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Exact buckling analysis of composite elastic

columns including multiple delamination and

transverse shear

U. Rodman, M. Saje, I. Planinc and D. Zupan∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

The exact analytical solution of buckling in beams with multiple delaminations
is presented. In order to investigate analytically the influence of axial and shear
strains on buckling loads the geometrically exact beam theory is employed with
no simplification of the governing equations. The critical forces are then obtained
by the linearized stability theory. The parametric studies are designed so that they
give us fundamental understanding of the effects of the delamination number, length
and position on the buckling load. The effect of shear is found to be of substantial
importance.

Key words: buckling, multiple delaminations, transverse shear, consistent
linearization, composite beam

1 Introduction

Composite materials are widely used in industry. The design of composite
structures requires good understanding of the behaviour of composite struc-
tures and the mechanism of their collapse. One of the failure modes that
often takes place in laminated composite structures is the delamination. It is
caused by an air entrapment, a local lack of resin or other defects originating
from a technological procedure, an impact or a high stress concentration. If
compressed the delaminated structure might buckle at a considerably reduced
force. That is why the mathematical modelling of various types of delamina-
tions has received a considerable attention during the last decade, see, e.g. the
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publications by Chen [2] [3], Kardomateas and Schumueser [9], Lim and Par-
sons [15], Moradi and Taheri [16], Numayr and Haddad [17], MSRao et al.
[20], MSRao and Shu [21], Sheinman and Soffer [25], Suemasu [27], Wang et
al. [30].

The first attempt in modelling a single-delaminated beam was made by Chai
et al. [1], who studied both the stability and the delamination growth by
employing the energy release rate criterion. The beam was divided into four
regions and the continuity conditions at the delamination ends were applied.
A similar model was proposed by Simitses et al. [28] and applied in assessing
the effects of the delamination length and position. Later on Yin et al. [31]
proposed a simple model for predicting the ultimate load capacity of a single-
delaminated beam.

Further work in the delamination theory was focused into multiple delam-
inations, which is characteristic of laminated composite structures. Most of
the early research in multi-delaminated beams and plates relied on numerical
methods. Lim and Parsons [15] employed an energy method and assumed dis-
placements to derive the solution. Kutlu and Chang [12] employed the finite
element method and also performed experimental studies to predict buck-
ling and post-buckling behaviour of composite plates with two delaminations.
Hwang and Liu [8] studied different types of multiple delaminations regarding
their effect on buckling behaviour using the finite-element code. Delamina-
tions were assumed centric, equally spaced, but with different lengths. Exact,
analytically derived solutions were proposed only recently. Shu [26] performed
an exact buckling analysis of a beam with the double delamination. Huang
and Kardomateas [7] derived a closed form solution for predicting the buckling
load of a composite beam with multiple central delaminations. In both cases,
the classical beam theory was used, where the transverse shear effect was ne-
glected. Numayr and Haddad [17] analytically resolved the beam with two de-
laminations by strictly considering the coupling between the extensional and
bending stiffnesses. Normalized axial and bending stiffnesses were proposed
by MSRao et al. [20] as a suitable nondimensionalization in case of composite
beams made of different materials. An interesting study of multi-delaminated
beams was presented by Lee et al. [13] where the buckling analysis is com-
bined with the analysis of the change of the natural frequency of the beam.
The longitudinal asymmetry of delamination was recently studied in several
papers. MSRao, Song and Shu [22] studied tri-layered Euler-Bernoulli beams
with overlapped delaminations. Rao, Wenge and Shu [23] presented the exact
solution for Euler-Bernoulli beam with enveloped delaminations. MSRao et al.
[20] investigated the beams with asymmetric double separated delaminations.

The effect of the transverse shear effect is only rarely considered in delami-
nation theories, although the inclusion of the transverse shear can reduce the
buckling load for a factor proportional to the elastic-to-shear modulus ratio.
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In contrast to standard isotropic materials, where the elastic-to-shear modulus
ratio is about two to three, the ratio is often considerably greater for compos-
ite materials. Motivated by this consideration, Kardomateas and Schumueser
[9] and Chen [2] very early incorporated the transverse shear effect into their
studies. They both employed the Griffith-type fracture criterion for studying
the onset of the delamination and its subsequent growth. Later on Chen [3]
used the first-order shear deformation theory to develop closed-form expres-
sions for buckling and post-buckling of asymmetrically delaminated beams
with the clamped boundary. Moradi and Taheri [16] solved the same problem
by the differential quadrature method.

In the present paper we derive the exact analytical solution for the buckling
load of a multiple asymmetrically delaminated beam. In contrast to the above
mentioned authors, our starting point is Reissner’s beam theory [24]. We em-
ploy the linearized stability theory [10]. The linearized equations are solved
in a closed analytical form without any need of simplification of the govern-
ing equations. The exact analytical buckling loads are than obtained for a
number of boundary conditions. The post-buckling analysis is not the issue of
the present paper. The exactness of the proposed approach represents a suit-
able ground for studying the influence of various parameters. The parametric
studies, performed in the present paper, are designed so that they give us fun-
damental understanding of the effects of the delamination number, length and
position on the buckling load. The effect of shear is found to be of substantial
importance.

2 Model

We consider a straight beam with multiple delaminations under compressive
axial forces (Fig. 1). The beam with a constant rectangular cross-section of
width b and height d1 is laminated with n parallel delaminations which divide
the middle part into n + 1 beam elements. The beam of length L is divided
into three parts. L1 is the length of the first undelaminated part, Ld (i =
2, ..., n + 2) represents the length of the delaminated region and is equal for
all delaminations; the length of the remaining region is labeled Ln+3. If the
delaminated region is located symmetrically, L1 = Ln+3. In the asymmetric
delaminations, we introduce the ratio, L1a/L1s, between the length of the
first asymmetric element (L1 = L1a) and the length of the first element in
the comparative symmetric case (L1s = L1). The thickness of lamina i (i =
2, ..., n + 2) is defined as di, its relative vertical position with respect to the
edge is denoted by ri (Fig. 1). For the sake of clearness, we further introduce
the relative length of the delaminations as ld = Ld/L.
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Fig. 1. Model of a multi-delaminated beam with n delaminations.

The slenderness ratio of the beam, λ, is defined as:

λ = L

√
A

Iy
,

where A denotes the area of the cross-section (A = bd1) and Iy is its centroidal

moment of inertia (Iy = b
d31
12
). The material of the beam is taken to be linear

elastic and described by elastic modulus E and shear modulus G. In order to
assess the effect of shear, the shear-to-elastic modulus ratio, G/E, has been
introduced. Note that G/E is strongly dependent on the type of material used:

• G/E = ∞; for shear-stiff materials (normally used in the classical theories
of delamination),

• G/E ∼= 1
2
; for isotropic materials,

• G/E ∼= 1
6
; for composite materials.

d
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Fig. 2. The cross-section of a delaminated beam with multiple delaminations.

Two Cartesian coordinate systems are introduced. The global coordinate sys-
tem (X,Y, Z) is chosen, such that the beam lies in the plane XZ, with the
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X-axis being the centroidal axis of the undeformed beam, and the reference
point (0, 0, 0) coinciding with point T1 (Fig. 1). The local coordinate system
(x, y, z) is assumed to coincide with the global coordinates initially, and then
follows the deformation of the beam. The plane cross-sections are assumed to
remain planar and to preserve their shape and area during the deformation.

Various boundary conditions will be taken into account: a simply supported
beam, a cantilever beam, a clamped-clamped beam, and a clamped-pinned
beam. Our goal is to find the smallest axial load such that the buckling occurs.

Note that the present model assumes that the delaminated layers deform freely
and have different transverse deformations. This assumption may not be prac-
tical due to the possible overlapping of the delaminated layers [29]. In the
present paper we will, however, limit the studies to the beams with such types
of delaminations that overlapping does not occur or is insignificant. The over-
lapping of the delaminated layers needs to be avoided in the post-buckling
analysis which is not the issue of the present paper. For lower and upper
bounds of the buckling load of composite beams with two non-overlapping
delaminations see the paper by Parlapalli and Shu [19].

3 Formulation

3.1 Governing equations

The present stability analysis is based on the exact analytical solution of
the linearized planar beam theory [11]. Our starting point is the non-linear
Reissner beam theory [24] whose governing equations consist of [4], [5]:

i) kinematic equations

1 + u′ = (1 + ε) cosφ+ γ sinφ (1)

w′ = −(1 + ε) sinφ+ γ cosφ (2)

φ′ = κ, (3)

ii) equilibrium equations

R′
X + pX = 0 (4)

R′
Z + pZ = 0 (5)

M ′ − (1 + ε)Q+ γN −mY = 0, (6)
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where

N = RX cosφ−RZ sinφ (7)

Q = RX sinφ+RZ cosφ, (8)

iii) and constitutive equations

N = E
∫
A
(ε+ zκ ) dA (9)

Q = GAsγ (10)

M = E
∫
A
z (ε+ zκ) dA. (11)

Here As is the effective shear area, u and w denote the displacements of the
axis of the beam, φ is the rotation of the cross section, ε is the extensional
strain, γ is the shear strain, κ is the bending strain (curvature), pX , pZ andmY

are external distributed forces and moments, RX , RZ and M are the stress-
resultant forces and moment. When expressed with respect to the local basis,
the stress-resultant forces are denoted by N and Q and related to RX and RZ

via Eqs. (7) and (8).

3.2 Linearized equations

As in the paper by Zupan and Saje [32] for three-dimensional beams, a consis-
tent variation of Eqs. (1)–(11) is employed at an arbitrary configuration of the
beam. The deduction of the variations needs the variations of the constitutive
equations, i.e.

δN = C11δε+ C12δκ (12)

δM = C21δε+ C22δκ, (13)

where

C11 =
∂N

∂ε
= E

∫
A

∂

∂ε
(ε+ zκ) dA = EA (14)

C12 =
∂N

∂κ
= E

∫
A

∂

∂κ
(ε+ zκ) dA = E

∫
A
z dA = ESy (15)

C21 =
∂M

∂ε
= E

∫
A

∂

∂ε

(
zε+ z2κ

)
dA = E

∫
A
z dA = ESy = C12 (16)

C22 =
∂M

∂κ
= E

∫
A

∂

∂κ

(
zε+ z2κ

)
dA = E

∫
A
z2 dA = EIy (17)

are the components of the tangent constitutive matrix of the cross-section.
Here Sy denotes the moment of area and Iy the moment of inertia. Note that
Sy is not zero, if the centroidal axis does not coincide with the neutral X-axis
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of the whole beam. It is suitable to introduce the notation

d =
C11C22 − C12C21

C11

. (18)

C11C22 − C12C21 is the determinant of the constitutive tangent matrix of the
cross-section. Both the determinant and the axial stiffness, C11, are taken to
be strictly positive quantities in our studies.

Assuming that the column to be considered straight and subjected only to
axial point force, and varying the non-linear equations of the beam (1)–(11)
about an equilibrium state gives

δu′ − δε = 0 (19)

δw′ + (1 + ε) δφ− δγ = 0 (20)

δφ′ − δκ = 0 (21)

δR′
X = 0 (22)

δR′
Z = 0 (23)

δM ′ +RXδw
′ − (1 + ε)δRZ = 0 (24)

C11δε+ C12δκ− δRX = 0 (25)

GAsδγ −RXδφ− δRZ = 0 (26)

C21δε+ C22δκ− δM = 0. (27)

Eqs. (19)–(24) represent a system of six ordinary differential equations for
nine unknown functions of x: δu, δw, δφ, δRX , δRZ , δM . Algebraic equations
(25)–(27) represent the linearized constitutive equations yielding the relations
between δRX , δRZ , δM and δε, δγ, δκ. Owing to the simple form of the total
set of equations (19)–(27), it will be easy to find the analytical solution.

3.3 The analytical solution of linearized equations

The set of nine equations (19)–(27) can be recast into a system of two higher-
order differential equations for axial and lateral deflections δw and δu. After
taking the first derivative of Eqs. (20) and (26) with respect to x, and consid-
ering Eq. (23), we have

δw′′ =
[
− (1 + ε) +

RX

GAs

]
δφ′ =

[
− (1 + ε) +

RX

GAs

]
δκ (28)

and

δw(iv) =
[
− (1 + ε) +

RX

GAs

]
δκ′′. (29)
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The second derivative of (27) with respect to x gives

δM ′′ = C21δε
′′ + C22δκ

′′. (30)

This is to be compared to the expression, derived from Eqs. (24) and (23):

δM ′′ = −RXδw
′′. (31)

Equating the right hand sides in (30) and (31) gives

C21δε
′′ + C22δκ

′′ +RXδw
′′ = 0. (32)

Finally, after inserting (25) and (29) into (32) and considering (18), we get

δw(iv) +
RX

d

[
− (1 + ε) +

RX

GAs

]
δw′′ = 0. (33)

We assume a compressive axial force; consequently, RX , as well as the brack-
eted term, are negative quantities. It is convenient to introduce the buckling
parameter k2 as

k2 = −RX

d

[
(1 + ε)− RX

GAs

]
. (34)

Hence the fourth order differential equation (33) can be written in a simple
form as:

δw(iv) + k2δw′′ = 0. (35)

Eq. (35) can be solved analytically, the solution being

δw (x) = A sin kx+B cos kx+ Cx+D. (36)

Taking the first derivative of (25) with respect to x and considering (19) and
(22) yields

C11δu
′′ + C12δκ

′ = 0.

From (28) we then obtain

C11

C12

[
− (1 + ε) +

RX

GAs

]
δu′′ + δw′′′ = 0.

After inserting δw from Eq. (36) and taking into account (34), we are left with
the second-order differential equation for δu:

δu′′ =
RXC12

dC11

k (A cos kx−B sin kx) , (37)

whose solution reads

δu (x) = α + βx− RXC12

k dC11

(A cos kx−B sin kx) . (38)
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An arbitrary deformed configuration of the linearized beam is uniquely de-
scribed by δu (x), δw (x).

It is obvious from Eqs. (36) and (38) that the analytical solution for the
displacements of a planar beam element under axial point forces has 6 param-
eters, A, B, C, D, α, and β. They are determined from the boundary and
continuity conditions of each element. Due to the general approach employed
above it is obvious that the form of solutions (36) and (38) holds for any of
n + 3 elements. Each element has, however, different parameters Ai, Bi, Ci,
Di, αi and βi, i = 1, . . . , n+ 3. After the parameters have been obtained, the
remaining functions δφ, δRX , δRZ , δM of each element can be obtained by
inserting the solutions (36) and (38) into Eqs. (19)–(27).

From (24) we have

δRZ =
RX

1 + ε
δw′ +

1

1 + ε
δM ′. (39)

δM ′ can be expressed by Eqs. (27) and (25) as

δM ′ = d δκ′. (40)

Using Eqs. (40) and (29) in (39) yields

δRZ =
RX

1 + ε

(
δw′ +

1

k2
δw′′′

)
. (41)

Inserting the solution (36) for δw into (41) results in

δRZ =
RX

1 + ε
C. (42)

From Eq. (19) we have

δγ = δw′ + (1 + ε) δφ; (43)

employing Eq. (26) and rearranging terms we finally get

δγ =
RX

GAs

δφ+
1

GAs

δRZ . (44)

Upon inserting Eqs. (44) and (41) into (43) we derive

δφ = − 1

1 + ε

[
δw′ +

R2
X

GAsk4d
δw′′′

]
. (45)

Finally, after we insert the solution (36) into (45) and rearrange the terms, we
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obtain

δφ =
RX

k d
(A cos kx−B sin kx) − 1

1 + ε
C. (46)

By inserting (19) and (28) into (27) we obtain

δM = C21δu
′ + C22

RX

k2d
δw′′ (47)

and, in an analogous way,

δRX = C11δu
′ + C12

RX

k2d
δw′′. (48)

By inserting solutions (36)–(38) into (47) and (48) and after a straightforward
derivation we finally have

δRX = C11β (49)

δM = C21β −RX (A sin kx+B cos kx) . (50)

4 Boundary and continuity conditions

The boundary conditions of n+3 elements constituting the multi-delaminated
beam are divided into:

i) boundary conditions at both ends of the beam, as enforced by the supports,
and

ii) the continuity conditions of displacements and stresses at the contacts of
ideal and delaminated parts of the beam.

Before we discuss the conditions to be imposed on the linearized formulation,
the continuity of displacements and the equilibrium of forces in non-linear
primary configuration need to be considered. The requirements of continuity
of the displacements at the ends of the delaminated portion of the beam read

u1 (L1) = ui (0) , for i = 2, . . . , n+ 2 (51)

ui (Ld) = un+3 (0) , for i = 2, . . . , n+ 2. (52)
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For an initially straight beam subjected to an axial load, Eq. (1) gives

u′ = ε

u (x) = u (0) + εx. (53)

Upon inserting (53) into (52) we have the condition

u1 (L1) + εiLd = un+3(0),

which requires the equality of axial strains of the layers:

εi = εj, i, j ∈ 2, . . . , n+ 2. (54)

Hence the constant strain of the layers is denoted by εd. Equilibrium conditions
of axial forces at the contact of the delaminated and the ideal parts (points
T2 and T3) read

n+2∑
i=2

RX,i(0) = RX,1(L1) (55)

n+2∑
i=2

RX,i(Ld) = RX,n+3(0). (56)

For a straight axially loaded beam, the axial forces are expressed with axial
strains as:

RX,i = EAiεi, for i = 1, . . . , n+ 3. (57)

By inserting (57) into (55)–(56) and considering (54) we get

n+2∑
i=2

EAiεd = EA1ε1

n+2∑
i=2

EAiεd = EAn+3εn+3.

We have assumed the constant cross-section of the column; thus,
∑n+2

i=2 Ai =
A1 = An+3 = A, and

ε = εi = const., for i = 1, . . . , n+ 3. (58)

From (57) it follows

RX,i = EAiε, for i = 1, . . . , n+ 3. (59)

The equilibrium at the right end gives

RX,n+3 = −F (60)

and

ε = − F

EA
. (61)
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The axial forces in the layers then follow as

RX,i = −Ai

A
F, for i = 2, . . . , n+ 2, (62)

RX,1 = −F. (63)

As reported by Li [14] the exact solution for buckling, if the effect of shear
is considered, can not be easily obtained for a non-uniform bar, such as a
multi-step bar. In contrast, the present approach allows us to directly extend
the formulation to step columns.

At the ends of the delamination region (T2 and T3), the linearized solution
should satisfy the continuity conditions for displacements and rotations and
the equilibrium of the internal forces, i.e.:

δu1 (L1) = δui (0) , for i = 2, . . . , n+ 2 (64)

δw1 (L1) = δwi (0) , for i = 2, . . . , n+ 2 (65)

δφ1 (L1) = δφi (0) , for i = 2, . . . , n+ 2 (66)

δRX,1 (L1) =
n+2∑
i=2

δRX,i (0) (67)

δRZ,1 (L1) =
n+2∑
i=2

δRZ,i (0) (68)

δM1 (L1) =
n+2∑
i=2

δMi (0) (69)

n+2∑
i=2

δRX,i (Ld) = δRX,n+3 (0) (70)

n+2∑
i=2

δRZ,i (Ld) = δRZ,n+3 (0) (71)

n+2∑
i=2

δMi (Ld) = δMn+3 (0) (72)

and

δui (Ld) = δun+3 (0) , for i = 2, . . . , n+ 2 (73)

δwi (Ld) = δwn+3 (0) , for i = 2, . . . , n+ 2 (74)

δφi (Ld) = δφn+3 (0) , for i = 2, . . . , n+ 2. (75)

In what follows, we analyze only the beams whose one end (point T1) is fixed in
the axial direction, while the other end (point T4) is subjected to a compressive
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force; hence its variation is zero:

δu1(0) = 0 (76)

δRX,n+3 (Ln+3) = 0. (77)

Four different combinations of the boundary conditions will be analyzed (Fig.
3):

(a) Clamped at one end, free at the other (the cantilever beam)

δw1(0) = 0, δφ1(0) = 0, δRZ,n+3 (Ln+3) = 0, δMn+3 (Ln+3) = 0.
(78)

(b) Pinned at both ends (the simply supported beam)

δw1(0) = 0, δwn+3(Ln+3) = 0, δM1 (0) = 0, δMn+3 (Ln+3) = 0. (79)

(c) Clamped column at one end, pinned at the other

δw1(0) = 0, δφ1(0) = 0, δwn+3 (Ln+3) = 0, δMn+3 (Ln+3) = 0. (80)

(d) Clamped at both ends

δw1(0) = 0, δφ1(0) = 0, δwn+3 (Ln+3) = 0, δφn+3 (Ln+3) = 0. (81)

F F

(b) (d)

F

(a)

F

(c)

Fig. 3. Beam models for (a) cantilever, (b) simply supported, (c) clamped-pinned
and (d) clamped-clamped beam.

The complete set of equations for n+3 elements consists of 6(n+2) continuity
conditions (64)–(75) and 6 boundary conditions, i.e. totally 6(n+3) equations
for 6(n + 3) unknowns: Ai, Bi, Ci, Di, αi, βi, i = 1, . . . , n + 3. We are inter-
ested only in non-trivial solutions, where all the parameters are not equal to
zero. The equations are linear algebraic and homogenous, so that they can be
written in the form

Kα = 0, α ̸= 0

where K denotes the 6(n+3)×6(n+3) matrix of coefficients and α the vector
of 6(n+3) unknowns. We look for the lowest value of the axial load F denoted
by Fcr, which renders the non-trivial solution for α. This is achieved only if
detK = 0. The analytical expressions for detK are too complicated to be
here presented in a closed form. The results and several extensive parametric
studies are presented in the next section.
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5 Numerical results

In this section we compare the results of the present analytical formulation to
the results available in literature. Yet we limit our verification study on the
beams with single or double delaminations only.

Note that the present theory agrees with the classical approach only if some
simplifications are made. To be able to compare adequately the present an-
alytical results with the classical ones, shear-stiff and axially incompressible
beam material must be used (G = ∞, ε = 0). The buckling parameter is then
defined as k2 = −RX

d
. This case is in the tables which follow referred to as

‘sim.’ case.

It is convenient to define the normalized buckling load Fcr/Feu, where Feu is
Euler’s [6] buckling load for the undelaminated beam (Feu=

EIπ2

L2
b
). Here Lb is

Euler’s buckling length, which is strongly dependent on the actual boundary
conditions.

In Table 1 we show the results for the normalized buckling load for the simply-
supported beam with slenderness ratio λ = 45. Elastic modulus E = 3 · 107
N/m2 was assumed. In this case the beam was delaminated with a single
longitudinally symmetric delamination. The results are presented for the rel-
ative vertical position rd = 0.4 and various lengths of the delamination (ld =
0.2, 0.4, 0.6, 0.8), and compared to those, obtained by the Abaqus finite ele-
ment code [15], Simitses et al. [28] and the energy method proposed by Lim
and Parsons [15].

Table 1
Normalized buckling loads for simply supported beam with a single delamination
at relative vertical position rd = 0.4 and various lengths, ld.

ld En. method [15] Abaqus [15] Simitses et al. [28] present (sim.) present (G = ∞) present (G = E/6)

0.2 0.9997 0.9997 0.9997 0.9997 1.0081 0.9534
0.4 0.9902 0.9902 0.9902 0.9902 0.9984 0.9447
0.6 0.9198 0.9197 0.9198 0.9198 0.9269 0.8803
0.8 0.7264 0.7264 0.7264 0.7264 0.7308 0.7013

If the influence of shear is ignored and the axial deformation is not included
in the buckling parameter (G = ∞, k2 = −RX

d
), the present results fully

agree with others (Table 1). If we also include the effect of axial deformations
(k2 = −(1 + ε)RX

d
), the present results indicate that Euler’s buckling force [6]

is conservative (Fcr/Feu > 1). The last column of Table 1 displays the buckling
loads for an elastic material with a shear modulus, characteristic for a fibre-
glass material. The results indicate a decrease of the buckling load if compared
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to the shear-stiff case. Thus, the consideration of the transverse shear might
be important in such materials.

The next comparison is made for the beam, clamped at both sides, with a
single longitudinally symmetric delamination. For the calculation of the nor-
malized buckling loads, we used the same material and geometric character-
istics as in the previous case. In Table 2 we compare the present results with
the results of Chen [2] (‘CLT’ - classical lamination theory and ‘SDT’ - shear
deformation theory), MSRao and Shu [21], and Huang and Kardomateas [7].
Again, a very good agreement between the present theory and the classical,
‘shear-stiff’ results [2] (CLT), [7], [21] can be observed. When the shear ef-
fect is considered, the so called SDT by Chen [2] and the present results also
agree well. The differences probably stem from the different approaches in
considering the shear correction factor.

Table 2
Normalized buckling loads of clamped-clamped beam with a single delamination at
two different relative vertical positions rd = 0.2, 0.3 and various lengths ld.

ld r2 SDT [2] CLT [2] MSRao [21] Hu. and Kar. [7] present (sim.) present (G = E/6)

0.2 0.2 0.7816 0.9264 0.9370 0.9264 0.9261 0.7969
0.3 0.8280 0.9924 0.9995 0.9924 0.9920 0.8463

0.4 0.2 0.2354 0.2471 0.2476 0.2470 0.2470 0.2357
0.3 0.4803 0.5314 0.5316 0.5314 0.5313 0.4837

0.6 0.2 0.1080 0.1103 0.1105 0.1103 0.1103 0.1080
0.3 0.2322 0.2435 0.2438 0.2435 0.2435 0.2325

0.8 0.2 0.0615 0.0623 0.0623 0.0623 0.0623 0.0615
0.3 0.1353 0.1390 0.1398 0.1390 0.1390 0.1353

In our last example we consider the case with two delaminations, as presented
by Lim and Parsons [15]. The clamped-clamped beam has two delaminations
at relative positions r2 = 0.3, r3 = 0.6. The normalized lengths of the delami-
nation are taken to be 0.2, 0.4, 0.6, 0.8 and are positioned symmetrically along
the length of the beam. Two different shear moduli were considered (G = ∞,
G = E/6) and both simplified and exact buckling parameters were used in
order to compare the present results with the classical theories. Other material
and geometric characteristics are taken the same as in the case with a single
delamination.

Results in Table 3 confirm good agreement of the presented method for the
given range of the delamination lengths. Only a slight discrepancy is observed
for short delaminations (ld = 0.2) which is due to the slenderness effect. The
results of the present formulation for G = E/6 are also presented. As pre-
viously, the normalized buckling load of a shear-stiff material (G = ∞) is
overestimated.

The above results show that the normalized buckling force of the delaminated
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Table 3
Normalized buckling loads of clamped-clamped beam with two delaminations of
various lengths at relative vertical positions r2 = 0.3 and r3 = 0.6.

ld En. method [15] Abaqus [15] Shu [26] Hu. and Kar. [7] present (sim.) present (G = ∞) present (G = E/6)

0.2 0.8939 0.8940 0.9835 - 0.8914 0.9101 0.8009
0.4 0.5054 0.5056 0.5057 0.5057 0.5036 0.5105 0.4669
0.6 0.2374 0.2375 0.2374 0.2374 0.2374 0.2385 0.2310
0.8 0.1374 0.1375 0.1374 0.1374 0.1374 0.1378 0.1352

column depends on a number of parameters:

(i) the relative delamination length ld;
(ii) the relative vertical position ri (i = 2, . . . , n+ 2) of the delamination;
(ii) elastic-to-shear modulus ratio E/G;
(iv) the slenderness ratio λ;
(v) the number of delaminations n;
(vi) the relative longitudinal position of the delamination;
(vii) boundary conditions.

In what follows we systematically assess the influence of the above pa-
rameters on the buckling load.

6 Parametric studies

6.1 Effect of the delamination length and its vertical position

We study the effect of the delamination length and the relative vertical de-
lamination position on the normalized buckling load. The simply supported
and clamped-clamped beams with slenderness ratio λ = 45 and elastic modu-
lus E = 3 · 107 N/m2 have been analyzed. A single longitudinally symmetric
delaminations of various length ld are positioned at several vertical positions
r2 = 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. Note that the relative vertical position also
uniquely defines the ratio between the lamina thickness and the beam height:
r2=

d2
h
.

Results for the shear-stiff and a realistic composite material are presented
in Fig. 4. By the increase of the length of delamination ld, the normalized
buckling load Fcr/Feu is reduced. If the relative vertical position of the de-
lamination is close to the centroid of the cross-section (0.3 < r2 < 0.5), the
decrease of the buckling force is not significant for short delaminations. In con-
trast, a significant reduction is observed for longer delaminations (ld > 0.5).
For the delaminations with a small vertical relative position, r2 < 0.3 (thin
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Fig. 5. Buckling shapes for simply supported beam with single delaminaton for
various delamination lengths, ld.

delaminations), the reduction of the relative buckling load is substantial even
for short delaminations. In order to show the influence of the shear modulus
on the buckling load, the results are presented for both shear-stiff material and
realistic composite material in the same figure. The shapes of the buckling load
vs. the delamination length curves for G = ∞ (marked curve) and G/E = 1/6
(dashed curve) are similar, yet a considerable differences in quantitative terms
are noticeable. In particular, the normalized ultimate buckling force is signif-
ically reduced, when the transverse shear effect is considered. The difference
between the buckling loads is even more pronounced for short delaminations
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and higher relative positions of the delamination (thicker laminae). By reduc-
ing the shear-to-elastic modulus ratio, this effect is even enhanced. The similar
reduction of the relative buckling force due to the transverse shear effect is
also noticed for multiple delaminations (n > 1).

Both the delamination length and the vertical position affect the buckling
shapes of the beam, see Fig. 5. For long and thin delaminations (a), the local
buckling of laminae is dominant, unlike for short and thick delaminations (c),
where the effect of delamination onto the buckling load is negligible. In some
cases both the delamination and the global buckling participate comparably
to the buckling of the beam, behaving in the so-called ‘mixed buckling’.

6.2 Effect of shear modulus

As we have already noticed, the normalized buckling load strongly depends on
the value of shear modulus G. To evaluate the influence of transverse shear in
a more detail, we investigated various delaminated beams with a number of
shear moduli. In Figs. 6 and 7 we present normalized buckling loads vs. shear-
to-elastic modulus ratio for several lengths (ld) and numbers of delaminations
(n). In this case, the longitudinally symmetrical delaminations are equally
distributed over the height of the element, so that the thickness di is equal for
all laminae. The number of delaminations therefore fully defines the relative
vertical position, ri, of each delamination. The beam with slenderness ratio
λ = 18 is analyzed for four types of boundary conditions.

From the results in Figs. 6 and 7 we can observe that the transverse shear effect
might be of some importance. The influence of shear decreases for beams with
longer delaminations and for beams with larger number of delaminations. For
a larger number of long delaminations (n = 5, ld > 0.2), the shear effect can
be neglected. For a single delamination (n = 1), the difference between the
normalized buckling force between G = 0.1E (fiber-reinforced composite) and
G = 0.6E (standard nearly isotropic material such as concrete and steel) is up
to 20% for the simply supported beam and up to 33% for the clamped beam.
The influence of shear decreases with increasing length of the delamination,
but it still remains worth of considering, even for longer delaminations. For
ld = 0.8 the difference between the buckling force for G = 0.1E and G = 0.6E
is about 10% for the simply supported beam and up to 8% for the clamped-
clamped beam. Generally the most significant influence of shear is observed if
beams are clamped on both ends having a single delamination (up to 33%).
From the results given above we can conclude, that the shear might sometimes
substantially affect the critical forces of the delaminated beam.

18



6.3 Effect of the slenderness ratio

The goal is to determine the range of the slendernesses, where the influence of
shear modulus is considerable. We present the results for a beam with one and
three delaminations. Fig. 8 shows the results for the normalized buckling loads
for three different shear-to-elastic modulus ratios (G/E = 0.1, 0.33, 0.57). Two
different length of delaminations (ld = 0.2, 0.5) were considered in order to
observe the effect of slenderness for short and middle-length delaminations.

The results confirm the importance of the transverse shear effect. Namely, the
normalized buckling force may decrease by about 20% for simply supported
stocky beams (λ = 20). Comparison is made between the lowest, G/E =
0.1, and the largest, G/E = 0.57 shear-to-elastic modulus ratio. This effect
becomes even larger for the clamped-pinned and the clamped-clamped beams.

0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

G E/

l

l

l

l

=0.8
=0.6
=0.4
=0.2

0.2 0.4 0.6
G E/

0.2 0.4 0.6
G E/

0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

G E/
0.2 0.4 0.6

G E/
0.2 0.4 0.6

G E/

d

d

d

d

F F/cr    eu n = 1 n = 3

Fcr

n = 5

Fcr

Fcr

l

l

l

l

=0.8
=0.6
=0.4
=0.2

d

d

d

d

Fcr Fcr

Fcr

F F/cr    eu
n = 1 n = 3 n = 5
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If the beams get more and more slender, the effect of shear decreases; for
the clamped-clamped beam, however, it is not negligible even for λ = 50. In
principle the same effect, yet only in a smaller scale, can be observed for longer
delaminations.

For beams with three delaminations, the shear effect is more influential for
stocky beams, but effect of the length of the delamination can this time be
enormous. In case of a single delamination (n = 1), no such extreme differences
could be observed. This gives us the motivation to investigate further the
influence of the number of delaminations on the buckling load.
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6.4 Effect of the number of delaminations

The comparison between Tables 2 and 3 indicates that the number of delam-
inations significally affects the normalized buckling load. In order to quan-
tify this influence more systematically, the models with various delamination
lengths (ld = 0.2, 0.4, 0.6, 0.8) were investigated in terms of the different num-
ber of delaminations, n = 1, ..., 5. The following geometric and material prop-
erties of the beam were employed: E = 3 · 107 N/m2, G = E/6, λ = 32. The
laminae have equal thicknesses and are placed symmetrically in the longitudi-
nal direction, therefore the vertical relative position of the i-th delamination
is expressed as ri =

i
n+1

. Results showing the dependency of the normalized
buckling load on the number of delaminations are presented for various sup-
port conditions in Figs. 9, 10 and 11.

Fig. 9 shows that the increase of the number of short delaminations in simply
supported and cantilever beams only slowly decreases the normalized buckling
force. This changes for longer delaminations (ld ≥ 0.4), where the effect of the
number of delaminations becomes much more significant. For example, the
buckling load for the simply supported beam with one delamination of length
ld = 0.6 is 60% higher compared to the beam with two delaminations. It is
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also clear that the normalized buckling load rapidly decreases by the increase
of the number of delaminations, if the delaminations are sufficiently long.

To analyze the effect of the delamination length and the number of delami-
nations in a greater detail, the buckling force vs. the delamination length is
depicted in Fig. 10, for each number of delaminations separately. It is now
clear that the increase of the length of delaminations grossly decreases the
buckling force for multiple delaminations. This effect is most pronounced for
the clamped-clamped beam and the least for the cantilever beam. In fact,
for the cantilever having short delaminations (ld = 0.2), there is no sig-
nificant influence of the number of delaminations. By increasing both the
length and the number of delaminations, the buckling load drops rapidly for
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the clamped-pinned and clamped-clamped beams. For example, the buckling
forces of beams with two and three delaminations, differ for about 30%. It is
interesting to observe that the shapes of the Fcr vs. ld curves for the clamped-
clamped beams differ from the shapes of the remaining curves, see Fig. 10 and
the curves marked ‘S-shape buckling’ therein.

It is instructive to present the buckling load by a 3D graph representing the
surface as a function of the number of the delaminations and the delamination
length (Fig. 11). For the simply supported beam a flat region is formed in area
of short delamination lengths ld. There an increase of the delamination length
has only a small influence on the buckling force. If the number of delaminations
is increased, this area narrows, which eventually results in a rapid drop of the
load. Such a flat plateau for short delaminations can also be observed with
other support conditions, although the plateau is not so significant as in the
simply supported beam.
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The graphs in Fig. 11 indicate that the cantilever is the most conservative
with respect to the delamination length, in contrast to the clamped-clamped
beam, which is strongly dependent on the delamination length. As already
discussed in relation to Fig. 10, the so called ‘S-shape’ buckling takes place.
Consequently, at some particular point, the increase of the delamination length
does not decrease the buckling force significally. For further reading on the S-
shaped-mode buckling see the paper by Parlapalli and Shu [18].

Thus the number of delaminations is insignificant if only short delaminations
are expected to occur. In contrast, the effect of the number of layers is con-
siderable for the beams with long delaminations.
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6.5 Effect of the longitudinal eccentricity

In order to demonstrate the effect of the longitudinal position of delaminations
we have also investigated several models of beams with eccentrically positioned
delaminations. The eccentricity is defined as the ratio between the length of the
first element of the asymmetric and the related symmetric beam, L1a/L1s. We
compared the results for simply supported, clamped-clamped and cantilever
beams.

We first study the simply supported beam with two delaminations, which di-
vide the beam into three laminae of equal thicknesses. Three different lengths
of the delamination are examined. Material parameters employed in this study
are typical for composite materials: E = 3 · 107 N/m2, G = E/6. The slender-
ness ratio of the beam is λ = 32.

Fig. 12 displays the buckling shapes for both the longitudinally symmetrical
and asymmetrical delaminations. The worsening effect of asymmetry is evi-
dent. The beams with longer delaminations buckle earlier. As observed from
Fig. 12, not only the value of the buckling load but also the buckling shape
is affected by the asymmetry. The highest discrepancies both in quantitative
and qualitative respect appear at the middle-length delaminations, where the
critical forces differ for about 20% and the ‘S-shape’ buckling mode typical
for the symmetrical case almost disappears when asymmetry is taken into
account.
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Next we present the results for stocky beams (the slenderness ratio being
λ = 17) and several support types. Fig. 13 shows the normalized buckling
load vs. the delamination length for different longitudinal positions of delam-
inations for the cantilever, the simply supported and the clamped-clamped
beam with one or three delaminations. For the cantilever the asymmetry of
the boundary conditions results in asymmetric results with respect to the de-
lamination position. The remaining support types give the results which are
symmetric with respect to the midspan of the beam.
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Fig. 13. Effect of longitudinal asymmetry on the normalized buckling load for the
clamped-clamped beam, the simply supported beam and the cantilever with one or
three delaminatons.

The longitudinal position of the delamination might cause a considerable re-
duction of the normalized buckling load. The largest effect is observed in
short to middle-length delaminations (0.2 < ld < 0.6) for both single and
multi-delaminated beams. Eccentricity of the delamination generally reduces
the buckling load. The effect is the largest in simply supported beams, where
the difference between the buckling force for symmetric and asymmetric de-
laminations grows to 15% for the beam with the delamination length ld = 0.55.
Similar results are observed for the clamped-clamped beam with a single de-
lamination, although the effect of its position is in this case bigger for shorter
delaminations, 0.35 < ld < 0.5.

With the increase of the number of delaminations (n = 3) the effect of the lon-
gitudinal position of the delamination is higher for the cantilever. The buck-
ling strength increases as the delamination moves toward the support and
decreases when the delamination moves toward the free-end. For the simply
supported beam with three delaminations, the largest influence of the delam-
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ination position is observed for ld ≈ 0.25, where the difference between the
normalized forces for the symmetric and asymmetric cases is about 20%. The
multi-delaminated clamped-clamped beam shows a much smaller sensitivity
to the delamination position.

7 Conclusions

We presented the exact analytical solution for the buckling load of the com-
posite beam with multiple delaminations. The solution is based on Reissner’s
beam theory with a proper consideration of the extensional and bending stiff-
ness coupling and the transverse shear effect. The presented model of the
composite beam allows arbitrary longitudinal and vertical positions of delam-
inations. The exactness of the proposed method represents a solid base for
studying the behaviour of various types of composite beams. Different posi-
tions, length of delaminations, slendernesses, shear moduli and the number of
delaminations have substantial influence on the buckling behaviour. The effect
of these parameters on the buckling loads was presented through systematic
parametric studies. The essential results of these studies are:

(i) The dependence of the buckling load on the parameters is strongly non-
linear. Both behaviour and the value of the buckling load strongly depend
on the way the beam is supported.

(ii) Increasing the delamination length not only reduces the relative buckling
load but also affects the buckling shapes. The effect of the delamination
length should be particularly considered with respect to the vertical position
where the local buckling of laminae is dominant.

(iii) The shear effect can be substantial and may even not be neglected for
isotropic-type of material, if the beams are stocky. For composite materials
the shear effect is substantial for low to moderate slenderness ratios. The
classical approach yield a very non-conservative results in such cases. Thus,
it is recommended that for materials with high elastic-to-shear modulus
ratio the shear effect is fully considered.

(iv) The increase of the number of middle-length to long delaminations results in
a rapid reduction of the buckling loads. Typically, the ‘S-shape’ dependency
on the delamination length for multi-delaminated clamped-clamped beam
is observed. This is even more evident for a larger number of delaminations.

(v) The longitudinal asymmetry affects both the buckling load and the buckling
shapes. The asymmetry could not be neglected, because the buckling load
for the centric case could be overestimated by 20%.
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