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The Three-Dimensional Beam Theory: Finite

Element Formulation based on Curvature

D. Zupan, M. Saje ∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

The article introduces a new finite element formulation of the three-dimensional
‘geometrically exact finite-strain beam theory’. The formulation employs the gener-
alized virtual work principle with the pseudo-curvature vector as the only unknown
function. The solution of the governing equations is obtained by using a combined
Galerkin-collocation algorithm. The collocation ensures that the equilibrium and
the constitutive internal force and moment vectors are equal at a set of chosen
discrete points. In Newton’s iteration special update procedures for the pseudo-
curvature and rotational vectors have to be employed because of the non-linearity
of the configuration space. The accuracy and the efficiency of the derived numerical
algorithm are demonstrated by several examples.

Key words: three-dimensional beams, three-dimensional rotations, curvature,
finite element method.
PACS:

1 Introduction

Engineering structures are often modelled by beam models. In the present
paper, we limit ourselves to models, derived from the resultant forms of the
differential equilibrium equations. Their strain-displacement equations consist
of three displacement components and six strain measures (longitudinal and
shear strains, and pseudo-curvatures) of the axis of the beam. The strain mea-
sures are derived in such a way that the relationships between the displace-
ments, the strains, and the stress resultants are consistent with the virtual
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work principle at the deformed state for any magnitude of displacements, ro-
tations and strains. The model is often called the ‘geometrically exact finite-
strain beam theory’ (Simo [23], Simo and Vu-Quoc [24]) although both its
exactness (Li [15]) and its applicability to finite strain regime may be ques-
tioned.

Because the spatial rotations – which play a crucial role in the beam models –
are elements of a multiplicative group, the configuration space of deformations
is a non-linear manifold. The way the rotations are parametrized is essential,
as a particular selection of the parametrization has a direct influence on the
algorithm and the form of the tangent stiffness matrix.

In contrast to previous formulations, which base the finite element imple-
mentation of the geometrically exact beam theory on both displacements and
rotations as the interpolated degrees of freedom (as, e.g., Simo and Vu-Quoc
[24], Ibrahimbegovic [9], Crisfield [4]), or solely on rotations (Jelenić and Saje
[13]), the present finite element implementation of geometrically exact 3D
beam theory parallels the ones given in [18] and [19] for plane frames. The
pseudo-curvature vector is used as the only degree of freedom that needs to
be interpolated along the element, while the displacement and rotational com-
ponents are not interpolated. This ‘one-field’ formulation not only results in
the fact that the locking never occurs (that is also the characteristic of finite
elements by Jelenić and Saje [13]), but also provides enhanced accuracy for
the same number of degrees of freedom compared to displacement-based finite
elements, and further enables more realistic description of stress distributions
within the beam element; this is of the utmost importance in describing the
behaviour of non-linear material in the state of localized strain and stress (e.g.,
in a plastic hinge).

In standard finite element formulations, as is well known, the stress-resultants,
obtained from the equilibrium equations, and those calculated from the con-
stitutive equations, are not equal. Here, this ‘inconsistency of equilibrium at
cross-sections’ is solved by enforcing the consistency condition to be satisfied
in a set of predefined points (here taken to coincide with the interpolation
nodes) (the ‘collocation’). A similar strategy was employed by Vratanar and
Saje [31] for elastic-plastic analysis of plane frames. In the present formula-
tion, the determination of internal forces does not require the differentiation
with respect to the arc-length, x. This is a notable advantage compared to
formulations, where the derivatives with respect to x are needed for the eval-
uation of internal forces, since the differentiated quantities are as a rule one
order less accurate than the quantity itself.
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2 Geometry and kinematics of the three-dimensional beam

Geometry of the three-dimensional beam is described by the line of centroids
of cross-sections and by the family of the cross-sections not necessarily per-
pendicular to the line of centroids. The geometric shape of the cross-sections
is assumed to be arbitrary and constant along the beam. A cross-section is
assumed to suffer only rigid rotation during deformation. The line of centroids
is described by the position vector

⇀
r (see Figure 1). In order to describe posi-

tions of the cross-sections, a family of orthonormal vector bases
{
⇀

G1,
⇀

G2,
⇀

G3

}
,

here called the ‘material basis’, is introduced. Vectors
⇀

G2 and
⇀

G3 are directed

along the principal axes of inertia of the cross-section, and
⇀

G1 is normal to the

cross-section:
⇀

G1 =
⇀

G2 ×
⇀

G3. In general, the basis
{
⇀

G1,
⇀

G2,
⇀

G3

}
is different at

each point of the line of centroids. It is found convenient to distinguish between
the reference (undeformed) configuration and an arbitrary deformed configu-

ration. That way we can express the vectors
⇀
r ,

⇀

G1,
⇀

G2, and
⇀

G3 as functions of
parameter x, the arc-length of the reference line of centroids of cross-sections.

Note that the reference configuration, described by
⇀
r
0
and

{
⇀

G
0

1,
⇀

G
0

2,
⇀

G
0

3

}
, is

only a special case of an arbitrary deformed configuration.
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Fig. 1. Kinematics of the reference and the deformed configurations of the beam.

In addition to the material basis, the ‘spatial basis’ with orthonormal base
vectors

{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
is introduced, which spans the physical space in which

the beam is embedded (the three-dimensional Euclidean space in mathemat-
ics). The material basis is related to the spatial basis by the rotation matrix
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R (x), which maps
{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
into

{
⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)
}
. The deformed

geometry and the position of the beam in space are fully described by
⇀
r (x)

and R (x). The rotation matrix R (x) has nine components, of which only three
are independent. It is convenient to parametrize the components of R by the

rotational vector
⇀

ϑ [1]. The rotational vector is a vector that lies on the axis
of rotation with its length equal to the angle of rotation.

In what follows, the abstract vectors will be expressed by three scalar compo-
nents with respect to the material or spatial orthonormal basis. A vector,

⇀
v ,

can be expressed in a vector form

⇀
v = vg1

⇀
g 1 + vg2

⇀
g 2 + vg3

⇀
g 3 = vG1

⇀

G1 + vG2

⇀

G2 + vG3

⇀

G3 (1)

or in a matrix form

vg =


vg1

vg2

vg3

 , vG =


vG1

vG2

vG3

 ,

as a one-column matrix. An arbitrary abstract vector
⇀
v can be expressed with

respect to material or spatial basis, but when given in the matrix form only
the operations between the vectors, expressed with respect to the same bases,
are allowed. Therefore, the relationship between one-column matrices vg and

vG is of great importance. The base vectors
⇀

Gi are expressed as the image of
the rotation matrix on the spatial basis:

⇀

Gi = R1i
⇀
g 1 +R2i

⇀
g 2 +R3i

⇀
g 3, i = 1, 2, 3, (2)

where Rij denotes a component of rotation matrix. Inserting (2) into (1) gives
the relationship between the two one-column matrix presentations of a vector

vg = RvG, (3)

which is commonly referred to as the coordinate transformation equation. In
what follows, one-column matrices vg and vG will, for simplicity of language,
be termed vectors.

Remark 1 Another meaning of the rotation matrix is revealed in (3). It ro-
tates spatial basis into material, but it also transforms a one-column matrix
of a vector, expressed with respect to the material basis, into its spatial basis
presentation.

The relationship between the rotation matrix R and the rotational vector ϑ
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is described by the Rodrigues formula

R = I+
sinϑ

ϑ
Θ+

1− cosϑ

ϑ2
Θ2, (4)

where Imeans the unit matrix, ϑ = ∥ϑ∥ is the Euclidean norm of the rotational
vector ϑ, and Θ is the skew-symmetric matrix composed from the components
of ϑ

ϑ =


ϑ1

ϑ2

ϑ3

 → Θ =


0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0

 .

Remark 2 The parametrization of rotations with the rotational vector is in-
troduced in (4) in order to reduce 9 constrained parameters into 3 arbitrary
ones. There is a number of possibilities for choosing three independent rota-
tional parameters (see, e.g., [1], [2], [8]). In principle, a unique global repre-
sentation of finite rotations needs at least five parameters. Nevertheless, the
three-parameter rotational vector chosen here has proved to be adequate for the
description of large rotations in our finite element formulation when correctly
implemented in the computer code.

3 Strain measures, stress resultants and constitutive equations

In this section we introduce the strain vectors γ and κ, following the approach
of Reissner [20] and Simo [23]. The strain vectors are related to the previously
described kinematic quantities: the position vector r and the rotational vector
ϑ. Vectors γ and κ are given here with respect to the material basis, while
the vectors r and ϑ are expressed with respect to the spatial basis. Using the
principle of virtual work, together with equilibrium equations of the beam,
yields the relationships between the variations of the vectors of kinematic
quantities (r,ϑ) and strains (γ,κ)

δγ = RT (δr ′ − δϑ× r ′) (5)

δκ = RT δϑ′. (6)

The prime (′) denotes the derivative with respect to arc-length parameter x,
and “×” is a vector product.

Remark 3 Note that the variation of a one-column matrix (vector), given
with respect to the material basis, is a relative variation of a vector that as-
sumes only the variation of components. This is in accord with the notion of
‘objective rates’; see e.g. [23].
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The integration of equations (5) and (6) gives strain measures γ and κ as
functions of displacements and rotations

γ = RTr ′ + c (7)

κ = RTω + e. (8)

Vector functions c (x) and e (x) are variational constants (δc = 0, δe = 0)
to be determined from the known strains and kinematics in the beam at the
reference configuration. One-column matrix ω, introduced in (8), is the axial
vector of the antisymmetric matrix Ω = R′RT . Its components are given with
respect to the spatial basis. In rigid-body dynamics, where time t plays the
role of parameter x, ω is commonly referred to as the angular velocity vector.
In the differential geometry of curves, ω is referred to as the curvature. Due
to obvious similarity with the latter, ω could here be termed the curvature.
Yet ω is not the curvature of the centroidal axis of the beam, so the term
‘pseudo-curvature’ is more adequate. For further descriptions of the angular
velocity vector see, e.g., [1], [2], and [5].

For the reasons which will become clear later, an additional strain measure,
κ∗, is introduced. Let us define the vector δκ∗ by the equation

δκ∗ = Rδκ. (9)

Inserting equation (9) into equation (6) and integrating in the sense of varia-
tions, yields

κ∗ = ϑ′ + d. (10)

Here vector function d (x) marks a variational constant (δd = 0), obtained
from the shape of the beam in the reference configuration.

The relationship between κ∗ and κ is also needed for future use. It is obtained
by employing the known relationship between ω and ϑ′. The development of
the relationship is rather lengthy and can be found, e.g., in Atluri and Cazzani
[2]. The result can be written in the following form

ω = T (ϑ)ϑ′, (11)

where T (ϑ) denotes a matrix given by the following expression:

T (ϑ) = I+
1− cosϑ

ϑ2
Θ+

ϑ− sinϑ

ϑ3
Θ2. (12)

Employing (11) in (8) gives

κ = RTTκ∗ − RTTd+ e (13)

= RTTκ∗ + f. (14)
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For further use the stress-resultant vectors over the cross-section must be in-
troduced. The stress-resultant force is denoted byN and the resulting moment
vector by M . Both N and M are expressed with respect to the material ba-
sis. The stress-resultants N and M are dependent on the strains γ and κ
through the constitutive equations which are taken here as being given by the
equations

N = CN (γ − γ0,κ− κ0) (15)

M = CM (γ − γ0,κ− κ0) . (16)

The non-linear operators CN and CM describing the material of the beam must
be invariant under superposed rigid-body motions and sufficiently smooth. We
assume the existence of at least the first derivatives with respect to γ, κ, and
x.

4 Generalized virtual work principle

Let us assume that the beam is subjected to the external distributed force and
moment n and m per unit length of the reference line of centroids; n and m
are expressed with respect to the spatial basis. For the beam of initial length,
L, the principle of virtual work may be stated in the following form:∫ L

0

(
NT δγ +MT δκ

)
dx =

∫ L

0

(
nT δr +mT δϑ

)
dx

+
(
S0

)T
δr0 +

(
P 0

)T
δϑ0 +

(
SL

)T
δrL +

(
P L

)T
δϑL. (17)

S0, P 0, SL, P L are vectors of the external point loads and moments at the
boundaries x = 0 and x = L. The upper indices 0 and L mark the value of
a quantity at the fixed values of the arc-length parameter x = 0 or x = L.
Hence, δr0 and δrL are variations of the position vector r at x = 0 and
x = L, and δϑ0 and δϑL are variations of the rotational vector at x = 0 and
x = L. It should be noted that the quantities γ, κ, r, and ϑ are not mutually
independent, because they are constrained by the kinematic conditions (7),
(8), (10), and (11). Once we eliminate κ and ω by using (8) and (11), two
independent equations (7) and (10) remain the constraining equations for γ,
κ∗, r, and ϑ, as well as their variations. According to the method of Lagrangian
multipliers in constrained problems of calculus of variations and the related
work of Planinc et al. [18] on planar beams, the constraining equations

Rγ − r ′ − Rc = 0

κ∗ − ϑ′ − d = 0

are scalarly multiplied by arbitrary, independent, at least once differentiable
vector functions a(x) and b(x), given with respect to the spatial basis. The
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scalar products of the multipliers and the constraining equations are integrated
along the length of the beam and varied with respect to now independent
variables a, b, γ, κ∗, r, and ϑ∫ L

0
δaT (Rγ − r ′ − Rc ) dx+

∫ L

0
aT (δR γ+ Rδγ − δr ′ − δR c) dx = 0∫ L

0
δbT (κ∗ − ϑ′ − d) dx+

∫ L

0
bT (δκ∗ − δϑ′) dx = 0.

The difference of the terms δRγ and δR c is transformed into a more useful
form with a well known formula for the variation of the rotation matrix (see,
e.g., [2]) δR = δΘR:

δR (γ − c) = δΘR (γ − c) = δϑ× R (γ − c) .

The terms aT δr ′ and bT δϑ′ are partially integrated and the relationship δκ∗ =
Rδκ is employed. We obtain

∫ L

0
δaT (Rγ − r ′ − Rc ) dx+

∫ L

0
aTRδγ dx+

∫ L

0
aT (δ ϑ× R (γ − c)) dx

−
[
aT δr

]L
0
+

∫ L

0
(a′)

T
δr dx = 0 (18)

∫ L

0
δbT (κ∗ − ϑ′ − d) dx+

∫ L

0
bTRδκ dx−

[
bT δϑ

]L
0
+
∫ L

0
(b′)

T
δϑ dx = 0. (19)

By adding equations (18) and (19) to (17), we obtain the modified principle of
virtual work in which the variations δγ, δκ, δϑ, δr, δa, and δb are arbitrary
and independent functions of x. The variations δr0, δϑ0, δrL, and δϑL are also
arbitrary and independent parameters. As the consequence of the fundamental
theorem of calculus of variations [30] all the coefficients at the independent
variations vanish and the following Euler-Lagrange equations of the three-
dimensional beam are obtained

N − RTa = 0 (20)

M − RTb = 0 (21)

n+ a′ = 0 (22)

m+ b′ − a× R (γ − c) = 0 (23)

Rγ − r ′ − Rc = 0 (24)

κ∗ − ϑ′ − d = 0 (25)

along with the boundary conditions
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S0 + a0 = 0 SL − aL = 0

P 0 + b0 = 0 P L − bL = 0.
(26)

Equations (20)–(25) constitute a system of six matrix equations for six un-
known vector functions γ(x), κ∗(x), r(x), ϑ(x), a(x), and b(x) for a given set
of loads, described by n(x), m(x), S0, P 0, SL, and P L. Equations (22) and
(23) are the force and moment equilibrium conditions. The physical meaning of
the Lagrangian multipliers a and b is now obvious: a (x) is the cross-sectional
force resultant at point x; b (x) is the cross-sectional moment resultant at
point x. a and b satisfy the equilibrium equations and will hence be referred
to as the equilibrium force and moment. We have already introduced the cross-
sectional force and moment resultants as computed from the strains by the
constitutive equations and these will therefore be termed the constitutive force
and moment. Thus, equations (20) and (21) demand the equilibrium force and
moment vectors a and b be equal to the constitutive force and moment vec-
tors N and M , respectively. These conditions yield the so-called ‘consistent
equilibrium at the cross-section’. Inequality of equilibrium and constitutive
stresses is typical for standard finite element formulations. It may constitute
a substantial source of error, especially in materially non-linear problems. An
application of these important consistency conditions in the elastic-plastic fi-
nite element analysis of plane frames is presented in the paper by Vratanar
and Saje [31].

Let us take that the set of equations (22)–(25) is satisfied when n, m, γ, ϑ,
and κ are known at any point of the centroidal line. Let us further assume that
the strain vector γ can uniquely be determined from (15), provided that κ, κ0,
and γ0 are known. As a result, equation (21) remains the only equation of the
system (20)–(25) that still needs to be solved with the the pseudo-curvature
κ∗ (x) as the only unknown function. In order to connect an individual beam
element to a frame structure in the physical space, the boundary conditions
need to be taken into account. aL and bL are obtained by integration of (22)
and (23), and then inserted into (26). The values of rL and ϑL are expressed
by integration of (24)–(25). rL and ϑL need to be added to the boundary
equations, as a consequence of the change of the variables from r and ϑ to
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κ∗. The final governing equations of the three-dimensional beam read

MG (x)− RTbg (x) = 0 (27)

rL
g − r0

g −
∫ L

0
R (γG − cG) dx = 0 (28)

ϑL
g − ϑ0

g −
∫ L

0

(
κ∗

g − dg

)
dx = 0 (29)

S0
g + a0

g = 0 (30)

P 0
g + b0g = 0 (31)

SL
g − a0

g +
∫ L

0
ng dx = 0 (32)

P L
g − b0g −

∫ L

0

[
ag × R (γG − cG)−mg

]
dx = 0. (33)

5 Numerical solution of governing equations

5.1 Finite element formulation

The finite element method is used to solve equations (27)–(33). The system of
non-linear governing equations of the beam thus obtained is solved by New-
ton’s method. The discretization of equation (27) represents the crucial step.
It depends on the number and the positions of the integration nodes, used
for the numerical evaluation of integrals in (28)–(29) and (32)–(33). Integrals
over interval [0, L] are substituted by finite sums over the global integration
nodes xp

∫ L

0
f (x) dx→

N∑
p=1

wpf
p.

Here wp are the weights of the quadrature method used, and f p the values
f (xp) of integrand at the integration nodes. We have chosen to make equation
(27) be satisfied solely at integration nodes xp:

MG (xp)− RTbg (xp) = 0. (34)

Thus, the finite element formulation used here is a collocation method.

Remark 4 Observe that the same result follows from the Galerkin-type of the
finite element method as a special case if the interpolation is chosen through
the integration nodes.

The resulting discretized equations constitute a system of N + 6 non-linear
vector equations of a beam element, where N denotes the number of inte-
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gration nodes used. The vector unknowns are r0, ϑ0, a0, b0, rL, ϑL, κ∗p

(p = 1, 2, ..., N).

In order to determine the values of the dependent quantities a (x), b (x),
r (x), and ϑ (x) at the nodes xp from the nodal pseudo-curvatures κ∗p (p =
1, 2, ..., N), a set of additional local (or internal) integrals needs to be evalu-
ated numerically. A low order local integration, which uses only global inte-
gration nodes, could be used. However, we do not wish to restrict the order
of the local numerical integration. For that purpose, some interpolation of the
pseudo-curvature must be introduced. At this point we need to emphasize that
the configuration space of the unknown κ∗ is non-linear because of the multi-
plicative (non-additive) nature of rotations and the related quantities. On the
other hand, the space of the variations δκ∗ is linear, so the interpolation of
the variations δκ∗ in a classical form of the linear combination is theoretically
admissible. Therefore, the interpolation of δκ∗ is used in the form

δκ∗ (x) =
N∑
p=1

Ip (x) δκ
∗p. (35)

Ip (x) (p = 1, 2, ..., N) are the interpolation functions (not necessarily polyno-
mials) through the integration nodes xp.

Remark 5 When using the interpolation of δκ∗ and not that of κ∗, we should
recast equation (29) into its variational (weak) form. Nevertheless, the correct
boundary values are obtained, since any increment δκ∗ preserves kinematically
exact boundary incremental rotations.

The interpolation of δκ∗ (x) allows us to introduce the numerical integration
of any order over closed intervals [0, xp]. In the computer implementation
of the algorithm, an effective step-by-step computation of the local integrals
was used. In each integration step, solely the quadrature between the two
subsequent global integration nodes is applied and the result is then added
to the previously obtained one. An example showing an element using the
4-node global Gaussian integration (N = 4) and the 3-point local Gaussian
integration between the global integration nodes is illustrated in Figure 2.

0 x x x x
L1 2 3 4

interpolation, collocation, global integration nodes

local integration points

boundary points

Fig. 2. Interpolation, collocation and global integration nodes, and local integration
points.
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5.2 Newton’s iteration method

The non-linearity of the configuration space of the beam requires a special
care in applying Newton’s method to the problem. The linearization is made
in the sense of the first variation of functionals. This way the variations of
the unknowns become equal to the iterative increments of the unknowns. The
variations of the unknowns are elements of the tangent space. Thus an update
procedure needs to be applied to map the unknowns from the tangent space
onto the configuration space.

Varying the discrete system of non-linear equations (28)–(34) assembled for
all elements of a system, gives the Jacobian matrix of the system (or the
tangent stiffness matrix). Following Newton’s iteration scheme, a system of
linear equations is solved at each iteration step n = 0, 1, 2, ...

K[n]δy = −h[n], (36)

where K[n] is the global tangent stiffness matrix, h[n] is the residual vector
of equations (28)–(34), both in iteration n, and δy is a vector of corrections,
which, in classical Newton’s method in linear vector spaces, is added to the
previous solution iterate vector y[n]. The non-linearity of the configuration
space, on the other hand, requires a non-classical update procedure. Its basic
idea is illustrated in Figure 3.

d

d

d
x

x

x

x

x

x

L

+

Fig. 3. Update procedure in a non-linear configuration space.

The non-linear configuration space is symbolically illustrated by a curved sur-
face. The iterative approximation to the solution vector, x, is an element of
the non-linear space. The variation of the solution vector, δx, is an element
of a linear space, here symbolically illustrated by a tangent plane. A new ap-
proximation of the solution is obtained, first by determining a new correction
vector, point x + δx on the tangent plane, and then by projecting the point
onto the configuration space.
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As a result of an iteration step, the corrections of the unknowns are obtained,
δr0, δϑ0, δa0, δb0, δrL, δϑL, δκ∗p. The position vector and stress resultants
are linear quantities. Therefore, new values are obtained by a simple addition
of the corrections to the previous values:

r0[n+1] = r0[n] + δr0 rL[n+1] = rL[n] + δrL

a0[n+1] = a0[n] + δa0 b0[n+1] = b0[n] + δb0.

The remaining quantities are not additive. The update of boundary rotational
vectors is as follows: first, corrections of boundary rotation matrices, δR0, δRL

are calculated from δϑ0 and δϑL with the Rodrigues formula (4). Then new
boundary rotation matrices are obtained by matrix multiplication:

R0[n+1] = δR0R0[n]

RL[n+1] = δRLRL[n].

Finally, the Spurrier algorithm [27] is used to extract new boundary rota-
tional vectors ϑ0[n+1] and ϑL[n+1] from R0[n+1] and RL[n+1]. The algorithm first
obtains the rotational quaternion from the rotation matrix. From the rota-
tional quaternion, arccosϑ is then evaluated and angle ϑ in the interval [0, 2π)
uniquely obtained. ϑ from this interval fully suffices to describe boundary ro-
tations of any magnitude in the tangent stiffness matrix because the rotational
vector is invariant with respect to an additional rotation of magnitude 2nπ.

The crucial part of our procedure is the update of the rotation and the pseudo-
curvature vectors at points along the beam axis. In contrast to the update
procedure for the boundary rotations, the update of the rotations at internal
points does not require the extraction of the rotational vector from the rotation
matrix. The corrections δκ∗ along the axis of the beam are first obtained by
the interpolation (35)

δκ∗ (x) =
N∑
p=1

Ip (x) δκ
∗p. (37)

The application of (37) in the weak form of (29) yields the corrections of the
rotational vector

δϑ (x) = δϑ0 +
N∑
p=1

δκ∗p
∫ x

0
Ip (ξ) dξ. (38)

From (38) the correction of the rotation matrix, δR (x), is obtained by the
Rodrigues formula (4). New values of the rotation matrix are calculated by
matrix multiplication

R[n+1] (x) = δR (x)R[n] (x) .

Observe that the rotations of any magnitude including those of magnitude
ϑ = 2nπ, can be dealt with this algorithm in a stable manner.
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The update of the deformation quantity κ (x) is based on the additivity of
the pseudo-curvature vector κ, when expressed with respect to the material
basis (see, e.g., Shabana [22]). The correction of the vector κ in the material
basis is obtained by the application of the transformation matrix (12) on the
correction of κ∗ (see equation (13)) and by the coordinate transformation.
The formula for the update of κ (x) reads

κ[n+1] (x) = κ[n] (x) + R[n+1]T (x)T (δϑ (x)) δκ∗.

6 Numerical examples

In this section, we present several numerical examples in order to demonstrate
the performance and accuracy of the proposed formulation. To enable the
comparison with other formulations, a linear elastic material is employed in
all numerical examples. The operators CN and CM in (15)–(16) are taken to
be diagonal matrices

CN =


EA1 0 0

0 GA2 0

0 0 GA3

 CM =


GJ1 0 0

0 EJ2 0

0 0 EJ3

 .

Here E and G denote elastic and shear moduli of material; A1 is the cross-
sectional area, J1 is the torsional inertial moment of the cross-section; A2 and
A3 are the shear areas in the principal inertial directions 2 and 3 of the cross-
section; J2 and J3 are the cross-sectional inertial moments about its principal
directions 2 and 3.

Finite elements with different degrees of interpolation polynomials are used in
order to investigate the influence of the number of interpolation (and global
integration) nodes and the order of the local integration on the accuracy of
numerical solutions. A particular type of the element is marked by the symbol
‘E’ and equipped with two integer values, EN−M ; N is the number of interpo-
lation nodes, and M is the number of additional internal points between the
two subsequent global integration nodes used for the local integration. Recall
that the incremental pseudo-curvatures are interpolated by the polynomials
of degree N − 1. Each element has thus 3 · (6 +N) degrees of freedom.

The quadratic convergence of Newton’s method was achieved in all numerical
examples. The iteration was terminated when the Euclidean norm of the vector
of nodal unknowns, ∥δy∥2, and of the vector of unbalanced residual forces,
∥h∥2, was less than 10−11.
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6.1 Lateral buckling of a cantilever

We consider a straight, inextensible, shear and in-plane-bending stiff can-
tilever, subjected to the point force at its free end (see Figure 4). The lateral
out-of-plane buckling load Fc is sought. The numerical results are compared
with the analytical solution, provided by Timoshenko and Gere [29].
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Fig. 4. Lateral buckling of a cantilever.

We obtain the buckling load iteratively by employing the condition that the
critical load represents the load at which the tangent stiffness matrix of the
cantilever becomes singular. The inextensibility, and shear and in-plane stiff-
nesses are approximated by large values 1015 for GAy, GAz, EA, and EJy
(Figure 4).

In Table 1 the influence of the number of elements, the number of interpolation
nodes per element, and the number of local integration points on the critical
load is displayed. We can see that the increasing of the number of interpolation
nodes gives a higher rate of convergence and better accuracy than the increase
of the number of elements. The influence of the order of the local integration
is also displayed, although its effect here is only minor.

When a single element with two nodes is employed, a 12% error is found.
Increasing the number of two-node elements yields substantially more accurate
results. To obtain a nine-digit accurate solution, 20 elements with 3 nodes are
required; such a mesh has 426 degrees of freedom. Equally accurate results are
obtained if one 8-node element with 42 degrees of freedom is used. We should
point out the similarity of our results and those obtained by Jelenić and Saje
[13]. The results fully agree, the only difference being that the formulation by
Jelenić and Saje requires a one degree higher interpolation polynomial.

It is thus obvious that a few sufficiently high-order elements are more efficient
than many low-order elements, provided that the high order elements do not
exhibit the locking, which is the case here. Note that the reduced integration
often used in practice, is not a preferable solution for high order elements,
because it may reduce the accuracy of the element by a large extent.
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Table 1
The out-of-plane buckling load.

t.e. n.d.o.f. ne = 1 ne = 2 ne = 5 ne = 20

E2−2 0.112219000 0.101432352 0.100349434 0.100315118

E2−10 0.112219000 0.101432352 0.100349434 0.100315118

E3−2 426 0.101375990 0.100349169 0.100315163 0.100314984

E3−3 426 0.101375990 0.100349169 0.100315163 0.100314984

E3−10 426 0.101375990 0.100349169 0.100315163 0.100314984

E6−2 156 0.100315089 0.100314970 0.100314980

E6−6 156 0.100315404 0.100314984 0.100314984

E6−10 156 0.100315404 0.100314984 0.100314984

E7−2 72 0.100314839 0.100314981

E7−7 72 0.100315000 0.100314984

E7−10 72 0.100315000 0.100314984

E8−2 42 0.100314980

E8−5 42 0.100314983

E8−8 42 0.100314983

analytical solution 0.100314984

t.e.=type of element, n.d.o.f.=number of degrees of freedom, ne=number of elements

6.2 The in-plane stability of a deep circular arch

We study the in-plane buckling-type of stability of an elastic beam with the
centroidal axis shaped in the form of the 215 degree circular arc with radius
R = 100. This example is characterized by large pre-buckling displacements
and rotations. The problem has been widely studied. As the reference solution,
the result of DaDeppo and Schmidt [7] is usually stated. In contrast to many
authors who used the finite element method, the finite difference method was
used in [7]. As estimated in [7], the error of their solution is roughly 0.03%,
thus the results given in [7] are correct to three digits (Fcr = 897).

In our study we have chosen the global coordinate system, in which the cen-
troidal axis lies in the plane xz and the reference point (0, 0, 0) coincides with

the center of the circle. Concentrated force
⇀

F = −F⇀
e z acts at the point

(0, 0, R). The values of the remaining material and geometrical parameters
are EJy = EJz = GJt = 106, EA = GAx = GAy = 108. The comparisons
between the results of the present formulation and the results of various other
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Fig. 5. Deep circular arch and deformed axis of centroids at the critical point.

formulations are presented in Table 2.

Table 2
The comparison between different results of the critical force of a deep circular arch.

ne E2−2 E3−2 E8−3 E2−2 E3−2 [21] [9] [9] [24]

curved curved curved str. str. curved curved str. str.

2 896.57 904.53

4 897.29 897.29

6 903.22 897.74 897.29

12 897.71 897.30

20 907.31 907.30 897.5 906

24 897.32 897.29

40 899.80 899.80 905.28

48 897.29 897.29

E=type of element, ne=number of elements, str.=initially straight element

The present results and the results from [21] are found to be the most accurate,
while employing the least number of degrees of freedom. The efficiency of
these two formulations is also the result of the fact that initial curvature of
the elements is considered. This is confirmed in the fourth and fifth column of
results of Table 2, where you can see the results of the polygonal approximation
of the arc for initially straight elements E2−2 and E3−2. The present results
are obtained by the use of several types of elements, while other studies use
9-node [21], 3-node [9] and linear finite elements [24]. In Table 2 we can see
how accurate the present formulation is, not only for high order elements but
also for low-order curved elements E2−2 and E3−2. Note that the high-order
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element E8−3 compared to lower order elements, needs less degrees of freedom
for the solution of equal accuracy.

6.3 Free-end displacements of pretwisted cantilevers

In this numerical example we consider the influence of a pretwist on a free-end
displacement of a cantilever. The beams are clamped at one end and loaded
by the force at the other. The centroidal axis is straight at the beginning, but
the cross sections are twisted about the centroidal axis. The initial rotation
along the length of the beam is therefore described by the rotation angle as
a function of arc-length x. The cantilever with linear dependence between
the arc-length and the rotation angle, and with the 1

2
π free-end rotation was

analyzed by Tabarrok et al. [28]. The material and geometrical properties of
the beam are shown in Figure 6.
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Fig. 6. Pretwisted beam for an angle of π/2.

In Table 3 the displacements ux, uy, and uz of the free-end of the cantilever
under the free-end force F = −3000 are given. The results of the present
formulation are compared to those given in [28]. Only one 5-node element
E5−2 suffices to obtain the displacements which are accurate to 5 significant
figures. This compares favourably with the result in [28], where 20 elements
were used. The same accuracy is obtained when using the mesh of 5 linear
(E2−2) elements; in this case however, about three times as many degrees of
freedom are needed. The comparison between different types of elements used
reveals the rapid convergence of the present formulation.

It is interesting to display the end displacement as a function of the direction of
the applied force. The results are shown as polar graphs in Figure 7, where the
projection of the resulting end-displacement onto the direction of the applied
force as a function of the force direction is drawn.

Several cases are considered in Figure 7. In all these cases, the cantilever is
initially twisted and subjected to point load at its free end. The load 3000 is
applied while its direction, (0, sinφ, cosφ) ; φ ∈ [0, 2π], alters (rotates) in the
yz plane. For an angle φ, which defines the direction of the applied force, the
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Table 3
Free-end displacements of an π/2-pretwisted cantilever.

ne t.e. n.d.o.f. −uz · 10−5 −ux · 10−10 −uy · 10−5

1 E2−2 24 3.867550 2.149780 2.395749

1 E3−2 27 4.165452 2.463750 2.194676

1 E5−2 33 4.155854 2.451590 2.208035

1 E8−3 42 4.155853 2.451580 2.208039

3 E2−2 60 4.153760 2.449610 2.208380

3 E3−2 69 4.155861 2.451610 2.208031

3 E5−2 87 4.155853 2.451610 2.208039

5 E2−2 96 4.155592 2.451350 2.208073

5 E3−2 111 4.155853 2.451630 2.208039

5 E5−2 141 4.155853 2.451610 2.208039

10 E2−2 186 4.155837 2.451600 2.208041

10 E3−2 216 4.155853 2.451620 2.208039

Tabarrok et al. [28]

12 4.146810

20 4.157768

ne=number of elements, t.e.=type of element,

n.d.o.f.=number of degrees of freedom

corresponding value of projection of the displacement is drawn. The angle–
displacement diagram is obviously not symmetric about the axes φ = 0 (φ =
π) and φ = π

2
(φ = 3π

2
). This asymmetry is the consequence of the initial

asymmetric geometric shape. The polar graphs clearly show the influence of
the total free-end twist on the bending stiffness of the pretwisted beam. The
beam with ψ = π

2
is, compared to the straight (non-twisted) beam, relatively

stiffer in the y-direction and more flexible in the z-direction. Besides that, the
largest end displacement of the π

2
-twisted beam occurs not when the force is

applied in y (out-of-plane) direction, but when it is applied at the angle of
roughtly 25 degrees. The more we increase the free-end twist angle, the stiffer
the beam becomes in the y-direction. In the case of 10π twist, the angle–
displacement graph becomes almost a circle.

We should be aware of the difference between the direction of the applied force
and the direction of the resulting displacement in the yz plane. In polar graphs
in Figure 7, the projection of the displacement onto the force direction was
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Fig. 7. Free-end displacements in the direction of the applied force for several
pretwisted beams.

drawn. In general the resulting displacement in the yz plane is not parallel
to the direction of the applied force. In Figure 8 the difference of directions
is illustrated for several initially twisted beams. For an angle of the applied
force φ, the absolute difference between φ and the angle of the resulting dis-
placement vector is drawn (in radian). For the initially straight beam, the
difference of angles vanishes only for the forces acting in the directions of the
axes y and z. For other directions of the applied force, the direction of the
resulting displacement is rather different. Its value for φ = π

6
is approximately

36 degrees. If the pretwisting of the beam is increased, the diagram of the ab-
solute difference between both angles rotates left-wise and becomes smaller,
but the general shape of the curve remains the same.

Another important detail needs to be discussed. In all of the previous exam-
ples, the angle of pretwist was a linear function of the arc-length of the line
of centroids. Let us now consider a beam with the non-linear dependence. Let
us take the π

2
-pretwisted beam with straight edges (Figure 9), probably the
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length of the beam).

simplest example of a non-linearly pretwisted beam. The same load cases are
considered as previously and the corresponding polar graph is evaluated. On
the right-hand side of Figure 9, the graph is compared to the one obtained
by the linearly pretwisted beam. Notice that, in principle, similar behaviour
is found yet with different values.
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7 Conclusions

We presented a new finite element formulation of the geometrically exact three-
dimensional beam theory based on the interpolation of pseudo-curvature. The
formulation accounts for large displacements, rotations and large strains with-
out any practical limitations. These are the essential points of the formulation:

(i) A modified principle of virtual work is proposed, in which the only un-
known function is the variation of the pseudo-curvature vector. Thus the
only function that needs to be interpolated is the iterative increment (or the
variation) of the pseudo-curvature vector δκ∗; this vector represents the en-
ergy complement to the moment vector M given with respect to the spatial
basis.

(ii) Displacements and rotational vectors (or their variations) are not interpo-
lated.

(iii) The consistency condition that the equilibrium and the constitutive internal
force and moment vectors are equal, is satisfied at the interpolation points.
This considerably improves the accuracy of the internal forces and moments
in materially non-linear problems.

(iv) The determination of internal forces and moments does not require the
differentiation. Therefore the accuracy of the internal forces and moments
is of the same order as the accuracy of the basic variable – the pseudo-
curvature. This is an important advantage compared to formulations where
the derivatives are needed for the evaluation of internal forces.

(v) The matrices of a finite element are derived directly with respect to the
global coordinate system. The coordinate transformation from the local to
the global system is thus avoided. An arbitrary curvature and extensional
deformation of the beam axis, and non-orthogonality of cross-sections with
respect to the axis can be prescribed at the initial unloaded configuration.

(vi) The present finite elements are free of locking.
(vii) A number of finite elements of different order have been tested by various

numerical examples. A rapid convergence is a characteristic of all elements.
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