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Abstract

The paper describes a two-step finite element formulation for the thermo-mechanical non-linear

analysis of the behaviour of the reinforced concrete columns in fire. In the first step, the distributions

of the temperature over the cross-section during fire are determined. In the next step, the mechanical

analysis is made in which these distributions are used as the temperature loads. The analysis employs

our new strain-based planar geometrically exact and materially non-linear beam finite elements to

model the column. The results are compared with the measurements of the full-scale test on columns

in fire and with the results of the European building code EC 2. The resistance times of the present

method and the test were close. It is also noted that the building code EC 2 might be non-conservative

in the estimation of the resistance time.

Keywords: fire resistance, finite element method, reinforced concrete column, thermal strain, creep strain,

transient strain, Eurocode 2.

1 Introduction

The fire resistance analysis of reinforced concrete structures constitutes an important

part in their design. In the analysis an engineer usually employs various formulae for the

fire resistance of structures offered by building codes, without really understanding the

thermo-mechanical behaviour of a structure during fire.
1Corresponding author. Phone.: +386 1 4768 613; fax: +386 1 4768 629.

E-mail address: msaje@fgg.uni-lj.si (M. Saje)
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Much about the behaviour of a structure in fire may be found out experimentally. The

experiments are performed in specially designed furnaces in which the temperature of the

surrounding air changes with time according to the prescribed law. Due to reasons of

economy the furnaces are often small, so that the majority of experiments have to be limited

to testing of single structural elements of small to medium size, e.g. reinforced or prestressed

simply supported or continuous beams (Lin et al., 1988) and columns (Lin et al., 1992).

Such a method is time consuming and the scatter of results can be wide, so that only if the

number of specimens is sufficiently large, the results are statistically reliable, which makes

the experiment expensive. The experiments often give a rather good picture of the overall

behaviour of the structure, particularly its resistance time and the deformed shape, but

cannot directly provide several other data, such as, e.g. stress distributions or transient

strains during fire, which are also important for an engineer to understand the behaviour of

the structure. Such data can be provided by the numerical models if they are sufficiently

accurate.

To overcome these drawbacks, a considerable amount of research has been directed to-

wards the development of numerical methods which enable the behaviour of a structure

to be predicted by much less expensive computer simulations. An example of the simula-

tions is the problem of the decision whether it is more advisable to demolish and rebuild

than to repair the building which has sustained a fire (Cioni et al., 2001). The numerical

analysis of the behaviour of a structure in fire requires the deduction of a firm theoretical

model of the interaction between the fire and the structure which is a very complex task.

A number of simplified models for the evaluation of the fire resistance of simple reinforced

concrete structures have already been presented (e.g. Dotreppe et al., 1999, Eurocode 2,

2002, Lie et al., 1991), as well as the more advanced models which account for the non-linear

behaviour of material in fire (Dotreppe et al., 1999, Ellingwood et al., 1991, Eurocode 2,

2002, Huang et al., 1999, Lie et al., 1993, Sidibé et al. 2000, Zha 2003). These models use

the simplification of dividing the interaction between the fire and the structure into three

separate consecutive steps. In the first step, we estimate the changing of the surrounding

air temperature with time (the ‘fire scenario’). In the second step, we determine the chang-

ing of temperature with time in the concrete structure as the result of the time and space

dependent heat transfer from hot air into the structure. We have to perform a transient

thermal analysis of the structure in which the heat conduction problem is solved, which is

governed by the partial differential equation of the heat conduction, often augmented by the
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moister and pressure terms and equations. The effects of the heat radiation and the heat

convection from air to the structure surface are accounted for via the boundary conditions.

The final step consists of the determination of the time dependent (but with inertial forces

disregarded) mechanical response of the structure due to the simultaneous actions of me-

chanical and temperature loads. The advanced non-linear mechanical models based on the

3D continuum finite element method would be perfect for this task. Unfortunately, such

models are computationally too demanding for the analysis of skeletal buildings and are at

present limited to the prediction of the fire response of only simple concrete members or

their details. For the practical work and parametric studies, the simplified models which are

based on beam and plate theories need be used, as in Cai et al. (2003), Lie et al. (1993),

Sidibé et al. (2000). This is also the approach followed in the present paper.

We are particularly interested in the behaviour of a reinforced concrete column in fire,

because columns are fundamental for the bearing capacity of skeletal structures. The defor-

mation of the column exhibits geometrical effects such as buckling, and material effects such

as progressive material softening with the temperature rise, spread of the yield through the

cross-section and the redistribution of stresses in axial and cross-sectional directions (Na-

jjar and Burgess, 1996). Thus, the fire analysis of columns represents a severe test of the

accuracy of a numerical formulation. Our goal is to show that a beam-based model, when

appropriately deduced, gives sufficiently reliable results for the resistance time when applied

in the fire analysis of reinforced concrete columns. We prove this by comparing experimental,

numerical and building code (Eurocode 2, 2002) results. We also show that the Eurocode 2

results for the fire resistance time of reinforced concrete columns could be non-conservative.

But let us first describe how the fire resistance of the reinforced concrete column is estimated

by the European building code (Eurocode 2, 2002)!

2 The method for assessing the fire resistance time of reinforced concrete columns

according to the European standard (Eurocode 2, 2002)

The ‘standard fire resistance’ is defined as the ability of a structure or its part to keep

the bearing capacity during a standard fire exposure, for a specified standard period of time

such as 30, 60 or 90 minutes. The standard fire exposure is described by an increasing

temperature–time curve of the surrounding air as experienced in typical hydrocarbon fires.

The temperature–time curve given in Eurocode 1 (1995) reads

T (t) = 20 + 345 log10(8t + 1) , (1)

3



where T [◦C] is the gas temperature in the fire compartment at time t [min] (see Fig. 10(a)
)
.

Eurocode 2 (2002) gives a simple formula for the fire resistance time of the reinforced concrete

column subjected mainly to compression and being a member of a non-sway structure. This

formula reads

R = 120
(Rηfi + Ra + Rl + Rb + Rn

120

)1.8
[min], (2)

where:

Rηfi = 83
[
1− µfi

ω + 1
ω + 0.85

αcc

]
,

Ra = 1.6(a− 30) ,

Rl = 9.6(5− l0,fi) ,

Rb = 0.09 b′ , (3)

Rn =





0 for n = 4 (corner bars only),

12 for n > 4.

The reduction factor for the design load level in fire, µfi, is determined by the equation

µfi =
NEd,fi

NRd
, (4)

where NEd,fi is the design axial load in fire, and NRd is the design resistance of the column

at room temperature. NRd is calculated by the use of Eurocode 2 (1991) with the partial

safety factor γm for the room temperature design including the second-order geometrical

effects with the initial eccentricity being equal to the eccentricity of NEd,fi.

The remaining parameters in Eq. (3) are: a [mm] is the axis distance to the longitudinal

steel bars; l0,fi [m] is the effective (buckling) length of the column exposed to fire; b′ =

2Ac/(b + h) [mm] for the rectangular cross-section whose sides are b and h and Ac is its

area; ω = Asfyd/Acfcd denotes the reinforcement ratio at room temperature, with As, fyd

and fcd being the area of the steel bars, the yield strength of steel and the compression

strength of concrete, respectively; and αcc is the coefficient which accounts for the reduction

of compressive strength of concrete (αcc = 0.85) (Eurocode 2, 1991).

3 The thermo-mechanical response and the fire resistance time of a reinforced

concrete structure in fire: the description of the computational model

The present thermo-mechanical analysis of reinforced concrete planar beam structures

consists of consecutive separate thermal and mechanical time-dependent analyses. In the
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thermal analysis, we assume that the temperature of the surrounding air is a prescribed

function of time. We further assume that the air temperature is spatially homogeneous.

Then the heat transfer in the longitudinal direction of the beam can be neglected, and

the 2D thermal transient analysis over only a typical cross-section of the beam is sufficient

to determine the temperature distribution in the whole beam during fire. Note that the

temperature determined in such a way changes across the section in a very general way.

Because we deal with the planar deformations only, we here assume that the cross-section is

symmetrical with respect to the plane of deformation, so that temperature is also distributed

over the section in a symmetrical way. Both the temperature and its gradient are important

in the mechanical analysis; the former dictates the values of material moduli, while the

latter implies the temperature–driven stresses. In order to obtain the temperature and its

gradients with the sufficient accuracy, the cross-section has to be modelled in the thermal

analysis with a relatively dense finite-element mesh. We note in passing that the linear

variation of the temperature across the section is often sufficient in the fire analysis of

steel structures, see, e.g. Zhao (2000). The steel bars occupy only a small portion of the

section and were therefore disregarded in the thermal analysis. Lie and Irwin (1993) show

that the differences in temperature in the concrete and in the embedded steel bar at the

contact are small. The temperature in the steel bar is therefore assumed as being that

of concrete at its location. We also disregard the moisture transport and its evaporation

and condensation in concrete, although the effect of moisture distribution histories may be

significant, particularly for a higher initial moisture content. Here we assume that this is

not the case. Then the flame emissivity of fire, εr, may have more significant effect than the

moisture, which can thus safely be ignored (see Figs. 8–10 in Huang et al., 1996). The effect

of moisture, on the other hand, can be very important in high strength concretes where the

build-up of the high pore pressure during heating may cause the spalling of concrete, which

results in the loss of strength of concrete, and in the increase of the transfer of heat to the

inner layers of the section (Kodur et al., 2004). The spalling, however, does not seem to be

influential enough for the normal strength concrete studied here to be considered.

Once the time-changing distribution of the temperature over the cross-section has been

determined, it is imposed on a planar beam as a thermal load. Along with the self weight of

the structure and additional forces required by the design rules, these loads constitute the

time-dependent loading set of the structure. We use our novel finite element formulation to

determine the mechanical response of the planar frame (Bratina et al., 2003a, 2003b, 2004).
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The formulation is based on the modified Hu-Washizu functional of the kinematically exact

planar beam theory of Reissner (1972). The only unknown functions in the functional, the

extensional strain, ε, and the pseudo-curvature, κ, are approximated by the Lagrangian

interpolation scheme. The remaining unknown functions, i.e. displacements, the rotation

and the internal forces and moments, appear in the functional only through their boundary

values. Our finite elements differ to the established ones also because they enforce the

constitutive and equilibrium internal forces to be equal at the integration points. We use

the fibre-based constitutive equations. We assume the conformity of extensional strains of

concrete and steel at their contact. Note that our formulation assumes exact kinematical

equations of the beam and is thus not only materially, but also geometrically non-linear in an

exact sense. The theoretical basis of the formulation and its finite element implementation

details have already been described to some extent (Bratina et al., 2003a, 2003b, 2004,

Planinc et al., 2001) and a large number of the check-analyses have been performed by now

proving high accuracy, economy and robustness of the formulation at room as well as at

high temperatures. That is why we here present only those details that are relevant to the

present discussion. The material models used in the analysis are described in Section 3.2.

3.1 The system of discretized equations of the structure

The system of the discretized equations of the structure takes the form G(x, λ, T, t) = 0

where G denotes the non-linear algebraic vector function of the nodal unknowns, x, the

mechanical loading factor, λ, the temperature, T , and time, t. It is solved by Newton’s

incremental–iterative method. The solution time interval is divided into time steps [tj , tj+1],

j = 0, 1, . . . In each step j + 1, the mechanical loading factor increment, ∆λ, and the

temperature increment, ∆T , are prescribed, and the iterative (i = 0, 1, 2, . . . , n) corrections

of the unknowns of the problem, δxj+1
i+1 , are determined by Newton’s method from the system

of the linearized discretized equations

∇xG
(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
δxj+1

i+1 = −G
(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
, (5)

where ∇xG ≡ Kj+1
Ti is the current tangent stiffness matrix of the structure. The values of

the unknowns at the end of time step [tj , tj+1] are determined by the equation

xj+1 = xj +
n∑

i=0

δxj+1
i+1 .

When the tangent stiffness matrix becomes singular (detKTi = 0), the structure reaches its

critical state which is either the limit or the bifurcation point. This state is described by
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the quadruple xcr, λcr, Tcr, and tcr, and is assumed to represent the bearing capacity of the

structure (the collapse). The related time and the related temperature are termed the ‘fire

resistance time’ and the ‘critical temperature’. During a typical fire analysis, the mechanical

loading factor is kept constant (λ = const.), while the temperature rises until the collapse

takes place at the critical temperature. The singularity of the tangent stiffness matrix

indicates the global instability of the structure. In addition to the global instability, the local

instability may take place during fire. This is defined as the state at which the determinant

of the tangent constitutive matrix of a cross-section becomes zero (Bratina et al., 2003a,

2004). Once the tangent constitutive matrix becomes singular, the cross-section experiences

the strain-softening in the subsequent progressive deformation while its neighbouring cross-

sections have to start the unloading. If strained in the softening regime, the cross-section is

unstable. When the structure is statically determinant and if the geometrically non-linear

effect is not dominant, the local instability of the cross-section instantaneously causes the

global instability of the structure. Notice that concrete has a relatively large strain-softening

capability, in particular at high temperatures, so both mechanisms of the instability have

been considered in our formulation.

Remark. The critical temperature (or the collapse) may be defined in various ways. One

of the more popular conditions is that the maximum displacement in the structure reaches

a prescribed large value. Note that this condition and the detKT = 0 condition employed

here do not yield the same result for the critical temperature.

3.2 Mechanical properties of concrete and steel. Strain and stress increments

The geometric, i.e. total extensional strain increment ∆D of a generic material fibre

is assumed to be the sum of increments of elastic, ∆De, plastic, ∆Dp, thermal, ∆Dth,

creep, ∆Dcr, and transient strain increment, ∆Dtr, the latter being non-zero in concrete

and vanishing in steel:

∆D = ∆De + ∆Dp + ∆Dth + ∆Dcr + ∆Dtr . (6)

The sum of elastic and plastic parts of the strain will be termed the mechanical strain,

Dσ = De + Dp. We assume that the relationship between the mechanical part and the

longitudinal normal stress, σ, is given by the constitutive law σ = F(Dσ, T ), where F
is a functional pertinent to the chosen material. In the present fire analysis, we use the

constitutive laws of concrete and reinforcing steel as suggested by Eurocode 2 (2002). The
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graphs of the relationships are depicted in Fig. 1. The figure puts it clear that the increase

in temperature decreases the strength of material and increases its ductility. Both materials,

concrete and steel, exhibit the extensive strain-softening in the post-strength regime. Once

functional F is given, the stress increment ∆σj+1 in the time step [tj , tj+1] is given by the

relation ∆σj+1 = σj+1 − σj = F(Dj+1
σ , T j+1) − F(Dj

σ, T j). The unloading is assumed as

being elastic with an elastic modulus taken at the current temperature. An isotropic model

of the strain-hardening is assumed in the loading–unloading cycles.

Figure 1. Constitutive laws for concrete and reinforcing steel according to Eurocode 2 (2002).

The thermal strain in concrete, Dth,c, is assumed to be a function of the current tempera-

ture and is given by the relation Dth,c = τ(T ). The approximation of functional τ is defined

in Eurocode 2 (2002) and is also adopted here. The thermal strain increment in time step

[tj , tj+1] is thus determined by the equation ∆Dj+1
th,c = τ(T j+1)− τ(T j) = Dj+1

th,c −Dj
th,c.

The concrete creep strain, Dcr,c, is assumed to be a function of the current stress, time

and temperature. Here we employ the model proposed by Harmathy (1993)

Dj+1
cr,c = β1

σj+1
c

f j+1
cT

(tj+1)1/2ed(T j+1−293) , (7)

where f j+1
cT is strength of concrete at temperature T j+1 [K], tj+1 [s] is time and β1 [s−1/2] and

d [K−1] are empirical constants of material. The least square method analysis of the data of

creep tests, performed by Cruz (1968), gives β1 = 6.28 ·10−6 s−1/2 and d = 2.658 ·10−3 K−1.

Fig. 2 shows the comparisons between the experimental and analytical results using (7)

for creep strains at various temperatures in the range from 24◦C to 649◦C. Note that the

agreement is satisfactory.
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The creep strain increment ∆Dj+1
cr,c in time step [tj , tj+1] is given by the equation ∆Dj+1

cr,c =

Dj+1
cr,c −Dj

cr,c.

The transient strain in concrete (Dtr,c) has been found to have an important influence

on mechanical behaviour of concrete during the first heating of concrete (see Anderberg et

al., 1976). It is irrecoverable and is the result of the physico-chemical changes that take

place only under the first heating. Formally, it may be defined as the part of the total strain

obtained in stressed concrete under heating that cannot be accounted for otherwise. In our

formulation we use the transient strain model of Anderberg et al. (1976)

∆Dj+1
tr,c = k2

σj+1
c

fc0
∆Dj+1

th,c , (8)

where fc0 is strength of concrete at the room temperature; k2 is a dimensionless constant

whose value ranges from 1.8 to 2.35. This model assumes that the change of the transient

strain is linearly dependent on the change of the current thermal strain.

Figure 2. The variations of creep strain with time according to the model proposed by Harmathy

(1993) and the experimental data by Cruz (1968).

The thermal strain of steel, Dth,s, is assumed to be a function of the current temperature,

see Eurocode 2 (2002). Accordingly, the thermal strain increment in steel is determined by

the equation ∆Dj+1
th,s = Dj+1

th,s −Dj
th,s.

The creep strain of steel (Dcr,s) becomes considerable when the temperature of steel

exceeds 400◦C. There is a number of creep models available for steel at high temperature.

In our research we employ the model proposed by Williams-Leir (1983). This model assumes

that the creep strain is a function of the current stress and temperature in steel, and that
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its evolution in time is governed by the differential equation

Ḋcr,s = sgn(σs) b1coth2(b2|Dcr,s|) . (9)

Material parameters b1 and b2 are the functions of stress and temperature in steel, see

Williams-Leir (1983). Even if we assume that σs and T are given functions of time, Eq. (9)

is a complicated differential equation that needs to be integrated numerically. Here we

employ the iterative solution method in which the time derivative is substituted by the

implicit differential quotient. The creep strain increment of steel in time step [tj , tj+1] is

thus determined by the equation

∆Dj+1
cr,s = sgn(σj+1

s ) b1coth2(b2|Dj+1
cr,s |) ∆tj+1 . (10)

The flowchart of the incremental–iterative solution procedure of the mechanical response

of the structure is given in Box 1.

Remark. The majority of the numerical formulations of the fire analysis of the reinforced

concrete structures do not differentiate between the plastic and creep strains in concrete.

They employ the combined plastic strain which includes both the plastic and the creep strain

parts. The stress in concrete is then taken to be a function of this combined strain (Lie and

Irwin, 1993, Zha, 2003). Such a material model cannot account for the rates of temperature

and creep strain properly, neither is able to divide the resulting combined plastic strain into

the physical plastic and creep parts. The transient creep in concrete is usually ignored (Zha,

2003).

By contrast, the present formulation considers each of the physical strain parts separately,

thus enabling an engineer to follow the time variation of each particular strain and to assess

its contribution to the total strain. This holds true for both concrete and steel materials.
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Box 1: Flowchart of the incremental–iterative solution procedure.

TIME STEP [tj , tj+1]:

tj+1 = tj + ∆tj+1, T j+1 = T j + ∆T j+1, λj+1 = λj + ∆λj+1,
∆Dj+1

th,c(s) = Dj+1
th,c(s) −Dj

th,c(s).

¦ Structure level: Newton’s iterative method (i = 0, 1, 2, . . .): ∇xG δxj+1
i+1 = −G.

• Element level:
◦ Initialization: ∆xj+1

i=0 = 0.

◦ For all integration points (yc, zc) of the concrete cross-section at quadrature
points xq:
Newton’s iterative solution of ∆σj+1

c,i , ∆Dj+1
cr,c,i and ∆Dj+1

tr,c,i:

F1 = ∆σj+1
c,i −F(Dj+1

σ,c,i, T
j+1)−F(Dj

σ,c,i, T
j) = 0,

F2 = ∆Dj+1
cr,c,i −Dj+1

cr,c,i + Dj
cr,c,i = 0,

F3 = ∆Dj+1
tr,c,i − k2

σj+1
c,i

|fc0| ∆Dj+1
th,c,i = 0.

◦ For all reinforcing bars (yk
s , zk

s ) in the cross-section at xq:
Newton’s iterative solution of ∆σj+1

s,i and ∆Dj+1
cr,s,i:

F4 = ∆σj+1
s,i − G(Dj+1

σ,s,i, T
j+1)− G(Dj

σ,s,i, T
j) = 0,

F5 = ∆Dj+1
cr,s,i − sgn(σj+1

s,i ) b1coth2(b2|Dj+1
cr,s,i|) ∆tj+1 = 0.

◦ Compute N j
c,i, Mj

c,i and the contribution of the cross-section to the tangent
stiffness matrix and the loading vector of the element.

◦ Compute the tangent stiffness matrix of the element, Kel, and
the corresponding loading vector, Gel:

Kel

(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
,

Gel

(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
.

• Compute the tangent stiffness matrix of the structure, KT = ∇xG, and
the corresponding loading vector, G:

KT

(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
,

G
(
xj + ∆xj+1

i , λj+1, T j+1, tj+1
)
.

• Compute the corrections of displacement increments:

δxj+1
i+1 = −K−1

T G,

∆xj+1
i+1 = ∆xj+1

i + δxj+1
i+1 ,

xj+1
i+1 = xj + ∆xj+1

i+1 .

¦ Stop iteration if:

‖δxj+1
i+1‖ < prescribed tolerance (typically 10−8),

continue otherwise.

¦ Stop if numerical collapse of the structure is reached (‘fire resistance time’):

detKT = 0.
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4 Numerical examples

4.1 Clamped reinforced concrete column

4.1.1 Comparisons with experiment (Lin et al., 1992)

In this example we compare the results of our numerical model with the experimental

results of full-scale laboratory fire tests on the centrically loaded reinforced concrete column,

performed by Lin et al. (1992) and reported on by Lie et al. (1993). The geometric and load-

ing data are given in Fig. 3. The self weight of the column is modelled as an axial traction.

In order to simulate a fire situation, the column was exposed to hot surrounding air in such

a way that the air temperature (generated by the furnace) was changing according to the

ASTM fire curve (1976). The yield stress of the reinforcing bars was fy0 = 42 kN/cm2, while

the strength of siliceous aggregate concrete at room temperature was fc0 = 3.61 kN/cm2.

The measured fire resistance time of the column was 208 minutes (Lie et al., 1993). The

related critical temperature was 1087oC.

Figure 3. Clamped centrically loaded reinforced concrete column in fire (Lin et al., 1992).

The remaining material parameters and their temperature dependence, needed in the nu-

merical analysis of the mechanical response, were estimated using the given strengths and

the data from Eurocode 2 (2002).

In the first step, we have to determine the temperature distribution over the cross-section

at discrete times tj during fire. The 2D transient heat conduction problem was solved by our

computer programme (Saje and Turk, 1987). The transfer of heat due to the radiation and
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the air convection at the boundaries were taken into account in a standard way. Thermal

parameters, such as the conductivity kc, the convection heat transfer coefficient hc and the

emissivity εr, were not presented in the report by Lie et al. (1993) and were hence selected

in such a manner that the calculated and the measured temperatures in concrete agreed as

much as possible (εr = 0.3, hc = 20 W
mK , the graph of kc is depicted in Fig. 4). The remaining

parameters, needed in the analysis of the temperature field, were estimated on the basis of

Eurocode 2 (2002). End parts of the column were thermally insulated, so that the actual

length of the column exposed to fire was 310 cm. Fig. 5 shows the calculated and the

measured temperature distributions in concrete cross-section along its centerline at various

times, as well as the calculated isothermals. We see that the calculated and the measured

temperatures agree well. The figure also shows the temperature distributions suggested

by Eurocode 1 (1995); these distributions assume that the column is not insulated. The

disagreement between the measured and the Eurocode 1 distributions is rather big. The

Eurocode curves exhibit larger temperatures than the experiment at the surfaces of the cross-

section, and substantially smaller temperatures at the central region of the cross-section.

The calculated time-dependent temperature field varying over the cross-section was used as

the thermal load of the column in the subsequent mechanical analysis.

Figure 4. The variation of conductivity kc with temperature.

The mechanical response of the column subjected to thermal and mechanical loads was

obtained by our computer programme, made in Matlab (MathWorks, 1999). The column was

modelled by six beam finite elements with ε and κ being interpolated with the Lagrangian

polynomials of the fourth order. In order to initiate the buckling, the axis of the column
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was made imperfect with small eccentricity 0.01 cm. The cross-sectional integration needed

to determine the constitutive axial force and constitutive bending moment and the cross-

sectional constitutive tangent stiffness matrix was performed numerically. We used the

3×3-point Gaussian integration with the total of 180 integration points over one half of the

cross-section.

Figure 5. Reinforced concrete column. (a) The comparison between the measured, the calculated
and the Eurocode temperature distributions along the axis z = 0 at times 60, 120 and 180 minutes;

(b) the calculated isothermals at times 60, 120 and 180 minutes.

Fig. 6 shows how the measured axial displacement was changing with time. We can see

that the axial displacement was increasing during the first 120 min. This corresponds to

the elongation of the column which is due to the growing thermal strain. Subsequently, the

axial displacement started decreasing. This caused the shortening of the column which was

due to the rapid increase of creep and transient strains. This kind of the behaviour is typical

for the reinforced concrete columns.
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We find it interesting to study the effect of individual strain parts in concrete and steel

on the mechanical behaviour of the column. If only the thermal strain (Dth) is considered

(while Dcr and Dtr neglected), the axial displacement u∗ of the column becomes maximal

at about 90 minutes and is greater than the measured one (see Fig. 6). This remains true

if the creep strain of concrete (Dcr,c) and, particularly, the transient strain (Dtr) are also

considered, yet the maxima are now lower and the final axial displacement at the collapse

at about 210 minutes is considerably bigger. The calculated displacement at the collapse

is this time greater than the measured one, although we used the least recommended value

(1.8) for the constant k2 in the transient strain increment expression. This suggests that the

specimen was probably almost dry when the test started. Consequently, the transient strain

can be neglected. The creep strain in steel (Dcr,s) does not effect the axial displacement

considerably (see Fig. 5), because the highest temperature in reinforcing steel is not greater

than 400◦C and because steel Au 50 which is the least sensitive to creep was used.

Figure 6. Reinforced concrete column. The variation of axial displacement (u∗) at point B and the
lateral displacement at the mid–point of the column (w∗) with time.

Surprisingly, the calculated fire resistance time does not depend much on which strain

parts are considered or neglected and rather well equals to the resistance time measured in
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experiment. Fig. 6 also shows the variation with time of the calculated lateral displacement

w∗ at the mid-point of the column. A sudden increase in w∗ well indicates the onset of

the buckling of the column at time 205 min and the subsequent critical state at about 215

min, which is close to 208 min reported in Lie et al. (1993). Fig. 6 further shows the

results of our model when the mechanical analysis using thermal parameters according to

Eurocode 1 (1995) is made (Fig. 5), and the thermal insulation at the bottom and at the

top of the column is disregarded. The results for the displacements and the resistance time

(tcr = 211.7 min) do not differ essentially in comparison with the results that employed the

more realistic temperature distributions. Hence, in the particular column in fire considered

here, the accuracy of the temperature field was not the essential factor.

Fig. 7 shows the distribution of strains (ε, κ) along the centroidal axis of the column at

t = 90 min and at the instant of the numerical collapse, tcr = 214.4 min. All kinds of the

strain parts were taken into account. As expected, the least values of strains appear at the

top and at the bottom of the column in the insulated areas. Until the buckling starts at

205 min, the column remains straight and the pseudocurvature zero. At the critical time,

tcr = 214.4 min, when the column collapses, the longitudinal strain is still dominant, i.e.

about 30–times larger than the corresponding maximal pseudocurvature. Note that the

elongation at the exposed part of the column at 214.4 min is roughly 10–times bigger than

at 90 min. By contrast, the elongation at the insulated parts remains practically constant.

Figure 7. Reinforced concrete column. Strain distributions along the centroidal axis of column. (a)
t = 90 min; (b) tcr = 214.4 min.
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The results of the numerical analysis make it possible to assess the contribution of in-

dividual strain parts to the integral response of the column. Fig. 8 shows the isolines of

thermal, geometric, mechanical, creep and transient strains and stress in concrete at the

mid-point cross-section at 180 min. At this instant the column is still unbuckled; that is

why the geometrical strain is homogeneous across the section. The remaining strains vary

over the cross-section. With the exception of the mechanical strain, the strains attain their

maximal values at the surface of the cross-section. Note that the concrete transient strains

are comparable in size with thermal or mechanical strains. They are, however, compressive,

in contrast to thermal strains which are tensile. Mechanical strains are also compressive;

they are maximal at regions positionned a few centimetres away from the surface of the sec-

tion. The stresses in concrete are also not homogeneous over the section. They are maximal

at the centre region of the section. Fig. 8(d) shows that about one third of the section is

practically not stressed at this instant.

4.1.2 Comparisons with Eurocode 2 (2002)

According to Eurocode 2, the fire resistance time of a reinforced concrete column is given

by formulae (2)–(4). Firstly, we have to calculate the design resistance of the column at room

temperature. The related procedure which is well described in Eurocode 2 (1991) requires

the second order effects to be included via the geometrical imperfection and prescribes

different partial safety factors for action (γ = 1.35) and for material properties (γc = 1.5,

γs = 1.15). Assuming the geometrical imperfection to be ea = 0.49 cm, we obtain NRd =

2394 kN; the design resistance calculated by our numerical model is 2556 kN, which is about

7 ◦/◦ larger value. The effective length of the clamped beam is l0,fi = 1.91 m. The selected

reduction factor for the design load level in fire was µfi = 0.446 and µfi = 0.418, respectively.

Inserting these values into equation (2) gives REC2 = 180.8 min (at Tcr = 1110oC) for

NRd = 2394 kN and REC2 = 186.7 min (at Tcr = 1115oC) for NRd = 2556 kN.

Eurocode 2 assumes that the column is not insulated, in contrast to the present column

which is partly thermally insulated. In order to make a fair comparison, in our numerical

calculations we also assumed that the column is not insulated. The results of the analysis are

shown in Fig. 6 for displacements u∗ and w∗ as functions of time. The calculated resistance

time is 211.7 min. This is remarkably more than the resistance time 180.8 min predicted by

Eurocode 2. A similar conservativeness of Eurocode 2 with regard to the resistance time of

circular reinforced concrete columns was reported by Franssen and Dotreppe (2003).

17



Figure 8. Reinforced concrete column. Isolines for various strains and stress in concrete at
mid-point cross-section at t = 180 min.

4.2 Simply supported reinforced concrete columns. Comparisons with Eurocode 2 (2002)

We study the behaviour of two simply supported perfectly straight columns, here denoted

by C1 and C2. Both columns are subjected to a compressive axial load and bending moments

at the supports. Column C1 (height 4 m) is subjected to an eccentric axial force. We consider

three different eccentricities, e = 0; 0.015; and 0.04 [m], and study their effect. Column C2

(height 4.5 m) is subjected to a smaller axial force and large, but unequal boundary moments

(see Fig. 9). The self weight of the columns is modelled as an axial traction. The variation

of the surrounding air temperature with time is assumed after Eurocode 1 (1995) (Eq. (1)).

Geometrical and mechanical data along with the load disposition are presented in Fig. 9.

The amount of the reinforcement and the design resistance of the columns were calculated
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Figure 9. The geometrical and mechanical data for eccentrically loaded reinforced concrete
columns.

according to Eurocode 2 (1991). The partial safety factors for actions and for material

properties were taken to be γ = 1.35 and γc = 1.5, γs = 1.15, respectively. The resistance of

column C1 at room temperature was found to be NRd,C1 = 1350 kN for all three values of

eccentricities. The related areas of the steel reinforcement are: As = A′s = 7.56 cm2 for e = 0;

As = A′s = 10.68 cm2 for e = 0.015; and As = A′s = 16.04 cm2 for e = 0.04. The resistances

of these columns, obtained by the present numerical method, are 1527 kN, 1451 kN and

1399 kN. These values are from 4− 13 ◦/◦ bigger than the one obtained from the code. The

resistance of column C2 at room temperature is NRd,C2 = 945 kN, MRd,1,C2 = −47.3 kNm

or MRd,2,C2 = 75.6 kNm. From this As = A′s = 6.32 cm2 follows. The selected reduction

factors for the design load level in fire were µfi = 0.5 and µfi = 0.4 for columns C1 and C2,

respectively
(
see Fig. 9 and Eq. (4)

)
. The corresponding fire resistance times by Eurocode 2

(2002) are RC1 = 123.8 min (at Tcr = 1054oC) and RC2 = 108.7 min (Tcr being 1034oC).

Note that the resistance time in Eurocode 2 does not depend on the eccentricity of the load

and/or the area of the reinforcement; that is why all of the three cases of column C1 have

the same resistance time.

Thermal parameters of concrete, i.e. conductivity kc, specific heat cc, convection heat

transfer coefficient hc, emissivity εr and density ρc, were chosen on the basis of the data from

Eurocode 2 (2002) for concrete with the siliceous aggregate and for the moisture content

19



1.5 ◦/◦ of the concrete weight. The calculated temperature distributions over the cross-

section (see Fig. 10) well agree with those presented in Eurocode 2 (2002). Fig. 10 also

shows the changing of the temperature with time in the most and the least exposed steel

bars. We can observe that the temperature in the bars is much smaller than the temperature

of the surrounding air (dashed line in the figure), which is the consequence of the relatively

thick concrete cover.

Figure 10. Eccentrically loaded reinforced concrete columns. Temperature response.

In the mechanical analysis, each column was modelled by six equally long beam finite

elements of the fourth order. We used Lobatto’s integration for the line integrals and

Gaussian integration for the cross–sectional integrals. Concrete with siliceous aggregate

and the cold formed reinforcing steel were assumed to define the dependence of concrete

and reinforcing steel material parameters on temperature. We assume that steel is only

lightly sensitive to creeping. Constant k2, characterizing the transient strain increment, was

taken to be equal 1.8.

When disregarding creep of concrete and steel, and also transient strain in concrete,
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our numerical model yields the fact that the resistance time of column C1 is practically

insensitive to the eccentricity of the axial force, the resistance times of the three columns

being 121.5, 117.3 and 121.3 min for e = 0; 0.015; and 0.04 [m]. These values are only

slightly smaller than the value suggested by Eurocode 2, i.e. RC1 = 123.8 min. The time

developments of the axial and lateral displacements are displayed in Fig. 11 for all three

cases. Note that column C1 collapsed after an excessive growth of the lateral deflection.

Figure 11. Eccentrically loaded reinforced concrete column C1. Variation of axial and lateral
displacements with time. Only Dth considered.

In Section 4.1.1 we observed that the effects of creep of concrete and steel as well as the

transient strains in concrete onto the fire resistance time were small. This is not true in the

present case of column C1. When these strains are considered, the numerically found resis-

tance times are about 10 ◦/◦ smaller, i.e. 110.8, 106.0 and 111.7 min, respectively. Fig. 12

shows the related time graphs of the displacements. Observe that the axial displacement,

u∗, increases during the first 80− 90 min (reaching the value 1.15 cm for the eccentricity 4

cm), and decreases afterwards. It takes the value about 0 cm at the collapse of the column.

By contrast, the lateral displacement increases all the time. A rather substantial lateral

displacement may be observed at the collapse (w∗cr = 11.02 cm for e = 4 cm).

The fire resistance time for column C2, calculated by the non-linear analysis, is 102.3

min, when we disregard the creep strains in concrete and steel and the transient strains in

concrete, and 92.1 min otherwise. This is 16.6 min less than the Eurocode 2 fire resistance

time. Like column C1, column C2 failed after an excessive growth of the lateral deflection.

Fig. 13 shows the variation of the axial and lateral displacements with time. When all kinds
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Figure 12. Eccentrically loaded reinforced concrete column C1. Variation of axial and lateral
displacements with time. Creep and transient strain considered.

of strain contributions are considered, the axial and the lateral displacements at the collapse

time are 0.78 cm and 9.48 cm, respectively.

Figure 13. Eccentrically loaded reinforced concrete column C2. Variation of axial and lateral
displacements with time. Only Dth (triangles) or Dth, Dcr, Dtr,c (circles) considered.

Fig. 14 shows the deformed shapes and the distribution of bending moments M for the

two columns at t = 60 min and at the time of collapse, tcr. The contribution of all kinds of

strain is considered. The displacements are 10-times magnified. The dashed curve depicts

the related state of the column before the thermal load is applied. As observed from the

figures, even one hour after the temperature starts increasing, the deformed shape and

the distribution of the bending moment are practically unchanged. This situation changes
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considerably at the collapse.

Figure 14. Deformed shapes (10-times magnified) and distributions of bending moment for
eccentrically loaded columns C1 and C2.

5 Conclusions

We described a two-step finite element formulation for the thermo-mechanical, transient,

non-linear analysis of the behaviour of the reinforced concrete columns in fire. In the first

step, we determine the temperature distributions over the cross-sections of the column in fire

as a function of time. These constitute the time and space dependent temperature load of the

column. In the mechanical analysis, we employ our new strain-based 2D geometrically exact

and materially non-linear beam finite elements to model the column. These finite elements

are special because they satisfy the conditions that the equilibrium and constitutive axial

forces and bending moments coincide at the integration points.

Because the thermo-mechanical processes in the column during fire are really complicated,

such a beam-based analysis might seem to be too simple to predict realistic behaviour. Yet

the comparison with the experiments performed by Lin et al. (1992) on clamped reinforced
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concrete columns, made in our first numerical example, show a very good agreement in the

resistance time. The agreement in the variation of the axial displacement with time was

only qualitative. The disagreement in the axial displacement indicates that the functional

relations for some of the strain parts (thermal, creep, transient) or their material parameters

as taken in the present study have not been modelled with a sufficient accuracy to describe

the materials employed in the experiment. A further research will be needed to identify

which of the strain parts need the improvement.

Next, we compared our numerical results for the resistance time with the predictions

of the European building code Eurocode 2 (2002). For the clamped column, our method

predicted the resistance time 214 min for the partially insulated column, and 212 min for the

uninsulated one. This is very close to the experimentally found value 208 min. By contrast,

the Eurocode predicted much shorter resistance time, 181 min, when the set of simply

supported columns was studied in our second numerical example. We found that Eurocode 2

predicted about 10 ◦/◦ longer resistance time than calculated with our method. This is a

surprise, because standards are assumed to give conservative, the safe side results. Only

further systematic and well documented experimental analyses could resolve the question if

this is indeed so.
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