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Analytical Integration of Stress Field and

Tangent Material Moduli Over Concrete

Cross-Sections

D. Zupan and M. Saje ∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering,
Jamova 2, SI–1115 Ljubljana, Slovenia

Abstract

This paper presents a novel stress field and tangent material moduli integration
procedure over a cross-section of a biaxially loaded concrete beam. The procedure
assumes a sufficiently simple analytical form of the constitutive law of concrete, the
polygonal shape of the boundary of the simply- or multi-connected cross-section and
the monotonically increasing loading. The area integrals are transformed into the
boundary integrals and then integrated analytically. The computational efficiency
of the procedure is analyzed by comparing it with respect to the number of floating-
point operations needed in various numerical integration-based methods. It is found
that the procedure is not only exact, but also computationally effective.

Key words: reinforced concrete section, biaxial bending, analytical integration.

1 Introduction

The non-linear finite-element analysis of reinforced concrete spatial beams
and frame structures requires the integration of stresses and tangent material
moduli over the cross-section. Since the governing equations of these structures
are non-linear and must therefore be solved iteratively, the integrals over the
cross-sections need to be evaluated many times. Thus, it is of great importance
for us to be able to evaluate cross-sectional integrals as efficiently as possible.
Since the area of the reinforcing steel bars is relatively small compared to the
area of concrete, we may assume a constant stress field across each steel bar,
which makes the integration over the steel bars very simple. The difficult part
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of the reinforced concrete section analysis is thus the integration of the stress
field and the tangent material moduli of concrete.

A number of numerical methods has been proposed in order to make the inte-
grations more efficient, see, e.g. Bonet et al. [2], Fafitis [8], Rasheed and Dinno
[10]. The methods presented by Bonet et al. and Fafitis are particularly con-
venient when the stress field varies only in one direction. Their methods use
Green’s Theorem and transform the area integral into the boundary integral,
which is then integrated numerically. While such an approach is more efficient
than the one using directly the area integrals, it is still not computationally
optimal due to the fact that the numerical integration inherently introduces
errors. Moreover, the error in the cross-sectional integrals might imply a sub-
stantial error in force–deflection curves near the ultimate load (Saje et al.
[12]). The error can, clearly, be made smaller by increasing the number of in-
tegration points, yet this increases the computational time and, consequently,
reduces the time-efficiency of the overall finite-element algorithm. To make
the integration procedure both time-efficient and exact, we have developed an
analytical integration scheme as described in the sequel.

For the deduction of an analytical integration algorithm, the constitutive law
of concrete needs to be prescribed in an analytical form. We have chosen
the constitutive law proposed by Desayi and Krishnan [4] for the concrete in
compression, and that of Bergan and Holand [1] for the concrete in tension.
The next assumption concerns the strain distribution over the cross-section.
We follow the standard approach in reinforced concrete beam analysis and as-
sume the linear strain distribution (see, e.g. Brøndum-Nielsen [3], El-Metwally
et al. [7], Izzuddin et al. [9], and Rodriguez and Aristizabal-Ochoa [11]). For
the linear strain distribution, it is easy to find a constant strain and stress di-
rection. With the help of some change of integration variables and by the use
of Green’s Theorem, we transform area integrals into the path integrals along
the boundary of the cross-section of known, analytically integrable functions.
If the cross-section, possibly hollow, can be approximated by a polygon (which
is often the case in practice), an efficient formula for the analytical integration
follows. We assume a monotonic increase in strains with the increase of a load,
and thus disregard strain-reversals at any point of the cross-section. This as-
sumption limits the applicability of the present procedure to the analyses of
the ultimate limit capacity and the serviceability state of a frame structure.

The exactness of an analytical approach is obvious, while its computational
efficiency might be doubtful if the final analytical expressions become very
cumbersome. We demonstrate the efficiency of the present method via three
numerical examples, in which we compare the accuracy and the required num-
ber of floating-point operations with several numerical integration-based meth-
ods.
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2 Constitutive law of concrete

Following Desayi and Krishnan [4] and Bergan and Holand [1], the uniaxial
stress–strain relation for concrete is given by a function, which is smooth
almost everywhere, except at a finite number of discrete points (Fig. 1):

σ (ε) =



0 ε ≤ εu

2fm |ε1|
ε

ε21 + ε2
εu < ε ≤ εr

σr

εr − εm
(ε− εm) εr < ε ≤ εm

0 εm < ε

. (1)

Here fm is strength of concrete in compression (fm = |σmin| > 0); ε1 < 0
is strain at fm; εu < 0 is ultimate strain in compression; εr > 0 is strain at
tension strength of concrete, σr = 2fm |ε1| εr

ε21+ε2r
; and εm > 0 is ultimate strain

in tension. Parameters fm, ε1, and εu are determined in the compression tests
on concrete cylinders; εr and εm must be determined in tension tests which
are for concrete only rarely performed. The empirically proved and commonly
used values εr = 5.5 · 10−5 and εm = 7 · 10−4 are rather good approximative
values [1].
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Fig. 1. Constitutive law of concrete.
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3 Analytical cross-sectional integration

3.1 Strain distribution over the cross-section

In spatial beam elements we usually assume the Bernoulli hypothesis that a
cross-section suffers only rigid rotation during deformation. This implies that
the normal strain (axial strain) is linearly distributed over the cross-section:

ε (y, z) = γ1 + yκ3 + zκ2. (2)

Here, ε is the normal (axial) strain at fibre (y, z) (see Fig. 2 for the definition
of the cross-section and coordinate axes y, z), γ1 is the normal strain, and κ2

and κ3 are the rotational strains (curvatures) about y and z axes, respectively,
at the centroid axis of the cross-section, y = z = 0.

y
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*
G2

G3

*

Fig. 2. Model of the cross-section and local coordinate systems.

The corresponding normal (axial) stress distribution over the cross-section,
σ (y, z), is determined from the constitutive law (1). The integration of stresses
over the cross-sections yields axial force and bending moments with respect
to the centroid of the cross-section:

N1 =
∫∫

A
σ (ε (y, z)) dydz

M2 =
∫∫

A
zσ (ε (y, z)) dydz (3)

M3 =
∫∫

A
yσ (ε (y, z)) dydz.
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3.2 Analytical integration of stresses

We employ Green’s Theorem and transform the area integrals (3) into path
integrals along the cross-sectional boundary. We find it suitable to introduce a
coordinate transformation first. Our goal is to introduce the rotated Cartesian
coordinate system (ξ, η), in which the stress field appears uniform in the η
direction: σ (ξ, η)= σ̃ (η). This can be achieved by a planar rotation of (y, z)
about x for an angle φ̃ (see Fig. 2):

ξ = y cos φ̃+ z sin φ̃

η = −y sin φ̃+ z cos φ̃.

The normal strains with respect to (ξ, η) are

ε (ξ, η) = γ1 + (ξ cos φ̃− η sin φ̃)κ3 + (ξ sin φ̃+ η cos φ̃)κ2

= γ1 + ξ (κ2 sin φ̃+ κ3 cos φ̃) + η (κ2 cos φ̃− κ3 sin φ̃) .

Now we can choose such a rotation angle φ, that the coefficient at ξ vanishes:

φ = atan
(
−κ3

κ2

)
. (4)

Eq. (4) is singular at κ2 = κ3 = 0. In this singular case, ε (ξ, η) = γ1, which
implies that the strain field is constant over the cross-section and can be
moved from the integrals. In all the remaining cases, we may safely apply the
coordinate transformation (4); thus

ε = γ1 +Kη, K = κ2 cosφ− κ3 sinφ. (5)

Inserting Eq. (5) into Eq. (1) gives the normal stress as a function of coordinate
η only:

σ (ε) = σ̂ (γ1 +Kη) .

Eq. (5) relates ε and η. Hence η can be replaced by ε, and vice versa, whenever
needed. Thus, a point (ξ, η) can alternatively be identified by (ξ, ε). This
parametrization will be found useful in our integration procedure.

The application of the coordinate transformations in Eq. (3) yields

N1 =
1

K

∫∫
A
σ (ε) dξdε

M2 =
1

K

∫∫
A

(
ξ sinφ+

ε− γ1
K

cosφ
)
σ (ε) dξdε

M3 =
1

K

∫∫
A

(
ξ cosφ− ε− γ1

K
sinφ

)
σ (ε) dξdε,

where we have taken into account that the Jacobian of the coordinate trans-
formation equals 1

K
. Green’s Theorem makes it possible for the area integrals
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to be replaced by the path integrals along the boundary of the cross-section:

N1 =
1

K

∫
∂A

ξσ (ε) dε

M2 =
1

K

∫
∂A

(
1

2
ξ2 sinφ+ ξ

ε− γ1
K

cosφ
)
σ (ε) dε (6)

M3 =
1

K

∫
∂A

(
1

2
ξ2 cosφ− ξ

ε− γ1
K

sinφ
)
σ (ε) dε.

Remark 1 When employing the coordinate transformation in multiple inte-
grals, the absolute value of the Jacobian determinant should be taken. The
negative value of K would have the same effect as changing the orientation
of the boundary. We prescribe the orientation of the boundary by numbering
the nodes in a counter-clockwise direction for the external boundary, and in
a clockwise direction for the internal boundaries (see Fig. 2). The application
of the coordinate transformation from (y, z) to (ξ, ε) changes the orientation
of the boundary when K becomes negative. This change is counteracted by the
sign of K in Eq. (6), which finally results in the proper sign of the integrals.

Let us now further assume that the cross-section can be approximated by a
polygon (Fig. 2). For such a case, we can obtain an efficient formula for the
analytical integration. The vertices of the cross-sectional boundary will be
sorted in the positive direction of the external boundary, and in the negative
direction of the internal boundaries describing the holes, both with respect to
the coordinate system (y, z) and then transformed to the coordinates (ξ, ε):

(ξρ, ερ) , ρ = 1, . . . , Nρ.

Nρ denotes the number of vertices in the cross-section. The boundary be-
tween the successive vertices (ξρ, ερ) and (ξρ+1, ερ+1) is described by the linear
function in the (ξ, ε) coordinate system

ξ (ε) = kρε+ nρ, (7)

where kρ and nρ are

kρ =
ξρ+1 − ξρ
ερ+1 − ερ

, nρ = ξρ − kρερ .

With Eq. (7) the boundary integrals (6) can be decomposed into the sum of
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integrals between the successive vertices:

N1 =
1

K

Nρ∑
ρ=1

∫ ερ+1

ερ
ξσ (ε) dε =

1

K

Nρ∑
ρ=1

[
kρ

∫ ερ+1

ερ
εσ (ε) dε+ nρ

∫ ερ+1

ερ
σ (ε) dε

]

M2 =
1

K

Nρ∑
ρ=1

∫ ερ+1

ερ

(
1

2
ξ2 sinφ+ ξ

ε− γ1
K

cosφ
)
σ (ε) dε

=
1

K

Nρ∑
ρ=1

[(
k2
ρ

2
sinφ+

kρ
K

cosφ

)∫ ερ+1

ερ
ε2σ (ε) dε

+

(
kρnρ sinφ+

nρ − kργ1
K

cosφ

)∫ ερ+1

ερ
εσ (ε) dε

+

(
n2
ρ

2
sinφ− nργ1

K
cosφ

)∫ ερ+1

ερ
σ (ε) dε

]
.

An analogous procedure is employed for M3, and a similar result is obtained,
with the only difference being that coefficients sinφ and cosφ are replaced
by cosφ and − sinφ. Thus, it is suitable and numerically more efficient to
prepare the coefficients for M2 in M3 simultaneously:

 cρ12 cρ22 cρ32

cρ13 cρ23 cρ33

 =

 cosφ sinφ

− sinφ cosφ




kρ
K

nρ−kργ1
K

−nργ1
K

k2ρ
2

kρnρ
n2
ρ

2

 .

Then we can write

Mj =
1

K

Nρ∑
ρ=1

[
cρ1j

∫ ερ+1

ερ
ε2σ (ε) dε+cρ2j

∫ ερ+1

ερ
εσ (ε) dε+cρ3j

∫ ερ+1

ερ
σ (ε) dε

]
, j = 2, 3.

We can replace the definite integrals
∫ ερ+1
ερ

σ (ε) dε,
∫ ερ+1
ερ

εσ (ε) dε, and∫ ερ+1
ερ

ε2σ (ε) dε by analytical expressions I1ρ, I2ρ, and I3ρ as soon as we employ
the proposed constitutive law (1) in an analytical form. Thus

N1 =
1

K

Nρ∑
ρ=1

(kρI2ρ + nρI1ρ)

Mj =
1

K

Nρ∑
ρ=1

(cρ1jI3ρ + cρ2jI2ρ + cρ3jI1ρ) , j = 2, 3. (8)

In Eq. (8) we must take a special care to pin-point the discrete points at
which the first derivative of the function σ (ε) does not exist. For the part of
the cross-section, Au, where the condition εu ≤ ε ≤ εr is met, the expressions
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I1ρ, I2ρ and I3ρ are determined by

I1ρ = fm |ε1| ln
ε21 + ε2ρ+1

ε21 + ε2ρ

I2ρ = 2fm |ε1|
(
ερ+1 − ερ + ε1

(
atan

ερ
ε1

− atan
ερ+1

ε1

))
(9)

I3ρ = fm |ε1|
(
ε2ρ+1 − ε2ρ + ε21 ln

ε21 + ε2ρ
ε21 + ε2ρ+1

)
.

For the part of the cross-section, Am, where εr ≤ ε ≤ εm holds, we establish
I1ρ, I2ρ and I3ρ by the formulae

I1ρ =
σr

εr − εm

(
1

2

(
ε2ρ+1 − ε2ρ

)
− εm (ερ+1 − ερ)

)
I2ρ =

σr

εr − εm

(
1

3

(
ε3ρ+1 − ε3ρ

)
− εm

2

(
ε2ρ+1 − ε2ρ

))
(10)

I3ρ =
σr

εr − εm

(
1

4

(
ε4ρ+1 − ε4ρ

)
− εm

3

(
ε3ρ+1 − ε3ρ

))
.

3.3 Analytical integration of tangent material moduli

For the iterative solution of the governing equations of the beam, we also
need to calculate the tangent constitutive matrix of the cross-section. This
requires various integrals of tangent material moduli over the cross-section to
be evaluated. We differentiate Eqs. (3) with respect to the axial strain and
the curvatures:

∂N1

∂γ1
=
∫∫

A

dσ

dε
dydz

∂N1

∂κ2

=
∂M2

∂γ1
=
∫∫

A
z
dσ

dε
dydz (11)

∂N1

∂κ3

=
∂M3

∂γ1
=
∫∫

A
y
dσ

dε
dydz

∂M2

∂κ2

=
∫∫

A
z2
dσ

dε
dydz

∂M2

∂κ3

=
∂M3

∂κ2

=
∫∫

A
yz

dσ

dε
dydz (12)

∂M3

∂κ3

=
∫∫

A
y2

dσ

dε
dydz

The integration scheme (8) holds also for (11), only that the analytical ex-
pressions for the definite integrals of dσ

dε
, εdσ

dε
, and ε2 dσ

dε
differ. An analogous
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procedure to the one given in Section 3.2 can therefore be applied in integrat-
ing (11) and (12). Only the derivation of the integration scheme for ∂M2

∂κ2
will

be shown in detail. By the use of coordinate transformations (4)–(5) and upon
applying Green’s Theorem, we get

∂M2

∂κ2

=
1

K

∫
∂A

(
1

3
ξ3 cos2 φ− 1

K
εξ2 sinφ+

1

K2
ε2ξ sin2 φ

+
1

K
γ1ξ

2 sinφ cosφ− 2γ1
K2

εξ sin2 φ+
γ2
1

K2
ξ sin2 φ

)
σ′ (ε) dε.

Assuming once again a polygonal boundary of the cross-section and employing
Eq. (7), we obtain

∂M2

∂κ2

=
1

K

Nρ∑
ρ=1

[
dρ1

∫ ερ+1

ερ
ε3σ (ε) dε+ dρ2

∫ ερ+1

ερ
ε2σ (ε) dε

+ dρ3

∫ ερ+1

ερ
εσ (ε) dε+ dρ4

∫ ερ+1

ερ
σ (ε) dε

]
,

where the coefficients dρ are

dρ1 =
k3
ρ

3
sin2 φ+

k2
ρ

K
sinφ cosφ+

kρ
K2

cos2 φ

dρ2 = k2
ρnρ sin

2 φ+
2kρnρ − k2

ργ1

K
sinφ cosφ+

nρ − 2kργ1
K2

cos2 φ

dρ3 = kρn
2
ρ sin

2 φ+
n2
ρ − 2kρnργ1

K
sinφ cosφ+

kργ
2 − 2nργ1
K2

cos2 φ

dρ4 =
n3
ρ

3
sin2 φ−

n2
ργ1

K
sinφ cosφ+

nργ
2
1

K2
cos2 φ.

The remaining integrals in (12) are tackled similarly. Therefore, we can define
a general matrix form for defining the coefficients dρ


dρ11 dρ21 dρ31 dρ41

dρ12 dρ22 dρ32 dρ42

dρ13 dρ23 dρ33 dρ43

 = Q


k3ρ
3

k2
ρnρ kρn

2
ρ

n3
ρ

3

k2ρ
K

2kρnρ−k2ργ1
K

n2
ρ−2kρnργ1

K
−n2

ργ1
K

kρ
K2

nρ−2kργ1
K2

kργ2−2nργ1
K2

nργ2
1

K2

 ,

where

Q =


sin2 φ sinφ cosφ cos2 φ

sinφ cosφ 1
2

(
cos2 φ− sin2 φ

)
− sinφ cosφ

cos2 φ − sinφ cosφ sin2 φ

 .
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The integrals (12) can then be expressed with a general formula

∂Mi

∂κj

=
1

K

Nρ∑
ρ=1

[
dρ1,i+j−3

∫ ερ+1

ερ
ε3σ (ε) dε+ dρ2,i+j−3

∫ ερ+1

ερ
ε2σ (ε) dε

+ dρ3,i+j−3

∫ ερ+1

ερ
εσ (ε) dε+ dρ4,i+j−3

∫ ερ+1

ερ
σ (ε) dε

]
, i, j = 2, 3.

For convenience, the integration scheme for the tangent material moduli of
the cross-section are summarized below:

∂N1

∂γ1
=

1

K

Nρ∑
ρ=1

(
kρI

′
2ρ + nρI

′
1ρ

)
∂N1

∂κj

=
1

K

Nρ∑
ρ=1

(
cρ1jI

′
3ρ + cρ2jI

′
2ρ + cρ3jI

′
1ρ

)
i, j = 2, 3.

∂Mi

∂κj

=
1

K

Nρ∑
ρ=1

(
dρ1,i+j−3I

′
4ρ + dρ2,i+j−3I

′
3ρ + dρ3,i+j−3I

′
2ρ + dρ4,i+j−3I

′
1ρ

)

Subregion Au : εu ≤ ε ≤ εr

I ′1ρ = 2fm |ε1|
(

ερ+1

ε21 + ε2ρ+1

− ερ
ε21 + ε2ρ

)

I ′2ρ = 2fm |ε1|3
(

1

ε21 + ε2ρ
− 1

ε21 + ε2ρ+1

)
+ fm |ε1| ln

ε21 + ε2ρ
ε21 + ε2ρ+1

I ′3ρ = 2fm |ε1| (ερ − ερ+1)− ε21I
′
1ρ + 4fmε

2
1

(
atan

ερ+1

ε1
− atan

ερ
ε1

)
I ′4ρ = fm |ε1|

(
ε2ρ − ε2ρ+1

)
+ 2fm |ε1|5

(
1

ε21 + ε2ρ
− 1

ε21 + ε2ρ+1

)

+ 3fm |ε1|3 ln
ε21 + ε2ρ+1

ε21 + ε2ρ

Subregion Am : εr ≤ ε ≤ εm

I ′1ρ =
σr

εr − εm
(ερ+1 − ερ)

I ′2ρ =
1

2

σr

εr − εm

(
ε2ρ+1 − ε2ρ

)
I ′3ρ =

1

3

σr

εr − εm

(
ε3ρ+1 − ε3ρ

)
I ′4ρ =

1

4

σr

εr − εm

(
ε4ρ+1 − ε4ρ

)
.
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4 Numerical integration methods

In this section we briefly describe three different numerical methods which will
be used in the next section in comparisons of the present method with some
other approaches. It is true that analytical methods give exact values, but
they are often neglected in practice when they require relatively large compu-
tational times compared to a numerical method. Thus it is also important to
compare the computational times of analytical and numerical approaches.

We will compare the following three numerical integration-based methods,
using

i) the numerical path integration along the boundary;
ii) the numerical integration over thin layers of the cross-section;
iii) the 2-dimensional numerical integration over the cross-section.

4.1 Numerical path integration along the boundary

The method is essentially analogous to the one developed by Bonet et al.
[2], the difference being only in the different parametrization, here defined
by Eqs. (4) and (5). The integrals I1ρ, I2ρ, I3ρ, I

′
1ρ, I

′
2ρ, I

′
3ρ and I ′4ρ over the

boundaries of the subregions Au and Am are now not evaluated analytically
but numerically by Gaussian integration between the successive vertices. So,
the integrations are substituted by the weighted sums∫ ερ+1

ερ
f (ε) dε → ερ+1 − ερ

2

n∑
p=1

wpf (εp) , (13)

where wp are the integration weights and εp are the integration points.

After applying (13) we obtain the following formulae:

I1ρ =
ερ+1 − ερ

2

n∑
p=1

wpσ (εp)

I2ρ =
ερ+1 − ερ

2

n∑
p=1

wpεpσ (εp)

I3ρ =
ερ+1 − ερ

2

n∑
p=1

wpε
2
pσ (εp)

I ′iρ =
ερ+1 − ερ

2

n∑
p=1

wpε
i−1
p σ′ (εp) , i = 1, 2, 3, 4,

where function σ (ε) = 2fm |ε1|
ε

ε21 + ε2
is taken on subregion Au, and σ (ε) =
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σr

εr − εm
(ε− εm) on Am.

4.2 Numerical integration over thin layers

This method divides the integration region into layers and executes numeri-
cally the area integrals over the layers. The Cartesian coordinates (ξ, η) are
used. The stress field then appears uniform in η direction: σ = σ̂ (γ1 +Kη)
(see Eq. (4)). The additional coordinate transformation (5) is not necessary
for this method. The uniform behaviour of stress field in one direction sim-
plifies the area integrals considerably, if the boundaries in the ξ direction are
independent on η. For such a simplified case we can write∫∫

A
σ (ε (y, z)) dydz =

∫ ξ2

ξ1

∫ η2

η1
σdξdη = (ξ2 − ξ1)

∫ η2

η1
σdη.

Unfortunately, this is very rarely the case, so that in general, we have to
divide the integration area into thin layers. Prior to the division, however,
we find it suitable to determine the subregions Au, in which the condition
εu ≤ η−γ1

K
≤ εr is met, and Am, where εr ≤ η−γ1

K
≤ εm holds. Au and Am,

are bounded by the minimum and maximum values of coordinate η: ηmin and
ηmax. The interval [ηmin, ηmax] is then divided into l layers [ηs, ηs+1] , where
η1 = ηmin and ηl+1 = ηmax. In a layer, the boundaries in the ξ direction are
approximated by their values at the midpoint η = ηs+ηs+1

2
, so that the layers

are modelled by the rectangles. Thus we have

N1 =
l∑

s=1

(ξs2 − ξs1)
∫ ηs+1

ηs
σdη

M2 =
l∑

s=1

(ξs2 − ξs1) cosφ
∫ ηs+1

ηs
ησdη +

l∑
s=1

1

2

(
ξ2s2 − ξ2s1

)
sinφ

∫ ηs+1

ηs
σdη

M3 = −
l∑

s=1

(ξs2 − ξs1) sinφ
∫ ηs+1

ηs
ησdη +

l∑
s=1

1

2

(
ξ2s2 − ξ2s1

)
cosφ

∫ ηs+1

ηs
σdη.

The integrals over the η-direction are evaluated numerically by the one-dimensional
Gaussian integration. Similar procedure is used for the integrations of the tan-
gent material moduli over the cross-section.

As the subregions Au and Am are analyzed separately, we can use different
number of layers over each subregion. E.g., in Am a much smaller number of
layers is needed compared to Au as the tension part of the concrete cross-
section is usually relatively small.

Furthermore, the optimisation of the number and the thicknesses of layers
would be possible in order to enhance the efficiency of the method; we will
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not proceed in this direction, however, because our primary concern is the
analytical integration.

Remark 2 Note that the number of boundary values in the ξ-direction might
be larger than two for hollow or non-convex cross-sections. In such cases, the
layer is further divided into sublayers in the ξ-direction and the numerical
integration over each sublayer is performed.

4.3 Numerical 2-dimensional integration

The last method is the simplest, but the most general. The area integrals are
evaluated by the use of a double Gaussian integration:

∫ ξ2

ξ1

∫ η2

η1
f (ξ, η) dξdη =

ξ2 − ξ1
2

η2 − η1
2

n∑
p=1

m∑
q=1

wpwqf (ξp, ηq) . (14)

wp and wq are the weights of Gaussian integration, and (ξp, ηq) are the inte-
gration points.

If the shape of the integration area is not rectangular (a rectangle was in
fact tacitly assumed in Eq. (14)), we can still use the same method by the
following generalization. The smallest rectangle is found in which the whole
integration area lies. Eq. (14) is then applied over this rectangle, taking the
values f (ξp, ηq) in integration points outside the cross-section to be zero.

In order to make fair comparisons of this numerical method to the previous
ones, we further improve its accuracy by using the coordinate transformation
and determine tension and compression subregions as in the method of Section
4.2. Thus, we first determine Au and Am, find their smallest rectangular areas,
set the values of stresses and their derivatives outside the section to zero, and
only then employ Eq. (14) to evaluate integrals (3), (11) and (12).

5 Numerical examples

An analytical approach is preferable, when we need the exact values. This
is usually not the case in the finite-element simulations, where several differ-
ent sources of error emerge and exact values of intermediate variables do not
improve the overall solution’s accuracy. When so, we tend to choose less accu-
rate numerically obtained approximative values, if they can be evaluated more
rapidly than the analytical ones. This does not hold for the present analytical
integration routine, as we will show by numerical tests.
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For the evaluation of results of various methods, two measures will be used:
(i) the relative error (in per cent) with respect to the exact value, and (ii) the
number of floating-point operations, flops, needed to obtain the results. The
stress resultants and the six components of the tangent constitutive matrix of
the cross-section are obtained simultaneously in order to avoid the repetitions
of some calculations. The algorithms were implemented and tested in Matlab
[6].

Different types of cross-sections have been analyzed. Here we present three
cross-sections that are interesting because of their non-trivial shape. For all
the cases the following parameters of concrete are taken:

εu = −8 · 10−3

ε1 = −2.2 · 10−3

εr = 5.5 · 10−5

εm = 7 · 10−4

fm = 3.3 kN/cm2.

The geometry of the cross-section will be given in each case separately.

The analytical integration scheme developed above has been successfully in-
corporated into the strain-based spatial beam finite-element formulation of
Zupan and Saje [13]. The formulation employs the strain vectors as the only
interpolated variables and is thus particularly advantageous in materially non-
linear problems.

5.1 “I-shaped” cross-section

Our first numerical example is an “I-shaped” cross-section, shown in Fig. 3a.
The cross-section is made up of plain concrete with no reinforcement. Such
a cross-section seems to be a severe test of the method. The integrals were
evaluated for the linear strain distribution, described by the strain resultants:

γ1 = −0.0010, κ2 = −0.0002, κ3 = 0.0001.

The coordinate transformation and the subregion determination are made
first. The result is shown in Fig. 3b. Note, however, that for the two methods,
which use the area integrals, the scale on the ε axis is different because the
rescaling in the η direction is omitted.

The exact results for the axial force, the bending moments and the cross-
sectional constitutive matrix are shown in Table 1 and compared to the results
of numerically integrated path integrals. The results for the stress-resultants,
obtained by 2-point Gaussian integration over the boundary, compare well, the
largest relative error being less than 4%. The error of the 2-point Gaussian
integration in the cross-sectional tangent constitutive matrix is, on the other
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Fig. 3. a) Geometry of the “I-shaped” section and b) its image in coordinate system
(ξ, ε) with subregions Au and Am.

Table 1
Analytical results for the cross-section in Fig. 3 (left) and relative error (in per cent)
of the numerical results based on Gaussian path integral along the boundary (right)

quantity value

N1 −1.88 · 103

M2 −3.67 · 104

M3 −6.58 · 103

∂N1/∂γ1 5.25 · 104

∂N1/∂κ2 −4.72 · 106

∂N1/∂κ3 −8.38 · 105

∂M2/∂κ2 −1.19 · 108

∂M2/∂κ3 −2.73 · 107

∂M3/∂κ3 −1.38 · 107
flops 2597

n = 2 n = 3 n = 5 n = 10

N1 3.4 0.3 0.01 0.00
M2 2.1 0.3 0.01 0.00
M3 1.6 0.2 0.01 0.00

∂N1/∂γ1 0.2 43.9 2.26 0.00

∂N1/∂κ2 15.4 1.9 0.07 0.00

∂N1/∂κ3 8.3 5.0 0.41 0.00

∂M2/∂κ2 3.2 1.1 0.08 0.00

∂M2/∂κ3 3.2 0.6 0.05 0.00

∂M3/∂κ3 2.0 2.8 0.13 0.00

flops 2794 3269 4755 14582

hand, considerably larger (up to 16%). If we use the 3-point Gaussian inte-
gration, the error is—surprisingly—even much greater (44%). Such an error
in the cross-section tangent stiffnesses may result in divergence of the global
Newton’s iteration (see Section 5.4). The 5-point Gaussian integration is found
to be rather accurate. The use of 10-point Gaussian integration gives the re-
sults accurate to six figures. Table 1 additionally shows the total number of
flops required for each type of integration. The analytical integration requires
the smallest number of flops; the comparably accurate 10-point numerical in-
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Table 2
Relative error (in per cent) of the numerical results based on area integrals with the
decomposition into thin layers.

2-point Gaussian integration 3-point Gaussian integration

l = 3 + 1 5 + 2 8 + 3 15 + 3 l = 3 + 1 5 + 2 8 + 3 15 + 3

N1 3.0 0.3 1.0 0.3 2.8 0.2 1.0 0.3
M2 0.6 0.5 1.3 0.5 0.5 0.5 1.3 0.5
M3 15.0 2.6 3.9 1.6 14.8 2.6 3.9 1.6

∂N1/∂γ1 34.0 1.6 4.7 1.3 13.0 0.8 4.6 1.3

∂N1/∂κ2 3.4 1.4 1.0 0.3 4.5 1.6 0.9 0.3

∂N1/∂κ3 29.1 15.6 0.5 0.4 25.3 15.0 0.4 0.4

∂M2/∂κ2 4.6 0.5 1.6 0.7 4.3 0.5 1.6 0.7

∂M2/∂κ3 23.0 2.2 3.8 1.8 23.6 2.2 3.8 1.8

∂M3/∂κ3 5.5 13.0 3.3 1.9 6.5 13.0 3.3 1.9

flops 1095 1619 2408 3753 1476 2093 3008 4584

tegration requires about 5-times more operations; a fairly accurate solution is
provided by the 5-point integration but the operations count is again not in
its favour.

Table 2 shows the errors of the layer approach. We used larger number of layers
in compression than in tension. Results in Table 2 were first obtained by 2-
point Gaussian integration in the non-uniform direction, and next by 3-point
Gaussian integration. The main advantage of this method is a low number
of floating point operations. The relative error, however, is considerable when
using a low number of layers. With 8 layers in compression and 3 in tension
the results compare well to the analytical ones, with the number of flops being
almost the same as in the analytical method. To reduce any error below 2%,
we again need more floating point operations as in the analytical case. The
order of Gaussian integration is not found to be influential, except possibly for
the low number of layers. For example, the use of 5-point Gaussian integration
gives the same results as the 3-point integration for the range of the number
of layers given in Table 2.

The method given in Section 4.3 is interesting because of its generality and
simplicity. Unfortunately, such an approach demands an extremely large num-
ber of flops (Table 3). Moreover, the error of the method is diminishing more
slowly than in the previous cases. The reason for this is a relatively large num-
ber of integration points outside the integration area, which turns out to be
even more pronounced in our next example.
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Table 3
Relative error (in per cent) of the numerical results based on 2-dimensional Gaussian
area integrals.

n = 5× 5 n = 10× 10 n = 20× 20 n = 30× 30

N1 18.4 1.7 0.0 1.9
M2 19.1 1.5 0.4 2.1
M3 58.5 0.5 1.3 3.2

∂N1/∂γ1 98.6 11.1 9.7 9.5

∂N1/∂κ2 15.2 3.2 0.2 1.8

∂N1/∂κ3 57.6 0.0 10.1 3.7

∂M2/∂κ2 19.2 2.0 0.4 2.4

∂M2/∂κ3 44.7 5.5 1.9 4.4

∂M3/∂κ3 42.6 0.8 4.3 6.4

flops 12727 68115 406690 1207586

5.2 Rectangular cross-section with rectangular hole

It is of an utmost importance to consider the hollow cross-sections properly.
Here we take a simple rectangle with a rectangular hole (Fig. 4a). The proposed
strains are:

γ1 = −0.0010, κ2 = −0.0001, κ3 = 0.00005.

Please observe the numbering of the vertices of the cross-section, which is in
the counter-clockwise direction for external, and in the clockwise direction
for the internal boundary, to define properly the orientation of the boundary
curve.

The exact results and the comparisons with the numerically integrated path
integrals are shown in Table 4. You may see that a very accurate numerical
integration, i.e. the 10-point Gaussian integration, requires almost three times
more operations as the analytical method. In contrast to our previous example,
the low order numerical integration introduces an enormous relative error.
Thus, the low order methods are not sufficient, while the higher order methods
are too expensive.

The layers method proves to be more successful regarding the accuracy and
the efficiency compared to the boundary numerical integration (Table 5). The
number of floating-point operations for very accurate results (15 layers in
compression and 3 in tension) is again larger than in the analytical case; a
(8 + 3)-layer solution combined with the 2-point Gaussian integration needs
3472 flops, which is somewhat less than in the exact solution (3734). The use
of two-dimensional integrals in Table 6 demonstrates both the higher num-
bers of floating-point operations needed and slow convergence of the method.
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Fig. 4. a) Geometry of the cross-section and b) Gaussian points for the area integral
over Au .

Table 4
Analytical results for the cross-section in Fig. 4 (left) and relative error (in per cent)
of the numerical results based on Gaussian path integral along boundary (right).

quantity value

N1 −2.13 · 104

M2 −2.13 · 105

M3 7.35 · 105

∂N1/∂γ1 2.24 · 106

∂N1/∂κ2 −2.67 · 107

∂N1/∂κ3 1.04 · 108

∂M2/∂κ2 1.76 · 1010

∂M2/∂κ3 3.78 · 1010

∂M3/∂κ3 6.94 · 1010
flops 3734

n = 2 n = 3 n = 5 n = 10

N1 4.4 0.0 0.01 0.00
M2 46.7 3.1 0.00 0.00
M3 30.4 0.4 0.08 0.00

∂N1/∂γ1 24.1 13.3 1.08 0.02

∂N1/∂κ2 168.7 137.2 8.03 0.15

∂N1/∂κ3 113.6 66.2 3.62 0.09

∂M2/∂κ2 10.7 14.6 0.99 0.02

∂M2/∂κ3 21.7 13.6 0.86 0.02

∂M3/∂κ3 35.9 14.2 0.78 0.03

flops 4005 4584 6278 11143

From Fig. 4b it is obvious that the majority of integration points are situated
outside the cross-sectional area. As observed from Fig. 4b, this method can
straightforwardly be modified such that the integration is spread only over
closed subregions Au and Am. Such extension was not implemented in the
course of this article.
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Table 5
Relative error (in per cent) of the numerical results based on the thin layers area
integrals.

2-point Gaussian integration 3-point Gaussian integration

l = 3 + 1 5 + 2 8 + 3 15 + 3 l = 3 + 1 5 + 2 8 + 3 15 + 3

N1 0.5 0.1 0.00 0.03 0.2 0.1 0.00 0.03
M2 6.2 2.9 0.15 0.35 6.6 2.9 0.15 0.35
M3 2.8 1.3 0.13 0.27 2.7 1.4 0.13 0.27

∂N1/∂γ1 7.6 0.3 0.00 0.04 0.9 0.1 0.01 0.04

∂N1/∂κ2 88.2 28.4 9.60 2.97 79.8 27.0 9.45 2.96

∂N1/∂κ3 39.3 13.3 4.92 1.59 39.6 13.5 4.92 1.58

∂M2/∂κ2 7.9 0.7 0.04 0.04 0.1 0.4 0.03 0.04

∂M2/∂κ3 6.5 0.3 0.15 0.02 0.9 0.0 0.13 0.02

∂M3/∂κ3 5.7 0.1 0.27 0.01 2.2 0.4 0.26 0.01

flops 1593 2396 3472 5383 1974 2870 4072 6214

Table 6
Relative error (in per cent) of the numerical results based on 2-dimensional Gaussian
area integrals.

n = 5× 5 n = 10× 10 n = 20× 20 n = 30× 30

N1 8.9 0.5 2.5 0.5
M2 116.5 21.5 10.7 4.8
M3 34.6 9.4 1.1 3.4

∂N1/∂γ1 15.5 22.4 7.6 3.2

∂N1/∂κ2 438.2 35.4 32.2 32.1

∂N1/∂κ3 148.2 4.7 11.3 16.0

∂M2/∂κ2 40.8 18.2 6.3 2.3

∂M2/∂κ3 34.8 17.6 5.6 1.8

∂M3/∂κ3 39.3 19.6 6.7 1.3

flops 19886 80812 448995 1302769

5.3 Trapezoidal cross-section with trapezoidal hole

This example is both interesting and demanding. We chose a non-rectangular
cross-section with the trapezoidal hole (Fig. 5a). Such a cross-section is typical
in reinforced or prestressed concrete bridges. We took the following strains:

γ1 = −0.00050, κ2 = 0.00001, κ3 = 0.00001.
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Table 7
Analytical results for the cross-section in Fig. 5 (left) and relative error (in per cent)
of the numerical results based on Gaussian path integral along boundary (right).

quantity value

N1 −7.72 · 104

M2 2.43 · 106

M3 −1.43 · 107

∂N1/∂γ1 1.11 · 107

∂N1/∂κ2 −4.07 · 108

∂N1/∂κ3 −1.69 · 109

∂M2/∂κ2 2.17 · 1011

∂M2/∂κ3 2.71 · 1011

∂M3/∂κ3 −1.20 · 1011
flops 4318

n = 2 n = 3 n = 5 n = 10

N1 0.6 0.9 0.02 0.00
M2 7.2 0.7 0.04 0.00
M3 10.2 0.4 0.02 0.00

∂N1/∂γ1 66.2 6.2 0.08 0.00

∂N1/∂κ2 39.5 15.5 0.50 0.00

∂N1/∂κ3 59.9 20.0 0.57 0.00

∂M2/∂κ2 27.4 4.3 0.01 0.00

∂M2/∂κ3 14.3 3.1 0.17 0.00

∂M3/∂κ3 156.9 1.6 0.92 0.00

flops 4605 5230 7016 17593

The analytical results are shown in Table 7. The comparison with numeri-
cal results is shown in Tables 7, 8 and 9. The conclusions drawn from the
previous two examples can again be confirmed. The sufficiently high-order
numerical boundary integration gives accurate, but rather expensive results.
The layer-based integration is relatively inexpensive, but still demands more
floating-point operations than the analytical one to obtain sufficiently accu-
rate results. The area integrations as presented in Section 4.3 again turns out
to be computationaly very demanding.
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Fig. 5. a) Geometry of the trapezoidal section and b) its image in the coordinate
system (ξ, ε) with subregions Au and Am.
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Table 8
Relative error (in per cent) of the numerical results based on area integrals with
decomposition into thin layers.

2-point Gaussian integration 3-point Gaussian integration

l = 3 + 1 5 + 2 8 + 3 15 + 3 l = 3 + 1 5 + 2 8 + 3 15 + 3

N1 3.2 3.15 2.8 0.18 3.2 3.2 2.82 0.18
M2 43.1 27.34 11.1 1.74 43.1 27.3 11.10 1.74
M3 4.7 3.73 5.6 0.23 4.7 3.7 5.58 0.23

∂N1/∂γ1 5.6 3.55 2.1 0.11 5.7 3.5 2.06 0.11

∂N1/∂κ2 68.3 32.25 12.3 2.70 66.8 32.1 12.23 2.70

∂N1/∂κ3 1.6 2.96 6.1 0.01 1.1 2.9 6.08 0.01

∂M2/∂κ2 6.6 4.14 0.5 0.27 6.5 4.1 0.50 0.27

∂M2/∂κ3 4.0 5.87 3.6 0.48 4.0 5.9 3.63 0.48

∂M3/∂κ3 76.1 29.19 25.4 1.66 77.0 29.3 25.37 1.66

flops 1612 2407 3469 5508 1993 2881 4069 6339

Table 9
Relative error (in per cent) of the numerical results based on 2-dimensional Gaussian
area integrals.

n = 10× 10 n = 30× 30 n = 50× 50 n = 100× 100

N1 8.8 5.4 0.2 0.2
M2 53.0 25.0 3.0 0.4
M3 13.4 3.5 1.2 0.6

∂N1/∂γ1 22.5 1.2 2.6 2.0

∂N1/∂κ2 133.8 21.6 7.1 2.8

∂N1/∂κ3 3.0 11.7 1.5 0.1

∂M2/∂κ2 8.9 1.9 2.4 1.8

∂M2/∂κ3 0.8 3.1 2.1 1.2

∂M3/∂κ3 2.6 13.6 11.6 4.4

flops 78280 1301028 5126778 34786829

5.4 Reinforced concrete cantilever under free-end force

In our last example we show the effect of the insufficiently accurate integra-
tion over the cross-section on the convergence of the non-linear finite-element
analysis of a reinforced concrete beam. The beam is clamped at one end and
subjected to the force FZ = 6.5 kN at the other (Fig. 6). The force is applied
in a single step.

The geometric data of the cantilever are:

L = 150 cm, h = 20 cm, t = 10 cm.
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Fig. 6. Reinforced concrete cantilever.

The same parameters of concrete are taken as in the previous numerical ex-
amples. The reinforcement consists of four steel bars with one bar in each
corner of the rectangular cross-section. The diameter of the bars is 1.6 cm at
the top of the cross-section and 0.8 cm at the bottom. The centroids of the
bars are 3 cm away from the edge. A linear elastic material is assumed for steel
reinforcement with elastic modulus Es = 20 000 kN/cm2.

We used a single 5-node strain-based beam finite element [13] for the determi-
nation of the equilibrated deformed state of the cantilever. We employed both
the analytical and the numerical 2-dimensional integration of various orders
(Section 4.3). The results for the free-end displacement in the direction of the
applied force and the corresponding number of iterations needed in the global
Newton’s iteration are shown in Table 10. There we show how the accuracy of
the cross-sectional integration effects the number of iterations. As a rule, less
iterations are required when an inaccurate low order numerical integration is
employed, but the results tend to be less accurate, and in some cases (N = 2
and N = 4), the iteration does not converge at all, inspite of the fact that
the residual vector and the tangent stiffness matrix in the formulation [13]
are fully consistent. Thus, the errors in the residual vector and the tangent
stiffness matrix have either a beneficial effect (i.e. a faster convergence) or, in
some hardly identifiable cases, cause the divergence. A similar conclusion was
found in [12] for the elastic-plastic analysis of beams.

6 Conclusions

We presented a procedure for the analytical integration of the stress field and
material moduli over the concrete cross-section. The essential points of the
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Table 10
Number of global Newton’s iterations.

analytical numerical 2-dimensional integration, n× n

2× 2 3× 3 4× 4 5× 5 10× 10 20× 20 100× 100

nit 8 ∞ 4 ∞ 5 5 6 8

uZ 0.06549 − 0.06717 − 0.06521 0.06398 0.06548 0.06549

nit = number of iterations, ∞ = divergence

present approach are:

1. The analytical approach is preferable, because it gives exact values. In con-
trast, the numerical integration is only approximative, and requires a suffi-
cient number of integration points, which is not known a priori, to achieve
a sufficient accuracy. This usually requires the computational time which is
greater than the one, needed for an analytical integration.

2. Analytical integrals can be prepared in advance (formal definite integrals
of the prescribed constitutive law), which further increases the efficiency of
the integration algorithm.

3. Analytical integrals were prepared for the constitutive law proposed by De-
sayi and Krishnan [4] and Bergan and Holand [1]. Any constitutive law
prescribed in an analytical form can be employed, provided that the inte-
grals in Eq. (6) can be integrated analytically. One of such laws is given in
Eurocode 5 [5].

4. The method is here applied only for the case when the strain distribution
over the cross-section is linear. In principle, however, the method is appli-
cable for any smooth strain distribution uniform in one direction.

5. The proposed method is directly applicable in various existing materially
non-linear beam formulations, provided that the strain-reversals in the cross-
section do not occur, much alike as in the serviceability and ultimate limit
state studies of structures.
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