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Finite-element formulation of geometrically
exact three-dimensional beam theories based
on interpolation of strain measures

D. Zupan and M. Saje

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

This paper presents a new finite element formulation of the ‘geometrically exact
finite-strain beam theory’. The governing equations of the beam element are de-
rived in which the strain vectors are the only unknown functions. The consistency
condition that the equilibrium and the constitutive internal force and moment vec-
tors are equal, is enforced to be satisfied at chosen points. The solution is found by
a collocation algorithm. The linearity of the strain space not only simplifies the ap-
plication of Newton’s method on the non-linear configuration space, but also leads
to the strain-objectivity of the proposed method. The accuracy and the efficiency
of the derived numerical algorithm are demonstrated by several examples.

Key words: non-linear beam theory, finite-element method, three-dimensional
rotation, rotational invariant, strain measure

1 Introduction

Engineering structures are often modelled by beam models. A number of beam
models can be found in scientific literature. In the present paper, we consider
the model, derived from the resultant forms of differential equilibrium equa-
tions. The associated non-linear strain-displacement equations relate three dis-
placement components and six strain measures (longitudinal and shear strains,
and rotational strains) of the axis of a beam. These strain measures are derived
in such a way that the relationships between the displacements, the strains,
and the stress resultants are consistent with the virtual work principle at the
deformed state for any magnitude of displacements, rotations, and strains.
The model is often called the ‘geometrically exact finite-strain beam theory’
and is usually attributed to Reissner [25] and Simo [28]. Many modern finite-
element developers of the three-dimensional beam theories, e.g. Cardona and
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Géradin [6], Ibrahimbegovic [18], Jeleni¢ and Saje [21], Smolénski [30], based
their approach on the geometrically exact beam theory.

Geometry of the three-dimensional beam is described by the line of centroids
of cross-sections and by the family of the cross-sections not necessarily normal
to the line of centroids at the deformed state; therefore, the configuration
space of the beam consists of (i) the linear space of position vector of the
line of centroids, and (ii) the non-linear space of rotations of cross-sections.
Because the spatial rotations are elements of a multiplicative SO (3) group,
the configuration space of the beam is a non-linear manifold. That is what
makes the problem of three-dimensional beams so demanding. The way the
rotations are parametrized in the theory is crucial; a particular selection of
the parametrization has a direct influence on the algorithm and on the form
of the tangent stiffness matrix. In the present work, we employ the rotational
vector for the parametrization of rotations.

The essential part of any finite-element formulation is the choice of the pri-
mary variables. Earlier finite-element beam formulations use both, displace-
ments and rotations, as the interpolated degrees of freedom (e.g., Cardona
and Géradin [6], Crisfield [8], Crivelli and Felippa [10], Ibrahimbegovic [18],
Simo and Vu-Quoc [29]), or solely rotations (Jeleni¢ and Saje [21]). These
approaches interpolate the rotations or/and their increments in a standard
manner, neglecting the fact that the rotations are physically non-additive
quantities. As reported by Crisfield and Jeleni¢ [9], such an approach leads
to non-objective discrete strain measures, when they are calculated from the
interpolated rotations and displacements. Crisfield and Jeleni¢ [9] suggest a
strain-objective formulation, requiring a construction of special interpolating
functions, which is a complicated task if higher-order finite elements are to be
derived. Ibrahimbegovic and Taylor [20] claim that the frame-invariance can
be preserved only by proper implementation of the geometrically exact model,
yet their definition of the frame-invariance somewhat differs from Crisfield and
Jelenié¢’s.

Although the rotations are essential to the overall deformation of the structure,
it is their derivative with respect to axis coordinate and not the rotations them-
selves that effects the deformation energy. This suggests that strain measures
and not rotations are natural variables for the description of the deformation
energy. Therefore, and in contrast to the above mentioned formulations, we
here assume that strain measures are primary interpolated variables. For the
strain approximation, the additive-type of interpolation can be used without
a loss of the objectivity of the discrete strain measures, i.e., their invariance
to rigid-body motions. The displacement and rotational vectors are not inter-
polated at all. Our formulation experiences no kind of locking, and, compared
to other formulations, gives higher accuracy for the given number of external
degrees of freedom. It enables more accurate descriptions of strain and stress



distributions within an element, which is of utmost importance in describing
the behaviour of plastic material in the regions of localized strain. In order to
apply the strain measures as basic variables, we follow the work by Planinc et
al. [24] and extend it to three-dimensional beams and frames by proposing a
modified principle of virtual work in which only the strain vectors need to be
interpolated.

The fundamental problem of such a strain-based formulation is the integra-
tion of rotations from the given interpolated rotational strains. In the planar
case, the integration can be performed analytically. In three dimensions, the
derivative of rotations equals the product of a rotation-dependent transforma-
tion matrix and the rotational strain. Such a system of differential equations
cannot be integrated in a closed form. That is why, in three-dimensional beam
theories, the rotational strain is very rarely chosen as the primary variable.
Such formulations were proposed by Choi and Lim [7], Friedman and Kos-
matka [14], who used constant interpolation for curvature, and by Hu et al.
[16], who used a linear strain interpolation. Tabarrok et al. [32] assumed an
analytically integrable curvature distribution in order to develop a more suit-
able interpolation for displacements and rotations. Schulz and Filippou [27]
interpolated the infinitesimal (incremental) curvatures and the infinitesimal
rotations; in such a formulation, the objectivity of the total rotations and the
total curvatures may be questioned. In a sharp contrast to the above cited au-
thors, our solution employs the exact relationship between the total rotational
strains (here also called curvatures) and the rotations. Due to the complicated
form of the kinematical equations, a numerical integration method is used to
obtain the total rotations from the given rotational strains. The linearity of the
space of basic variables — the strains — simplifies Newton’s iteration method
when compared to the case where the rotations are basic variables, and leads
automatically to the objectivity of the interpolated strains.

In standard finite-element formulations, the stress-resultants, obtained from
the equilibrium equations, and those found from the constitutive equations,
are not equal. In the present formulation this ‘inconsistency of equilibrium at
cross-sections’ is resolved by enforcing the consistency condition to be satisfied
at a set of predefined points (here taken to coincide with the interpolation
points) (the ‘collocation’). A similar strategy was employed by Vratanar and
Saje [33] for the elastic-plastic analysis of plane frames. Further advantage of
the present formulation is its ability not to require the differentiation with
respect to the arc-length to determine internal forces; hence, the accuracy of
internal forces is of the same order as the accuracy of basic variables.



2 Geometry and kinematics of the three-dimensional beam

2.1 Basic kinematic assumptions

The geometry of the three-dimensional beam is described by the family of
plane cross-sections and by the line of centroids of cross-sections. The geomet-
ric shape of the cross-sections is arbitrary and constant along the length of the
beam. According to the Bernoulli hypothesis plane cross-sections are assumed
to remain planar and preserve their shape and area after the deformation.
Thus the geometric model of the beam consists of a set of

(i) a spatial curve representing the line of centroids, and
(ii) a family of spatial planes containing the cross-sections (Figure 1).

Note that the cross-sections are not necessarily normal to the line of centroids
at their intersections. This makes it possible to include the effect of shear
stresses into the beam analysis.

Fig. 1. Abstract model of the three-dimensional beam: a curve and a family of
planes.

It is convenient to define

(i) the reference configuration, where the mechanical variables of the beam,
including the loading, are known, and

(ii) an arbitrary deformed configuration, where only the loading is prescribed,
while the remaining mechanical variables are unknown.

The geometry of the reference configuration (see Figure 2) is described by
-0

the family of position vectors r of the line of centroids and by the family of

orthonormal base vectors {Gl, G, G3} spanning the planes of cross-sections.

0 -0
Vectors G, and G5 are directed along the principal axes of inertia of the



particular cross-section, and G is its normal: G| = G, x G5. The reference
: L : ~0 20 A0

line of centroids is parametrized by the arc-length, z. Vectors r , G, G5, and
—~0

G5 are then expressed as the vector functions of x. A deformed configuration

is analogously described by four vector functions r (z), Gy (), G2 (z), and
G35 (7). Note that the deformed configuration is also expressed with respect to

the arc-length parameter of the reference line of centroids. Vectors G5 and G
are directed along the principal axes of inertia of the rotated cross-section, and

(i1 is its normal vector, G; = G5 x (G3. As the basis {Gl, G, Gg} is different

at each material point, x, of the line of centroids, it is called the ‘material
basis’.

Fig. 2. Parametrization of the three-dimensional beam in the abstract vector space.

We find convenient the introduction of an (arbitrary) reference point O and a
triad of fixed orthonormal base vectors {?1, 52, _g\3} The triad {?1, ?2, 53}
is not related to the deformation of the beam and is henceforth referred to
as the ‘spatial basis’, since it spans the physical space of the beam — the
Euclidean linear vector space IR3. Along with a reference point O, the basis
{?1, 9o 53} defines the spatial Cartesian coordinate system (X,Y, 7). With
respect to the spatial basis, the rotated position of the cross-sections can



be described by the rotational operator R (z), which maps {?1, 52, 53} into
{G1 (), G (2),Gs (x)}:

G;=Ryg, i=123. (1)

Operator R (z) is formally a linear operator on the abstract three-dimensional
Euclidean space and represents the physical rotation between the two bases.

When we express each vector GG; as the linear combination of base vectors

{?1, 52, 53}, the components of vector GG; are just the column components of
the rotation matrix:

Gi=Rug, +Raigy+Raigs, =123 (2)

Thus, the i-th column of the rotation matrix R = [Rj;], ¢, j = 1, 2, 3, represents

the components of the base vector G; with respect to the spatial basis. That
is why we say that the rotation matrix, R, is associated with the rotational
operator, R, with respect to the spatial basis.

An arbitrary vector, U, can be expressed with respect to either of the two
bases N N N

U =g gy + Ugn gy + U305 = uc1 G + ueGy + uasGs. (3)
For the sake of simplicity, the components of the vector, {ug1, ug2, g3} and

{ugi, ug2, ugs}, are also represented in the matrix form by one-column
matrices

Ug1 U
Ug = | Ug2 |, UG = | UG
Ugs ugs

Both, u, and u¢, along with the corresponding bases, equivalently represent
the vector w. Inserting (2) into (3) gives the relationship between the two
one-column matrices, u, and ug,

u, = Rug. (4)

Here, another meaning of the rotation matrix is revealed: not only that it
rotates a vector, it also represents the coordinate transformation between the
components of a vector with respect to spatial and material bases.

In what follows, vectors will be used in both forms, the abstract and the com-
ponent (matrix) forms. The abstract vector form will be used in the derivation



of the beam governing equations. The matrix form will be used in the formu-
lation of the numerical solution.

2.2 Parametrization of rotations, angular velocity, variation of rotations

Only some basic aspects and results, needed for further use, are presented
here. Fundamentals on rotations in computational mechanics can be found
in many papers (e.g., Argyris [1], Atluri and Cazzani [3], Géradin and Rixen

[15]).

When the linear rotational operator is expressed by the associated matrix,
nine scalar components are needed. It can be proved, however, that not all of
them are independent. In fact, only three scalar values suffice to describe fully
the rotation in the three-dimensional space. There is a number of possibilities
for choosing threg independent rotational parameters. Here we choose the

rotational vector ) [1] that lies on the axis of rotation and has its length equal
to the angle of rotation. The rotational operator R is dependent directly on
the rotational vector, and the relationship between the two quantities was
given by Rodrigues:

~  ~ gnd> ~ 1—cos? -
Ru=u+ 19><u+719><<19><u>. (5)
v 9?2
u denotes an arbitrary vector and ‘x’ the cross vector product; ¥ = Hz? is

the length of rotational vector 5 (i.e., the angle of rotation).
If we define a linear operator © so that
Ou =i x 1,
the Rodrigues rotational operator can be rewritten in the following form

sin 1—cos?
=7 2
R + 3 O + 5 0, (6)

with Z being an identity operator. Formula (6) will be referred to as the
Rodrigues formula. When expressed with respect to an orthonormal basis, the
operator O is associated with the skew-symmetric matrix @

0 -3 s
O=1 v 0 |- (7)
—vy U 0



Components {11,192, 93} in (7) are the components of vector ¢ with respect
to the particular orthonormal basis chosen. From (7) it directly follows that
the matrix © is skew-symmetric: @7 = —@. Once the matrix representation
of operator © is known, the matrix form of the rotational operator (6) follows

easily
sin v 1 —cos?d __,
R=1+ 9 0+ 7 o, (8)

where | is the identity matrix.

The inverse of the rotational operator (matrix) is easy to find. As R is a linear
operator, there exists such a unique linear operator R! that

(R?) y=1- (Rtg_/\) for all vectors z and ¥. 9)

The dot (-) denotes the scalar product of vectors. R is called the transpose
of R and its associated matrix equals the transpose of matrix R: R — R”.

The application of definition (9) to operator © gives its transpose
(07) 5= (1 x7)-5=-7-(vxy)=-7-(69) =7 (6).

We see that the operator © is skew-symmetric: O = —©. From the Rodrigues
formula and the skew-symmetry of ©, it is easy to see that R is invertible, its
inverse being R!

R1="R — RR'=R'R=1T.
Also, by analogy, R is invertible and its inverse equals R .

The derivative of material base vectors with respect to = plays an important
role in the beam theories. The derivation of (1) with respect to z gives

—

—/ N
Gi = R,gz == R,RtGi.

In the kinematics of rigid bodies, where the parameter x is replaced by time,

operator Q = R'R! is called the angular velocity of the base vector G;. In the
present, paper, {2 describes the rate of change of the material basis with respect
to x; therefore, the geometrical term ‘curvature’ would be more adequate. As

a consequence of the effect of shear stresses, base vector Gy (x) differs from

—

the tangent vector ‘3—; of the axis. Hence, the curvature of the line of centroids
and €2 are different quantities and the term ‘pseudo-curvature’ is used for 2
instead. It is easy to see that the operator €2 is skew-symmetric; consequently
there exists such a unique vector w that

Qu =w X u for any u.



In the kinematics of rigid bodies, w would be called the angular velocity vector.
According to the previous discussion, however, we will rather use a different
notation, , for the axial vector

Qu="r x u for any w, (10)
and call it the curvature vector (or sometimes the pseudo-curvature vector).

We can show (see, e.g., [3], [19]) that the curvature vector can be expressed
by the derivative of the rotational vector as

./
k="T19. (11)
T is a linear operator, given as a (non-linear) function of rotational vector ¥,
and expressed in an explicit operator form by
1 —cos? 19—sin19®2

T=TI+ 7 O+ E

or with its image on an arbitrary vector u

Ti=u 4 LV Py

1—cosd—> ~ J—sind— (1_9\><A>
5 3 u .

Observe that the operator 7, although it operates on the vector space as a

linear operator, is a non-linear function of rotational vector ¢. In the planar
case, T equals the identity operator Z; this fact considerably simplifies the
planar problem.

The variation of a functional will here be made in the sense of the Gateaux
derivative. If the limit

N Flu+aw)—F(u d

5.7-"(w)zlim ( ) ():—

a—0 o da

F (E + a 1_\1))
a=0
exists for arbitrary vectors u and w, it is called the Gateaux variation of
functional F at w in the direction w. Note that the definition of the Gateaux

variation of a functional assumes that F is a functional on a linear (additive)
vector space. Because the rotational functional R is expressed in terms of the

non-additive rotational vector i, the computation of the difference requires
a special treatment. If the change of ¥ is denoted by ad}, the rotational
operator at the perturbed value of its argument is R (a 519) R (19), so that

the difference between the original and the perturbed value of the rotational

operator is
ARzR(@M) R (19) R (ﬁ) .



The Gateaux variation of R is then evaluated by the definition

R (a(w) R (19) .
Observe that the vector argument of R, given in the parentheses, is the vector

that parametrizes functional R, and not the vector which R works upon. From
(6) it follows that

d

R = —
do

a=0

sin (ad9) 050 4+ 1 — cos (ad?)

N, 1= cos(add) ,
R(aéﬁ) Lo o (@09,

where 00O is the skew-symmetric operator corresponding to vector 69 by re-

lation 60y = §9 x u. Taking the derivative with respect to o and evaluating
the result at o = 0, we obtain

IR = SOR (O). (12)

3 Strain measures and stress resultants

We consider a beam subjected to the external distributed force and moment
vectors n and m per unit length of the reference line of centroids. The stress-

resultant force vector over the cross-section is denoted by N and the resulting

moment vector by M. The equilibrium equations of an infinitesimal element
of a beam, as illustrated in Figure 3, are given by the following differential
equations:

Following the approach of Reissner [25], we introduce strain vectors ~ and & in
such a way as to be consistent with the virtual work principle for an arbitrary
part of the beam, bounded by the cross-sections at x = x; and x = x4:

/“ﬁa(?)rel dr+ [ M6 (R) d:v:/mﬁ-é?dx

1 1 1
T2

+/”%-55dx+[ﬁ-5?+1\7-519 . (15)

Note that the virtual work principle is written in an abstract vector form,
in which the relative variation of strain vectors is introduced. The relative

10



Fig. 3. Equilibrium of an infinitesimal element of a beam.

variation of a vector is a partial variation of a vector that disregards the
variation of rotations. It is determined by the following equation

5(d)  =du -89 x . (16)

This is in accord with the notion of ‘objective (or corotated) rates’; see, e.g.,
Simo [28]. In order to describe the term ‘relative’ more precisely, let us evaluate
the relative variation of a vector, expressed with respect to the material basis.
The variation of such a vector consists of the variation of components and the
variation of base vectors

(SZL\ = 5uG18’1 + 6UG252 + 6u(;353 + UGl(Sal + UG’Q(SaQ + UGg(Sag. (17)

The variation of the material base vectors dG; is obtained by the use of the
variation of the rotational operator (12) and can be expressed by

By inserting (17) and (18) into (16) we obtain the formula for the relative
variation

) (E)rel = 5UG1G1 + 6UG2G2 + 6UG3G3. (19)

Inserting equations (13)—(14) into virtual work equation (15) and applying the
partial integration yield the relationships between the variations of kinematic

vector variables (?\ , ¥ | and the relative variations of strain vectors (?, E)
N ! - — 7
6(7)@257‘ —09 x 1 (20)
N —/
5(x) =00 (21)

Equations (20) and (21) relate the variations of strains, displacements, and
rotations, and indicate that the variations of the quantities mentioned above

11



are not all independent. By integrating equations (20) and (21) and following
the approach similar to that of Reissner [25], we obtain the relation between

strain measures (?, E\) and displacements and rotations ?\, 19)

/

+e (22)
-/ N
9 + d. (23)

T

=zl =1
I

I
=3

Vector functions ¢ (z) and d () are variational constants (& (E) = 3 (d) =
re rel

RN

0) to be determined from the known strains and kinematics of the beam at
the reference configuration.

The result (22) can be easily proven. As 57 =80 x 7' equals the relative
variation of vector 7, equation (20) gives

0 (Ty\)rel =0 (?,)rel ’ (24)

from which it is apparent that 7 and 7 differ only in the variational constant
¢, for which
o(c) =0

must hold. The equation says that if c is expressed with respect to the ma-
terial basis, its components remain the same during the deformation, because
their relative variations equal zero. Note, however, that ¢ is still an arbitrary
function of x.

The proof of the solution in (23) is not as obv10us From (21) such a vector is

sought that its relative variation should equal § 19 Vector 19 is associated with
a skew-symmetric operator ©', which is related to skew-symmetric operator

R'R! = Q. Both, Q and ©', each in its own way, represent the rate of change

of the material basis with respect to x. Let us first find the variation of €:

60 = R'R! + R'6R! = (FOR) R + R' (§OR)"
= O'RR' + OR'R' + R'R'50".

From RR' =T , §0' = —§0O and from the above equation it follows
6Q = 00"+ 000 — Q46. (25)
If we apply €2 on an arbitrary vector u, we get
0Qu = 60'u + (600 — Q50) u
=50 i+ (00 x5 x i (26)

12



On the other hand, we know that Qu = x x u, holds true thus

5Qu

I
(o)

KX . (27)

Combining (26) and (27) gives
SR =00 400 xw — 0K —00 xR =00

and

which concludes the proof.

We assume that the stress-resultant vectors, N and M, depend directly on
strains ? and x. Since we do not wish to restrict our analysis to a particular
class of materials of the beam, we assume a rather general form of constitutive
equations

with operators Cy and Cj; being invariant under superlmposed rigid-body mo-
tions and at least once differentiable with respect to 7, k, and x, but otherwise
arbitrary. 70 and r, are strain vectors of the reference conﬁgurat1on. Conse-

quently, N and M may be non-zero vectors at the reference configuration.

4 Generalized virtual work principle

The rewriting of the virtual work principle (15) for a beam of initial length L
gives

/OL (ﬁa(?)relw\?-a(z)ml)dx:/OL (ﬁ-5?+771-65>dx

RN

-0 -0 - ~L —~L
+S -6r(0)+P 09 (0)+S -6r(L)y+P -09(L). (30)

0 0 L =L
S,P,S , P are vectors of the external point loads and moments at the

boundaries z = 0 and x = L. 7 (0), 0 (0), 67 (L) and 69 (L) are variations of
the position vector and the rotational vector at x = 0 and x = L, respectively.

In (30), the strain and the kinematic vectors are related by the kinematic
conditions (22)-(23). According to the method of Lagrangian multipliers in

13



constrained problems of calculus of variations and the related work of Planinc
et al. [24] on planar beams, the constraining kinematic equations

are scalarly multiplied by arbitrary, independent, vector functions E\(x) and

b(z); they must be at least once differentiable on [0, L] except for a finite
number of discrete points. The scalar products of the multipliers and the
constraining equations are integrated along the length

L., .
\y—=—r —c)dr=0
/0 a (*y r c) x
L —~ N —/ —
/ b-(fc—Tﬁ —d)dsz
0
and varied with respect to E, g, ?, 2, ?, and 5
L ., . L . . .
/(5@-(7—7"1—6)6156—1-/ a-é(’y—r,—c)dxzo (31)
0 0
L~ /. VA L~ N VN
/5b-<m—Tz9—d>dx+ b-5<m—7‘19—d>dx:0. (32)
0 0
The variations in the second integrals are the variations of equations (22) and

(23). Their variational forms are given by equations (20) and (21). Thus, we
can write

[oa-(-7"=C)ars [a-(5(3), — o — 60 x 7 )dr=0 (33)
° L — R —/ OA L —~ N —/
/Oéb-</<;—T19—d>dx+/0 b-(&(n)rel—5ﬁ>dx:0. (34)

N Ny
The terms a - 67 and b - 59 are partially integrated and the equality a -
<619 X ?\I> = —00 - (E\ X ?I) is employed. Then we obtain

[Foa- G- eydns [0 5 (7), de [ 60 (ax ") ar
6-5?}0L+/0L6'-5?dx:0 (35)

L — N —/ — I N
/6b-</<;—719—d>dx+ b-5(R)  de
0 0

rel

N 1L L —1 N
—[b-&‘}] + [0 50 dr=0. (30)
0 0

After adding equations (35) and (36) to (30) and rearranging the terms, we

14



derive

AL5(7Xd-<A-—E>dx+—OLé(ELd-(ﬁﬁ—g>dx——AL6?-(ﬁ%—Eddx

Equation (37) represents the modified principle of virtual work in which the

, 0 (2) o 60,67, da, and §b are arbitrary and independent
. . —0 20 L L . :
functions, and the variations dr , 09 , dr , and 69 are arbitrary and inde-

pendent parameters. Because all the coefficients at the independent variations
must vanish, the following Euler-Lagrange equations of the three-dimensional
beam are obtained:

variations ¢ (7) |

re

N-a=0 (38)
M—b=0 (39)
N N -
n+a =0 (40)
—/ N
m+b —axr =0 (41)
FoT'—¢=0 (42)
—/ — —
k=T —d=0 (43)
along with the boundary conditions
40 N — —\L N [N
S +a(0)=0 S —a(L)=0 (44)
—\0 — — L — —
P +0b(0)=0 P —b(L)=0. (45)

Equations (38)—(43) constitute the system of six vector equations for six un-

known vector functions a(z), b(z), 7 (z), 9(z), 7(x), and = (z) for a given set
0 0 L L

of loads, described by n (x), m (), S, P,S ,and P . Equations (42) and
(43) are kinematic equations given previously. Equations (40) and (41) are the

15



force and moment equilibrium conditions (see (13)—(14)). The physical mean-
ing of the Lagrangian multipliers @ and b is obvious from (40)-(41): a (z) is
the cross-sectional force resultant at point z; b () is the cross-sectional mo-

ment resultant at point z. @ (z) and b () satisfy the equilibrium equations
and will hence be referred to as the equilibrium force and moment. We have

already introduced the cross-sectional force and moment resultants N and M,
which are computed from the strains by the constitutive equations, and will,
to point out the difference with the equilibrium force and moment, be termed
the constitutive force and moment. Thus, equations (38) and (39) require the
equilibrium force and moment vectors to be equal to the constitutive force and
moment vectors. We call these requirements the ‘consistent equilibrium at the
cross-section’. Inequality of equilibrium and constitutive stresses is a common
characteristic of standard finite element formulations. It may be a substantial
source of error, especially in materially non-linear problems. An application
of these important consistency conditions in the elastic-plastic finite element
analysis of plane frames is presented in the paper by Vratanar and Saje [33].

5 Governing equations of the beam

Equations (38)—(43) can be divided into two sets. Equations (38) and (39)
are non-linear algebraic equations. They are solved by iterative, Newton-like
methods. The remaining equations of the system, (40)—(43), consist of four
first-order ordinary differential equations. Equations (40)-(42) can be, at least
formally, satisfied when n, m, v, and k are the known functions of x:

a(2) = E(o> / “(5) d (46)
)< (V©O-Cc©) -m©ldc @D
G )+ / © () de. (48)

L
||
Q“L
+

\

The integrated functions are often too complicated for analytical integration to
be possible, so the numerical integration methods must be used. The solution
of equation (43) can be written in a form of an integral equation

V@) =0+ [T (0©) (5 ©) - d©)de (49)
Again the numerical solution method must be used, but this time — because the

unknown function, 1, appears in the integrand — a different class of numerical
integration methods must be applied. One such class of methods represents
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the Runge-Kutta methods for systems of first-order ordinary differential equa-
tions.

The only two remaining unknown functions, () and 7 (z), are obtained
by the solution of the algebraic equatlons (38) and (39) When & (z), v (),
n (), and m (x), are given, unknowns a (z), b (z), r (), and ¥ () can be

calculated numerically from (46)-(49).

For the fulfilment of the displacement and rotation boundary conditions, strain
vectors # () and 7 () must satisfy not only the equations (38) and (39), but
also equations (48) and (49), evaluated at the right end (x = L). The complete
set of the governing equations of the three-dimensional beam then consists of
the algebraic equations (38) and (39)

S +a(0) =0 (54)
P +5(0)=0 (55)
§L—a(0)+/0Lﬁ(x)dx:6 (56)

P b0) - /OL [E (2) % (3 (@) = ¢ (@) —m (:E)}d:z: —0. (57

Equations (50)—(57) represent an abstract formulation of the governing equa-
tions of the three-dimensional beam where abstract strain vectors v and x are
the only unknown functions of x. No limitations on the choice of the coordinate
basis have been set so far. For each particular vector variable and operator
n (50)-(57), we now choose its most suitable basis. We choose only between
the material (G) or the spatial (g) basis. The componential representation is
necessary to formulate the numerical solution of the problem and cannot be
avoided at this point. An optimal choice of representation seems to be given
by Jeleni¢ and Saje [21] and is also used here; equations (50)—(57) then take
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the matrix form

fi=RNg(z) —a,(z) =
fo=RMg (z) — b, (v) =

L
hlzrg—rg—/o R(vs—cg) dr =0 (60)

L

h2:0§—0g—/0 T-' (9,)R (k¢ — dg) dz = 0 (61)

0 0

hi=P°+ b =0 (63)
L

hs = S —aj+ [ ‘n,d=0 (64)
L

hgng—bg—/o {ang(’yG—cG)—mg dr =0, (65)

where the indices ¢ and G indicate the basis used. Componential equations
have sense only if components in an equation are expressed with respect to
the same basis; that is why the transformation matrix R is added in some
of the equations (see also equation (4)). Equations (58)—(65), along with the
auxiliary relations (66)—(71)

T

ry(@) =75+ [ R(E) (76 () — ca () dg (68)
Iy (2) =T 1 (9 (2)) R (kg (2) — de (2)) (69)
Ng =Cx (Yo = Ya0 K — Kao) (70)
Mg =Cy ('yG —Yao K — K:G’o) ) (71)

constitute the complete set of equations of the three-dimensional beam.

6 Numerical solution of governing equations
6.1 Linearization of equations

Each of equations (58)—(65) defines a functional, dependent on the (primary)
unknowns 7}, 192, a), bg, rl, 195, e (), and kg (z). For the derivation of
the linearized form of (58)—(65), the Gateaux variation of the functionals is
needed. Equations are varied at ), 192, a,, bg, rl, 195, Yo (1), kg (z) in
‘directions’ 7}, 5192, da), 5b2, orl, 6195, 09 (), and 6k (). Note that 67,
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(5192, day, 5b2, ory, 5195, 0v¢ (7), and dkg (z), being the variations of the
primary unknowns, are arbitrary and independent vectors.

By definition, the variation of one-column matrix is a one-column matrix
whose components are the variations of the components of the varied ma-
trix. The basis used for the component representation of the abstract vector
is not varied. This is in exact agreement with the definition of the relative
variation of an abstract vector when expressed with respect to the material
basis:

0 (7)%1 = 0761G1 + 0762G2 + 0763 G
) (E)rel = (SHLGlGl + (SHLGQGQ + (SHLG?,G?,.

The deduction of the varied equations is greatly simplified if variations of some
of the quantities are prepared in advance. Function a, (x) depends on ag and
n, (r). When the loading is deformation-independent, which is the case in the
present analysis, n, () does not depend on the primary unknowns, and so

day (z) = da. (72)

The variation of the rotational vector as the function of the variations of
the primary unknowns follows from (21), when expressed with respect to the
selected basis for k and 9:

Rokg = 619;. (73)
Integrating (73) with respect to x gives the relation between the variation of
the rotational vector and the variations of the primary unknowns

59, (x) = 690 + /0 "R(€) Sk (€) dE. (74)

By rewriting the variation of rotational operator (12) into the matrix form,
we obtain

OR = )OR,
which gives, when applied to an arbitrary one-column matrix wu,

dRu = 6ORu =49, x Ru,

where ‘X’ denotes the cross-product between two one-column matrices:

U1 241 Vg — U3l
VXU=|vy| X |uy| = |v3u; —vius
U3 us V1Ug — V2Uy
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It is often more practical if the cross-product, v X w, is written as a product
of a skew-symmetric matrix, S, and one-column matrix u

0 —7U3 (%) U1
vXU=]| y; 0 —v1 | |us | =S (v)u. (75)
— U9 U1 0 us
Taking into account that v X u = —u X v and using the equation (75), we

finally get the relation

SRu = —S (Ru) 59, = —S (Ru) 69° — S (Ru) / R () dke (€) dE (76)

0

which holds true for any one-column matrix w.

Varying b, (x) as expressed by (67), and employing (72) and (76) gives

5b, () :5b2+/0$ {5% x R('yG—cG)]dwa/Om {ag % R (v — c¢) | de
:5b2+6a2x/omR('yG—cG)df—/Ox[agxS(R('yG—CG)wﬂg}dg
~ [ [as x S (R v~ ca)) [ Réng dnde
:5b2—S</0mR(*yG—cG)d§>50,2—/OxS(ag)S(R(*yG—cG))dféﬂg

x 6
~ [7$(a)S (R(vs —ea)) [ Rong dide. (77)

The linearization of the constitutive equations gives

(SNG = (SCN = C’Y’Y(S'YG + C7n5I£G (78)
5MG = (SCM = CWY(S’)/G + Cnn5ﬂg, (79)

where the components of matrices C,,, C,., Cs,, and C,, are the partial
derivatives of CV and CM with respect to v (z) and k¢ () :

acy acy
0 [8] e[

97; 0K,
M M
Cn’)’ = [acz ] ) CK,H = [aaz ] .
('hj 8/@-
C’Y’Y C’Y"a

The matrix C = will be called the cross-section constitutive

Cn’y CK,H

tangent matrix.
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After these preparations, the variations of the governing equations of the beam
are easily derived and are as follows:

0fy () = 0R(2) N¢ (z) + R(2) 6N ¢ (v) — da, (z) (80)
0f;(x) = 0R (x) M () + R (2) 6M¢ (z) — db, () (81)
R( )

L
Shy = br] — or) —/ R (v¢ — ca dx—/ Révy dx (82)
0

Shy = 69% — 60" — / Rok da (83)
0

dhy = oby) (85)

h; = —da; (86)

Shs = —db, (L) (87)

Equation (83) needs additional comments. Boundary condition (61) is the
integral form of the differential equation

TY, = Rkq, (88)

when the solution is evaluated at x = L. Equation (88) represents the matrix
form of equation (23). Its variation is given by equation (21). With respect to
the selected bases, equation (21) reads

59, = Rokg. (89)

By integrating (89) with respect to x and evaluating the result at x = L, we
obtain the result in (83). The substitution of relations (72), (76), (77), (78),
and (79) into (80)—(87) yields the variations of all equations with respect to
the variations of the primary unknowns:

3£, (2) = =S (R (z) N (1)) 09} — S (R (2) N (@) [ R(€)dkia (€) de
+R (@), (2) 976 (2) + R (2) €. (2) g () — G (90)
3£ (1) = =S (R (1) M () 69 — S (R (2) Mg (@) | R(§) ok (€) dg
R (2) C () 676 (1) + R () € <>5nG(>—6b2

(0 ¢ — ca) d€) bl +/ 2) S (R (76 — €q)) d€ 69
+/0 S (a,)S (R (vg — c(;))/0 Réke dn dE (91)
hy = ot —or)+ [S (R (v — ec)) dr 50
L ’ x L
+ ["S(R(vs— cq)) [ Ring dg dr — [ "Roygds (92)
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L
Shy = 095 — 09 — [ Rowg da (93)
0
Shs = —da) (96)

6h6:S</0LR(7G—cG)dx> 6a2+/0LS(ag)S(R('yG—cG))dxéﬂg

L T
+ / S(a,)S (R (v — ¢c)) / Rk dE dz — ob). (97)
0 0
6.2 Discrete form of governing equations

Although the first variations of the governing equations are linear function-
als, they do not appear in the form of a linear combination of the primary
unknowns v (z) and Jkg (x) (see equations (90)—(93) and (97)). This ad-
ditional difficulty arises from the multiplicative nature of three-dimensional
rotations, which results in the multiplicative formula (12) for the variation of
the rotational operator. In order to obtain the linear-combination form for the
variations of the rotational operator and, consequently, for the first variations
of the governing equations, we must introduce the interpolation of our basic
unknowns v (z) and kg(z).

Functions v(z) and k¢(x) are replaced by a set of their unknown values 7.
and Ky, at discrete points x,; p = 1, ..., N, chosen from the interval [0, L],
and interpolated by a set of IV interpolation functions I, (z)

L (z) ve (98)
ko () = I (v) kg (99)

The repeated index p is the summation index. Points z, are called ‘interpo-
lation points’. The interpolation as employed in (98)—(99) is mathematically
correct because the primary unknown functions v (z) and k¢ (x) are addi-
tive. This fact substantially simplifies the Newton update procedure (discussed
more precisely in the next subsection) because it allows us to introduce the
same interpolation for the variations of v, and k¢

Vg (2) = 1) () 676 (100)
Sk (x) = L (x) KD (101)

We are now able to rewrite the integrals containing dx and 7 as the forms,
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linear in 4%, and dk?, (p =1,2,..., N):

[ R(@ 6w () de = ["R @) oktde = [ 1,(€)R(E) de omt, (102)
[ R@6va (@) de = ["RE L © dvide = [ 1R () de ot (103

By introducing the interpolation for v (z) and kg (x), we convert a continuum
problem into a discrete one, and search a discrete, approximative (interpo-
lated) solution. Instead of unknown functions vy (z) and kg(x), 2N discrete
one-column matrices, 4, and k%, are sought.

Once the unknown functions are discretized, it is also reasonable for the al-

gebraic equations (58)—(59) to be discretized. This is achieved by satisfying

equations (58)—(59) at N pre-selected discrete points z,; ¢ = 1, ..., N, not

necessarily coincidental to the interpolation points z,; p = 1, ..., N. After

such a collocation-type discretization is made, a set of 2N matrix equations

is obtained, which needs to be solved for 2N unknowns ~%, and k7, (p,q =1,
., N):

RN¢ (z4) — ag (zg) =
RM¢ (v,) — by (z4)

0 (104)
0. (105)

The resulting system of discrete governing equations (104)—(105) and (60)-
(65) constitute a system of 2N + 6 non-linear matrix equations of a beam
element, where N denotes the number of discretization points. The vector
unknowns are 70, 99, al, by, vk, 195, ~%, and k% (p=1,2,...,N).

The use of the discretizations (104)—(105) and the linear forms (102) and (103)
enables the Jacobian matrix of the system of discrete equations (104)-(105)
and (60)—(65) to be easily obtained

0f (zg) = =S (R(zy) N (x
+ 1, (z4) R (zg)

)39~ S (R(2,) N () [ 1, ()R (€) de 0wy

)
(7q) 0ve + I, (74) R () Cy () OKe — 50’2

/—\ﬁ/“

555 (r4) = =S (R () M (3,)) 685 — S (R () M () [ 1, (€) R (€) d€ o
+ I (1) R (74) Cyy (74 ove + I, (74) R (24) Cpr (24) OKE — 5b2

)
+8 ([ R(ve - cq)de) day + [ S (a,) S (R (v - co)) de 00
Tq g
+ /0 S(ay)S(R(vg — cG))/0 IR dn d¢ 6k,
oh, = 61“5 — 5r2 + /OL S(R(ys —cq)) dx 6192

L T L
—i—/o S(R(vg — CG))/O I,Rékq d§ dx dKT, — /0 I, ()R (z) dz é+%
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L
Shy = 09F —69° — | I, (2)R dx 6K”
g g 0 p G

(Shg = 6a2
h, = 0by)
5h5 = —(50/2

L . L .

dhe =S </0 R(vs — cq) d:v) da, + /0 S (ay)S (R(vg — cg)) dz 09,
L T » 0
+ /0 S(a,)S (R (v — cG))/0 IR d dz 0Kl — 0B,

The matrix coefficients at the variations of the primary unknowns are placed
into the Jacobian matrix, which yields

"0 F, 00 1 0F, « Fly Fly o Flyl
0F 00 10F, . F', FY, .. FY,
1 1
0G,00G -1G, - G, G, - G,
K=[0G6'00G" 1G", . G', G, .. G", |,
-IH; 10 0 OH,, - H_ H , .. H ,
0 1010 OH,.-H, 0 - 0
0000100 .. 0 0 . 0
000001 0 .. 0 0 - 0
cooo0-fo 0o .. 0 0. 0
0 HLO00H, I H, - H'  H, . H’, ]

where the 3 x 3 block-matrices F, G and Hg are defined by
Fy = -S(RNg),
F, = (L,RC,.), — S (RNG)q/O I,Rde
quy,p = ([pRcw)q
Gj = —S (RMo), + | S (a,)S (R (76 — ca)) d
Gl =[S (Rvs — ca)) de
0 xT
G!, = (I,RC,,), — S (RMG)q/O IR d¢
24 ¢
0 g9 G &G o P
+ S(a,)S(R(vs — ca)) I,Rdn | d¢
GY, = (LRCy,), — /0 1,S (ag) Rd¢
. L
Hy = [ S(R(v6 —co))do

HL = /L S (R (v — co)) (/0 IR dg)dx

0
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H) =[S (a,) SR (v — cq))dr
HY = /OL S (a,)S (R (7g — cc)) (/0 IR dg)dx
H? ——/OLI,,S (a,) R dz.

P

The subscript ‘¢’ marks that the term is evaluated at z,. The column of varied
unknowns associated with matrix K reads

T
oy = (670 690 orL 69F 5al 5b2 Skl - ORY oyl - oy ] -
6.3 Newton’s iteration method

When Newton’s method is applied, the non-linearity of the configuration space
of the beam requires a special care. The variations of the unknowns are ele-
ments of the configuration tangent space. In order to obtain the unknowns, an
update must be applied, which maps the unknowns from the tangent to the
configuration space. Following Newton’s iteration scheme, a system of linear
equations is solved at each iteration step n =10,1,2,...

Koy = — "), (106)

where K™ is the global Jacobian tangent matrix, £ the residual vector of
equations (104)—(105) and (60)—(65), both in iteration n, and dy a vector of
corrections. In classical Newton’s method in linear vector spaces, the update is
linear which means that dy is added to the previous solution iterate vector y!™.
The non-linearity of the configuration space requires a non-additive update.
Its basic idea is illustrated in Figure 4.

ySoy
Fig. 4. Update in a non-linear configuration space.

25



The non-linear configuration space is symbolically illustrated by a curved sur-
face. The iterative approximation to the solution vector, y, is an element of
a non-linear space. The correction of the solution vector, dy, is an element
of a linear tangent space; the tangent space is symbolically illustrated by a
tangent plane. A new approximation of the solution is obtained first by the
determination of a new solution vector on the tangent plane (point y + dy),
and then by the projection of the point onto the configuration space.

As a result of an iteration step, the corrections of the unknowns, 6r°, §9°,
sa’, 6b°, ok, s, 0%, and dkL,, are obtained. As the position vector and
stress resultants are linear quantities, their corrections are added to the current
iterative approximation values:

0[n+1] _ ,.0[n] 0 Lin+1] __ ,,L[n] L
T, =r," +dr, T, =r, " +or,

O[n+1] _ .0 0 0[n+1] _ 2.0[n] 0
ag[" I = ag["} + 6ag bg = bg + 6bg.

Due to the suitable choice of the basis for the strain vectors, the corrections
of strains can be added to the iterative values, too

V6" = A"+ 0o (107)
ki = kM 4 oKD (108)

The additivity of strain 4% is obvious, while the additivity of kf, has yet to
be proved. Let RI™ be the rotational operator in iteration n and JR the
corresponding update. The total rotation (in iteration n + 1) is then

RIM = sRRM.
From the total rotation the total operator €2 is expressed as follows

QI+l — RIn+1lrpn+1lt _ (57373["})' (5RR[n])t
= dROGRM 4 sRRIMRIIESRY
= 00 + SROMSRY.

When applied to an arbitrary abstract vector ﬂ\, the above expression can be
rewritten as

QI =60 + SROMOR'T = R i = o x i + (0RE) x
(109)

From (109) the kinematically exact update of curvature follows, namely
AR -y (110)

Thus, the total curvature in iteration n + 1 is the sum of the update and the
transformed curvature in iteration n; the transformation operator in (110) is
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the correction of the rotational operator. This shows that, in general, curva-
tures (or by analogy, the angular velocities) are not additive. They are additive
only if a particular combination of material bases is used. To show this, let us
express (110) with respect to the spatial basis
n+1] _ [n]
kT =0RK" + 0Ky,

and then transform the one-column equation with respect to the material basis
in iteration n + 1:

it = (R e+ (R o,
_ (5RRW)T SRE! + 0K g

= R[n}TK,gn] + 6RG[n+1]

[n]
alnl + (SKIG[n—H] .

=K
Formula (4) for the coordinate transformation and R'6R = | were taken
into account. The result is of a significant importance. When the curvature
is expressed with respect to the material basis in iteration n, its correction
with respect to the material basis in iteration n + 1 is simply added to it to
obtain the total curvature in iteration n+ 1 with respect to the material basis
in current iteration n + 1.

The boundary rotations are, of course, not additive. The update of bound-
ary rotation vectors goes in a standard way. With the Rodrigues formula (8)
corrections of boundary rotation matrices, 6R?, SR, are first calculated from
69° and 69" . Then new boundary rotation matrices are obtained by matrix
multiplication:

RU[n+1} — 5ROR0[TL]
RL[n+H — (SRLRL[TL]

Finally, the Spurrier algorithm [31] is used to extract new boundary rotational
vectors 92" and 9 from RO and REH

The update procedure for & is thus completely additive and will therefore be
called additive update. It demands less numerical operations than the mul-
tiplicative one and is also more suitable from the theoretical and numerical
point of view. When the update is additive, any ordinary additive type of
interpolation can be applied in (98) and (99), and the objectivity of such a
procedure is not questionable. However, the rotations at x+ = L obtained by the
integration from equation (49) by the use of the curvature vectors, obtained
by this procedure, may not be completely equal to the rotations at x = L
obtained by the direct nodal update. The error of this additive approach is
small, yet it may contribute to the global error of the element.
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When we wish to use an element free of this kind of deficiency, a different
update for the curvatures can be employed, here termed the ‘non-additive
update’. It is based on the formula for the variations of rotations, relating
the variations of the curvature to the variations of the boundary rotations.
Integration of (89) with respect to parameter z gives

69, (1) = 09" + /0 Rékg de. (111)

The left hand side in (111), function §49,, is the variation of rotational vector
which is fully consistent with 5195 at x = L. Due to the non-linearity of the
configuration space, the corresponding update of curvatures is not the same as
if we chose dk¢ as the basic incremental quantity. When 619, is set to be the
basic incremental quantity, we need to respect the kinematic equation (23) in
order to preserve the kinematic exactness of each incremental solution. The
related increment of strain vector, Ak, is then obtained by transforming the
variation 049} as described in equation (23)

RMIAkG = T (69,) 69,

Increment Ak is then added to the current iterative value

n[gﬂ] = n[g] + AKg. (112)

6.4 Objectivity and path independence of strain measures

We will now prove, that both strain vectors, when expressed with respect to
the material bases, are invariant under a superimposed rigid-body motion.
Assume that a rigid-body motion is added to the current configuration [n].
The rigid-body rotation matrix, Rz = const, is independent of the arc-length
parameter of the beam. It follows that R, (v) = 0 and AQ = R,R}, = 0. The
increment of the curvature is then zero as well (see equation (10)):

Arl (r) = 0.

The rigid-body translation is described by a constant vector i = const. As
r’, vanishes, we have (considering equation (22))

A’yg (x) = 0.

The total strains in configuration [n 4 1] are given by the sums (see (107) and
(108))



The fact that the strains remain unchanged, proves the objectivity. This holds
if the strain measures are exact. The objectivity need not automatically be
conserved after the finite-element discretization, as reported by Crisfield and
Jeleni¢ [9]. The non-objectivity of the discrete strain measures is a consequence
of the additive-type interpolation used for the rotational parameters. In the
present formulation, not the rotations but the strain measures are interpolated.
Consequently, the objectivity of discrete strains is preserved automatically.
The proof is straightforward. By assumption, functions 7[5;” () and n[g] (x)
are approximated by

v (1) = I, (@) v () ke (@) = L, (2) k& ().

The update, given by (107) and (108) or (112), needs then to be applied solely
at the discrete interpolation points. If the deformation from [n] to [n + 1] is
a rigid-body movement, Axf and A& are zero, and the strains at points z,
remain unchanged:

’Y[(?-H] (zp) = 7[(?} (zp) + Ay = 7[(?] (zp)

ke (2,) = kB (2,) + ARE = K () .

These are then directly interpolated

n+1 n+1
A (@) = 1, () A5

) = Ip (ﬁ) Ya
ki (@) = I (0) K5 (2,) = 1,

) = I, (v) k) (2,) = k& (2)

so that the rigid-body motion does not affect the strains at an arbitrary point
x.

Tp
Tp

In the present finite-element formulation, the path independence of the strain
measures is also straightforward, which is due to the additive type of interpo-

lation. Let us assume that the strains 7 (z) and k¢ () have been obtained

in two subsequent steps, as 7[5} (x), 7[51 (x) and n%] (x), n[GQ} (x). As the strains

are additive and the addition commutable, the order of the steps is arbitrary:

Y6 (@) = 1, (@) (v& () + 98 (2)) = I, (0) (v (1) + ¢ (2)) = v& ™ (2)
= I, (2) (k¢ () + & (1)) = I, () (k& (1) + KG (1)) = 66 ().

This proves the path independence of numerical solution.
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7 Numerical examples

We will present several numerical examples in order to demonstrate the perfor-
mance and accuracy of the proposed formulation. We will compare our results
with other formulations. Linear elastic and concrete material models are em-
ployed. For the linear elastic material the operators Cy and Cj, in (28)—(29)
are taken to be diagonal, so that the relationships between stress resultants
and strain measures are given by

EA, 0 0 G, 0 0
Ne=| 0 GA 0 |(va=7e0) Mec=| 0 EJ, 0 |(kc—kao).
0 0 GA, 0 0 EJ

E and G denote elastic and shear moduli of material; A; is the cross-sectional
area; .J; is the torsional inertial moment of the cross-section; A, and Aj are

the shear areas in the principal inertial directions GGy and G5 of the cross-
section; Jy and J3 are the cross-sectional inertial moments about its principal

directions G5 and G5.

The arguments of the integrals in equations (104)—(105) and (60)—(65) and,
consequently, in the Jacobian matrix, are too complicated for the analytical
integration to be possible; therefore, a numerical integration is introduced.
We use a classical numerical integration where an integral is replaced by a
weighted sum

/[]Lf(x)dx%;wqf(xq).

The values of the weights, w,, and the locations of the points, x4, are dependent
on their number N and on the chosen numerical integration method. Because
of its high accuracy, the Gaussian integration is implemented. We assume
that the locations of the collocation points, x,, as well as the interpolation
points, x,, coincide with the Gaussian integration points z,. Consequently,
the Jacobian matrix becomes simpler while no additional interpolation error is
introduced into the numerical integrations. Besides the integrals over the whole
length of the element, local integrals over a part of the element, [0, |, are also
needed in our formulation. For these local integrals, an additional set of local
integration points between two global points z, is introduced. In Figure 5 the
integration scheme is shown for an element using the 4-point global Gaussian
integration (N = 4) and the 3-point local Gaussian integration between two
global integration points.
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e interpolation, collocation, global integration points
o local integration points
I boundary points

lo~o~c@-0 O—@—0 O—@— -0—
0 41 o) 3 Ty 1

Fig. 5. Interpolation, collocation and global integration points, and local integration
points.

It is interesting to observe that the same discrete equations and the Jacobian
matrix follow from the Galerkin-type of the finite element method as a special
case if the interpolation through the integration points is used. When using
the Galerkin finite element method and the interpolation, presented in (100)—
(101), we obtain 2N integral equations from (37)

L

/O(RNG—a,g)Ipd:v:O

L

/U(RMG—bg)Ipdx:(), p=1,2, .. N,

which, once replaced by the summations using the numerical integration, yield
N
qu (R(zg) N¢ (zg) —a(xg)) I, (z4) =0
q=1

>, (R () M () = by () T () = 0.

When choosing the interpolation through the integration points, the rela-
tion I, (z,) = &y, holds, which results in equations (104)-(105). Thus, the
present, formulation can be interpreted either as the collocation or the Galerkin
method.

Finite elements with various number of interpolation points (taken to coincide
with the collocation and integration points) are used in order to investigate
the influence of their number on the accuracy of numerical solutions. Because
of its minor influence, the effect of the order of the local integration is not
displayed in the analysis. A particular element is marked by the symbol ‘E’
and equipped with the subscript describing the number, N, of interpolation
points used. Element Ey has thus 6N + 18 degrees of freedom. Since the
nodal values of strains and the internal force and moment vectors at x = 0
are eliminated at the element level, each element has 12 external degrees of
freedom. E5, having two interpolation points, was the element of the lowest
order used. We wish to stress that the order of interpolation functions is not
limited to any particular value in the computer program, so elements of any
order can be chosen.
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The local quadratic convergence of Newton’s method was achieved in all nu-
merical examples. The iteration was terminated when the Euclidean norm of
the vector of nodal unknowns, ||dy||,, and of the vector of unbalanced residual
forces, || f]|,, was less than 107°.

7.1  Illustration of objectivity

The following numerical example shows the importance of the correct treat-
ment of the objectivity of the discrete strain measures. Let us discuss first the
approach in which the rotations are interpolated. We take that, in iteration
[n], the beam is determined by the boundary rotation vectors

T T
o= 1 1| erm=] 1],

and assume the linear interpolation along the length of the beam

X

¥y () = 9y (0) + 7 (9 (L) — 9, (0)). (113)

Then we have:

L T
%5)=lo o]
T

The rigid rotation, defined by constant rotational vector Ady = {1 1 1} ,

is then superimposed onto the current configuration. By multiplying the corre-
sponding rotational matrices and after the use of Spurrier’s algorithm for the
extraction of the related rotational vectors, we obtain new boundary rotational
vectors:

T

T
91 (0) = [2.6372 0 0.5045] 9, (L) = {0 0.5045  2.6372

Using the linear interpolation (113) for rotations along the beam, we evaluate
the rotational vector at the midpoint of the beam from the new boundary

values I
Yl Liner] (§>: 1.3186 0.2522 1.5709

On the other hand, we can obtain the midpoint rotational vector by the direct

superposition of the rigid rotation onto 19&"] (%)

T

L L g
it (5) = ARg9! <5) = {1.5402 0.4519 1.7976} :

The two vectors differ considerably, which directly affects the rotational strain
and, consequently, the internal stresses. Let us now, for simplicity, assume the
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reference configuration of the beam in which the variational constant dg ()
vanishes (this is typical for initially straight beams or beams with a constant
curvature). By the use of equation (69) we then evaluate the rotational strain
vectors in both configurations. Upon differentiating equation (113) we obtain
9, (x) = £ (94 (L) — 9,4 (0)) and insert it into (69). The following relation is
obtained

1

ko (7) = 2R (9, (2)) T (9, (2)) (9, (L) = 9,/(0)).

If we evaluate kg (%) in configurations [n] and [n + 1], we observe a consid-
erable difference between the results:

K G <—> =T {—0.7635 2.6023 0]

2 L
mey (LY 1 4
K int1] 5 = Z —1.0348 2.6182 0.4482| .

This shows that such an approach is not objective. The difference stems from
the application of the additive type of interpolation of rotations which is not
correct because the rotations are non-additive quantities. In contrast to the
above example, our formulation uses the strain measures as the only interpo-
lated variables. Thus, as analytically proved in section 6.4, the objectivity of
the discrete strain measures is conserved for any type of the interpolation.

7.2 Lateral buckling of a cantilever. The convergence study

We consider a straight, inextensible, shear and in plane (X, Z) bending-stiff
cantilever, subjected to the point force at its centroid of the free end cross-
section (see Figure 6). The lateral, out-of-plane buckling load F.. is sought and
the numerical results are compared with the analytical solution provided by
Timoshenko and Gere [34]. The inextensibility, shear and in-plane bending
rigidities were approximated by large values for GAy, GAs, EA;, and E.J,
(Figure 6).

GA2 = GA3 = EAl = EJ2 == ]_015
EJy = 1250, G.J, =50, L = 100.

Fig. 6. Lateral buckling of a cantilever.
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In Table 1 the influence of the number of elements, the number of interpolation
points of an element, and the total number of degrees of freedom on the critical
load is displayed. We can see that the increase of the number of interpolation
points of an element gives a higher rate of convergence and better accuracy
than the increase of the number of elements of equal degree. When a single
element with two interpolation points is employed, a substantial error (11.8%)
is found; yet only five elements lead to 0.3% error. To obtain an eleven-digit
accurate solution, 50 elements with 3 points are required; such a mesh has
1506 external plus internal degrees of freedom. Equally accurate results are
obtained if one 10-point element with 78 degrees of freedom is used.

Table 1
Out-of-plane buckling load.
E dof n.=1 Ne = 2 Ne =5 ne = 10 ne = 50
Ey 0.11221899817 0.10143235609 0.10034943670 0.10031720870 0.10031501133
F5 1506 0.10137598589 0.10034917035 0.10031516901 0.10031498664 0.10031498359
Ey 366  0.10040668895 0.10031588043 0.10031498449 0.10031498359
Es 216 0.10032093587 0.10031500491 0.10031498359
Eg 0.10031540713  0.10031498389  0.10031498359
E; 114 0.10031500049 0.10031498359
FEg 0.10031498425
Ey 0.10031498362
FEp 78 0.10031498359

analytical solution 0.10031498359

E=type of element, n,=number of elements, d.o.f.=total number of degrees of freedom

The accuracy of the numerical solution of two and three-point elements when
increasing the number of elements is shown in Figure 7a. The relation be-
tween the number of elements and the absolute error of the numerical solu-
tion is approximately linear in the logarithmic scale. Thus, the error decreases
exponentially with the number of elements

err (n,) = <i>a :

Te

For linear elements Fs, the estimated value for o equals 3.6. For quadratic
elements Fs5, the convergence rate is substantially higher, a now being ap-
proximately 5.4. A notably more rapid convergence is obtained by increasing
the order of elements, N, while keeping the number of elements fixed, as shown
in Figure 7b. The absolute error of element Ey is roughly

err (N) ~ <%>ﬁN .
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The convergence-rate factor (3 is approximately 0.9 and 3.3 for the single and
two-element meshes, respectively.

absolute error of the numerical solution

10! —+- linear interpolation (F3) 10! —- single element
10724 —= quadratic interpolation (F3)| 10724 —= two elements
10‘3"\’ 10731
10 104
1074 102
1079+ 1076.
107 1077
10784 107
107 10;
10-10_ 1 10—10_
1011 1074
10°12 T T T T TTTT T .I T 1012 T T —
1 2 5 10 20 30 50 100 2 3 4 5 6 78910
number of elements, n, number of internal points, N
a) b)

Fig. 7. Absolute error of the numerical solution as a function of a) the number of
elements, and b) the number of internal points.

By the increase of the number of elements and/or the number of interpo-
lation points of the element, the complexity of the problem raises. For this
reason the convergence needs also to be analyzed with regard to the total
number of degrees of freedom. The general behaviour is presented in Figure
8, where the absolute error is drawn as a surface in the logarithmic scale and
the corresponding discrete-point values of degrees of freedom are shown as the
three-dimensional bars. Not only the error of the numerical solution decreases
more rapidly when the number of interpolation points is increased, but also
the growth of the number of degrees of freedom is lower compared to the case
where the number of elements is increased. The rate of convergence obtained
by increasing the number of interpolation points is even more favourable if
we compare the number of floating point operations needed for the execution
of the crucial parts of the algorithm: i) the generation of the tangent stiff-
ness matrix and the residual vector of each element and ii) the solution of
the global system of linear equations. Since the internal interpolation degrees
of freedom are condensed at the element level, the order and the sparsity of
the global system of linear equations are independent of the increase of the
interpolation points. That is why we also count the number of floating point
operations needed for condensation and decondensation of each element. The
approximative number of floating point operations needed for the solution of
the global system of linear equation is shown in Table 2. In this numerical ex-
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Fig. 8. Convergence of the numerical solution and the corresponding increase in the
total number of degrees of freedom.

ample the solution of the global system of equations is not a demanding task,
due to a block-diagonal form of the global tangent stiffness matrix. For more
complicated structures the block-diagonal form may not be preserved, which
would increase the number of operations needed. On the other hand the num-
ber of floating point operations at the element level remains approximately
the same for any problem. It depends on the number of internal degrees of
freedom, N, an also on the number of local Gaussian integration points. In
Table 3 the approximative number of floating point operations as a function of
N is shown for the elements using 3-point local Gaussian integration between
the global integration points.

Table 2
Number of floating point operations needed for the solution of the global system of

linear equation.
The 1 2 5 10 20 30 50 100

e.d.o.f. 12 18 36 66 126 186 306 606
flops 100 500 2100 4800 10100 15000 22600 46000

ne=number of elements, e.d.o.f.=number of external degrees of freedom,
flops=number of floating point operations
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Table 3
Number of floating point operations at the element level.

N 2 3 4 ) 6 7 8 9 10

K and f 26000 38000 51000 67000 87000 110000 137000 166000 198000
condensation 6000 8500 12000 16000 22000 29000 38000 49000 62000
decondensation 1000 1500 2500 3500 5000 7500 10000 13500 17500

total 33000 48000 65500 86500 114000 146500 185000 228500 277500

N=number of internal degrees of freedom, K and f=Jacobian matrix and residual vector

When counting the total number of floating point operations we must multiply
the number of elements and the floating point operations at the element level
and add it to the floating point operations of the global level. We increased the
number of internal points for each finite element mesh to obtain the eleven-
digit accurate solution. In Figure 9 we display the corresponding number of
floating point operations. It is evident that the lowest number of operations is
needed when a single element with 10 internal points is used. By the increase
of the number of elements the total number of operations increases rapidly
which results in higher computational times.

number of floating point operations

Fig. 9. Total number of floating point operations needed at the element level and
for the solution of the global system of equations.

We should point out the complete agreement of our results to those presented
by Jeleni¢ and Saje [21]. In the present formulation the number of degrees of
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freedom of an element is larger, due to interpolation of two vector unknowns,
Yo and Kg, compared to only one in [21]. The degree of interpolation of a
particular vector here suffices to be one degree smaller than in [21] to achieve
an equal precision.

7.8 Lateral buckling of a right-angle frame

In this classical problem, first introduced by Argyris et al. [2] and studied
by many authors (e.g. [21], [23], [29]), we analyze a simply-supported thin
rectangular right-angle frame. The undeformed line of centroids lies in the
XY-plane. The support at one end allows the translation in the X-direction
and the rotation about the Z-direction. The support on the other end allows
only the rotation about the Z-direction. The frame is subjected to the in-plane
moments, as shown in Figure 10.

J, =216 A, =18 FE =71240
J, =054 A, =216 G =27191
Js =1350 Ay =21.6 L =240

Fig. 10. Lateral buckling of right-angle frame.

Due to the extreme slenderness of the rectangular cross-section (the thickness
to height ratio is taken to be 1/50), the frame buckles out of the plane. The
buckling moment M, is sought by the use of different-order elements and
several finite-element meshes. In Table 4 our results are shown, together with
their comparison to the analytical solution provided by Timoshenko and Gere
[34] and numerical results by other authors.

The four-digit accurate critical moment was obtained by a single element with
6 interpolation points (54 degrees of freedom) or by the mesh of 3 elements with
3 interpolation points (108 degrees of freedom). From Table 4 again a rapid
convergence of the numerical solution can be observed when increasing the
number of interpolation points. The comparison to other authors shows that
only the solution by Jeleni¢ and Saje [21] gives the results of equal precision.
With regard to the number of degrees of freedom used, the present element is
relatively inexpensive for the high accuracy of the solution obtained.
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Table 4
Critical moment M, of the simply supported right-angle frame.

E d.o.f. ne =1 Ne = 2 Ne = 3 ne=6 mne=10
Ey +685.99 +626.88 +£623.20 £622.54 +622.35 +£622.29

Es 126 £626.31 £622.31 +622.23

Ey 78  £622.40 £622.22 +622.22

Es +622.23 +622.22

Eg 54 £622.22

Eg +622.22

[21] 27  +622.2

[23 66 +626.7
[29 126 +626

analytical solution

+622.21

E=type of element, ne=number of elements, d.o.f.=number of degrees of freedom

7.4 In-plane stability of a deep circular arch

This example shows the ability of the present elements to capture the stability
load at a highly deformed configuration. The in-plane buckling stability is
considered of an elastic beam with the centroidal axis shaped as the circular
arc, corresponding to the central angle 215° of a circle with radius R = 100.

Fig. 11. Deep circular arch.
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The problem has been widely studied. The result of DaDeppo and Schmidt
[11] will serve as a reference solution. As estimated in [11], the error of their
finite-difference solution is roughly 0.03%, thus the results given in [11] are
correct to three digits (F.. = 897). In our study we have chosen the global
coordinate system (X,Y, Z), in which the undeformed centroidal axis lies in
the plane XZ and the reference point (0,0,0) coincides with the center of

the circle. The concentrated force F' = —F§3 acts at the point (0,0, R). The
remaining values of the material and geometrical parameters are shown in
Figure 11. The comparison between various results is presented in Table 5.

Table 5
Critical force of a deep circular arch.
Ne By Es Es5 E, Es (26] (18] (18] 29]
curved curved curved straight straight curved curved straight straight
2 895.91 904.53
4 *897.39 *897.29
6 903.22 897.74 897.29
12 897.71 *897.30  897.29
20 *897.5 *906
24 *897.32  897.29
40 *905.28
48  897.29  897.29
d.o.f. 582 366 186 66 246 246 246
e.d.of. 150 78 30 30 126 126 246

*

E=type of element, n,=number of elements, *=result corresponding to d.o.f. and e.d.o.f.

d.o.f.=number of degrees of freedom, e.d.o.f.=number of external degrees of freedom

The results of the present formulation and the results from [26] are found to
be the most accurate, while employing the least number of elements. The effi-
ciency of these two formulations also results from the accurate consideration
of the initial curvature of the elements. This is confirmed in the fourth and
fiftth column of Table 5, where you can see the results of the polygonal ap-
proximation of the arc for initially straight elements E5 and E3. The present
results are obtained by the use of several types of elements, while other studies
use 9-point [26], 3-point [18] and linear finite elements [29]. It is interesting
to compare the total and the external number of degrees of freedom used. A
particularly low level of the number of degrees of freedom is needed in [26],
however a plane model of the beam was used. By the use of 5-point curved
element we needed 186 total degrees of freedom, which is the lowest value,
comparing only spatial beam theories. For the other types of our elements,
the total number of degrees of freedom is higher than in [18] and [29], while
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our formulation needs less external degrees of freedom (i.e. a smaller size of
the global tangent stiffness matrix). Note also that if the arc is approximated
by a polygonal line, the order of our elements practically does not affect the
result.

Both update procedures mentioned in Section 6.3 give the same results in all
three presented numerical examples, because we have not been dealing with
the out-of-plane rotations. From that point of view, the forthcoming examples
are more interesting.

7.5 Qut-of-plane buckling of a cantilever right-angle frame

The right-angle frame is now clamped at one end and subjected to the point
forces at its free end, as shown in Figure 12a. Force F' in X-direction is as-
cendant with the largest value taken to be 1.485. To obtain the post-buckling
behaviour, a small perturbation force F}, = 0.001F" in the out-of-plane direc-
tion is applied. The results are obtained by using 100 load steps. The final
deformed centroidal axis is shown in Figure 12b together with its projection
on the X Z-plane.

-100
-150

-200

-250 -

50 100
b)

150 -5
200 1 250

Fig. 12. Lateral buckling of a cantilever right-angle frame: a) the initial configura-
tion, and b) the final deformed centroidal axis.

The results were obtained by using both update procedures, and the force-
displacement diagrams are compared in Figure 13. The two graphs almost
agree. The results in Figure 13, obtained by the mesh of 12 elements with 5
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interpolation points per element, are in agreement with the results of other
researchers [5], [29], [30].

1.5
F

0.5 I I I I I I
0 10 20 30 40 50 60 70

Uz

Fig. 13. Out-of-plane displacement versus in-plane force diagram (additive update
— dashed line, non-additive update — solid line).

When the additive update is employed, the equation for the rotational vector
at v =L

L
9t =90 — /0 T-1(9,)R (k¢ — de) dz

will not give the same value for the right-boundary rotation 195 as the direct
update (see the discussion in Section 6.3). In Table 6 we display the relative
error

|95 =05+ [ T7' (99) R (ke — de) da,
L
23],
for each element in the mesh. The error is considerable and spans from roughly
1073 to 107°. Yet it does not substantially influence the results for the remain-

ing variables. Note also that this error vanishes completely if the non-additive
update is used.

Table 6
Relative error of the right-boundary rotation in the finite-element mesh.
e 1 2 3 4 5 6 7 8 9 10 11 12

e 81075 3-10~* 5.10~* 7-10~* 9-10~* 11072 1.1072 1.1073 9.-10~* 7.10~* 4-10~* 2.10~*

e=index of the element in the mesh, e=relative error
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7.6 Twisted cantilever beam

An initially twisted beam was presented by MacNeal and Harder [22] as one of

standard test problems to test finite-element accuracy. The beam is clamped

at one end and loaded with unit in-plane and out-of-plane force at the other.

The centroidal axis is straight at the beginning, but the cross-sections are

twisted about the centroidal axis, as shown in Figure 14. The initial twist

angle is taken as a linear function of the arc-length x with its value set to 0
1

at the clamped end and to ;7 at the free end of the beam. The remaining

geometric and material characteristics of the beam are shown in Figure 14.

h=11 t=032 L=12
E=29-10° v =0.22

Fig. 14. Pretwisted beam for an angle of m/2.

In Table 7 the results for the free-end displacements in the direction of the
applied force are shown for each load case. The results of the present formu-
lation are compared to the theoretical results presented in [22], to numerical
solution of the beam theory of Dutta and White [13], and to the results of
shell theory of Ibrahimbegovic and Frey [17].

It follows from Table 7 that the present formulation gives very accurate results
even if only two low order elements are employed. The results of the present
formulation converge to the values uy = 0.005429 and uy = 0.001750. The
relative error is very small, especially in the first load case. In the second load
case, the relative error is substantial only when a single linear element is em-
ployed. After refining the mesh or using quadratic elements, the relative error
decreases to 0.23%. The comparison with other studies shows the advantage
of the present formulation. The results from [17] fully agree with the exact
solution only for the second load case when the 12 x 2 mesh is used; if the
finer mesh is used (24 x 4), the results differ again.

This test proves that the present formulation takes the initially non-planar
configuration of the beam into account properly. It is also interesting to observe
that both update procedures give the same results. This could be explained
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by the minor rate of rotational changes, compared to the initial rotations of
the undeformed beam.

Table 7
Free-end displacements of a 7/2-pretwisted cantilever.
load case 1 load case 2
E ne displacement uz error (%) displacement uy error (%)
Es 1 0.005474 0.92 0.001517 13.51
2 0.005429 0.09 0.001738 0.91
3 0.005429 0.09 0.001748 0.34
12 0.005429 0.09 0.001750 0.23
Es 1 0.005422 0.03 0.001750 0.23
2 0.005429 0.09 0.001750 0.23
[17] 6x1 0.005390 0.63 0.001759 0.29
12 x 2 0.005405 0.35 0.001754 0.00
24 x 4 0.005411 0.24 0.001751 0.17
[13] 12 0.005402 0.41 0.001741 0.74
exact [22] 0.005424 0.00 0.001754 0.00

E=type of element, n,=number of elements

7.7  Cantilever, bent to a helical form

We consider a very interesting example, first presented by Ibrahimbegovic [19].
When a straight in-plane cantilever is subjected to a point moment at its free
end, it deforms into a part of a circle, which results in a pure bending of the
cantilever. A much more interesting behaviour is observed when a small out-
of-plane point force is added at the free end of the cantilever (Figure 15a).
The out-of-plane force causes the out-of-plane displacements of the beam. We
took the same geometric and material properties of the cantilever as in [19]:

GA, = GA; = EA; = 10* L=10
EJy,=FEJ;=GJ, = 10%

The two loads M = 2007\ and F' = 50\ increase incrementally from A = 0
to A = 1 in 1000 steps. The beam is modelled by a mesh of 25 elements
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Fig. 15. Cantilever, bent to the helical form: a) the undeformed beam and the
loading, and b) the deformed beam.

with 8 interpolation points, and the more precise non-additive update is used.
The result of a simultaneous application of moment and force is a beam, bent
into a helical form (Figure 15b). For the values of geometrical and material
properties as taken, the beam bends into ten circles, which do not lie in the
same plane, yet very close together. The maximum out-of-plane displacement
is roughly —0.08. It must be pointed out that, at the final load stage, the
beam is bent in the opposite direction to the applied force.

_2 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Fig. 16. Free end displacement, uy, versus loading factor, .

The displacement uy of the free end of the cantilever as a function of loading
factor A is shown in Figure 16. Observe that the curve, describing the displace-
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ment, oscillates around the zero value with its amplitude slowly decreasing.
Thus, during the load increase, the beam bends to different sides of X Z-plane.

The analyses of Ibrahimbegovic [19] and later by Battini and Pacoste [5] show
the importance of the suitable parametrization of rotations in order to obtain
the correct results. The parametrization of rotations in the present formulation
avoids problems of large rotations. The values of the free-end displacements
almost completely agree with the results in [19] and [5].

7.8  Cantilever 45° bend

This classical problem, presented by Bathe and Bolourchi [4], includes all
modes of deformation of a structure: bending, shear, extension and torsion.
Therefore, it represents a suitable test for the capability of the finite element.
The initial axis of the cantilever is an arc of the circle of radius 100 located
in the horizontal plane (X,Y’). The beam cross-section is a unit square. The
load 600 is applied at the free end. Other material and geometric properties
of the problem are shown in Figure 17.

h=1 t=1 R=100
E=10" v=0

Fig. 17. Cantilever 45° bend.

The numerical solution has been obtained by various researchers. When com-
paring the results we should be aware that they have reached the final load-
stage in a different number of steps. We model the beam by 8 straight elements
in all the cases and apply the non-additive update. Table 8 displays the com-
parison of the results of the present linear straight element Fs to the results
of other authors. The solution obtained by our element is in accord with other
solutions. The difference between various solutions also arises from different
simplifications used. We, for example, employed the torsional moment of in-
ertia as suggested by the Coulomb theory of torsion, where J; = Jy + Js.
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No reliable result is available for this problem, so the results can be compared
only qualitatively. Several authors have analyzed the rate of convergence of
Newton’s method. As far as the rate of convergence is concerned, the present
formulation is privileged. The total number of iterations depends on the num-
ber of load steps used and the accuracy required. When a single load step is
used, only 6 iterations are needed for accuracy tolerance 10~%. By increasing
the number of load steps, the total number of iterations also increases, while
the number of iterations in each particular load step remains roughly the same.
It should be pointed out that the final results are not affected by the number
of load steps which again confirms the path-independency of our formulation.

Table 8
Free-end position of the cantilever 45° bend under out-of-plane force.
F =300 F =600
formulation  load steps iterations rYx ry Ty rx ry Ty
[4] 60 equal 225 59.2 395 159 472 534
[29] 300, 2x150 27=13+8+6 22.33 58.84 40.08 15.79 47.23 53.37
[6] 6 equal 7-8 per increment 22.14 58.64 40.35 15.55 47.04 53.50
[10] 6 equal 22.31 58.85 40.08 15.75 47.25 53.37
[18] 6 equal 6 per increment - - - 15.68 46.96 53.41
[27] 2 equal 11=6+5 - - - 15.62 47.01 53.51
present Ey single 6 2228 58.78 40.16 15.74 47.15 53.43
2 equal 11=6+5 22.28 58.78 40.16 15.74 47.15 53.43
6 equal 24=6*4 2228 58.78 40.16 15.74 47.15 53.43

number of elements: 8, type of element: linear, straight

Only slightly different results are obtained if the additive update is used (the
use of 8 elements Fy gives r = (15.64,47.21,53.46), see Table 8 for the com-
parison of the results).

7.9 Illustration of the effects of inconsistency of equilibrium at cross-sections

The discussion on the reasons and consequences of the inconsistency of equi-
librium at cross-sections in standard finite-element formulations is beyond the
scope of this article. We wish only to demonstrate the importance of the con-
sistency being satisfied by a single numerical example. As the effects of the
inconsistency are much more pronounced for non-linear material we also study
a materially non-linear concrete beam. We compare the numerical results for
internal forces using two formulations: (i) the present consistent formulation;
and (ii) a slightly changed formulation in which the consistency conditions
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(104)—(105) are satisfied only in their weak (variational) form. This means
that the tangent stiffness matrix remains the same, but the values of the first
6N components of the residual vector are set to zero.

Fig. 18. Simply supported beam subjected to axial forces and bending moments at
ends.

We consider a simply supported beam subjected to the opposite axial forces
and bending moments at its both ends (see Figure 18). The beam length is
L = 120 and its cross-section is rectangular with size 10 x 20. Our results
are shown for the axial force F' = 100 and bending moments M, = 200+/3
and Mz = 200. We used 10 and 50 elements Ejs while enforcing the weak
form of the consistency condition. Two different types of material of the beam
are considered: linear elastic material and concrete. Both, the constitutive
force and moment vectors as well as the equilibrium force and moment, are
evaluated and compared with respect to the material basis.

We first analyze the linear elastic beam with elastic modulus £ = 3000 and
shear modulus G = 1500. Our results for the stress resultants are shown in
Figure 19. From Figure 19 we observe that the inconsistency does have some
effect in the linear-elastic-material problems; however, the discrepancies are
small. The differences for bending moments become even smaller with an in-
crease of the number of elements, while for the constitutive forces and torsional
moment, the increase of the number of elements does not affect the results.
Note that if we the use of the present consistent formulation, the curves, rep-
resenting the constitutive and equilibrium stress-resultants, completely agree.
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Fig. 19. Inconsistency of equilibrium at cross-section for linear material.

Much greater differences are found if a concrete material is used. We show
the results for the concrete beam using the stress-strain law proposed by De-
sayi and Krishnan [12] with strength of concrete in compression f,, = 3, the
strain at peak stress £; = —0.002, and the ultimate strain at compression
ey = —0.008. The bearing capacity of concrete in tension is ignored. The cal-
culated stress-resultants variations are shown in Figure 20. In contrast to the
previous case, we now observe considerable differences in bending moments
and axial force. It is interesting that graphs of the equilibrium and constitu-
tive bending moments have similar shapes, but have very different amplitudes.
By the increase of the number of elements the shapes of the curves represent-
ing constitutive bending moments approach those of the equilibrium moments,
but the curves remain equally apart. Note that by the use of the present con-
sistent formulation, the curves, representing the constitutive and equilibrium
stress-resultants, again completely agree.
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Fig. 20. Inconsistency of equilibrium at cross-section for non-linear material.

8 Conclusions

We presented a new finite element formulation of the geometrically exact three-
dimensional beam theory which is based on the interpolation of strain vectors.
The essential points of the formulation are as follows:

(i) A modified principle of virtual work is proposed in which the strain vectors
are the only unknown functions. Hence it follows that the strain vectors
are the only functions that need to be interpolated. The formulation based
on the strain interpolation is inherently strain-objective, path-independent
and has many advantages in materially non-linear problems, such as in
localization of strains in concrete structures due to the softening of material.

(ii) Displacement and rotational vectors (or their variations) are not interpo-
lated.

(iii) The interpolation of both strain vectors increases the total number of in-

ternal degrees of freedom. These are condensed on an element level, so that

the number of external degrees of freedom still remains 12.
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(iv) The consistency condition that the equilibrium and the constitutive internal
force and moment vectors are equal, is enforced to be satisfied at the given
set of points (the ‘collocation’). This considerably improves the accuracy
of the internal forces and moments at these points, which is of utmost
importance particularly in materially non-linear problems and composite
structures where the accuracy of interlayer forces is essential for the overall
results.

(v) The determination of internal forces and moments does not require the
differentiation. It then follows that the accuracy of the internal forces and
moments is of the same order as the accuracy of the basic variables. This
is an important advantage compared to formulations where the derivatives
are needed for the evaluation of internal forces.

(vi) The matrices of a finite element are, from the outset on, derived with respect
to the global coordinate system. The coordinate transformation from the
local to the global system is thus avoided. An arbitrary initial bending
and/or twisting curvature and deformation of the beam can be prescribed at
the unloaded configuration, so that the beam can have an arbitrary bending,
shear, and torsional deformed initial shape.

(vii) The present finite elements are free of locking.

(viii) A number of finite elements of different order have been tested by various
numerical examples. A rapid convergence and an outstanding accuracy are
characteristic for the higher-order elements.
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