equilibrium and the kinematic equations of the beam are satisfied exactly in an
analytical way.
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(iii) The consistency condition that the equilibrium and the constitutive internal force
and moment vectors are equal is satisfied at the midpoint of the beam. This
improves the accuracy of the internal forces and moments, which can be of an
utmost importance in materially non-linear problems.

(iv) The convergence of discrete solution with the increasing number of finite elements
to the exact solution is proven.

(v) The tangent stiffness matrix is obtained by a consistent linearization and a strict use
of exact analytical terms. Several interesting Rodrigues-like equations are revealed
in that way.

(vi) The resulting formulation and the deduced equations manifest the exact mathemat-
ical structure of several relations, which suggests the way the interpolation should
follow in the numerical approach. The application of the present exact forms in
the discretization process could show the way how to design new improved strain-
objective, locking-free and highly convergent beam finite elements.

(vii) The presented numerical examples show the efficiency and the accuracy of the
present approach.
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Appendix A: Variation of the rotation matrix and the resultant moment

We will present the details on the variation of rotation matrix and several related
quantities. The following two lemmas will be needed.

Lemma 1. Let Θ and Ω be skew-symmetric matrices, with axial vectors ϑ and ω, re-
spectively. Then the matrix ΘΩ−ΩΘ is a skew-symmetric matrix with its axial vector
being ϑ× ω:

ΘΩ−ΩΘ = S (ϑ× ω) .

Lemma 2. Let Θ and Ω be skew-symmetric matrices, with axial vectors ϑ and ω, re-
spectively. Then the linear combination of matrices Θ and Ω

(ϑ · ω)Θ− ϑ2Ω

is a skew-symmetric matrix formed from the vector ϑ× (ϑ × ω), i.e.

(ϑ · ω)Θ− ϑ2Ω = S (ϑ× (ϑ× ω)) .

The proof of both lemmas is straightforward and left to the reader.
For the linearization of the resultant moment (59)

Mg (x) = M0
g + M̃ (x) (γG − cG) +

∫ x

0

mg (x̃) dx̃

the matrix

M̃ (x) = S (Ng (x))W (x) + S (ng (x))V (x)− 1

L
S
(
nL

g − n0
g

)
U (x) (A.1)

needs to be varied with respect to the primary unknowns r0g, ϑ
0
g, N

0
g, M

0
g, r

L
g , ϑ

L
g , γG,

κG. It is suitable to prepare first the variations of the matrices W (x), V (x) and U (x)
(see equations (44), (45) and (46)). Due to its similar form, we will here also derive
the variation of rotation matrix R (x). As we will show further, the derivations and the
results for all four of the matrix quantities are completely analogous. For all the cases,
it is convenient to assume the multiplicative decomposition with the constant rotation
R0 at x = 0 as the first factor. Thus we can write

R (x) = R0R̄ (x)

W (x) = R0W̄ (x)

V (x) = R0V̄ (x)

U (x) = R0Ū (x) ,

(A.2)

where

R̄ (x) = I+ a1S (κG) + a2S
2 (κG)

W̄ (x) = xI+ a2S (κG) + a3S
2 (κG)

V̄ (x) =
1

2
x2I+ a3S (κG) + a4S

2 (κG)

Ū (x) =
1

6
x3I+ a4S (κG) + a5S

2 (κG)

(A.3)
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and the scalar coefficients ai are given by

a1 =
sinxκ

κ

a2 =
1− cosxκ

κ2

a3 =
xκ− sinxκ

κ3

a4 =
x2κ2 + 2(cosxκ− 1)

2κ4

a5 =
x3κ3 + 6(sinxκ− xκ)

6κ5
,

where κ is the Euclidean norm of strain vector κG. R̄ (x), W̄ (x), V̄ (x) and Ū (x) depend
only on the strain vector κG. κG is replaced by κG + αδκG, the derivative with respect
to α is taken and the results are evaluated at α = 0 to obtain

δR̄ (x) = a1S (δκG) + a2 [S (δκG)S (κG) + S (κG)S (δκG)]

+ b1 (κG · δκG)S (κG) + b2 (κG · δκG) S
2 (κG)

δW̄ (x) = a2S (δκG) + a3 [S (δκG)S (κG) + S (κG)S (δκG)]

+ b2 (κG · δκG)S (κG) + b3 (κG · δκG)S
2 (κG)

δV̄ (x) = a3S (δκG) + a4 [S (δκG)S (κG) + S (κG)S (δκG)]

+ b3 (κG · δκG)S (κG) + b4 (κG · δκG)S
2 (κG)

δŪ (x) = a4S (δκG) + a5 [S (δκG)S (κG) + S (κG)S (δκG)]

+ b4 (κG · δκG)S (κG) + b5 (κG · δκG)S
2 (κG) .

Coefficients bi multiplied by the scalar product (κG · δκG) represent the variations of
coefficients ai. They read

b1 =
xκ cosxκ− sinxκ

κ3

b2 =
xκ sinxκ+ 2 (cosxκ− 1)

κ4

b3 =
−2xκ+ 3 sinxκ− xκ cosxκ

κ5

b4 =
−x2κ2 − xκ sinxκ− 4 (cosxκ− 1)

κ6

b5 =
12xκ− x3κ3 − 15 sinxκ+ 3xκ cosxκ

3κ7
.

Note that these variations cannot be directly employed in Newton’s iteration due to their
complicated form. The scalar product (κG · δκG) can be replaced by a more suitable
operational form using Lemma 2:

(κG · δκG)S (κG) = S (κG × (κG × δκG)) + κ2S (δκG) . (A.4)
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For the quadratic term we have

(κG · δκG)S
2 (κG) = S (κG)S (κG × (κG × δκG)) + κ2S (κG)S (δκG) . (A.5)

By employing (A.4) and (A.5) and rearranging the terms, we obtain

δR̄ (x) = c1S (δκG) + d1S (κG)S (δκG) + a2 [S (δκG)S (κG)− S (κG)S (δκG)]

+ b1S (κG × (κG × δκG)) + b2S (κG)S (κG × (κG × δκG))

δW̄ (x) = c2S (δκG) + d2S (κG)S (δκG) + a3 [S (δκG)S (κG)− S (κG)S (δκG)]

+ b2S (κG × (κG × δκG)) + b3S (κG)S (κG × (κG × δκG))

δV̄ (x) = c3S (δκG) + d3S (κG)S (δκG) + a4 [S (δκG)S (κG)− S (κG)S (δκG)]

+ b3S (κG × (κG × δκG)) + b4S (κG)S (κG × (κG × δκG))

δŪ (x) = c4S (δκG) + d4S (κG)S (δκG) + a5 [S (δκG)S (κG)− S (κG)S (δκG)]

+ b4S (κG × (κG × δκG)) + b5S (κG)S (κG × (κG × δκG)) .

Here ci = ai+κ2bi and di = 2ai+1+κ2bi+1, i = 1, 2, 3, 4. It is easy to see that di = −bi−1

for i = 2, 3, 4 and

d1 =
x sinxκ

κ
.

When matrices are multiplied by an arbitrary vector u, the variation δκG can be
extracted by using the properties of the vector product and Lemma 1. Each particular
term can then be rewritten as follows

S (δκG)u = δκG × u = −u× δκG = −S (u) δκG

S (κG)S (δκG)u = κG × (δκG × u) = −κG × (u× δκG)

= −S (κG)S (u) δκG

S (κG× (κG×δκG))u = (κG × (κG × δκG))× u

= −u× (κG × (κG × δκG)) (A.6)

= −S (u)S2 (κG) δκG

S (κG)S (κG × (κG × δκG))u = κG × ((κG × (κG × δκG))× u)

= −κG × (u× (κG × (κG × δκG)))

= −S (κG)S (u)S2 (κG) δκG

[S (δκG)S (κG)− S (κG)S (δκG)]u = −S (κG × δκG)u = − (κG × δκG)× u

= u× (κG × δκG) = S (u)S (κG) δκG.

Then we finally have

δR̄ (x)u = QR (x;κG,u) δκG

δW̄ (x)u = QW (x;κG,u) δκG

δV̄ (x)u = QV (x;κG,u) δκG

δŪ (x)u = QU (x;κG,u) δκG,

(A.7)
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where the matrices QR, QW, QV and QU do not depend on the variations and can be
calculated by the following algebraic formulae

QR (x;κG,u) = −c1S (u) + a2S (u)S (κG) + b0S (κG)S (u)

− b1S (u)S2 (κG)− b2S (κG)S (u)S2 (κG)

QW (x;κG,u) = −c2S (u) + a3S (u)S (κG) + b1S (κG)S (u)

− b2S (u)S2 (κG)− b3S (κG)S (u)S2 (κG)

QV (x;κG,u) = −c3S (u) + a4S (u)S (κG) + b2S (κG)S (u)

− b3S (u)S2 (κG)− b4S (κG)S (u)S2 (κG)

QU (x;κG,u) = −c4S (u) + a5S (u)S (κG) + b3S (κG)S (u)

− b4S (u)S2 (κG)− b5S (κG)S (u)S2 (κG) .

Appendix B: On singularity of Rodrigues-like formulae

As it is well known, the Rodrigues formula has a singularity point at ϑ = 0. When
κG is constant, its Euclidean norm, κ, takes the role of ϑ. The analytical integration,
presented in the paper, introduces not only the use of the Rodrigues formula but also its
integrals with respect to the arc-length parameter of the beam. All of the coefficients ai
in (A.3) are indeterminate when κ = 0. The singularity can be eliminated, if limκ→0 ai
exists for all i. Since the coefficients ai are known in the exact form, we can directly
obtain

lim
κ→0

a1 = lim
κ→0

sinxκ

κ
= x

lim
κ→0

a2 = lim
κ→0

1− cosxκ

κ2
=

1

2
x2

lim
κ→0

a3 = lim
κ→0

xκ− sinxκ

κ3
=

1

6
x3

lim
κ→0

a4 = lim
κ→0

x2κ2 + 2(cosxκ− 1)

2κ4
=

1

24
x4

lim
κ→0

a5 = lim
κ→0

−6xκ+ x3κ3 + 6 sinxκ

6κ5
=

1

120
x5.

The above limits represent the first terms of the series expansion of the coefficients ai.
In the numerical calculations, the Taylor series expansion with eight terms is used rather
than the limit value when κ becomes small.

A similar singularity is observed in coefficients bi and ci. The problem is resolved in
the same way by analytically evaluating the limits when κ approaches zero. The limits

38



read

lim
κ→0

b0 = lim
κ→0

−x sinxκ

κ
= −x2

lim
κ→0

b1 = lim
κ→0

xκ cosxκ− sinxκ

κ3
= −1

3
x3

lim
κ→0

b2 = lim
κ→0

xκ sinxκ+ 2 (cosxκ− 1)

κ4
= − 1

12
x4

lim
κ→0

b3 = lim
κ→0

−2xκ+ 3 sinxκ− xκ cosxκ

κ5
= − 1

60
x5

lim
κ→0

b4 = lim
κ→0

−x2κ2 − xκ sinxκ− 4 (cosxκ− 1)

κ6
= − 1

360
x6

lim
κ→0

b5 = lim
κ→0

12xκ− x3κ3 − 15 sinxκ+ 3xκ cosxκ

3κ7
= − 1

4200
x7

lim
κ→0

c1 = lim
κ→0

x cosxκ = x

lim
κ→0

c2 = lim
κ→0

xκ sinxκ+ cosxκ− 1

κ2
=

1

2
x2

lim
κ→0

c3 = lim
κ→0

−xκ+ 2 sinxκ− xκ cosxκ

κ3
=

1

6
x3

lim
κ→0

c4 = lim
κ→0

−x2κ2 − 2xκ sinxκ− 6(cosxκ− 1)

2κ4
=

1

24
x4.
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