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The linearized three-dimensional beam theory

of naturally curved and twisted beams: the

strain vectors formulation

D. Zupan∗ and M. Saje

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

This paper presents the equations of the linearized geometrically exact three-dimen-
sional beam theory of naturally curved and twisted beams. A new finite-element for-
mulation for the linearized theory is proposed in which the strain vectors are the
only unknown functions. The linear form of the consistency condition that the equi-
librium and the constitutive internal force and moment vectors are equal, is enforced
to be satisfied at chosen points. An arbitrary curved and twisted axis of the beam
is taken into account which demands proper consideration of the non-linearity of
spatial rotations. The accuracy and the efficiency of the derived numerical algorithm
are demonstrated by comparing present numerical results with various analytical
and numerical results.

Key words: linear beam theory, naturally curved and twisted beam, consistent
linearization, strain measure, three-dimensional beam, three-dimensional rotation

1 Introduction

Initially curved and/or twisted beams are often used in buildings, bridges and
mechanical devices as basic bearing elements. That is why the mathematical
modelling of their behaviour under the mechanical and thermal loads has
been a subject of research both in past and at present, see, e.g. the recent
publications by Atanackovic and Glavardanov [1], Cho and Lee [3], Ganapathi
et al. [5], Kulikov and Plotnikova [9], Leung [10], Madhusudhana et al. [12],
Tang and Yu [23], Yu and Fang [27].

One of the well-known initially curved and twisted beam formulations is the so
called ‘geometrically exact finite-strain beam theory’ (Reissner [15] and Simo
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[18]). Several finite-element formulations have been proposed for the numerical
solution of its governing equations, see, e.g. Ibrahimbegovic [6], Jelenić and
Saje [8], Schulz and Filippou [17], Simo and Vu-Quoc [19], Smoleński [20], to
list just a few among the more often cited works.

The objective of the present paper is twofold: to derive the equations of the
kinematically linearized finite-strain beam theory which assumes small dis-
placements, rotations and strains but is capable of considering an arbitrary
initial geometry and material behaviour, and to propose a stable, accurate
and computationally efficient finite-element formulation for the solution of
the linearized equations.

The linearized theory is deduced by a strict use of the Gateaux derivative on
the non-linear functionals and by the proper consideration of the non-trivial
linearization of the spatial rotations. In the numerical solution algorithm, we
base our derivations on the vector of strain measures as the only unknown
functions in a finite element. Such approach has proven to be efficient and
allows us to satisfy easily the linear form of the consistency condition at the
cross-section, that the stress-resultants, obtained from the equilibrium equa-
tions, are equal to those found from the constitutive equations.

An arbitrary finite-value initial bending and/or twisting curvature of the beam
can be prescribed at the unloaded initial configuration, but only a sufficiently
small loading is allowed to imply small displacements, rotations and strains.
This type of assumptions is usually suggested in building design codes and
followed in practical design by structural engineers.

2 Geometry of the three-dimensional beam

The geometrically exact finite-strain beam theory assumes that an arbitrary
configuration of the beam is described by two independent vector fields (see
Figure 1),

(i) the position vector
⇀
r (x) of the line of centroids, and

(ii) the orthonormal base vectors
{
⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)
}
spanning the planes

of the cross-sections.

“x” is the arc-length parameter of the line of centroids in the undeformed

configuration. Unit vectors
⇀

G2 (x) and
⇀

G3 (x) point along the principal axes

of inertia of the cross-section at x, and
⇀

G1 is the cross-sectional unit normal:
⇀

G1 =
⇀

G2 ×
⇀

G3. Note that
⇀

G1 is generally not colinear with the tangent to the

line of centroids, d
⇀
r

dx
(Figure 1).
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Fig. 1. Model of the three-dimensional beam.

In order to describe the deformation of the beam with respect to the physical
space, which is the Euclidean linear vector space IR3, we introduce a reference
point O and a triad of fixed orthonormal vectors

{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
, which define

the global coordinate system (X, Y, Z). The position of a cross-section with
respect to the global coordinate system is described by rotation matrix R,
being constructed so that its i-th column represents the components of the

base vector
⇀

Gi with respect to the fixed basis. In what follows we will have
to express abstract vectors with respect to either of the two bases. Their
components will be represented as one-column matrices, marked by a bold-
face font, and equipped with an index denoting the basis used; e.g., the matrix
representation of the position vector

⇀
r will be denoted by rg. Yet its matrix

representation will still be termed the position vector. It is easy to show that
the rotation matrix not only represents the physical rotation of a vector, but
also the coordinate transformation between the components of a fixed vector
with respect to the two bases

vg = RvG. (1)

Only three scalar values suffice to describe the rotation in the three-dimensional
space. There is a number of ways of choosing these parameters. Here we em-
ploy the three components of the rotational vector ϑg [2] which is defined so
that it lies on the axis of rotation and has the length equal to the angle of
rotation. If we introduce a skew-symmetric matrix Θ

Θ =


0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0

 (2)

composed from components {ϑ1, ϑ2, ϑ3} of the vector ϑg, the rotation matrix
is expressed by the Rodrigues formula

R = I+
sinϑ

ϑ
Θ+

1− cosϑ

ϑ2
Θ2, (3)
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where I is the identity matrix, and ϑ = ∥ϑg∥ =
√
ϑ2
1 + ϑ2

2 + ϑ2
3.

3 Strain vectors

The geometrically exact finite-strain beam theory introduces two strain vec-
tors [15]: (i) the translational strain vector γG , and (ii) the rotational strain

vector κG. When expressed with respect to the base vectors
⇀

Gi, their com-
ponents have physical interpretation: γG (1) = γ1 is the extensional strain,
and γG (2) = γ2, γG (3) = γ3 are shear strains; similarly, κG (1) = κ1 is the
torsional strain, and κ2, κ3 are the bending strains (curvatures).

The relations between the strain, displacement and rotation vectors are derived
from the condition that the strains and stresses are consistent with the virtual
work principle for any internal forces and any magnitude of deformation. This
condition yields the following relationships between the variations of kinematic
vector variables (rg ,ϑg ) and the variations of strain vectors (γG ,κG)

δγG = RT
(
δr ′

g − δϑg × r ′
g

)
(4)

δκG = RT δϑ′
g. (5)

The prime (′) denotes the derivative with respect to x, and “×” is the cross vec-
tor product. Equations (4) and (5) are sufficient for the derivation of the linear
theory. For completeness we also give the integrated form of these equations
(the details of the derivation were presented by Reissner [15] and Ibrahimbe-
govic [7])

γG = RTr ′
g + cG (6)

κG = TTϑ′
g + dG, (7)

where

TT = I− 1− cosϑ

ϑ2
Θ+

ϑ− sinϑ

ϑ3
Θ2.

Vector functions cG (x) and dG (x) are variational constants which we deter-
mine from the known strain and kinematic fields of the undeformed beam.

3.1 Determination of variational constants when cross-sections are orthogo-
nal to the beam axis

When the cross-sections are orthogonal to the line of centroids at the un-
deformed configuration, we have γ0,G = 0. Inserting the condition into (6)
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yields

cG = −RT (ϑ0,g) r
′
0,g. (8)

Because the cross-sections are perpendicular to the centroidal axis, its tangent

vector, d
⇀
r 0(x)
dx

, coincides with the normal vector of the cross-section:

⇀

G
0

1 (x) =
d
⇀
r 0 (x)

dx
. (9)

By the use of the coordinate transformation (1), equation (9) can be restated
in the matrix form as

G0
1 = RT

0 r
′
0,g.

The insertion in equation (8) gives

cG = −RT
0 r

′
0,g = −G0

1 = −


1

0

0

 . (10)

For the variational constant, dG, no such a simple formula exists generally. dG

is obtained from known rotations in the undeformed configuration (κ0,G = 0):

dG = −TT
0ϑ

′
0,g.

Only in the special case of the straight beam, we have dG = 0.

4 Equilibrium equations and stress resultants

The equilibrium equations of an infinitesimal element of a beam are given by
the following differential equations:

ng (x) = −N ′
g (x) (11)

mg (x) = −M ′
g (x)− r ′

g (x)×N g (x) . (12)

The two stress-resultants, the force N g and the moment M g, depend both
on the external distributed force and moment vectors ng and mg per unit of
the undeformed length of the axis, and on the deformed shape of the axis,
described by its position vector rg (x). As N g and M g satisfy the equilibrium
equations, they are termed the equilibrium force and moment. On the other
hand, the stress resultants can also be determined via strain vectors γG and
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κG using the constitutive equations

NC
G = CN (γG,κG) (13)

MC
G = CM (γG,κG) , (14)

which gives the so called constitutive force and moment,NC
G andMC

G. The two
kinds of stress-resultants should theoretically be equal. This is, however, not
the case in the discretized solution, unless the condition is explicitly required
to be satisfied. The inequality of equilibrium and constitutive stresses is typical
in the displacement-based finite element formulations.

In order to avoid this inconsistency of the numerical solution, we here explicitly
require the equality of the two kinds of forces and moments. In the matrix
form, this requirement is represented by

R (x)NC
G (x) = N g (x) (15)

R (x)MC
G (x) = M g (x) . (16)

A further discussion and an application of the consistency conditions in the
elastic-plastic finite element analysis of plane frames is presented in the paper
by Vratanar and Saje [24].

5 Governing equations

The complete set of the beam equations consists of the consistency conditions
(15)–(16), the kinematic equations (6)–(7) and the equilibrium equations (11)–
(12):

R (x)NC
G (x)−N g (x) = 0 (17)

R (x)MC
G (x)−M g (x) = 0 (18)

N ′
g (x) + ng (x) = 0 (19)

M ′
g (x) +mg (x)−N g (x)× R (x) (γG (x)− cG (x)) = 0 (20)

r ′
g (x)− R (x) (γG (x)− cG (x)) = 0 (21)

ϑ′
g (x)− T−T (x) (κG (x)− dG (x)) = 0. (22)

In (20) r ′
g has been replaced by R (γG − cG). The related boundary conditions

at the two boundaries, x = 0 and x = L, are

N g (0) = S0
g N g (L) = SL

g (23)

M g (0) = P 0
g M g (L) = P L

g . (24)

S0
g, P

0
g, S

L
g , P

L
g are the external boundary point loads and moments.
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Equations (19)–(22) constitute the system of four first-order ordinary matrix
differential equations. When ng, mg, γG and κG are given analytic functions
of x, the formal solutions of these equations read

N g (x) = N g (0)−
∫ x

0
ng (ξ) dξ (25)

M g (x) = M g (0) +
∫ x

0

[
N g (ξ)× R (ξ) (γG (ξ)− cG (ξ))−mg (ξ)

]
dξ (26)

rg (x) = r0
g +

∫ x

0
R (ξ) (γG (ξ)− cG (ξ)) dξ (27)

ϑg (x) = ϑ0
g +

∫ x

0
T−T (ϑg (ξ)) (κG (ξ)− dG (ξ)) dξ. (28)

Unfortunately, the integrals in equations (26)–(28) cannot be obtained ana-
lytically. We show later that the linearized theory needs only the weak forms
of (27)–(28) to be employed, which simplifies the matter substantially.

The fulfilment of the displacement and rotation boundary conditions at x = L
places additional requirements on strain vectors:

rg (L)− r0
g −

∫ L

0
R (ξ) (γG (ξ)− cG (ξ)) dξ = 0 (29)

ϑg (L)− ϑ0
g −

∫ L

0
T−T (ϑg (ξ)) (κG (ξ)− dG (ξ)) dξ = 0. (30)

The complete set of the equations of the geometrically exact three-dimensional
beam then consists of the algebraic equations (17) and (18), the kinematic
boundary conditions (29) and (30), and the static boundary conditions (23)
and (24):

f 1 = RNC
G (x)−N g (x) = 0 (31)

f 2 = RMC
G (x)−M g (x) = 0 (32)

f 3 = rL
g − r0

g −
∫ L

0
R (γG − cG) dx = 0 (33)

f 4 = ϑL
g − ϑ0

g −
∫ L

0
T−T (ϑg) (κG − dG) dx = 0 (34)

f 5 = S0
g +N 0

g = 0 (35)

f 6 = P 0
g +M 0

g = 0 (36)

f 7 = SL
g −N 0

g +
∫ L

0
ng dx = 0 (37)

f 8 = P L
g −M 0

g −
∫ L

0

[
N g × R (γG − cG)−mg

]
dx = 0. (38)

Equations (31)–(38) along with the auxiliary relations (25)–(28) and (13)–
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(14) constitute the set of eight equations for eight unknowns: (i) boundary
kinematic vectors r0

g, ϑ
0
g, r

L
g , ϑ

L
g , (ii) boundary equilibrium stress resultants

N 0
g, M

0
g, and (iii) strain vector functions γG (x) and κG (x) along the beam.

The system of equations (31)–(38) is non-linear and must be solved iteratively.
In practical design of structures only small displacements and rotations are al-
lowed. For this class of problems, it is reasonable to assume that the linearized
equations give sufficiently accurate results. The linearization is described in
the next section.

6 Linearized equations of the beam

6.1 Linearization of a scalar functional

Mathematically, equations (31)–(38) introduce 24 scalar functionals, depen-
dent on the (primary) unknowns r0

g, ϑ
0
g, N

0
g, M

0
g, r

L
g , ϑ

L
g , γG (x), and κG (x).

Let y denote the entire vector of unknowns. The linearization of a scalar func-
tional F (y) requires first finding the variation of the functional at y in the
direction δy in the Gâteaux sense [26]:

δF (y; δy) = lim
α→0

F (y + α δy)−F (y)

α
=

d

dα

∣∣∣∣∣
α=0

F (y + α δy) .

The linearization of the functional F (y) about an arbitrary value y = y0 is
defined by

F (y0 + δy) = F (y0) + δF (y0; δy) .

By setting F (y0 + δy) = 0, we obtain

δF (y0; δy) = −F (y0) , (39)

which is the linearization of the equation F (y) = 0 about y0. Now, since we
have already introduced a ‘coordinate system’, the variation can be further
worked out and replaced by the sum of partial derivatives with respect to the
components of y = (y1, y2, . . . , yn):

δF (y0; δy) =
n∑

j=1

∂F
∂yj

∣∣∣∣∣
y0

δyj. (40)

The linearization of the vector functional,F (y) = (F1 (y) ,F2 (y) , . . . ,Fn (y)),
is obtained in an analogous way as

δF i (y0; δy) =
n∑

j=1

∂F i

∂yj

∣∣∣∣∣
y0

δyj, i = 1, 2, . . . , n. (41)
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This equation holds in the linear vector spaces. The linearization of a func-
tional in non-linear spaces requires a somewhat different procedure which is
briefly described in the following subsection.

6.2 Linearization of the rotation matrix

Because the rotation matrix R is expressed in terms of the non-additive rota-
tional vector ϑg (see (3)) (that is why it is often called a ‘pseudo-vector’), the
linearization of the rotation matrix requires a special treatment. If the change
of ϑg is denoted by αδϑg, the rotational operator at the perturbed value of
its argument is the product R (α δϑg)R (ϑg), so that the difference between
the original and the perturbed value of the rotational operator is

∆R = R (α δϑg)R (ϑg)− R (ϑg) .

The Gâteaux variation of R then follows from the definition

δR =
d

dα

∣∣∣∣∣
α=0

R (αδϑg)R (ϑg) . (42)

From (2) and (3) we have

R (αδϑg) = I+
sin (αδϑ)

αδϑ
αδΘ+

1− cos (αδϑ)

(αδϑ)2
(αδΘ)2 ,

where

δΘ =


0 −δϑ3 δϑ2

δϑ3 0 −δϑ1

−δϑ2 δϑ1 0

 .

δΘ is the skew-symmetric matrix, whose components are formed from the
components {δϑ1, δϑ2, δϑ3} of its axial vector δϑg. After taking the derivative
with respect to α and evaluating the result at α = 0, equation (42) gives

δR = δΘR. (43)

For the further simplification of the result, we will introduce the skew-symmetric
matrix S (v) formed from the components of vector v. Then the cross vector
product, v × u, between arbitrary two vectors v and u can be written as the
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matrix product of S (v) and u

v × u =


v2u3 − v3u2

v3u1 − v1u3

v1u2 − v2u1

 =


0 −v3 v2

v3 0 −v1

−v2 v1 0




u1

u2

u3

 = S (v)u. (44)

When multiplied by an arbitrary vector, u, equation (43) gives

δRu = δΘRu = S (δϑg)Ru = δϑg × Ru.

Taking into account that v × u = −u × v and considering (44) we get

δRu = δϑg × Ru = −Ru×δϑg = −S (Ru) δϑg. (45)

6.3 Linearization of equations of the beam

Equations (31)–(38) will be varied at r0
g, ϑ

0
g, N

0
g, M

0
g, r

L
g , ϑ

L
g , γG (x), κG (x)

in ‘directions’ δr0
g, δϑ0

g, δN 0
g, δM 0

g, δrL
g , δϑL

g , δγG (x), and δκG (x). The
deduction of the variations of the equations is simplified if variations of some
of the quantities are prepared in advance.

FunctionN g (x) depends on N 0
g and ng (x). When the loading is deformation-

independent, which is the case in the present analysis, ng (x) does not depend
on the unknown functions, and so

δN g (x) = δN 0
g. (46)

The variation of the derivative of the rotational vector, ϑ′
g, is given by equation

(5): δϑ′
g = RδκG. (47)

The integration of equation (47) with respect to x gives

δϑg (x) = δϑ0
g +

∫ x

0
R (ξ) δκG (ξ) dξ. (48)

When (48) is inserted into (45) we obtain

δRu = −S (Ru) δϑ0
g − S (Ru)

∫ x

0
R (ξ) δκG (ξ) dξ; (49)

this holds true for any vector u.
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Varying M g (x) as expressed by (26), and employing (46) and (49) gives

δM g (x) = δM 0
g +

∫ x

0

[
δN g × R (γG − cG)

]
dξ +

∫ x

0

[
N g × δR (γG − cG)

]
dξ

+
∫ x

0
[N g × RδγG] dξ

= δM 0
g + δN 0

g ×
∫ x

0
R (γG − cG) dξ

−
∫ x

0

[
N g × S (R (γG − cG)) δϑ

0
g

]
dξ +

∫ x

0
[N g × RδγG] dξ

−
∫ x

0

[
N g × S (R (γG − cG))

∫ ξ

0
RδκG dη

]
dξ

= δM 0
g − S

(∫ x

0
R (γG − cG) dξ

)
δN 0

g

−
∫ x

0
S (N g)S (R (γG − cG)) dξ δϑ0

g +
∫ x

0
S (N g)RδγG dξ (50)

−
∫ x

0
S (N g)S (R (γG − cG))

∫ ξ

0
RδκG dη dξ.

The linearization of the constitutive equations gives

δNC
G = δCN = CγγδγG + CγκδκG (51)

δMC
G = δCM = CκγδγG + CκκδκG. (52)

Here the components of matrices Cγγ, Cγκ, Cκγ, and Cκκ are the partial deriva-
tives of CN and CM with respect to the components of γG and κG :

Cγγ =

[
∂CN

i

∂γj

]
, Cγκ =

[
∂CN

i

∂κj

]

Cκγ =

[
∂CM

i

∂γj

]
, Cκκ =

[
∂CM

i

∂κj

]
.

The matrix C =

Cγγ Cγκ

Cκγ Cκκ

 is called the cross-section constitutive tangent

matrix.

After these preparations have been completed, the variations of the equations
of the beam are easily derived and are as follows:

δf 1 (x) = δR (x)NC
G (x) + R (x) δNC

G (x)− δN g (x) (53)

δf 2 (x) = δR (x)MC
G (x) + R (x) δMC

G (x)− δM g (x) (54)

δf 3 = δrL
g − δr0

g −
∫ L

0
δR (γG − cG) dx−

∫ L

0
RδγG dx (55)
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δf 4 = δϑL
g − δϑ0

g −
∫ L

0
RδκG dx (56)

δf 5 = δN 0
g (57)

δf 6 = δM 0
g (58)

δf 7 = −δN 0
g (59)

δf 8 = −δM g (L) . (60)

Only equation (56) needs some comments. Recall that the boundary condition
in (34) is an integrated form of the kinematic equation (7). The variation of
equation (7) is given by equation (5). By integrating (5) with respect to x and
evaluating the result at x = L, we obtain the result in (56).

The substitution of relations (46), (49), (50), (51), and (52) into (53)–(60)
yields the variations of all equations with respect to the variations of the
primary unknowns:

δf 1 (x) = −S
(
R (x)NC

G (x)
)
δϑ0

g − S
(
R (x)NC

G (x)
) ∫ x

0
R (ξ) δκG (ξ) dξ

+ R (x)Cγγ (x) δγG (x) + R (x)Cγκ (x) δκG (x)− δN 0
g (61)

δf 2 (x) = −S
(
R (x)MC

G (x)
)
δϑ0

g − S
(
R (x)MC

G (x)
) ∫ x

0
R (ξ) δκG (ξ) dξ

+ R (x)Cκγ (x) δγG (x) + R (x)Cκκ (x) δκG (x)− δM 0
g

+ S
(∫ x

0
R (γG − cG) dξ

)
δN 0

g +
∫ x

0
S (N g)S (R (γG − cG)) dξ δϑ0

g

+
∫ x

0
S (N g)S (R (γG − cG))

∫ ξ

0
RδκG dη dξ −

∫ x

0
S (N g)RδγG dξ

(62)

δf 3 = δrL
g − δr0

g +
∫ L

0
S (R (γG − cG)) dx δϑ0

g

+
∫ L

0
S (R (γG − cG))

∫ x

0
RδκG dξ dx−

∫ L

0
RδγG dx (63)

δf 4 = δϑL
g − δϑ0

g −
∫ L

0
RδκG dx (64)

δf 5 = δN 0
g (65)

δf 6 = δM 0
g (66)

δf 7 = −δN 0
g (67)

δf 8 = S

(∫ L

0
R (γG − cG) dx

)
δN 0

g +
∫ L

0
S (N g)S (R (γG − cG)) dx δϑ0

g

− δM 0
g −

∫ L

0
S (N g)RδγG dx

+
∫ L

0
S (N g)S (R (γG − cG))

∫ x

0
RδκG dξ dx. (68)
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The set of linearized equations for unknown δy then takes the form

δf i (y0; δy) = −f i (y0) , i = 1, . . . , 8, (69)

where f i are given in equations (31)–(38) and evaluated at the initial config-
uration y0. We assume that the geometry of the beam and its strains in the
initial configuration are arbitrary, yet kinematically exact, so that equations
(33)–(34) are identically satisfied at y0 (i.e., f 3 (y0) = f 4 (y0) = 0). Such a
beam is called a naturally strained (extended, curved and twisted) beam.

The inspection of equations (61)–(64) and (68) shows that the linearized equa-
tions (69) do not appear in the form of a linear combination of the primary
unknowns δγG (x) and δκG (x), which is due to the multiplicative nature of
the spatial rotations. This is resolved after the discretization of the primary
unknowns is made as presented in Section 7.

6.4 Cross-sections are orthogonal to the beam axis in the initial configuration

Let us assume that in the initial, undeformed and unloaded configuration,
the cross-sections are orthogonal to the line of centroids, and that the initial
stress-resultant vectors at x = 0 are zero: N 0

g = M 0
g = 0. Then γG = 0 and

cG = [−1 0 0 ]T at the undeformed state (see Section 3.1), so that the term

R (γG − cG) equals to the first column of the rotation matrix, here denoted

by R(1). The skew-symmetric matrix S
(
R(1)

)
will be denoted by R(1)

S . Then
the variations read

δf 1 (x) = −δN 0
g + R (x)Cγγ (x) δγG (x) + R (x)Cγκ (x) δκG (x)

δf 2 (x) =
(∫ x

0
S (N g)R

(1)
S dξ

)
δϑ0

g +
(∫ x

0
R(1)

S dξ
)
δN 0

g − δM 0
g

+ R (x)Cκγ (x) δγG (x) + R (x)Cκκ (x) δκG (x)

+
∫ x

0
S (N g)R

(1)
S

(∫ ξ

0
RδκG dη

)
dξ −

∫ x

0
S (N g)RδγG dξ

δf 3 = −δr0
g +

(∫ L

0
R(1)

S dx

)
δϑ0

g + δrL
g

−
∫ L

0
RδγG dx+

∫ L

0
R(1)

S

(∫ x

0
RδκG dξ

)
dx

δf 4 = −δϑ0
g + δϑL

g −
∫ L

0
RδκG dx

δf 5 = δN 0
g

δf 6 = δM 0
g

δf 7 = −δN 0
g

13



δf 8 =

(∫ L

0
S (N g)R

(1)
S dx

)
δϑ0

g +

(∫ L

0
R(1)

S dx

)
δN 0

g − δM 0
g

+
∫ L

0
S (N g)R

(1)
S

(∫ x

0
RδκG dξ

)
dx−

∫ L

0
S (N g)RδγG dx.

The related right-hand side vectors are

−f 1 = N g (x)−
∫ x

0
ng dξ

−f 2 = M g (x)−
∫ x

0

[(∫ ξ

0
ng dη

)
× R(1) +mg

]
dξ

−f 3 = 0

−f 4 = 0

−f 5 = −S0
g

−f 6 = −P 0
g

−f 7 = −SL
g −

∫ L

0
ng dx

−f 8 = −P L
g −

∫ L

0

[(∫ x

0
ng dξ

)
× R(1) +mg

]
dx = 0.

You can see that the assumption that the cross-sections are orthogonal to
the line of centroids in the undeformed configuration results in a substantial
simplification of the linearized equations.

6.5 Update procedure

Let us assume that the change of the unknown vector

δy =
[
δr0

g δϑ0
g δrL

g δϑL
g δN 0

g δM 0
g δκG δγG

]T
has been obtained from (69). In linear vector spaces, the improved value y is
obtained by adding the change δy to the current value y0. The position vector,
the stress-resultants, and the strain vectors are linear vectors; their changes
are therefore simply added to the current approximation values:

r0
g = r0

0,g + δr0
g rL

g = rL
0,g + δrL

g

N 0
g = N 0

0,g + δN 0
g M 0

g = M 0
0,g + δM 0

g

γG (x) = γ0,G (x) + δγG (x)

κG (x) = κ0,G (x) + δκG (x) .

14



By contrast, the update of the non-linear quantities like boundary rotation
vectors is not additive and must consider the multiplicative nature of rotations.
The update is as follows: in the first step, the Rodrigues formula (3) is used
to determine the changes of boundary rotation matrices, δR0, δRL, from δϑ0

and δϑL. In the next step, improved boundary rotation matrices are obtained
by the matrix multiplication:

R0 = δR0R0
0, RL = δRLRL

0 .

Finally, the Spurrier algorithm [21] is used to extract new boundary rotational
vectors ϑ0

g and ϑL
g from R0 and RL.

Once the primary unknowns have been determined, the kinematic vectors are
obtained by the integration. We first determine δϑg using equation (48)

δϑg (x) = δϑ0
g +

∫ x

0
R0 (ξ) δκG (ξ) dξ.

Then we evaluate δR (x) from δϑg (x) by the Rodrigues formula, multiply
δR (x) and R (x), and (if needed) extract ϑg (x) by the Spurrier algorithm.
With the rotation R (x) being known, rg (x) is obtained from (6) by the inte-
gration.

7 Numerical solution of linearized equations

Although the first variations of the governing equations (69) are linear func-
tionals, they do not appear in the form of a linear combination of the primary
unknowns δγG (x) and δκG (x). That is why they are usually too demanding
to be solved analytically. The discretization of the problem is shown in the
sequel.

Functions γG(x) and κG(x) are replaced by the set of their unknown values
γp
G and κp

G at discrete points identified by xp ∈ [0, L] ; p = 1, 2, . . ., N , and
interpolated by the set of N interpolation functions Ip (x)

γG (x) = Ip (x)γ
p
G (70)

κG (x) = Ip (x)κ
p
G. (71)

The repeated index p is the summation index. Points xp are called ‘interpola-
tion points’.

We are now able to rewrite the integrals containing δκG and δγG as the linear
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forms in δγp
G and δκp

G (p = 1, 2, ..., N):∫ x

0
R (ξ) δκG (ξ) dξ =

∫ x

0
Ip (ξ)R (ξ) dξ δκp

G = Wp (x) δκ
p
G (72)∫ x

0
R (ξ) δγG (ξ) dξ =

∫ x

0
Ip (ξ)R (ξ) dξ δγp

G = Wp (x) δγ
p
G. (73)

By introducing the interpolation for γG(x) and κG(x), we substitute a contin-
uum problem with a discrete one, in which 2N discrete vectors, γp

G and κp
G,

and not functions γG(x) and κG(x), are unknowns of the problem.

Once the unknown functions are discretized, it is also reasonable for the al-
gebraic equations (31)–(32) to be discretized. This is achieved by satisfying
equations (31)–(32) at N pre-selected discrete points xq ∈ [0, L] ; q = 1, . . .,
N , not necessarily coincidental with the interpolation points xp; p = 1, . . .,
N . After such a collocation-type discretization is made, a set of 2N equations
is obtained, which needs to be solved for 2N unknowns γp

G and κp
G (p, q = 1,

. . ., N) :

RNC
G (xq)−N g (xq) = 0 (74)

RMC
G (xq)−M g (xq) = 0. (75)

The resulting system of discrete governing equations (74)–(75) and (33)–(38)
consists of 2N + 6 non-linear equations of a beam element, where N denotes
the number of the discretization points. The unknowns of the problem are r0

g,

ϑ0
g, N

0
g, M

0
g, r

L
g , ϑ

L
g , γ

p
G, and κp

G (p = 1, 2, . . . , N).

After the discretization has been completed and equations (72) and (73) em-
ployed, the left-hand sides of equations (69) take the following forms:

δf 1 (xq) = −S
(
R (xq)N

C
G (xq)

)
δϑ0

g − S
(
R (xq)N

C
G (xq)

)
Wp (xq) δκ

p
G

+ Ip (xq)R (xq)Cγγ (xq) δγ
p
G + Ip (xq)R (x)Cγκ (xq) δκ

p
G − δN 0

g

δf 2 (xq) = −S
(
R (xq)M

C
G (xq)

)
δϑ0

g − S
(
R (xq)M

C
G (xq)

)
Wp (xq) δκp

G

+ Ip (xq)R (xq)Cκγ (xq) δγ
p
G + Ip (xq)R (xq)Cκκ (xq) δκ

p
G − δM 0

g

+ S
(∫ xq

0
R (γG − cG) dξ

)
δN 0

g +
∫ xq

0
S (N g)S (R (γG − cG)) dξ δϑ0

g

+
∫ xq

0
S (N g)S (R (γG − cG))Wpdξ δκp

G −
∫ xq

0
IpS (N g)R dξ δγp

G

δf 3 = δrL
g − δr0

g +
∫ L

0
S (R (γG − cG)) dx δϑ0

g

+
∫ L

0
S (R (γG − cG))Wpdx δκp

G −Wp (L) δγ
p
G

δf 4 = δϑL
g − δϑ0

g −Wp (L) δκ
p
G

δf 5 = δN 0
g
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δf 6 = δM 0
g

δf 7 = −δN 0
g

δf 8 = S

(∫ L

0
R (γG − cG) dx

)
δN 0

g +
∫ L

0
S (N g)S (R (γG − cG)) dx δϑ0

g

− δM 0
g −

∫ L

0
IpS (N g)R dx δγp

G

+
∫ L

0
S (N g)S (R (γG − cG))Wp dx δκp

G.

The matrix coefficients at the variations of the primary unknowns are placed
into the tangent stiffness matrix of the element, K. The details of the matrix
coefficients are presented in Appendix A.

8 Algorithm

We now state the details of the computational algorithm for an initially (nat-
urally) curved and twisted beam in which the cross-sections are orthogonal
to the line of centroids in the undeformed configuration. We assume that
the interpolation points, xp, coincide with the collocation points, xq. Then
Ip (xq) = 0 if p ̸= q and Ip (xp) = 1.

• Data:
◦ element length L;
◦ discrete points xp ∈ [0, L], p = 1, . . . , N ;
◦ interpolation functions Ip (x);
◦ initial kinematics of the beam r (x) ,ϑ (x);
◦ boundary loads S0,P 0,SL,P L;
◦ integrals of external distributed force and moment: ñ (x) =

∫ x
0 n dξ,

m̃ (x) =
∫ x
0 m dξ.

• Evaluate auxiliary functions

R (x) = Rodrigues (ϑ (x))

R(1)
S (x) = S

R (x)


1

0

0




N (x) = −S (ñ (x))

and integrals

Wp (x) =
∫ x

0
IpR dξ
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IpINR (x) =
∫ x

0
IpNR dξ

IR (x) =
∫ x

0
R(1)

S dξ

INR (x) =
∫ x

0
NR(1)

S dξ

IpRW (x) =
∫ x

0
R(1)

S Wp dξ

IpNRW (x) =
∫ x

0
NR(1)

S Wp dξ

IRn (x) =
∫ x

0
R(1)

S ñ dξ.

• Evaluate the tangent stiffness matrix K (see Appendix B).
• Evaluate the right hand side (see Appendix C).
• Solve the system of linear equations K∆y = −f for ∆y

∆y = [∆r0 ∆ϑ0
∆rL ∆ϑL

∆N 0
∆M 0

∆κ1 ... ∆κN ∆γ1 ... ∆γN ]T ,

add the corrections to the initial values

r (0) = r (0) + ∆r0

r (L) = r (L) + ∆rL

N (0) = ∆N 0

M (0) = ∆M 0

κ (xp) = ∆κp, p = 1, . . . , N

γ (xp) = ∆γp, p = 1, . . . , N

and extract the boundary rotations:

ϑ0 = Spurrier
(
Rodrigues

(
∆ϑ0

)
R (0)

)
ϑL = Spurrier

(
Rodrigues

(
∆ϑL

)
R (L)

)
.

• Evaluate the remaining quantities

∆ϑ (x) = ∆ϑ0 +Wp (x)∆κp

∆R (x) = Rodrigues (∆ϑ (x))

R (x) = ∆R (x)R (x)

Γ (x) = R (x)
(
Ip (x)γ

p
G − [ 1 0 0 ]

T
)

r (x) = r (0) +
∫ x

0
Γ (ξ) dξ

N (x) = N (0)− ñ (x)

M (x) = M (0) +
∫ L

0
S (Γ)N dx− m̃ (x) .
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9 Numerical examples

We present several numerical examples in order to demonstrate the perfor-
mance and accuracy of the proposed approach. To enable the comparison with
theoretical results, only a linear elastic material is employed in all numerical
examples. The operators CN and CM in (13)–(14) are taken to be diagonal, so
that the relationships between stress-resultants and strain measures are given
by

NC
G =


EA1 0 0

0 GA2 0

0 0 GA3

γG, MC
G =


GJ1 0 0

0 EJ2 0

0 0 EJ3

κG.

E and G denote elastic and shear moduli of material; A1 is the cross-sectional
area; J1 is the torsional inertial moment of the cross-section; A2 and A3 are

the effective shear areas in the principal inertial directions
⇀

G2 and
⇀

G3 of the
cross-section; J2 and J3 are the bending inertial moments of the cross-section

about its principal directions
⇀

G2 and
⇀

G3.

Most of the integrals in the stiffness matrix can be evaluated analytically for
sufficiently simple curved beams. We employed Maple’s symbolic library [14]
for the evaluation of the integrals. When the beam is not curved, the analyti-
cal integration turns out to be more efficient than the numerical integration.
When the beam is initially curved, the numerical integration is more advanta-
geous. Therefore, for the beams with the curved initial geometry, the Gaussian
numerical integration was used with its order equal to the number of the in-
terpolation points. The numerical examples were performed in the Matlab [13]
computing environment.

The accuracy of the present numerical model can be enhanced either by (i) the
increase of the number of elements ne and/or (ii) the increase of the number of
interpolation points in the element, N . Several combinations have been tested
and excellent results have been obtained even if using only a single beam
element with a low-order interpolation. The element, having two interpolation
points, was the element of the lowest order used. We wish to stress that the
order of the interpolation functions in the computer program is not limited
to any particular value, so elements of any order can be chosen. The choice of
the position of the interpolation points is free as well. In the present paper the
interpolation points are taken to coincide with the Lobatto integration points
when analyzing straight elements, and with the Gaussian integration points
for the curved elements.

In order to assess the accuracy of the present model we have made comparisons
with the analytical solutions whenever possible. The majority of the analytical
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solutions found in literature employ the beam equations which do not fully
agree with the present geometrically exact ones. To make the comparisons
possible, we have developed our own analytical solutions that are fully in
accord with the present theoretical beam model. A short description of the
analytical solution of the linearized equations of the three-dimensional beam
is presented in Appendix D.

9.1 Cantilever beam

We consider a straight in-plane cantilever, subjected to a point moment at its
free end (see Figure 2). The analytical solution [16] of the exact non-linear
equations of the beam shows that the beam deforms into a part of a circle.
The analytical solution of the linearized equations (see Appendix D) for the
deformed shape of the cantilever is the parabola

ϑY (x) =
MY

EJ2
x

uX (x) = 0

uZ (x) =
MY

2EJ2

x2.

We compare our numerical results with the above analytical solution and study
the convergence of the solution. We also assess the domain of the validity of
the linear theory by comparing the non-linear and the linearized solutions.

We took the following geometric and material properties of the cantilever:

E = 2.1 · 104 G = 1.05 · 104 L = 100

A1 = 20 A2 = A3 = 16

J1 = 6.4566 J2 = 1.6667 J3 = 666.66.

Four different values of the free-end moment were applied (Table 1). A single

X

Y

Y

Z

O

M

Fig. 2. The cantilever under free-end moment.
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Table 1
Free-end displacements and rotation under an in-plane point moment. Single ele-
ment of order N .

MY method uX uZ ϑY

MY = 1 N = 2 0.000000 0.142857 0.002857
N = 3 0.000000 0.142857 0.002857

exact linear 0 0.142857 0.002857

exact non-lin. [16] 0.000136 0.142857 0.002857

MY = 10 N = 2 0.000000 1.428571 0.028571
N = 3 0.000000 1.428571 0.028571

exact linear 0 1.428571 0.028571

exact non-lin. [16] 0.013605 1.428474 0.028571

MY = 100 N = 2 0.000000 14.285714 0.285714
N = 3 0.000000 14.285714 0.285714

exact linear 0 14.285714 0.285714

exact non-lin. [16] 1.355002 14.188797 0.285714

MY = 1000 N = 2 0.000000 142.857143 2.857143
N = 3 0.000000 142.857143 2.857143

exact linear 0 142.857143 2.857143

exact non-lin. [16] 30.706785 68.593567 2.857143

MY =value of free-end moment, N=number of interpolation points.

element and only low-order interpolations along the element were used (linear,
N = 2, and quadratic, N = 3).

In Table 1 the displacements and the rotation of the free end are displayed and
compared to the results of the exact values of the non-linear and linearized
theories. Note that the analytical solutions of the free-end rotation of linearized
and non-linear theories coincide. This is the reason why the present numerical
results for the free-end rotation fully agree with the exact ones to all digits
for any magnitude of the applied moment.

A complete agreement between the results of exact and numerical linear anal-
yses for the displacements in the Z-direction is observed. The displacements
in the Z-direction are well described by the linearized theory only up to
MY = 100, when the vertical displacement reaches about 14% of the beam
length.

The displacements in the X-direction are predicted to be zero in the linearized
theory. The results for the larger moments are thus beyond the scope of the
linearized formulation. They clearly show the limitations of linear theories.
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9.2 Circular arch

This example shows the ability of the present linear formulation to consider
properly the initially curved (non-linear) geometry of the beam. We consider
an elastic cantilever beam with the centroidal axis in the form of the circular
arc with the central angle π and radius R = 5 (Figure 3). The cross-section of
the beam is circular with radius r = 0.015. Material moduli are E = 0.207·1012
and G = 0.95 · 1011. The cantilever is subjected to the concentrated force of
magnitude 100 at its free end. Two load cases are considered: (i) FX = 100
(here termed the ‘in-plane force’) and (ii) FZ = 100 (the ‘out-of-plane force’).

X
Y

O

Z

Z

X

F

F

*

*

Fig. 3. Circular arch under in-plane and out-of-plane force.

An analytical solution of the problem, in which the effects of shear and axial
deflections are neglected, was presented by Tabarrok et al. [22]. Their analyt-
ical solution slightly differs from the present analytical solution based on the
present theoretical beam model whose equations are presented in Appendix
D. Our numerical results for the end displacements and rotations are dis-
played in Tables 2 and 3 and compared with the analytical values. We used
meshes with ne = 1, 2, 4 or 8 elements with various degrees of interpolation
(N = 2, 3, . . . , 10). The tables also display the numerical results of Tabarrok
et al. [22] who used their original curved finite elements.

When the in-plane force is applied, the beam remains planar, with the out-of-
plane displacements being equal to zero. Analogously, the in-plane displace-
ments are zero in the linearized solution when the out-of-plane force is applied.
This is confirmed by the zero numerical values obtained for these displace-
ments. That is why they are not presented in the tables. From Tables 2 and
3 you can observe the excellent agreement between the numerical and the an-
alytical results and the rapid convergence of the results with the increase of
the number of elements and/or the number of interpolation points. A single
element with cubic interpolation gives the results which are accurate to 4 sig-
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Table 2
In-plane force on circular arch.

present; ne N −uX −uY ∆ϑZ

1 2 6.4217559 3.5101636 0.89301087
3 7.1476279 3.0224107 0.95558076
4 7.1560628 3.0377089 0.95424033
5 7.1569154 3.0374873 0.95425549
6 7.1569334 3.0374892 0.95425538
8 7.1569337 3.0374892 0.95425538
10 7.1569337 3.0374892 0.95425538

2 2 7.1168677 3.0604562 0.95206911
3 7.1567020 3.0373173 0.95426701
4 7.1569301 3.0374898 0.95425535
5 7.1569337 3.0374892 0.95425538

4 2 7.1545258 3.0388641 0.95414823
3 7.1569298 3.0374867 0.95425552
4 7.1569337 3.0374892 0.95425538

8 2 7.1567861 3.0375758 0.95424944
3 7.1569337 3.0374892 0.95425538

Tabarrok et al. [22] 7.036790 3.037488 0.95425490

present analytical 7.1568970 3.0374892 0.95425538

analytical [22] 7.1568990 3.0374825 0.95425328

ne=number of elements, N=order of element.

nificant digits. The comparable accuracy is obtained with 8 linear elements.
By increasing the order of the element or the number of the elements at the
fixed order of interpolation, the numerical results for uY , ∆ϑZ , ∆ϑX , and ∆ϑY

agree with the analytical ones in all significant digits. The numerical results
for uX and uZ are accurate up to 5 and 6 significant digits, respectively. We
believe that a slightly lower accuracy of these two results stems from the form
of the exact analytical solution. In analytical solutions for uX and uZ , the
term x cos

(
x
R

)
occurs. The present numerical method introduces the polyno-

mial interpolation for strains, which is not capable of fully accommodating
such a term.

9.3 Pinched circular ring

A circular ring with the rectangular cross-section is subjected to two opposite
forces. This example has been studied by many authors, see, e.g. [3], [5] and
[9]. The ring with the radius of the centroidal axis R = 100 and the unit width
is analyzed here. Two different thicknesses are studied (h = 1 and h = 0.1).
Elastic modulus is E = 107 and Poisson’s ratio is ν = 0.3. Unit forces are
applied as shown in Figure 4. The displacements of the points, marked by A
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and B, are evaluated numerically and compared with the analytical solutions.

X

h A

B

Y

O

F
*

F
*

Fig. 4. Circular ring under opposite forces.

It must be stressed that the analytical solution for the deflection of point B

Table 3
Out-of-plane force on circular arch: free-end displacements.

present; ne N uZ ∆ϑX ∆ϑY

1 2 9.496722 0.9425742 0.6406139
3 10.170632 0.9973705 0.6623125
4 10.182180 0.9969756 0.6618477
5 10.182180 0.9969756 0.6618477
6 10.182935 0.9969458 0.6618529
8 10.182935 0.9969458 0.6618529

10 10.182935 0.9969458 0.6618529
2 2 10.143260 0.9946818 0.6600606

3 10.182929 0.9969578 0.6618624
4 10.182933 0.9969457 0.6618529
5 10.182935 0.9969458 0.6618529

4 2 10.180743 0.9968347 0.6617373
3 10.182937 0.9969459 0.6618531
4 10.182935 0.9969458 0.6618529

8 2 10.182810 0.9969396 0.6618456
3 10.182935 0.9969458 0.6618529

Tabarrok et al. [22] 9.931903 0.9931903 0.6618526

present analytical 10.182883 0.9969458 0.6618529

analytical [22] 10.182905 0.996940 0.661850

ne=number of elements, N=order of element.
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in Y -direction,

uY (B) = −0.8927
F

E

(
R

h

)3

, (76)

which is usually cited in literature (see, e.g. [3], [9]), does not fully agree with
the analytical solution of the present linear formulation which reads

uY (B) = −0.89267035
F

E

(
R

h

)3

+ 1.61792022
F

E

R

h
.

The corresponding analytical solution for the horizontal displacement of point
A is

uX (A) = −0.819718634
F

E

(
R

h

)3

+ 0.53
F

E

R

h
.

The additional terms are relatively small compared to the first ones. Yet they
are important because they indicate the functional dependence of the solution
on the thickness of the ring. Table 4 shows the solutions for h = 1 and h = 0.1
normalized to h3. You can see that the thickness-to-radius ratio of the ring
affects the fourth significant digit in the normalized solution.

The present numerical solutions compare well with the analytical ones. The
converged solutions are accurate up to 5 significant digits. It has to be noted
that the present numerical method gives more accurate results for the thin
ring (h = 0.1). The values, cited from [3] and [9] were calculated from their
solutions normalized with respect to (76).

Table 4
Displacements of a circular ring.

h = 1 h = 0.1

element ne N uX(A) uY (B) uX(A)h3 uY (B)h3

present 1 2 0.0685222 0.2369345 0.0840586 0.0843326
3 0.0827712 0.0884166 0.0819546 0.0892119
4 0.0819750 0.0892848 0.0819720 0.0892665
6 0.0819772 0.0892832 0.0819719 0.0892672
8 0.0819772 0.0892832 0.0819719 0.0892672

2 2 0.0731149 0.0979452 0.0820840 0.0889549
3 0.0819888 0.0892704 0.0819717 0.0892663
4 0.0819772 0.0892832 0.0819719 0.0892672
5 0.0819772 0.0892832 0.0819719 0.0892672

4 2 0.0814312 0.0898162 0.0819786 0.0892476
3 0.0819773 0.0892830 0.0819719 0.0892672
4 0.0819772 0.0892832 0.0819719 0.0892672

Cho and Lee [3] 0.08925 0.08923

Kulikov and Plotnikova [9] 0.08852 0.08851

present analytical 0.0819666 0.0892509 0.0819718 0.0892669

ne=number of elements per quarter of ring, N=order of element.
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9.4 Twisted cantilever

An initially twisted beam was presented by MacNeal and Harder [11] as one of
standard problems to test the finite-element accuracy. The objective of the test
is to prove that the finite element takes the initially non-planar configuration
of the beam into account properly. The beam is clamped at one end and
subjected to the unit in-plane and the out-of-plane force at the other. The
centroidal axis of the beam is straight at the beginning, but the rectangular
cross-sections are twisted about the centroidal axis, see Figure 5. The initial
twist angle is taken to be a linear function of the arc-length x with its value set
to 0 at the clamped end and to 1

2
π at the free end of the beam. The remaining

geometric and material characteristics of the beam are:

h = 1.1 t = 0.32 L = 12 E = 29 · 106 ν = 0.22.

The results for the nonzero components of the free-end displacement vector
are shown in Table 5 where they are also compared to the analytical results
and the theoretical values presented in [11].

The results for the end-point displacements show that the error of the numer-
ical solution is small for any combination of N and ne even with low-order
elements. The numerical results for uZ in the first load case and for uY in
the second load case are exact when sufficiently high values for N and/or ne

are used. The numerical results for uY in the first load case and for uZ in the
second load case are less accurate due to a different nature of the analytical
and the finite-element solution functions (analytical solution is a linear combi-

nation of 1, x, x2, x3, cos
(
π
L
x
)
, sin

(
π
L
x
)
, x cos

(
π
L
x
)
, and x sin

(
π
L
x
)
compared

to the polynomial interpolation employed in the numerical solution).

X

Y

t

h

Z

O

F

F

1

2

*

*

Fig. 5. Twisted beam. Angle of the pretwist is π/2.
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Table 5
Free-end displacements of a π/2-pretwisted cantilever.

load case 1 load case 2
ne N uY uZ uY uZ

1 2 0.00547212 0.00179115 0.00184594 0.00151703
3 0.00542141 0.00171175 0.00171262 0.00175084
4 0.00542933 0.00171888 0.00171889 0.00174950
6 0.00542932 0.00171874 0.00171874 0.00174962
8 0.00542932 0.00171874 0.00171874 0.00174962

2 2 0.00542856 0.00171726 0.00172200 0.00173843
3 0.00542922 0.00171869 0.00171871 0.00174962
4 0.00542932 0.00171874 0.00171874 0.00174962
5 0.00542932 0.00171874 0.00171874 0.00174962

4 2 0.00542924 0.00171858 0.00171892 0.00174896
3 0.00542932 0.00171874 0.00171874 0.00174962
4 0.00542932 0.00171874 0.00171874 0.00174962

MacNeal and Harder [11] 0.005424 0.001754

present analytical 0.00542244 0.00171874 0.00171874 0.00174274

ne=number of elements, N=order of element.

9.5 Twisted circular arch

In our last example we study the beam, which is both curved and twisted. We
assume that the centroidal axis of the beam is a part of the circular arc with
the central angle π and radius R = 5 (Figure 6a). The cross-section of the
beam is rectangular with width t = 1.1 and height h = 0.32. Linear elastic
material is employed with material constants E = 29 · 106 and ν = 0.22. The

X
Y

O

Z

X
Y

O

Z

Z
ZF

F*
*

a) b)

Fig. 6. Circular arch and circular arch with initial π/2-pretwist.
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unit concentrated force in the out-of-plane direction is applied at the free end.

The initial twist of the cross-sections is taken to be a linear function of x. Six
different initial geometries are analyzed, which differ solely in the amplitude
of the free-end twist angle, starting from zero in the first case (Figure 6a), to
π
2
in the last, see Figure 6b. Eight quadratic elements are used to model the

arch which is sufficient to obtain the results accurate to six significant digits.

Table 6
Free-end displacements of pretwisted circular arches.

free-end twist angle uX uY uZ ∥u∥
0 0.00000000 0.00000000 0.00730961 0.00731

π/10 0.00030464 0.00031675 0.00725281 0.00727

2π/10 0.00058095 0.00059091 0.00709127 0.00714

3π/10 0.00080439 0.00078730 0.00684996 0.00694

4π/10 0.00095745 0.00088402 0.00656518 0.00669

π/2 0.00103166 0.00087570 0.00627795 0.00642

Our results of the free-end displacements are shown in Table 6. For the non-
twisted beam, the displacement occurs in the Z-direction only. The pre-twist
of the beam causes the in-plane displacement to emerge also. It increases with
the increase of the twist angle and becomes about 16% of the displacement in
the Z-direction for the π

2
-twisted beam. At the same time, the amplitude of

the out-of-plane displacement decreases; for the π
2
-twisted beam it is reduced

by about 14% with respect to the non-twisted beam. This shows that the
beam becomes stiffer with the increase of the pretwist.

Table 7
Analytical results for the free-end displacements of pre-twisted circular arches.

free-end twist angle uX uY uZ ∥u∥
0 0.00000000 0.00000000 0.00730067 0.00730

π/10 0.00030464 0.00031675 0.00724387 0.00726

2π/10 0.00058095 0.00059091 0.00708233 0.00713

3π/10 0.00080439 0.00078730 0.00684102 0.00693

4π/10 0.00095745 0.00088402 0.00655625 0.00668

π/2 0.00103166 0.00087570 0.00626901 0.00641

In Table 7 the analytical results are presented. The comparison between Ta-
bles 6 and 7 indicates the excellent accuracy of the numerical method. Note
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also slight differences between the numerical and analytical solutions for uZ .
As in the previous two examples, the differences stem from the form of the
exact solution which cannot be described by the low-order polynomial type of
discretization with a very high accuracy.

10 Conclusions

We presented the governing equations of the consistently linearized geomet-
rically exact spatial beam formulation in which the initial geometric shape
of the axis and the twist of the cross-sections are arbitrary. We proposed the
finite-element formulation for the solution of the linearized equations. The
novelties of the formulation are:

(i) The strain vectors as the only unknown functions are employed, i.e. the
formulation is ‘strain-based’.

(ii) The linear form of the consistency condition that the equilibrium and the
constitutive internal force and moment vectors are equal, is enforced to be
satisfied at an arbitrary point of the beam. This conditions are supplemented
by the linear form of the boundary and kinematic conditions to yield the
complete set of the linearized equations of the spatial beam.

A number of finite elements of different order have been tested by various
numerical examples and the results compared to analytical solutions. A rapid
convergence and an outstanding accuracy are characteristic for the higher-
order elements.

References

[1] T. M. Atanackovic, V. B. Glavardanov, “Buckling of a twisted and compressed
rod”, Int. J. Solids Structures 39, 2987–2999, 2002.

[2] J. H. Argyris, “An excursion into large rotations”, Comput. Methods Appl.
Mech. Eng. 32, 85–155, 1982.

[3] C. Cho, S. W. Lee, “On the assumed strain formulation for geometrically
nonlinear analysis”, Finite Elements Anal. Design 24, 31–47, 1996.

[4] R. Frisch-Fay, Flexible bars, Butterworths, London, 1962.

[5] M. Ganapathi, B. P. Patel, J. Saravanan, M. Touratier, “Shear flexible curved
spline beam element for static analysis”, Finite Elements Anal. Design 32, 181–
202, 1999.

29



[6] A. Ibrahimbegovic, “On the finite element implementation of geometrically non-
linear Reissner’s beam theory: 3d curved beam element”, Comput. Methods
Appl. Mech. Eng. 122, 11–26, 1995.

[7] A. Ibrahimbegovic, “On the choice of finite rotation parameters”, Comput.
Methods Appl. Mech. Eng. 149, 49–71, 1997.
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Appendix A: The tangent stiffness matrix of the element

The tangent stiffness matrix of the element reads

K =



0 F1
ϑ 0 0 −I 0 F1

κ,1 · · · F1
κ,N F1

γ,1 · · · F1
γ,N

...
...

...
...

...
...

...
. . .

...
...

. . .
...

0 FN
ϑ 0 0 −I 0 FN

κ,1 · · · FN
κ,N FN

γ,1 · · · FN
γ,N

0 G1
ϑ 0 0 G1

a −I G1
κ,1 · · · G1

κ,N G1
γ,1 · · · G1

γ,N

...
...

...
...

...
...

...
. . .

...
...

. . .
...

0 GN
ϑ 0 0 GN

a −I GN
κ,1 · · · GN

κ,N GN
γ,1 · · · GN

γ,N

−I Hϑ I 0 0 0 Hκ,1 · · · Hκ,N Hγ,1 · · · Hγ,N

0 −I 0 I 0 0 Hγ,1 · · · Hγ,N 0 · · · 0

0 0 0 0 I 0 0 · · · 0 0 · · · 0

0 0 0 0 0 I 0 · · · 0 0 · · · 0

0 0 0 0 −I 0 0 · · · 0 0 · · · 0

0 Lϑ 0 0 Hϑ −I Lκ,1 · · · Lκ,N Lγ,1 · · · Lγ,N



,
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where the 3× 3 block matrices F, G and H are defined by

Fq
ϑ = −S

(
RNC

G

)
q

Fq
κ,p = (IpRCγκ)q − S

(
RNC

GWp

)
q

Fq
γ,p = (IpRCγγ)q

Gq
ϑ = −S

(
RMC

G

)
q
+
∫ xq

0
S (N g)S (R (γG − cG)) dξ

Gq
a =

∫ xq

0
S (R (γG − cG)) dξ

Gq
κ,p = (IpRCκκ)q − S

(
RMC

GWp

)
q

+
∫ xq

0
S (N g)S (R (γG − cG))Wp dξ

Gq
γ,p = (IpRCκγ)q −

∫ xq

0
IpS (N g)R dξ

Hϑ =
∫ L

0
S (R (γG − cG)) dx

Hκ,p =
∫ L

0
S (R (γG − cG))Wpdx

Hγ,p = −Wp (L)

Lϑ =
∫ L

0
S (N g)S (R (γG − cG)) dx

Lκ,p =
∫ L

0
S (N g)S (R (γG − cG))Wpdx

Lγ,p = −
∫ L

0
IpS (N g)R dx.

The subscript ‘q’ marks that the term is evaluated at xq.

When the cross-sections are orthogonal to the line of centroids at the unde-
formed configuration, the block matrices F, G, H, and L assume considerably
simpler forms

Fq
ϑ = 0

Fq
κ,p = (IpRCγκ)q

Fq
γ,p = (IpRCγγ)q

Gq
ϑ =

∫ xq

0
S (N g)R

(1)
S dξ

Gq
a =

∫ xq

0
R(1)

S dξ

Gq
κ,p = (IpRCκκ)q +

∫ xq

0
S (N g)R

(1)
S Wp dξ

Gq
γ,p = (IpRCκγ)q −

∫ xq

0
IpS (N g)R dξ

Hϑ =
∫ L

0
R(1)

S dx
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Hκ,p =
∫ L

0
R(1)

S Wpdx

Hγ,p = −Wp (L)

Lϑ =
∫ L

0
S (N g)R

(1)
S dx

Lκ,p =
∫ L

0
S (N g)R

(1)
S Wpdx

Lγ,p = −
∫ L

0
IpS (N g)R dx.

R(1)
S is the skew-symmetric matrix S

R

1

0

0



.

The column of varied unknowns associated with matrix K reads

δy =
[
δr0

g δϑ0
g δrL

g δϑL
g δN 0

g δM 0
g δκ1

G · · · δκN
G δγ1

G · · · δγN
G

]T
.

It is obvious from the above expressions and also from Appendix B that the
tangent stiffness matrix is non-symmetric. The non-symmetry stems from tak-
ing the consistency conditions (15)–(16) as a part of the governing equations.
Despite the loss of symmetry and some increase in computational demands an
overall benefit is found in materially non-linear problems. Another issue, which
is also evident from the above expressions, is the independence of the tangent
stiffness matrix on the loading of the beam. That is why the linear theory is
not capable of detecting possible critical (bifurcation and limit) points.
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Appendix B: The tangent stiffness matrix of the element for the
beam whose cross-sections are orthogonal to the line of centroids at
the undeformed configuration

K
=

                      0
0

0
0

−
I

0
(R

C
γ
κ
) 1

···
0

(R
C

γ
γ
) 1

···
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. .
.

. . .
. . .

. .
.

. . .
0

0
0
0

−
I

0
0

···
(R

C
γ
κ
) N

0
···

(R
C

γ
γ
) N

0
I N

R
(x

1
)
0
0
I R

(x
1
)
−
I
(R

C
κ
κ
) 1

+
I1 N

R
W
(x

1
)

···
IN N

R
W
(x

1
)

(R
C

κ
γ
) 1

−
I1 I

N
R
(x

1
)

···
−
IN I

N
R
(x

1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. .
.

. . .
. . .

. .
.

. . .
0
I N

R
(x

N
)
0
0
I R

(x
N
)
−
I

I1 N
R
W
(x

N
)

···
(R

C
κ
κ
) N

+
IN N

R
W
(x

N
)

−
I1 I

N
R
(x

N
)

···
(R

C
κ
γ
) N

−
IN I

N
R
(x

N
)

−
I

I R
(L

)
I
0

0
0

I1 R
W
(L

)
···

IN R
W
(L

)
−
W

1
(L

)
···

−
W

N
(L

)

0
−
I

0
I

0
0

−
W

1
(L

)
···

−
W

N
(L

)
0

···
0

0
0

0
0

I
0

0
···

0
0

···
0

0
0

0
0

0
I

0
···

0
0

···
0

0
0

0
0

−
I

0
0

···
0

0
···

0
0

I N
R
(L

)
0
0

I R
(L

)
−
I

I1 N
R
W
(L

)
···

IN N
R
W
(L

)
−
I1 I

N
R
(L

)
···

−
IN I

N
R
(L

)

                      
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Appendix C: The residual vector of the element for the beam whose
cross-sections are orthogonal to the line of centroids at the unde-
formed configuration

−f =



−ñ (x1)
...

−ñ (xN)

IRn (x1)− m̃ (x1)
...

IRn (xN)− m̃ (xN)

0

0

−S0

−P 0

−SL − ñ (L)

P L + IRn (L)− m̃ (L)



Appendix D: Analytical solution

The present analytical solution assumes the linear material of the beam, ini-
tial stress-resultant vectors equal to zero, N g (x) = M g (x) = 0, and arbitrary
kinematic vectors rg (x) and ϑg (x) at the undeformed configuration. The ini-
tial strains should satisfy the kinematic equations (6)–(7). We also assume
that the beam is subjected only to boundary point loads and moments; i.e.,
the external distributed loading is disregarded.

We seek the analytical solution of equations (17)–(22). Firstly, the algebraic
equations (17)–(18) are eliminated from (17)–(22). The remaining equations
(19)–(22) constitute the system of the first order differential equations, which
are then linearized as described in Section 6. Because equations (17)–(18) have
been eliminated, some of the results in Section 6 cannot be directly applied
and the deductions have to be redone.

The linear constitutive law combined with the consistency conditions (17)–
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(18) yields the relationship between the strains and the stress-resultants

γG = C−1
N NC

G = C−1
N RTN g (77)

κG = C−1
M MC

G = C−1
M RTM g. (78)

The variations of γG and κG yield

δγG = C−1
N

(
−RT δΘN g + RT δN g

)
= C−1

N RT (δN g − δϑg ×N g) (79)

δκG = C−1
M

(
−RT δΘM g + RT δM g

)
= C−1

M RT (δM g − δϑg ×M g) . (80)

The linearization of equations (19)–(20) is straightforward. Considering that
ng = 0 and mg = 0 and that equation (20) can be replaced by (12), we get

δN ′
g = 0 (81)

δM ′
g + δr ′

g ×N g + r ′
g × δN g = 0. (82)

The linearization of equations (21)–(22) follows from (4)–(5). After inserting
(79)–(80) into (4)–(5) and rearranging the terms we get

δr ′
g − δϑg × r ′

g = RC−1
N RT (δN g − δϑg ×N g) (83)

δϑ′
g = RC−1

M RT (δM g − δϑg ×M g) . (84)

The solution of linearized equations (81)–(84) is sought at the initially un-
loaded and undeformed configuration of the beam which gives the final set of
the linearized equations for the unknowns δN g, δM g, δrg and δϑg:

δN ′
g = 0 (85)

δM ′
g + r ′

g × δN g = 0 (86)

δr ′
g − δϑg × r ′

g − RC−1
N RT δN g = 0 (87)

δϑ′
g − RC−1

M RT δM g = 0. (88)

Vectors r ′
g and ϑg and the related rotation matrix R in (85)–(88) represent the

given data describing the undeformed configuration. The solution of (85)–(88)
must satisfy the kinematic and force boundary conditions.

Note that the actual solution depends on the initial geometry and the bound-
ary conditions. It is useful to observe that the system of differential equations
(85)–(88) can be separated into two sets. Equations (85)–(86) are solved first
for δN g and δM g. After δN g and δM g have been obtained, they are inserted
into equations (87)–(88), which are then conveniently solved for δrg and δϑg

by Mathematica.
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