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On “A proposed standard set of problems

to test finite element accuracy”:

The twisted beam

D. Zupan, M. Saje ∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

The standard test problem of MacNeal and Harder [1] for the verification of spatial
beam finite elements, i.e. the deflection of the initially twisted beam, is commented
through the analysis of three variants of initially twisted beams: (i) a linearly twisted
beam with a constant cross-section, (ii) a non-linearly twisted beam with a constant
cross-section, and (iii) a non-linearly twisted beam with variable cross-sections. Our
numerical results lead to the conclusion that the twisted beam problem [1] assumes
the linearly twisted, curved-edge beam.

Key words: three-dimensional beam, finite element method, standard test
problem.

1 Introduction

The initially twisted cantilever beam is one of the standard test problems for
verifying the finite-element accuracy (MacNeal and Harder [1]). The beam is
clamped at one end and loaded either with unit in-plane or unit out-of-plane
force at the other. The centroidal axis of the beam is straight at the unde-
formed configuration, while its cross-sections are twisted about the centroidal
axis from 0 at the clamped end to 1

2
π at the free end. Other geometric and

material characteristics of the beam are: beam length L = 12, width of the
cross-section h = 1.1, its thickness t = 0.32, Young’s modulus E = 29·106, and
Poisson’s ratio ν = 0.22. (Since the plane of a twisted beam is not uniquely
described, we consider the plane xz as the plane of the beam (see Figure 1)).
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The aim of the test is to find out if a finite element is capable of consider-
ing the initially non-planar configuration of the beam properly. Although the
test is interesting for practical applications and in assessing the beam element
accuracy, it has rarely been used by beam-element developers. A precise com-
parison of their numerical results based on the beam theory seems only to
have been given by Dutta and White [2]. On the other hand, the test has been
widely used by shell-element developers, see e.g. [3–9], among many others,
and by 3D element developers, e.g. by Lo and Ling [10] who used the test to
examine their 10-node tetrahedral element.

It appears, however, that the authors [2–10] used a pre-twisted beam with
straight edges (as illustrated in Figure 1b) and the non-linear variation of the
pre-twist along the axis, while we believe that MacNeal and Harder [1] consid-
ered a beam with curved edges – compare their Figure 6 with our analogous
Figure 1a, and observe that, as cited on page 11 of [1], “the warp of each
element is only 7.5◦ ”. Their finite-element mesh consists of 12 equal-length
elements in axial direction. As 12 · 7.5◦ = 90◦, it can only be concluded that
the pre-twist in [1] varies linearly along the axis. In the following we first
show that the way in which the initial, pre-twisted geometry of the beam is
modeled, considerably influences the numerical results.
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Figure 1. Two natural options for a beam initially twisted for π/2: a) a linear
pre-twist along the beam: curved edges, and b) non-linear pre-twist: straight edges.

2 The variation of the pre-twist angle along the axis of the beam

There are two natural kinds of pre-twists. In the first one, the initial twist
angle, ψ, is taken to be the linear function of the arc-length, x, of the line of
centroids:

ψ (x) =
π

2L
x ; (1)
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the related twisted shape of the undeformed cantilever has curved edges and
is illustrated in Figure 1a. Such a shape is typical for various turbine blades.

The second kind of a pre-twist assumes a non-linear dependence between the
pre-twist angle and the arc-length parameter. The simplest example of a non-
linearly pre-twisted beam is a beam with straight edges (see Figure 1b). This
kind of the pre-twist seems to be considered by the cited finite-element devel-
opers ([2–10]). Please see their illustrations, but note that no explicit state-
ment concerning the variation of initial twist is made in their texts. Although
the straight-edge shape looks rather simple, the relation between ψ and x is
neither simple nor self-evident. We will now derive this relation. We may as-
sume that the thickness of the cross-section can be neglected: t = 0. A 4-node
surface with straight edges is then obtained, as shown in Figure 2a.
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Figure 2. Beam with straight edges, approximated by surface (a); one half of its yz
cross-section at an arbitrary point x (b).

The parametric equation of line a, connecting points
(
0, 0, h

2

)
and

(
L,−h

2
, 0
)
,

is obvious (see Figure 2a):

x = ξL, y = −ξh
2
, z = (1− ξ)

h

2
.

The angle of rotation, ψ (x), rotates the vector
⇀
g , parallel to the z-axis

⇀
g =

(
0,
h

2

)
,

into vector
⇀

G:
⇀

G =

(
−ξh

2
, (1− ξ)

h

2

)
, (2)
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⇀

G is a radius vector of an edge point at an arbitrary value x = ξL. Parameter
ξ is expressed by ξ = x

L
and inserted into (2):

⇀

G =

(
− h

2L
x,
(
1− x

L

)
h

2

)
.

By scalarly multiplying
⇀
g and

⇀

G we then have

⇀
g ·

⇀

G =
∥∥∥⇀g∥∥∥ ∥∥∥∥⇀G∥∥∥∥ cosψ (x)

cosψ (x) =
L− x√

2x2 − 2Lx+ L2
.

Thus, the non-linear twist angle of a pre-twisted beam with straight edges
reads

ψ (x) = arccos
L− x√

2x2 − 2Lx+ L2
. (3)

The difference with respect to the linear pre-twist case is now obvious; graphs
of both functions are compared in Figure 3a.

The non-linear twist also affects the initial torsional pseudo-curvature of the
beam. While the pseudo-curvature of the linear pre-twist is constant, π

2L
, the

pseudo-curvature in the non-linear case is a rational function of x (see Figure
3b)

κ (x) = ψ′ (x) =
L

2x2 − 2Lx+ L2
.
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Figure 3. Angle of twist and its derivative (torsional pseudo-curvature) along the
axis of the beam.

We have thus deduced that the beam with straight edges must have the non-
linear twist angle ψ (x) defined by (3). But it is then obvious that the width of
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the beam, w, must vary with x. By observing Figure 2b, we see that one half
of the width of the cross-section at an arbitrary value of x equals the length

of vector
⇀

G:

w (x) = 2
∥∥∥∥⇀G∥∥∥∥ = h

√
2
(
x

L

)2

− 2
x

L
+ 1. (4)

Thus, if we use the beam with straight edges for the modeling of the pre-
twisted beam, we must take the width of the cross-sections along the beam to
vary as described by (4). The graph of the width function, w (x), of the beam
with straight edges is shown in Figure 4. A considerable reduction of the beam
width may be noticed, particularly at the mid-point of the beam, where the
width is h√

2
≈ 0.78h.
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Figure 4. The variable width of the beam with straight edges.

Please note that by taking the non-linear twist angle (3) (as in the straight-
edge case), but assuming constant width of the cross-sections, we again obtain
the beam with curved edges whose shape is very similar, but not equal to the
one given in Figure 1a.

Three types of initial beam shapes are thus plausible: (i) with the linear twist;
(ii) with the non-linear twist and the constant width; and (iii) with the non-
linear twist and the variable width.

3 Numerical results and comparison

Since the three possible types of initial beam geometries have now been pre-
cisely defined, we can assess the effects of different initial shapes by the numer-
ical solution of the problem. For the easier further comparison and discussion,
let us present the numerical results of Dutta and White [2], the results of
the shell theories [3–9], and the results of the three-dimensional theory of Lo
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Table 1
Free-end displacements of the twisted beam.

load case 1 load case 2

author ne displacement uz error (%) displacement uy error (%)

exact [1] 0.005424 0.001754

[2] 12 0.005402 0.41 0.001741 0.74

[3] 12× 2 0.005348 1.40

14× 2 0.005462 0.70

[4] 12× 2 0.005587 3.00 0.001754 0.00

[5] 12× 2 0.001717 2.10

24× 2 0.001742 0.70

48× 4 0.001747 0.40

[6] 12× 2 0.005405 0.35 0.001755 0.06

24× 4 0.005412 0.22 0.001753 0.06

48× 8 0.005416 0.15 0.001752 0.11

[7] 12× 2 0.005405 0.35 0.001754 0.00

24× 4 0.005411 0.24 0.001751 0.17

[8] 12× 2 0.005402 0.41 0.001753 0.04

[9] 12× 2 0.005397 0.50 0.001727 1.54

48× 8 0.005416 0.15 0.001751 0.17

[10] 6× 2× 1 0.005387 0.68 0.001724 1.71

ne=number of elements

and Ling [10]. For each particular load case, the free-end displacements in
the direction of the applied force are shown in Table 1, together with their
absolute relative error with respect to [1].

The results in [2–10] compare well, which indicates that probably the same
initial shape was used as in [1]. Yet this is not in accord with the geometric
shapes of the twisted beams displayed in the papers by these authors. While
in [2–10] the shapes fully agree with the one in Figure 1b, the shape of the
beam, presented in [1], looks more like the one in Figure 1a. Most of the results
are relatively accurate, the relative error being lower than 1%. Note, however,
that only recent and therefore very accurate finite-element formulations are
cited in Table 1. Because of the extreme accuracy of these sophisticated finite-
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Table 2
Free-end displacements of a twisted beam. Results of the beam element proposed
by Zupan and Saje ([13], [14]).

load case 1 load case 2

initial geometry ne displacement uz displacement uy

linear pre-twist (1), constant width, h

3 0.005429 0.001748

6 0.005429 0.001750
x

y
z

F

F

2

1

*

*

12 0.005429 0.001750

non-linear pre-twist (3), constant width, h

3 0.005537 0.001640

6 0.005538 0.001641
x

y
z

F

F

2

1

*

*

12 0.005538 0.001641

non-linear pre-twist (3), variable width (4), w(x)

3 0.006716 0.002386

6 0.006717 0.002388
x

y
z

F

F

2

1

*

*

12 0.006717 0.002388

exact [1] 0.005424 0.001754

ne=number of elements

elements, we would assume that the differences in results could stem only from
the different initial geometric shapes taken in [2–10] and [1].

In order to resolve the issue, we compared their results to ours, obtained by
our curvature-based finite-element formulation ([13]–[14]). This formulation
uses the ‘geometrically exact finite-strain beam theory’ of Reissner [11] and
Simo [12] and employs the incremental pseudo-curvature vector as the only
interpolated variable. All three variants of initially twisted beams, described
in previous section, were analyzed: (i) the linearly twisted beam, (ii) the non-
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linearly twisted beam with constant width, and (iii) the non-linearly twisted
beam with variable width. Each case was modeled by three different finite
element meshes with 3, 6 and 12 equally long linear elements. Our results are
shown in Table 2.

The results show that the difference in the initial geometric shape affects the
beam deformation. From Table 2 we observe that our results for the linearly
twisted beam almost perfectly agree with [1]. The relative error is 0.09% for
the first and 0.23% for the second load case. On the other hand, our results for
the beam with straight edges are different in all non-zero digits. The relative
differences are as big as 23.8% for the first and 36.1% for the second load
case. The results for the non-linearly pre-twisted beam and constant width
are different, too, yet the differences are very small. This again suggests that
the results in [1] are meant for the linearly twisted (curved-edge) beam.

4 Conclusion

Test problems are of utmost importance in assessing the accuracy of newly pro-
posed finite elements. One of such test problems is “the twisted beam problem”
introduced by MacNeal and Harder [1]. The results of many finite-element de-
velopers indicate that the initial shape of the twisted beam as presented in [1]
can be understood in different ways. Our analysis suggests that the twisted
beam problem [1] assumes the linearly varying twist angle, which results in
non-linearly shaped edges of the undeformed beam.

References

[1] R. H. MacNeal, R. L. Harder, “A proposed standard set of problems to test finite
element accuracy”, Finite Elem. Anal. Design 1, 3–20, 1985.

[2] A. Dutta, D. W. White, “Large displacement formulation of three-dimensional
beam element with cross-sectional warping”, Comput. Struct. 45, 9–24, 1992.

[3] J. H. Argyris, M. Papadrakakis, C. Apostolopoulou, S. Koutsourelakis, “The
TRIC shell element: theoretical and numerical investigation”, Comput. Methods
Appl. Mech. Eng. 182, 217–245, 2000.

[4] K. Bassayya, U. Shrinivasa, “A 14-node brick element, PN5X1, for plates and
shells”, Comput. Struct. 74, 167–178, 2000.

[5] P. Betsch, F. Gruttmann, E. Stein, “A 4-node finite shell element for the
implementation of general hyperelastic 3D-elasticity at finite strains”, Comput.
Methods Appl. Mech. Eng. 130, 57–79, 1996.

8



[6] A. A. Groenwold, N. Stander, “An efficient 4-node 24 dof thick shell finite
element with 5-point quadrature”, Eng. Computations 12, 723–747, 1995.

[7] A. Ibrahimbegovic, F. Frey, “Stress resultant geometrically non-linear shell
theory with drilling rotations. Part III: linearized kinematics”, Int. J. Numer.
Methods Eng. 37, 3659–3683, 1994.

[8] J. Liu, H. R. Riggs, A. Tessler, “A four-node, shear-deformable shell element
developed via explicit Kirchhoff constraints”, Int. J. Numer. Methods Eng. 49,
1065–1086, 2000.

[9] Y. Zhu, T. Zacharia, “A new one-point quadrature, quadrilateral shell element
with drilling degrees of freedom”, Comput. Methods Appl. Mech. Eng. 136, 165–
203, 1996.

[10] S. H. Lo, C. Ling, “Improvement on the 10-node tetrahedral element for three-
dimensional problems”, Comput. Methods Appl. Mech. Eng. 189, 961–974, 2000.

[11] E. Reissner, “On finite deformation of space-curved beams”, J. Appl. Math.
Phys. 32, 734–744, 1981.

[12] J. C. Simo, “A finite strain beam formulation. The three-dimensional dynamic
problem. Part I”, Comput. Methods Appl. Mech. Eng. 49, 55–70, 1985.

[13] D. Zupan, M. Saje, “A new finite element formulation of three-dimensional
beam theory based on interpolation of curvature”, CMES: Computer Modeling
in Engineering and Sciences 4, No. 2, 301–318, 2003.

[14] D. Zupan, M. Saje, “The three-dimensional beam theory: finite element
formulation based on curvature”, Comput. Struct. 81, 1875–1888, 2003.

9


	NaslFEAD2004
	FEAD2004

