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Analytical solution for buckling of

asymmetrically delaminated Reissner’s elastic

columns including transverse shear

A. Kryžanowski, M. Saje, I. Planinc and D. Zupan∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

The exact analytical solution of buckling in delaminated columns is presented. In
order to investigate analytically the influence of axial and shear strains on buckling
loads the geometrically exact beam theory is employed with no simplification of
the governing equations. The critical forces are then obtained by the linearized
stability theory. In the paper we limit the studies to linear elastic columns with
a single delamination, but with arbitrary longitudinal and vertical asymmetry of
delamination and arbitrary boundary conditions. The studies of quantitative and
qualitative influence of transverse shear are shown in detail and extensive results
for buckling loads with respect to delamination length, thickness and longitudinal
position are presented.

Key words: delamination, buckling, layered beam, shear deformation,

1 Introduction

Since Euler’s work in buckling of elastic columns [8] the buckling and post-
buckling analysis of structures has been a subject of research of many authors.
Euler’s results differ from the experimental ones due to material non-linearity,
imperfections in geometry and loading eccentricities [1]. Better understanding
of mechanical grounds for the failure of structures is especially important for
design of modern structures, often build from modern-type composite materi-
als. The use of laminated composites for instance or more generally a load car-
rying members with geometric imperfections can result in premature collapse

∗ Corresponding author. E-mail addresss: dejan.zupan@fgg.uni-lj.si

Preprint submitted to Elsevier Science 22 July 2007



due to local instabilities. That is why the mathematical modelling of buckling
and post-buckling considering different effects of non-linearity and imperfec-
tions has received considerable attention in the last decade, see, e.g. the pub-
lications by Chen [3] [4], Kardomateas and Schumueser [10], Lim and Parsons
[14], Moradi and Taheri [15], Numayr and Haddad [16], MSRao et al. [17],
MSRao and Shu [18], Sheinman and Soffer [21], Wang et al. [26].

The work by Chai and coworkers [2] represents a first attempt in modelling
the delaminated beam. In [2] the energy release rate criterion is applied and
the effect of delamination growth is also studied. The beam is divided into four
regions and the continuity conditions at the delamination ends are applied.
Similar delaminated beam model was used by Simitses et al. [22], where the
effect of delamination length and vertical position is studied in detail for simply
supported beams and the beams with clamped ends.

Kardomateas and Schumueser [10] and later Chen [3] have incorporated the
transverse shear effect into their studies. Kardomateas and Schumueser [10]
studies are based on classical Euler’s solution, Chen [3] used the a variational
energy principle instead. Both papers employ the Griffith-type fracture crite-
rion for studying the delamination growth. Later Chen [4] used the first order
shear deformation theory to develop closed-form expressions for buckling and
post-buckling of asymmetrically delaminated beams with clamped boundary.
Moradi and Taheri [15] solved the same problem by the differential quadrature
method.

The objective of the present paper is twofold: to derive the exact analytical
solution for the buckling of single-delaminated column with consistent consid-
eration of transverse shear, and to investigate the effect of delamination length
position and shear effect on buckling loads. In contrast to other authors we
here employ the linearized stability theory [11] and present the exact analyti-
cal solution with no simplification of the governing equations. We restrict our
analysis to the buckling analysis of linear elastic columns with a single asym-
metric delamination and arbitrary boundary conditions. The post-buckling
analysis is not the issue of the present paper. The extension of the present for-
mulation on multiple delamination and composites made of several materials
with different material properties can easily be made.

2 Problem definition

We consider straight column with constant cross-section and compressive axial
force F , acting along the neutral axis of the column (Figure 1). The column is
divided by a single delamination into four elements. Elements 1 and 4 repre-
sent both non-delaminated ends of the column. Elements 2 and 3 represent the
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two layers at the middle of the column. Delamination is parallel to the neutral
axis of the column, but otherwise placed at an arbitrary position. Relative
delamination length is defined by d.l. = L2

L
, where L denotes the total length

of the column. The asymmetry of delamination with respect to the height of
the column is uniquely described by parameter µ ∈ (−1, 1). µ = 0 means the
vertically symmetrical delamination, by increasing (or decreasing) the value
of µ, the delamination is moved along the height of the column towards the
boundary. The longitudinal asymmetry is defined by the ratio of the undelam-
inated ends a = L1/L4. a = 1 means longitudinally symmetrical delamination,
delamination is positioned nearer left end for a ∈ (0, 1) and nearer right end
for a > 1.

Global coordinate system (X, Y, Z) is chosen, in which the undeformed cen-
troidal axis lies in the plane XZ, X-axis is perpendicular to the neutral axis
of the column, Y -axis points out of the figure, and the reference point (0, 0, 0)
coincides with the bottom of the column. Local coordinate system (x, y, z) is
assumed to coincide initially with global coordinates, and then follows the de-
formation of the beam. Plane cross-sections are assumed to remain planar and
preserve their shape and area after the deformation. The column is made of
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Fig. 1. Model of the column with single asymmetric delamination.

linearly elastic homogenous material. The smallest point load, called the crit-
ical force, is sought, such that the buckling of the column occurs. Note that
both layers are initially straight and that contact along the length of layers can
occur only at the post-buckling stage. Note that the present model assumes
that the delaminated layers deforms freely and have different transverse de-
formations. This assumption may not be practical due to the overlapping of
the delaminated layers [25] in the post-buckling analysis which is, however,
not the issue of the present paper.
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3 Analytical solution

3.1 Governing equations

The present solution is based on the stability analysis of the exact analytical
solution of the linearized planar beam theory. We stem from non-linear planar
Reissner beam theory and describe the beam by:

i) kinematic equations

1 + u′ = (1 + ε) cosφ+ γ sinφ (1)

w′ = −(1 + ε) sinφ+ γ cosφ (2)

φ′ = κ, (3)

ii) equilibrium equations

R′
X + pX = 0 (4)

R′
Z + pZ = 0 (5)

M ′ − (1 + ε)Q+ γN −mY = 0, (6)

where

N = RX cosφ−RZ sinφ (7)

Q = RX sinφ+RZ cosφ, (8)

iii) and constitutive equations

N = E
∫
A
(ε+ zκ ) dA (9)

Q = GAsγ (10)

M = E
∫
A
z (ε+ zκ) dA. (11)

Here
• E and G denote elastic and shear moduli of material;
• A is the cross-sectional area;
• As is the effective shear area [7];
• u and w denote the displacements of the beam;
• φ is the rotation;
• ε is the extensional strain, γ is the shear strain, κ is the bending strain
(curvature);

• pX , pZ and mY are external distributed forces and moments, respectively;
• RX , RZ and M are the stress-resultant forces and moment.
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Note that, when expressed with respect to the local basis, the stress forces are
denoted by N and Q and related to RX and RZ by coordinate transformation
(7)–(8).

After considering that the column is loaded only by point loads and employing
some simple eliminations we obtain the complete set of non-linear governing
equations

1 + u′ − (1 + ε) cosφ− γ sinφ = 0 (12)

w′ + (1 + ε) sinφ− γ cosφ = 0 (13)

φ′ − κ = 0 (14)

R′
X = 0 (15)

R′
Z = 0 (16)

M ′ + w′RX − (1 + u′)RZ = 0 (17)

E
∫
A
(ε+ zκ ) dA−RX cosφ+RZ sinφ = 0 (18)

GAsγ −RX sinφ−RZ cosφ = 0 (19)

E
∫
A
z (ε+ zκ ) dA−M = 0. (20)

The critical points of the non-linear set of equations agree with the critical
points of the linearized system [11]. For the application of linearized stability
theory in existence and uniqueness of the solution of Reissner’s elastica see
the paper by Flajs et al. [9].

3.2 Linearized equations

Similarly as in paper by Zupan and Saje [28] for three-dimensional beams,
consistent variation of equations (12)–(19) will be employed at an arbitrary
configuration of the beam. The deduction of the variations is simplified if
variations of constitutive equations are prepared in advance:

δN = C11δε+ C12δκ (21)

δM = C21δε+ C22δκ, (22)

where

C11 =
∂N

∂ε
= E

∫
A

∂

∂ε
(ε+ zκ) dA = EA (23)

C12 =
∂N

∂κ
= E

∫
A

∂

∂κ
(ε+ zκ) dA = E

∫
A
z dA = ESy (24)

C21 =
∂N

∂ε
= E

∫
A

∂

∂ε

(
zε+ z2κ

)
dA = E

∫
A
z dA = ESy (25)
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C22 =
∂M

∂κ
= E

∫
A

∂

∂κ

(
zε+ z2κ

)
dA = E

∫
A
z2 dA = EIy. (26)

Here Sy denotes the moment of area and Iy the moment on inertia. Note that
Sy is not zero for all the layers where the centroidal axis does not coincide with
the neutral axis of the whole beam. C11, C12, C21, and C22 are the components
of the cross-section constitutive tangent matrix. It’s determinant

c = C11C22 − C12C21 (27)

is crucial for observing the failure at the cross-section. Here, it is suitable to
introduce the notation

d =
c

C11

(28)

for the constitutive tangent matrix determinant divided by the axial stiffness.
Note also that the axial stiffness is strictly positive quantity. As reported by
Krauberger et al., the non-linearity of material could considerably affect buck-
ling and post-buckling behaviour of frame structures. The present approach
could easily be extended to non-linear material due to consistent linearization
of constitutive equations introduced above.

After these preparations the variations of the equations of the beam are easily
derived and are as follows:

δu′ − w′δφ− cosφ δε− sinφ δγ = 0 (29)

δw′ + (1 + u′) δφ+ sinφ δε− cosφ δγ = 0 (30)

δφ′ − δκ = 0 (31)

δR′
X = 0 (32)

δR′
Z = 0 (33)

δM ′ +RXδw
′ −RZδu

′ + w′δRX − (1 + u′)δRZ = 0 (34)

C11δε+ C12δκ+ (RX sinφ+RZ cosφ) δφ

− cosφ δRX + sinφ δRZ = 0 (35)

GAsδγ − (RX cosφ−RZ sinφ) δφ− sinφ δRX − cosφ δRZ = 0 (36)

C21δε+ C22δκ− δM = 0. (37)

The linearized equations (29)–(37) can be evaluated at an arbitrary configura-
tion of the beam. In order to apply equations to the column buckling problem,
the linearized equations are to be evaluated at the primary configuration of
the column. The primary configuration of the column is an arbitrary deformed
configuration in which the column is straight

φ (x) = 0, w (x) = 0 (38)
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an loaded only along the neutral axis

RZ (x) = 0, M (x) = 0. (39)

By inserting (38) and (39) into equations (12)–(19) we have

κ (x) = 0 (40)

γ (x) = 0 (41)

u′ (x) = ε (x) = const (42)

RX (x) = const (43)

Combining (38)–(43) and (29)–(37) gives linearized equations at primary con-
figuration:

δu′ − δε = 0 (44)

δw′ + (1 + ε) δφ− δγ = 0 (45)

δφ′ − δκ = 0 (46)

δR′
X = 0 (47)

δR′
Z = 0 (48)

δM ′ +RXδw
′ − (1 + ε)δRZ = 0 (49)

C11δε+ C12δκ− δRX = 0 (50)

GAsδγ −RXδφ− δRZ = 0 (51)

C21δε+ C22δκ− δM = 0. (52)

Equations (44)–(49) represent system of six ordinary differential equations for
nine unknown functions of x: δu, δw, δφ, δRX , δRZ , δM . Algebraic equa-
tions (50)–(52) are linearized constitutive equations that represents relations
between δRX , δRZ , δM and δε, δγ, δκ. Due to the simple form of (44)–(52)
they can be solved analytically.

3.3 Analytical solution of linearized equations

The set of nine equations (44)–(52) will be transformed into only two differen-
tial equations of higher order. The only remaining unknown will be axial and
lateral deflections δu and δw. By taking the first derivative of equation (45),
the first derivative of (51), and (48) we have

δw′′ =
[
− (1 + ε) +

RX

GAs

]
δφ′ =

[
− (1 + ε) +

RX

GAs

]
δκ (53)

and

δw(iv) =
[
− (1 + ε) +

RX

GAs

]
δκ′′. (54)

7



Second derivative of (52) gives

δM ′′ = C21δε
′′ + C22δκ

′′, (55)

on the other hand from (49) and (48) it follows that

δM ′′ = −RXδw
′′. (56)

The equality of right hand sides in (55) and (56) gives

C21δε
′′ + C22δκ

′′ +RXδw
′′ = 0. (57)

Finally by inserting (50) and (54) into (57) and considering (28), we get

d δw(iv) +RX

[
− (1 + ε) +

RX

GAs

]
δw′′ = 0. (58)

If we introduce the buckling parameter

k2 = −RX

d

[
(1 + ε)− RX

GAs

]
, (59)

fourth order differential equation (58) can be written in a simple form as:

δw(iv) + k2δw′′ = 0. (60)

Equation (60) can be solved analytically; the solution is

δw (x) = A sin kx+B cos kx+ Cx+D. (61)

Four parameters A, B, C, and D must be determined form the boundary
conditions. Various boundary conditions, presented in the next section, need
to be analyzed: different supports at both ends of the column and the bonding
conditions between middle layers and the elements at both ends. It is obvious
from the general approach that the solution (61) holds for all four elements
composing the column. However due to different boundary conditions each
element has different parameters. Thus, sixteen parameters Ai, Bi, Ci, and
Di, i = 1, . . . , 4 uniquely define the lateral deflection of the column.

Taking the first derivative of (50) and considering (44) and (47) gives

C11δu
′′ + C12δκ

′ = 0.

From (53) we then obtain

C11

C12

[
− (1 + ε) +

RX

GAs

]
δu′′ + δw′′′ = 0.
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After inserting the solution for δw (61) and taking into account (59) we finally
get

δu′′ =
RXC12

dC11

k (A cos kx−B sin kx) . (62)

Exact solution of the second order equation (62) reads

δu (x) = α + βx− RXC12

k dC11

(A cos kx−B sin kx) , (63)

where the two parameters α and β are to be determined from the boundary
equations. Again each element could have different values of parameters α and
β. All together eight parameters αi, βi, i = 1, . . . , 4 uniquely define the axial
deflection of the column.

An arbitrary deformed configuration of the linearized beam is uniquely de-
scribed by δw (x), δu (x), and the boundary conditions. The remaining quan-
tities of the beam δφ, δRX , δRZ , δM can be obtained from (44)–(52). It is,
however, suitable to directly express those quantities with δu, δw, and their
derivatives as we will employ these expressions in order to properly consider
the physical boundary and bonding conditions.

Firstly, we express δRZ from (49)

δRZ =
RX

1 + ε
δw′ +

1

1 + ε
δM ′. (64)

δM ′ can further be expressed from (52) and considering (50) and (47) as

δM ′ = d δκ′. (65)

From (53), (64), and (65) now follows

δRZ =
RX

1 + ε
δw′ +

d

(1 + ε)
[
− (1 + ε) + RX

GAs

]δw′′′

δRZ =
RX

1 + ε

(
δw′ +

1

k2
δw′′′

)
. (66)

Inserting the solution for δw into (66) results in

δRZ =
RX

1 + ε
C. (67)

From (44) we have

δγ = δw′ + (1 + ε) δφ (68)
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and on the other hand from (51) we get

δγ =
RX

GAs

δφ+
1

GAs

δRZ . (69)

Upon insertion (69) and (66) into (68) and some short simplification where
(59) is taken into account, it yields

δφ = − 1

1 + ε

[
δw′ +

R2
X

GAsk4d
δw′′′

]
. (70)

After we insert the solution (61) into (70) and rearrange the terms, we obtain

δφ =
RX

k d
(A cos kx−B sin kx) − 1

1 + ε
C. (71)

By inserting (44) and (53) into (52) we have

δM = C21δu
′ + C22

RX

k2d
δw′′ (72)

and in completely analogous way

δRX = C11δu
′ + C12

RX

k2d
δw′′. (73)

It is suitable to insert solutions (61)–(63) into (72) and (73) as the expression
simplify considerably. After some short derivations we directly obtain

δRX = C11β (74)

δM = C21β −RX (A sin kx+B cos kx) . (75)

4 Boundary and continuity conditions

Before we discuss the conditions on linearized formulation the continuity of
displacements and equilibrium of forces in non-linear primary configuration
need to be considered. Continuity of displacements at the delamination ends
(points T2 and T3 on Figure 1) reads:

u1 (L1) = u2 (0) = u3 (0)

u2 (L2) = u3 (L2) = u4 (0) .
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From (12) and (38) we have

u′ = ε

u (x) = u (0) + εx. (76)

As one end of column is fixed, we have

u1 (0) = 0,

and inserting (76) into continuity conditions yields

ε1L1 = u2 (0) = u3 (0)

u2 (0) + ε2L2 = u3 (0) + ε3L2 = u4 (0) .

Thus the axial strains of both layers are equal

ε2 = ε3. (77)

Equilibrium conditions of axial forces at points T2, T3, and T4 are

RX,2 +RX,3 = RX,1 (78)

RX,2 +RX,3 = RX,4 (79)

RX,4 = −F. (80)

The axial forces can be expressed with axial strains. From (38)–(43) and (18)
we obtain

RX,i = EAiεi, for i = 1, . . . , 4. (81)

By inserting (81) into (78)–(79) and considering (77) we get

EA2ε2 + EA3ε2 = EA1ε1
EA2ε2 + EA3ε2 = EA4ε4.

As for columns with constant cross-sections A2 + A3 = A1 = A4, we finally
have the continuity of axial strains

ε1 = ε2 = ε3 = ε4. (82)

From (81) and (82) now follows

RX,1 = −F (83)

RX,2 = −A2

A4

F (84)

RX,3 = −A3

A4

F. (85)
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As reported by Li [13] the exact solution for buckling considering the effect
of shear can not be easily obtained for non-uniform bar, especially for multi-
step bars. Note that the present approach allows us to directly extend the
formulation to columns with varying cross-section.

Different boundary conditions for the solutions of linearized equations will be
taken into account. For the points at which the elements bond we demand the
equality of displacements and rotations and the equilibrium of the internal
forces. At the delamination ends, e.g. at the points T2 and T3 (see Figure 1)
we thus have:

δu1 (L1) = δu2 (0) = δu3 (0) (86)

δw1 (L1) = δw2 (0) = δw3 (0) (87)

δφ1 (L1) = δφ2 (0) = δφ3 (0) (88)

δRX,1 (L1) = δRX,2 (0) + δRX,3 (0) (89)

δRZ,1 (L1) = δRZ,2 (0) + δRZ,3 (0) (90)

δM1 (L1) = δM2 (0) + δM3 (0) (91)

and

δu2 (L2) = δu3 (L2) = δu4 (0) (92)

δw2 (L2) = δw3 (L2) = δw4 (0) (93)

δφ2 (L2) = δφ3 (L2) = δφ4 (0) (94)

δRX,2 (L2) + δRX,3 (L2) = δRX,4 (0) (95)

δRZ,2 (L2) + δRZ,3 (L2) = δRZ,4 (0) (96)

δM2 (L2) + δM3 (L2) = δM4 (0) . (97)

For each of the analyzed columns one end (point T1) is fixed in axial direction,
and at the other end (point T4) the axial force is zero:

δu1(0) = 0 (98)

δRX,4 (L4) = 0. (99)

Four different boundary conditions for columns will be analyzed:

(i) Clamped at one end free at the other (cantilever)

δw1(0) = 0 (100)

δφ1(0) = 0 (101)

δRZ,4 (L4) = 0 (102)

δM4 (L4) = 0. (103)
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(ii) Pinned at both ends (simply supported)

δw1(0) = 0 (104)

δw4(L4) = 0 (105)

δM1 (0) = 0 (106)

δM4 (L4) = 0. (107)

(iii) Clamped column at one end, pinned at the other

δw1(0) = 0 (108)

δφ1(0) = 0 (109)

δw4 (L4) = 0 (110)

δM4 (L4) = 0. (111)

(iv) Clamped at both ends

δw1(0) = 0 (112)

δφ1(0) = 0 (113)

δw4 (L4) = 0 (114)

δφ4 (L4) = 0. (115)

The total set of equations consist of 18 continuity conditions (86)–(97) and 6
boundary conditions; totally 24 equations for 24 unknowns: αi, βi, Ai, Bi, Ci,
Di, i = 1, . . . , 4. We are interested only in non-trivial solutions, where all the
parameters are not equal to zero. The equations are linear and homogenous,
thus they can be written in the form

Kα = 0,

where K denotes the 24 × 24 matrix of coefficients and α the vector of 24
unknowns. For solutions, where α ̸= 0, the lowest value of F is sought, such
that detK = 0. The lowest pair (F, ε) is sought such that the determinant of
the system of equations vanishes with the determinant of the cross-sectional
tangent matrix being positively definite (c > 0). The analytical expressions for
detK are unfortunately too complicated to be presented as closed formulae;
some of the results, obtained by the above algorithm are presented in next
section. For further details on calculus of critical points and their classification
see the paper by Planinc and Saje [19].
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5 Results and discussion

The critical force of the delaminated column is dependent on various param-
eters. Here, the influence of the delamination length, delamination position,
shear modulus, and slenderness ratio is analyzed. Some of the results and pa-
rameters are normalized in order to present the buckling behaviour and the
influence of various parameters more evidently. In all the examples the ob-
tained critical force, e.g. the buckling load, is normalized with respect to the
value of the classical Euler’s result. In order to study the shear effect the elas-
tic to shear modulus ratio has been varied. The present results are presented
for:

i) E/G = 0; shear incompressible material, commonly taken in studying the
buckling and postbuckling behaviour),

ii) E/G = 2; typical for isotropic materials, and
iii) E/G = 6; which is typical for composite materials, such as fibre-glass.

As the ratio is much larger for composite materials, in which the phenomena
of delamination is one of typical failure modes due to production procedures,
the shear effect could not be neglected for such materials. Results will be
presented and discussed with respect to slenderness of the column, defined by

λ = L

√
A

Iy
.

Some of the present results are compared to the results in available literature.
Then thorough parametric studies are presented according to the present for-
mulations for each type of supports.

5.1 Parametric studies for simply supported beam

To compare the present model with other authors we have employed the shear
incompressible material, material with E/G = 6 and a modification (simplifi-
cation) of the present formulation. Comparisons of normalized buckling loads
of the simply supported beam are shown in Tables 1 and 2. The present results
are presented for slenderness ratio λ = 17.3. It is interesting to observe that
for shear incompressible material the present formulation gives larger values
comparing to the classical laminate theories. The reason stems from the exact
non-linear formulation employed in the present formulation. In order to vali-
date the present results with respect to classical theories a modified buckling
parameter

k̃2 = −RX

d
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has been employed. For such simplification the influence of the axial strain
in primary configuration in neglected, which is common to classical approach.
Our results for modified buckling parameter completely agree with other au-
thors. The present approach for incompressible material shows that the clas-
sical approach is conservative. This is not the case when the shear effect is
considered. The present theory gives lower relative critical forces even for
relatively slender beam. The shear effect is studied in detail in the next sec-
tion. Note also that the solution, based on Reissner’s beam theory, considers
the extensional and bending stiffness coupling and transverse shear effect.
The extensional and bending stiffness coupling results in larger critical forces
with respect to classical Euler’s solution when transverse shear is neglected
(G = ∞).

Table 1
Normalized buckling loads of simply supported beam: comparison table 1.

µ = 0 µ = 0.2

d.l. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Simitses et.al. [22] 0.9997 0.9912 0.9343 0.7867 0.9997 0.9902 0.9198 0.7264

Parlapalli, Shu [18] 0.9997 0.9912 0.9343 0.7867

Lim, Parsons EM [14] 0.9997 0.9902 0.9198 0.7264

Lim, Parsons FE [14] 0.9997 0.9902 0.9198 0.7264

Present simplified 0.99974 0.99122 0.93432 0.78673 0.99972 0.99023 0.91981 0.72636

Present G = inf 1.03498 1.02585 0.96495 0.80822 1.03496 1.02478 0.94946 0.74460

Present G = E/6 0.85176 0.84543 0.80285 0.68970 0.85174 0.84469 0.79190 0.64223

d.l.=relative delamination length, µ=relative vertical position of delamination with respect to centroid

Table 2
Normalized buckling loads of simply supported beam: comparison table 2.

µ = 0.4 µ = 0.8

d.l. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Simitses et.al. [22] 0.9997 0.9827 0.8149 0.5118 0.9723 0.2494 0.1109 0.0624

Parlapalli, Shu [18] 0.9997 0.9852 0.9149 0.5118 0.9723 0.2494 0.1109 0.0624

Present simplified 0.99965 0.98515 0.81492 0.51179 0.97228 0.24938 0.11087 0.06237

Present G = inf 1.03488 1.01934 0.83803 0.52071 1.00554 0.25146 0.11127 0.06250

Present G = E/6 0.85169 0.84092 0.71163 0.46726 0.83131 0.23784 0.10847 0.06159

d.l.=relative delamination length, µ=relative vertical position of delamination with respect to centroid
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As expected the relative buckling load reduces by increasing the delamina-
tion length and/or by moving the delamination towards the cross-section’s
boundary. The effect of delamination length and relative vertical position on
normalized buckling load is presented by a surface in Figure 2. It is evident
from Figure 2, that the relationship between buckling load and both parame-
ters is non-linear. For relatively short delamination (d.l. ≤ 0.3), the normalized
buckling load is mostly independent on their vertical position. This is not the
case only for the delaminations that are very close to the boundary (µ > 0.8);
for which normalized buckling load rapidly decreases. For relatively longer de-
laminations even relatively small vertical asymmetry of delamination results
in considerable reduction of normalized buckling load. Note that in Figure 2
elastic to shear ratio is taken to be 6 and that the slenderness ratio is approx-
imately 70. The results for lower slenderness are quite different. In order to
make comparisons more clear results for various shear moduli are presented
as two dimensional charts in Figures 3 and 4.
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Fig. 2. Relative critical force vs. relative delamination length and vertical position.

In Figure 3 the normalized buckling load is presented for various relative
delamination lengths. Nine cases are considered introducing different shear
moduli and delamination vertical positions. From all the charts we observe
that by increasing the delamination length the relative buckling load de-
creases. However the reduction of relative buckling load is non-linear and is
strongly dependent on the delamination position. For symmetric delamination
the slenderness-load curves are almost identical for d.l. ≤ 0.3; for lager delam-
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Fig. 3. Simply supported beam: relative critical force vs. slenderness ratio for various
delamination lengths (d.l.), shear moduli (G) and delamination positions (µ).

ination lengths the distance between the curves raises. For delamination of the
column at the quarter of the height (µ = 0.5) first three curves are still very
close together, but the distances between the other change. This is even more
evident for the delamination at 10% of the height (µ = 0.8), where the nor-
malized critical forces reduce most rapidly between d.l. = 0.2 and d.l. = 0.3.
Results for larger delaminations are, however, more closer to each other.

In Figure 4 the normalized buckling load is presented for various relative
delamination vertical positions. Nine cases are considered introducing different
shear moduli and relative lengths of delamination. Again it could be confirmed
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Fig. 4. Simply supported beam: relative critical force vs. slenderness ratio for various
delamination positions (µ), shear moduli (G) and delamination lengths (d.l.).

that relatively short delamination are insensitive to moderate asymmetry of
delamination position. This is not the case for longer delaminations, where
the vertical asymmetry seems to be crucial.

Another important issue, evident form Figures 3 and 4, is the relationship
between the slenderness ratio and the shear effect. The shear effect could not
be neglected for relatively stocky columns (λ < 50). When the material is
shear incompressible (G = ∞), the relative buckling load is almost indepen-
dent on the slenderness. The slight increase in relative buckling load for stocky
columns is due to the non-linear model where the axial deformation is prop-
erly taken into account. For typical isotropic materials (G = E/2), the shear
effect is observed for thick columns (λ < 20) and relatively short delamina-
tions. The shear effect reduces the relative buckling load. When the composite
material is applied, the shear to elastic modulus is even larger, which results
in considerably lover critical forces for slenderness lower than 60. The effect is
stronger for shorter delamination positioned nearer the symmetry axis of the
cross-section. The shear effect could reduce the normalized buckling load for
more than 20% when slenderness ratio is approximately 15.
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5.2 Study of various boundary conditions

The parametric studies presented above have been preformed for simply sup-
ported column. Different boundary conditions, especially non-symmetric bound-
ary conditions can have considerable influence on the quantitative and quali-
tative buckling of the delaminated column. In all of the results columns with
slenderness ratio 34.6 and longitudinally symmetrical delamination were stud-
ied. Different support types were analyzed with respect to transverse shear
effect (introduced by shear modulus G), vertical delamination position µ, and
delamination length d.l. In Table 3 the comparison between different support
types is shown for various combinations of parameters.

Results for different support types, although normalized with respect to Eu-
ler’s critical force for the same boundary conditions, differ considerably. The
variation of the analyzed parameters could have substantially dissimilar val-
ues when different boundary conditions are applied. It is common for all the
support types that by increasing the delamination length the relative critical
force is decreased. By increasing the shear modulus the relative critical force
is increased in all the cases. For most cases the relative critical force is de-
creased by increasing the vertical asymmetry of delamination (parameter µ).
It is important to observe that this is not always the case when asymmetri-
cal boundary conditions are applied (clamped-pined and cantilever column).
For all the parameter combinations the highest relative buckling load is al-
most always obtained when the column is clamped only at one end, thus
cantilever column is the most conservative for variations of parameters. On
the other hand the clamped-pinned column gives the lowest results for critical
force when analyzing relatively short delaminations near the neutral axis. For
longer delaminations and higher values of µ clamped-clamped column gives
considerably lower results as the clamped-pinned one.

Buckling mode shapes for various boundary conditions are presented in Fig-
ure 5. We should point out that for all cases the matrix rank of the entire set
of equations was equal to 23 at the critical load. Thus, a single eigenvector
defines the corresponding buckling mode. We could agree from Figure 5 that
the modes could be classified to global, where the buckling of entire column is
dominant with respect to delamination, local, where only delamination occurs,
and mixed, where both global and local buckling take place. Note that this
classification is based entirely on the appearance of buckling shapes and has
not been defined theoretically. Note also that by analyzing the matrix rank
of boundary and continuity conditions separately this phenomenon could not
be described, as for all the cases the separated ranks were 6 and 18, respec-
tively. We could observe that vertically symmetrical delaminations have only
minor affect on the buckling shapes; the global buckling occurs. By reduc-
ing the height of the layers, the delamination appears together with global

19



Table 3
Normalized buckling loads for various support types.

G µ d.l. pinned-pinned clamped-clamped clamped-pinned clamped-free

E/6 0 0.2 0.9534 0.8487 0.8732 0.9827

E/6 0 0.5 0.9289 0.6129 0.5878 0.9114

E/6 0 0.8 0.7575 0.3293 0.4107 0.7355

E/2 0 0.2 0.9885 0.9537 0.9378 0.9921

E/2 0 0.5 0.9623 0.6690 0.6153 0.9195

E/2 0 0.8 0.7797 0.3459 0.4241 0.7408

∞ 0 0.2 1.0081 1.0305 0.9777 0.9970

∞ 0 0.5 0.9808 0.7060 0.6312 0.9237

∞ 0 0.8 0.7919 0.3556 0.4316 0.7435

E/6 0.2 0.2 0.9534 0.8483 0.8763 0.9831

E/6 0.2 0.5 0.9250 0.5137 0.6126 0.9215

E/6 0.2 0.8 0.7013 0.2318 0.3849 0.7644

E/2 0.2 0.2 0.9885 0.9532 0.9426 0.9928

E/2 0.2 0.5 0.9580 0.5534 0.6445 0.9304

E/2 0.2 0.8 0.7204 0.2402 0.3971 0.7708

∞ 0.2 0.2 1.0081 1.0299 0.9841 0.9978

∞ 0.2 0.5 0.9764 0.5786 0.6631 0.9350

∞ 0.2 0.8 0.7308 0.2448 0.4037 0.7741

E/6 0.8 0.2 0.9283 0.2380 0.4651 0.9866

E/6 0.8 0.5 0.1584 0.0396 0.0775 0.6325

E/6 0.8 0.8 0.0622 0.0156 0.0304 0.2486

E/2 0.8 0.2 0.9616 0.2467 0.4822 0.9964

E/2 0.8 0.5 0.1593 0.0399 0.0780 0.6365

E/2 0.8 0.8 0.0623 0.0156 0.0305 0.2492

∞ 0.8 0.2 0.9802 0.2516 0.4918 1.0014

∞ 0.8 0.5 0.1598 0.0400 0.0782 0.6385

∞ 0.8 0.8 0.0624 0.0156 0.0305 0.2495

d.l.=relative delamination length, µ=relative vertical position of delamination with respect to centroid

buckling, but for very thin and long delaminations only the thin layer buckles,
which results in local buckling shape. The comparison between various bound-
ary conditions shows considerable dissimilarities in mode shapes for otherwise
identical columns. We should point out that for relatively short delamina-
tions the longitudinal asymmetry could considerably affect the global mode
shape, as observed for clamped-clamped beam in Figure 5. Note also that the
transverse shear does not affect the buckling mode shapes (it affects only the
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Fig. 5. Buckling modes of various delaminated columns.

magnitudes of buckling forces), thus the comparisons are not presented here.

5.3 Study of longitudinal asymmetry

The shear effect is only rarely considered in delamination models. Here we
compare the results of the present theory to the ones obtained by Chen [3]
for the beam clamped at both ends. In [3] the shear deformation parameter
introduced is dependent on length to thickness ratio. In present approach the
shear effect is applied directly with shear modulus G. The shear deformation
parameter 0.2 from [3] is thus adequately replaced by elastic to shear modulus
ratio. For the present length to thickness ratio h/L = 0.1 the size of E/G,
accordant to [3], is 6.8. Tables 4 and 5 show good agreement between both re-
sults (up to 3 significant digits). The differences stem from different approach
applied here with respect to the one in [3]. Note that the delamination is nor-
mally positioned to the middle of the beam’s length and different thicknesses
are studied. Our results show that the longitudinal position of delamination
can be of considerable influence. The present results in Tables 4 and 5 are
shown for L1 : L4 = 1 : 1, L1 : L4 = 1 : 2, and L1 : L4 = 1 : 3. We can observe
that the results for longitudinally symmetric delamination (L1 = L4) can be
non-conservative and the proper consideration of delamination position can
be of great importance.
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Table 4
Normalized buckling loads of clamped-clamped beam: comparison table 1.

µ = 0 µ = 0.2

d.l. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Chen [3] 0.99556 0.85606 0.54114 0.35142 0.99504 0.7883 0.41239 0.24281

Chen + shear [3] 0.83025 0.73092 0.48829 0.32834 0.82989 0.68094 0.38097 0.23156

Present 1.03049 0.87316 0.55113 0.35558 1.02994 0.80988 0.41814 0.24478

Present + shear, 1 : 1 0.83232 0.70267 0.48558 0.32633 0.83195 0.67951 0.37861 0.23031

Present + shear, 1 : 2 0.76136 0.57163 0.46955 0.32590 0.76880 0.58756 0.37765 0.23034

Present + shear, 1 : 3 0.72973 0.52076 0.45151 0.32536 0.73942 0.54067 0.37630 0.23038

d.l.=relative delamination length, µ=relative vertical position of delamination with respect to centroid

Table 5
Normalized buckling loads of clamped-clamped beam: comparison table 2.

µ = 0.4 µ = 0.8

d.l. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Chen [3] 0.99239 0.53138 0.24353 0.13901 0.24953 0.06242 0.02776 0.01562

Chen+shear [3] 0.82804 0.48033 0.23222 0.13525 0.23767 0.06165 0.02761 0.01557

Present 1.02710 0.54101 0.24551 0.13965 0.25162 0.06255 0.02778 0.01563

Present + shear, 1 : 1 0.83005 0.47763 0.23096 0.13473 0.23637 0.06153 0.02758 0.01556

Present + shear, 1 : 2 0.78610 0.47873 0.23120 0.13476 0.23640 0.06154 0.02758 0.01556

Present + shear, 1 : 3 0.76335 0.48034 0.23151 0.13480 0.23644 0.06154 0.02758 0.01556

d.l.=relative delamination length, µ=relative vertical position of delamination with respect to centroid

The phenomenon of relative critical force reduce by asymmetrical longitudinal
delamination position has been studied for columns with slenderness ratio
35 and several vertical delamination positions. The transverse shear effect
was studied by taking different values of shear moduli (G = ∞ and G =
E/6). In the study symmetric delamination was compared to the cases with
delamination positioned at 1/4 and 1/8 of the non-delaminated length (L1 :
L4 = 1 : 3, L1 : L4 = 1 : 7), respectively. Various boundary conditions were
taken into account.

The results for clamped-clamped columns are shown in Figure 6. We can ob-
serve that the increase of longitudinal asymmetry affects the most the columns
with medium-sized delaminations when the delamination is at the centroid of
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the column (µ = 0). For delaminations asymmetric to the height of the col-
umn, the effect is reduced and can be neglected for larger values of µ. It is
however interesting that by vertically positioning the delamination towards
the boundary of the cross-section shorter delaminations indicate to be more
sensitive on longitudinal position. The qualitative influence of longitudinal
delamination position is analogous when the shear incompressible material is
applied, but the quantitative values of relative critical forces (dotted lines)
can be non-conservative, especially for shorter delaminations. Note that due
to symmetry of boundary conditions the identical results are obtained for de-
laminations with L1 : L4 = 3 : 1 and L1 : L4 = 7 : 1, respectively. For
non-symmetric boundary conditions no such symmetry of results according to
the mid-span of the beam is expected, as we will confirm in further examples.
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Fig. 6. Clamped-clamped column: relative critical force vs. delamination length for
various delamination longitudinal positions.

Results for columns, clamped at one end, pinned at the other, are shown
in Figure 7. From Figure 7 it is obvious that the longitudinal delamination
position could have considerable influence on buckling loads particularly for
vertically symmetrical delaminations and moderate vertical asymmetry (µ <
0.5). In contrast to previous example the delamination centered at mid-span
of the column’s length does not give the largest buckling loads. Generally
by moving the delamination from the clamped end (x = 0) to the pinned
one (x = L), the relative critical force raises. It is, however, interesting to
observe that relatively short delaminations when positioned closer to mid-span
(L1 : L4 = 3 : 1) can give larger buckling loads as when positioned nearer the
pinned end ( L1 : L4 = 7 : 1). The same phenomenon, but not so distinctive in
values of relative buckling loads, is observed by moving the delamination to the
clamped end. The comparisons between more realistic (solid line) and shear
incompressible (dotted line) material show completely analogous behaviour
of shear incompressible column with respect to the longitudinal delamination
position. On the other hand, the values of relative critical forces can be non-
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conservative when transverse shear is neglected.
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Fig. 7. Clamped-pinned column: relative critical force vs. delamination length for
various delamination longitudinal positions.

Our last example is the most conservative one as the various parameters,
studied in previous examples, have the lowest influence on the buckling loads.
The column is now clamped at one end, free at the other (cantilever column).
The delamination longitudinal position and transverse shear have only slight
influence for this type of boundary conditions (see Figure 8). Delamination
length and vertical position have substantial influence, but comparing to other
examples their effect is lower. The most interesting issue, observed from Figure
8, is that in contrast to previous example by moving the delamination from the
clamped end (x = 0) to the free one the relative critical forces are reduced. This
is in accord with the expectation that the delamination in the neighborhood
of the clamped end would have the lowest effect.

6 Conclusions

We presented the analytical approach to the buckling analysis of the asym-
metric delaminated beam considering the shear effect. The essential points of
the present studies are:

(i) The present formulation agrees well with the classical results for shear in-
compressible material.

(ii) The dependence of the buckling load on delamination length and position
is strongly non-linear.

(iii) The shear effect can be substantial and can not be neglected even for
isotropic material when the beams are stocky.
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Fig. 8. Cantilever column: relative critical force vs. delamination length for various
delamination longitudinal positions.

(iv) For composite materials the shear effect is substantial for low to moderate
slenderness ratio. Classical approach can be most non-conservative for such
cases.

(v) It is recommended that for materials with high elastic to shear modulus
ratio the shear effect is properly considered.

(vi) The obtained and presented results can on behalf of their exactness serve
as a benchmark for numerical methods.

Post-critical behaviour, geometric imperfections, and non-linearity of material
non-analyzed in the present paper are the subject of further studies.

7 Appendix A: shear incompressible material

We will prove that for G = ∞, the shear dependent formulation reduces to
exact formulation of shear incompressible material. When the shear deforma-
tions can be neglected, the governing equations read:

δu′ − δε = 0 (116)

δw′ + (1 + ε) δφ = 0 (117)

δφ′ − δκ = 0 (118)

δR′
X = 0 (119)

δR′
Z = 0 (120)

δM ′ +RXδw
′ − (1 + ε)δRZ = 0 (121)

C11δε+ C12δκ− δRX = 0 (122)

C21δε+ C22δκ− δM = 0. (123)
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After procedure analogous to the one in section 3.3, equation (60) is obtained
once again, however the parameter k2 is now described by

k2 = −RX

d
(1 + ε) , (124)

but the general form of the solution (61) remains the same.

From (117) and (118) we have

δφ = − 1

1 + ε
δw′ = − 1

1 + ε
[k (A cos kx−B sin kx) + C] (125)

δκ = − 1

1 + ε
δw′′ =

1

1 + ε
k2 (A sin kx+B cos kx) . (126)

First derivative of (122) yields differential equation for axial displacements:

C11δu
′′ − C12

1

1 + ε
δw′′′ = 0.

It’s solution reads

δu (x) = α + βx− C12

C11

1

1 + ε
k (B sin kx− A cos kx) .

From (116) we now have

δε = β − C12

C11

1

1 + ε
k2 (A sin kx+B cos kx) .

After inserting δε and δκ into (122) and (123) and some simplification we get

δRX = C11β (127)

δM = C21β +
1

1 + ε
dk2 (A sin kx+B cos kx) . (128)

Inserting the expressions for δM , δw, and δRZ into (121) results in

δRZ =
1

1 + ε
RXC. (129)

The comparison shows the complete analogy between no-shear and shear the-
ory, where the shear effect can be fully considered only by proper modification
of the buckling parameter k.
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