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Abstract

In this work we study the accuracy of modern higher-order shell �nite
element formulations in computation of 3d stress state in elastic shells.
In that sense we compare three higher-order shell models: (i) with seven
displacement-like kinematic parameters, and (ii, iii) with six displacement-
like kinematic parameters plus one strain-like kinematic parameter intro-
duced by two di¤erent versions of enhanced assumed strain (EAS) con-
cept. The �nite element approximations of all shell models are based on
4-node quadrilateral elements. Geometrically nonlinear and consistently
linearized forms of considered formulations are given. Several numerical
examples are presented, where computed stresses are compared with an-
alytical solutions. It was found that through-the-thickness variation of
some (non-dominant) stress tensor components, including through-the-
thickness normal stress, may be computed very inaccurately. The reliable
representation for those stresses can be interpreted only if the "layer-wise"
averaging or the through-the-thickness averaging is performed.

Keywords: higher-order shell model, 3d constitutive equations, stress com-
putation
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1 Introduction

During the recent years several higher-order shell models, accounting for through-
the-thickness stretch, have been presented along with their �nite element ap-
proximations. The main motivation behind is development of e¤ective shell
formulation that can use fully three-dimensional (3d) constitutive model (with
no modi�cations with respect to 3d continuum mechanics). The most e¤ec-
tive approach to achieve that goal is a re�nement of the standard shell model
of Reissner-Mindlin type, which is commonly used for plate and shell analysis
[Tonkovíc, Soríc and Skozrit (2008); Wen and Hon (2007)]. Such re�nement has
been e¤ectively performed on the level of kinematics.
The kinematic re�nement has been achieved either by re�ning the kinematic

assumption of the standard shell model of Reissner-Mindlin type, or by modi-
fying the 8-node solid element in order to include the shell-like features in one
direction. The �rst approach is sometimes called 3-d shell and the second one
solid-shell [Kulikov and Plotnikova (2008)]. Examples of the �rst approach,
which will be considered in what follows, are given e.g. in Büchter, Ramm
and Roehl (1994); Sansour (1995); Bischo¤ and Ramm (1997); Eberlein and
Wriggers (1999); Betsch, Gruttmann and Stein (1996); Başar, Itskov and Eck-
stein (2000); Brank, Korelc and Ibrahimbegovic (2002); Krätzig and Jun (2003);
Brank (2005).
All the above works have been concerned that newly developed higher-order

shell formulations behave correctly for thin shells. The correctness has been
estimated numerically, through engineering judgement and by mathematical
proof, although the latter has been given only for (1,1,2)-plate model, see Rossle,
Bischo¤, Wendland and Ramm (1999). Numerical estimations have been related
to comparison of computed displacements with analytical and other available
solutions. Special attention has been given to evaluation of results of higher-
order shell formulations for thin shells. However, no comparison of stresses or
stress resultants has been made to reference values.
In this work we study the following question: How good are the 3-d shell

formulations in representing the 3d stress state in an elastic shell-like body?
In that sense the following higher-order shell models are considered: (i) a 7-
parameter shell model with 3 displacements of the mid-surface, 2 rotations of
shell director (see e.g. Atluri and Cazzani (1995), Brank and Ibrahimbegovic
(2001) Lin (2006) for discussions on �nite rotations), and 2 thickness-stretching
parameters; (ii) a 7-parameter shell model with the �rst 6 parameters equal to
those of (i), while the 7th parameter is a through-the-thickness strain, introduced
with the enhanced assumed strain concept (EAS) and an assumption of additive
decomposition of strains [Simo and Rifai (1990)]; (iii) a 7-parameter shell model
where the introduction of the 7th parameter is based on additive decomposition
of displacement gradient [Simo and Armero (1992)], leading to the multiplicative
decomposition of strains.
Geometrically nonlinear formulations are �rst derived. Their consistent lin-

earized forms are then obtained in order to study geometrically linear problems.
The question on stress accuracy has been answered by computation of several
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illustrative examples and by comparison of obtained results with analytical so-
lutions from linear elasticity.

2 Higher-order shell (3-d shell) formulations

In this section we will brie�y present three versions of 3-d shell model. Those
versions di¤er from each other by the approach used to re�ne standard Reissner-
Mindlin shell kinematics in order to get a formulation which can use fully 3-d
constitutive equations in the appropriate way.

2.1 Version 1 of 3-d shell formulation

Let us de�ne position of a shell point in the initial con�guration with respect
to �xed Cartesian frame as

X
�
�1; �2; �

�
= '0

�
�1; �2

�
+ �g

�
�1; �2

�
(1)

kgk = 1;
�
�1; �2

�
� A � R2; � = h0=2�; � 2 [�1; 1]

where �1; �2 are curvilinear coordinates parametrizing the mid-surface, � and �
are through-the-thickness coordinates, '0 is position of the corresponding point
on the mid-surface, h0 is constant initial thickness, A is domain of the mid-
surface parametrization, and g is normal to the mid-surface (shell director).
We assume that position of the same point in deformed con�guration is given
as

x
�
�1; �2; �

�
= '

�
�1; �2

�
+ � �

�
�1; �2

�
a
�
#
�
�1; �2

��| {z }
d(�1;�2)

(2)

+(�)
2
q
�
�1; �2

�
a
�
#
�
�1; �2

��| {z }
f(�1;�2)

where ' = '0 + u is current position of the mid-surface, u is mid-surface dis-
placement, a, kak = 1, is rotated g de�ned by two �nite rotation parameters

# =
�
#1; #2

�T
, � = h=h0 and q are two thickness stretching parameters, and h

is current thickness. In what follows we replace � with e� = �� 1.
The Green-Lagrange strains with respect to the dual basis gi (de�ned such

that gi � gj = �ij , where gj = @X=@�j , and �ij is Kronecker�s delta symbol) are

Eij
�
�
�
�1; �2

�
; �
�
= Eij

0B@u;#; e�; q| {z }
�(�1;�2)

; �

1CA =
1

2
(x;i � x;j �X;i �X;j) (3)

where the notation (�);i � @ (�) =@�i and � � �3 has been introduced. It can
be shown that some strains Eij are quadratic, some cubic and some quartic

3



functions of �. In order to have the same order of through-the-thickness variation
for all strain tensor components, we make the following truncation

Eij ! Eij j�=0 +�
dEij
d�

j�=0 +
�2

2

d2Eij

d�2
j�=0 (4)

One can further introduce at each point X
�
�1; �2; �

�
of the shell a local

Cartesian frame with the following basis

be3 = g;be1 ? be3;be2 = be3 � be1 (5)

and de�ne strains at that point with respect to the basis (5) as

bEij = TikEklTjl (6)

where

[Tij ] =

24 X;1 � be1 X;1 � be2 0
X;2 � be1 X;2 � be2 0
0 0 1

35�1 (7)

The potential energy of the hyperelastic shell can be for the St. Venant-
Kirchho¤ material model written as

�(�) =

Z
V

�
�

2

�
Tr
h bEiji�2 + �Tr h bEij bEiji�| {z }

W( bEij(�;�))
dV �

Z
A

�ext (�) dA| {z }
�ext(�)

(8)

where � and � are Lame�s parameters. V and A are shell volume and mid-
surface area at the initial con�guration. The external part of the potential
energy is (by assuming only conservative pressure loading ptop and pbot at top
and bottom surfaces of the shell)

�ext = �ptop�topg � utop + pbot�botg � ubot (9)

where

�top;bot =

vuut�
Xtop;bot
;1 �Xtop;bot

;2

�
�
�
Xtop;bot
;1 �Xtop;bot

;2

�
�
'0;1 �'0;2

�
�
�
'0;1 �'0;2

� (10)

and utop, ubot are nonlinear functions of kinematic parameters composed in �

utop;bot = utop;bot (�) = u� h0
2

�
d
�e�;a (#)�� g�+ h20

4
f (q;a (#)) (11)

It is assumed above that g is oriented from the bottom towards the top surface.
The weak form of equilibrium equations can be obtained by introducing

the variations for displacement u ! u + ��u, shell director rotation a (#) !
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a (#+ ��#), and thickness stretching parameters e�! e�+ ��e�, q ! q+ ��q into
the potential energy expression (8). We thus attain

d�

d�
j�=0= G

0B@ ��|{z}
f�u;�#;�e�;�qg

;�

1CA = 0 (12)

The problem is further solved by means of the �nite element approximation.

2.2 Version 2 of 3-d shell formulation

Let us now assume position of a shell point in deformed con�guration relative
to �xed Cartesian frame as

x
�
�1; �2; �

�
= '

�
�1; �2

�
+ �d

�
�1; �2

�
(13)

The Green-Lagrange strains with respect to the basis gi, which are compatible
with assumption (13), are

Euij
�
�EAS

�
�1; �2

�
; �
�
= Euij

0B@ u;#; e�| {z }
�EAS(�1;�2)

; �

1CA =
1

2
(x;i � x;j �X;i �X;j) (14)

It can be shown that some components of Euij are linear and some quadratic
functions of �, and that Eu33 is only constant with respect to �. To have all
components of the same order, we make the following truncation

Euij ! Euij j�=0 +�
dEuij
d�

j�=0 (15)

and add the missing linear term of Eu33 within the framework of the enhanced
assumed strain (EAS) concept of Simo and Rifai (1992). The crucial part of
the EAS concept is assumption that the Green-Lagrange strains are the sum
of displacement-compatible strains Euij and some enhancing strains eEij . That
leads to enhanced strains

Eij = E
u
ij + eEij (16)

Here we choose such enhancing strains eEij that all components of the enhanced
(total) strains Eij are linear with respect to �, i.e.

eEij ��ij ��1; �2� ; �� = � ��33
�
�1; �2

�
if i = 3 and j = 3

0 otherwise
(17)

where �ij are enhancing strain parameters. We collect non-zero parameters in
�, i.e. � = f�33g. By using (6), the strains Eij can be transformed to strainsbEij = bEuij + beEij that are de�ned with respect to the local Cartesian frame with
the basis (5).
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Assumption of additive decomposition of total strains (16) is introduced

in the Hu-Washizu functional �H�W
�
�EAS ; eEij ; Sij�, where Sij are the 2nd

Piola-Kirchho¤ stresses de�ned with respect to the basis gi. The following
functional is obtained

�EAS1 (�EAS ;�) =

Z
V

W

� bEuij ��EAS ��1; �2� ; ��+ beEij �� ��1; �2� ; ��� dV(18)
��ext

�
�EAS

�
�1; �2

��
if the orthogonality between stresses and enhancing strains is assumed to be
valid Z

V

bSij beEijdV =

Z
V

Sij eEijdV = 0 (17)) (19)Z
V

S33 eE33 dV =

Z
V

S33��33 dV = 0

Note that �ext (�EAS) is equal to �ext (�) de�ned in (8) to (11), except that
the last term in (11) drops out. Since dV = (1 � 2�H + (�)

2
K)d�dA, where

H = H
�
�1; �2

�
andK = (�1; �2) are mean and Gaussian mid-surface curvatures,

respectively, one can write (19) asZ
V

S33��33 dV =

Z
A

�33

Z h=2

�h=2
S33(1� 2�H + (�)

2
K)| {z }

�

�d�dA = 0 (20)

Equation (20) holds for shells with � � 1 for constant S33 stress with respect to
� coordinate, i.e. for S33 = S33

�
�1; �2

�
. It also holds for shells with H = const:,

K = const: for S33 = S33 (�), if �33 is chosen such that
R
A
�33dA = 0.

One can introduce variations of displacement u ! u + ��u, shell director
rotation a (#)! a (#+ ��#), thickness stretching parameter e�! e�+ ��e�, and
enhancing strain parameters �! �+���. Those variations are then introduced
in �EAS1 to obtain GEAS1 = d�EAS1

d� j�=0. At the stationary point

GEAS1

0BB@ ��EAS| {z }
f�u;�#;�e�;�qg

;��;�EAS ;�

1CCA = 0 (21)

the equilibrium and kinematic relations are ful�lled in a weak form. The func-
tional (21) is further solved for �EAS and � (for any kinematically admissible
variations ��EAS and ��) by the �nite element approximation. Since � para-
meters not need to be continuos over the domain, they are condensed on the
element level and we recover the standard �nite element computer code struc-
ture.
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2.3 Version 3 of 3-d shell formulation

Let us now assume position of a shell point in deformed con�guration relative to
�xed Cartesian frame as in (13), and replace assumption (16) with assumption
that total deformation gradient F is a sum of displacement dependent part Fu

and enhancing part eF
F = Fu (�EAS ; �) + eF (22)eF can be de�ned through the geometrically nonlinear version of incompatible

modes method [Ibrahimbegovic and Wilson (1991); Ibrahimbegovic and Frey
(1993)], which is equivalent to geometrically nonlinear version of EAS presented
in Simo and Armero (1992). Since Fu = x;i 
 gi, one can assume thateF = ex;i 
 gi =) F = (x;i + ex;i)
 gi (23)

where ex;i can be seen as an enhancement of x;i. We choose an eF which provides
re�ned through-the-thickness kinematics, i.e.

ex;i ��i ��1; �2� ; �� = � ��3
�
�1; �2

�
d
�
�1; �2

�
if i = 3

0 otherwise
(24)

where �i are enhancing parameters. We collect non-zero parameters in �, i.e.
� = f�3g. The Green-Lagrange strains with respect to the basis gi follow from
E = 1

2

�
FTF� I

�
and I = (X;i �X;j)g

i 
 gj as

Eij (�EAS ;�; �) =
1

2
((x;i + ex;i) � (x;j + ex;j)�X;i �X;j) (25)

It can be shown that all components of Eij are quadratic with respect to �
coordinate. This is in contrast with geometrically linear version of EAS from
previous section where all strains were linear with respect to � coordinate, see
(15) and (16). The strains (25) can be transformed to the local Cartesian frame
with the basis (5), see (6), to obtain bEij .
Assumption (22) is introduced into Hu-Washizu functional�H�W

�
�EAS ; eF;P�,

where P = FS is the �rst Piola-Kirchho¤ stress tensor. The following functional
is obtained

�EAS2 (�EAS ;�) =

Z
V

W
� bEij (�EAS ;�; �)� dV ��ext (�EAS) (26)

if the orthogonality between P and eF is assumed to be validZ
V

P : eFdV = 0 (27)

By noting that g3 = g3 = g, and by using (23) and (24), it follows from (27)Z
V

P :
�ex;3 
 g3� dV = Z

V

P : (d
 g) ��3dV

=

Z
A

�3

Z h=2

�h=2
d �Pg(1� 2�H + (�)

2
K)| {z }

�

�d�dA = 0 (28)
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Equation (28) holds for shells with � � 1 for constant product d � Pg with
respect to the through-the-thickness coordinate �. It also holds for shells with
H = const:, K = const: when product d � Pg is only function of �, if �3 is
chosen such that

R
A
�3dA = 0.

One can introduce variations of displacement u ! u + ��u, shell director
rotation a (#)! a (#+ ��#), thickness stretching parameter e�! e�+ ��e�, and
enhancing parameters � ! � + ���. Those variations are then introduced in
�EAS2 to obtain GEAS2 = d�EAS2

d� j�=0. At the stationary point

GEAS2 (��EAS ;��;�EAS ;�) = 0 (29)

the equilibrium and kinematic relations are ful�lled in a weak form. This func-
tional is further solved by the �nite element approximation. Since � parameters
need not to be continuos over the domain, they are condensed on the element
level, and the method can �t nicely within the standard �nite element assembly.

2.4 Linearized formulations

To get consistently linearized forms of the above described versions of 3-d shell
formulation, we linearize functionals (12), (21) and (29) about the initial con-
�guration.

The initial con�guration of version 1 is de�ned by � =
n
u;#; e�; qo = 0: The

perturbation of initial con�guration can be de�ned with displacement u! ��u,
shell director rotation a (#) ! a (��#), and thickness stretching parameterse�! ��e�, q ! ��q. When introducing those expressions into the weak form of
equilibrium equations (12), one can get its consistently linearized form around
the initial con�guration as

GLin (��;��) =
dG (��;�)

d�
j�=0= 0 (30)

The initial con�guration of versions 2 and 3 is de�ned by�EAS=
n
u;#; e�; qo =

0 and � = 0. The perturbation of initial con�guration can be de�ned with dis-
placement u! ��u, shell director rotation a (#)! a (��#), thickness stretch-
ing parameter e�! ��e�, and enhancing parameters �! ���. When those ex-
pressions are introduced into the functionals GEAS1 (��EAS ;��;�EAS ;�) = 0
and GEAS2 (��EAS ;��;�EAS ;�) = 0, one gets their consistently linearized
forms as

GEAS1;Lin (��EAS ;��;��EAS ;��) =
dGEAS1 (��EAS ;��;�EAS ;�)

d�
j�=0= 0

(31)

GEAS2;Lin (��EAS ;��;��EAS ;��) =
dGEAS2 (��EAS ;��;�EAS ;�)

d�
j�=0= 0

(32)
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In practice, one needs to consistently linearize the strains bEij = bEij (�) (for
version 1) and the strains bEij = bEij (�EAS ;�) (for versions 2 and 3) as well as
the corresponding functional related to the external loading, i.e. ��ext (��;�)
or ��ext (��EAS ;�EAS).

3 Numerical examples

For the �nite element approximation of the above presented 3d-shell formula-
tions we used 4-node isoparametric elements with assumed natural strain (ANS)
interpolation of Bathe and Dvorkin (1985) for the transverse shear strains. De-
tails on numerical implementation of geometrically nonlinear versions are pre-
sented in Brank, Korelc and Ibrahimbegovic (2002) and Brank (2005); see also
Brank (2008) for the assessment of EAS-ANS 4-node elements based on classical
shell kinematics.
In this section we present results of several numerical simulations, which can

illustrate the ability of the derived 3d-shell formulations to accurately predict
3d stress state in elastic plates and shells. The stresses for versions 2 and 3 have
been computed by using constitutive equations.
All the �nite element codes have been produced by using symbolic program

AceGen, Korelc (2008), which has been developed for automatic generation of
�nite element codes, Korelc (1997). The computations have been carried out
by the accompanying computer code AceFem, Korelc (2008).

3.1 Cantilever plate

With this example we illustrate the ability of the above presented linearized
formulations to (A) produce zero transverse normal stresses in the case of pure
bending, and (B) to present more general stress state in the case of general
bending problem.
We consider a cantilever plate with the following geometric and material

data: length L = 1, width W = L=4, thickness h = L=10, E = 2 � 108,
� = 0:3. The chosen mesh contains 10 � 1 elements, see Figure 1. The axis 1
is parallel to the longitudinal axis of the cantilever, the axis 2 is perpendicular
to 1 and parallel to the cantilever mid-plane, and axis 3 is perpendicular to the
cantilever mid-plane. The number of mid-surface Gauss integration points is
4. The number of through-the-thickness Gauss integration points, located at
di¤erent � positions at �1 and �2 locations of the mid-surface Gauss points, is
10. This is an overkill for accuracy, but employed nonetheless in order to get
clear presentation of through-the-thickness variation of stresses. The supported
edge is soft clamped with free higher-order degrees of freedom. The loading
cases are two: (A) moment M = 100 at the free end of the cantilever, and (B)
uniform pressure p = 1000 at the plate top surface (at � = h=2).

Load case A. For the pure bending load case A the only non-zero computed
stress for all three versions of 3d-shell formulation is S11. All other computed

9



Figure 1: Mesh of 10� 1 elements.

element 2

Figure 2: Mesh of 20� 4 elements presented with plate thickness.

stresses, including S33, are indeed equal to zero. The corresponding solutions
for strain �eld components are in complete accordance with the linear elasticity
and they suggest that the considered formulations are not a¤ected by the so
called Poisson�s ratio locking e¤ect that occurs without through-the-thickness
enhancement [Büchter, Ramm and Roehl (1994); Bischo¤ and Ramm (1997)].
We note that in case of mid-surface application of loading on plate (as in

the load case A) the higher-order kinematic parameter e� is not activated and it
remains equal to zero.
Load case B; mesh is 10� 1 elements. For the load case B we get richer

stress state. In Figures 3 to 7 we show the distribution of stresses through the
thickness. The stresses S11; S12, S13 and S33 are presented either (a) for the
mid-surface Gauss-point closest to the supported edge or (b) as averaged values
at each "through-the-thickness Gauss point layer" of the element closest to the
supported edge. It can be seen from Figures 3 to 7 that the solutions of di¤erent
formulations di¤er from one another. For example, S13 and S33 are constant
for versions 2 and 3; S33 equals to �p=2. On the other hand, S33 of version 1
shows clear tendency of going towards �p at the top surface and towards 0 at
the bottom surface, with its average through-the-thickness value of �p=2: The
stress S13 of version 1 varies quadratically through the thickness, but it is not
equal to zero at top and bottom surfaces. This suggests that shear correction
factors should be used for all formulations.
The stresses S22 (for all three versions) and S33 (for version 1) are presented

10
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Figure 3: Through-the-thickness variation of S11 at the mid-surface Gauss-point
closest to the supported edge.

as averaged values at each "layer" at a particular value of through-the-thickness
coordinate �. The reason for element-wise averaging of S22 and S33 stresses
in Figures 6 to 7 are their oscillations throughout an element at each "layer".
Those oscillations include the sign change as shown in Figures 8 and 9. It is
thus reasonable to interpret those stresses throughout an element with their
averaged values.
We note that the tip displacement/rotation is practically identical for all the

versions; the computed values are 0:00757=0:01007 for version 1 and 0:00756=0:01005
for versions 2 and 3. Hence, just reporting on the displacement values does not
reveal much on the predictive capabilities of these shell formulations.
Load case B; mesh is 20� 4 elements. In order to check the in�uence of

the mesh on the results, we re�ne the mesh to 20� 4 elements. This re�nement
does not change the displacements; compare the results in Figures 10 and 11.
The dispersion of values at di¤erent Gauss points of the same element did not
improve. On the contrary, the dispersion gets even worse; see Figure 12 for
the results obtained for S33 for the element 2 (Fig. 2). It can be clearly seen
that even "layer-wise" element averaging does not lead to reasonable results.
The only reasonable averaging in this case is through-the-thickness averaging of
S33at each mid-surface integration point, which leads to S33 � �p=2.

3.2 Thick cylinder

With this example we test ability of the above presented linearized 3d-shell
formulations to predict through-the-thickness distribution of radial and circum-
ferential stresses in a thick cylindrical shell. We consider thick cylinder in the
plain strain state with the following geometrical and material data: radius of
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Figure 4: Through-the-thickness variation of S12 at the mid-surface Gauss-point
closest to the supported edge.
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Figure 5: Through-the-thickness variation of S13 at the mid-surface Gauss-point
closest to the supported edge.
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Figure 6: Through-the-thickness variation of S22. "Layer-wise" averaged for
the element closest to the supported edge.
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Figure 7: Through-the-thickness variation of S33. "Layer-wise" averaged for
the element closest to the supported edge (version 1). Values at the mid-surface
Gauss-point closest to the supported edge (versions 2 and 3).
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Figure 8: Through-the-thickness variation of S22 at the element closest to the
supported edge.
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supported edge.
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Figure 10: 3d representation of plate displacements for version 1 (magni�ed 120
times) for mesh of 10� 1 elements.

Figure 11: 3d representation of plate displacements for version 1 (magni�ed 120
times) for mesh of 20� 4 elements.
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Figure 12: Through-the-thickness variation of S33 at the element 2 (see Fig. 2).
Mesh is of 20� 4 elements.

middle surface R = 1, width L = 2R�=4, thickness values h = 0:1 (cylinder 1;
R=h = 10) and h = 0:2 (cylinder 2; R=h = 5), E = 3�107, � = 0:2. The applied
load is internal pressure p = 1000. The �nite element mesh consists of 32 � 1
elements for discretization of the whole cylinder, see Figure 13. To simulate the
plain strain state we set axial displacement of all nodes of the mesh to zero.
Radial displacements of points at R are presented in Table 1 for cylinder 1

with R=h = 10 and cylinder 2 with R=h = 5. The computed results match very
well. We can see that the formulation 1 (with 7 displacement-like kinematic
parameters) and formulation 3 (with the corresponding additive split of dis-
placement gradient) are able to match analytic solution somewhat better than
formulation 2 (additive split of strains).
We then turn to the accuracy of stress computation. We �rst consider results

for cylinder 1. Through-the-thickness distribution of radial and circumferential
stresses are compared with analytical solutions as shown in Figures 14 and
15. It can be seen from Figures 14 and 15 that circumferential stresses of all
formulations match analytical solution very well (maximum di¤erence is only
1:5%). On the other hand, the through-the-thickness nonlinearity of radial
stresses is well represented only by version 1, which has the ability of global
representation of the through-the-thickness strain �eld. The computed results
for version 2 and version 3 predict the radial stress, which is almost constant
through the thickness with a value roughly equal to the average. Hence we can
not have true stress distribution with enhanced strain (or incompatible modes)
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Figure 13: FE mesh for analysis of thick cylinder.

based 3-d shell elements everywhere, but we can have the (average) values which
match the true distribution at the point with optimal accuracy.
The results for cylinder 2 are presented in Figures 16 and 17. It can be

seen that for increased thickness the trend of the solution is similar as before,
however, the di¤erence between analytical and computed solutions will increase
even further.

Table 1. Radial displacement of the middle surface �104
Version 1 Version 2 Version 3 Analytical

Cylinder 1 3.0682 3.0376 3.0691 3.0730
Cylinder 2 1.4637 1.4784 1.4656 1.4661

4 Conclusions

The modern developments on higher-order shell formulations, which employ
extra parameters in order to properly account for the linear variation of through-
the-thickness stretch, indeed provide the bene�t of being able to use fully 3d
constitutive equations, the same as those for 3d continuum mechanics solid
model. However, as shown in this work, this does not imply the same accuracy
for the computed stress components as for the 3d continuum case, even though
in both cases the stress tensor would have all the stress components de�ned.
We have shown by computed results that the dominant stress tensor com-

ponents are predicted with high accuracy, especially those that are predicted
by typical shell-like behavior (e.g. bending modes). The remaining stress com-
ponents does not follow the same trend of high accuracy computations. For
example the stress component in the transverse direction to bending axis, or yet
the through-the-thickness stress (the main "acquisition" of this kind of higher-
order shells), will both have somewhat erratic dispersion of results within a
single element, which might be the consequence of the directional character of
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Figure 14: Thick cylinder 1: Variation of circumferential stress in the thickness
direction.
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Figure 15: Thick cylinder 1: Variation of radial stress in the thickness direction.

18



3800

4000

4200

4400

4600

4800

5000

5200

­1 ­0,5 0 0,5 1

Normalized thickness

C
irc

um
fe

re
ne

nt
ia

l s
tre

ss

Version 1

Version 2

Analytical

Version 3

Figure 16: Thick cylinder 2: Variation of circumferential stress in the thickness
direction.
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Figure 17: Thick cylinder 2: Variation of radial stress in the thickness direction.
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the shell element interpolations (in sharp di¤erence with "isotropic" character
of the standard isoparametric interpolations for 3d solids).
In this work, we have shown that the simple averaging procedure of the non-

dominant stress components for all the Gauss points within the corresponding
"layer" produces much improved results. It is important to note that this cure
is more e¢ cient than the mesh re�nement. We have also shown that it might
happen that the "layer-wise" averaging of S33 over an element is not e¤ective.
In that case S33 should be averaged through the shell thickness.
Among three di¤erent shell models we discussed, the best results are always

obtained by the model with seven displacement-like kinematic parameters (ver-
sion 1), which, on the other hand, has a serious disadvantage of having two
additional global degrees of freedom with respect to standard shell formula-
tion with Reissner-Mindlin kinematics. Also, through-the-thickness variation
of some non-dominant stresses may be computed very inaccurately, so that
they can be correctly interpreted either by "layer-wise" element averaging or by
through-the-thickness averaging.
Two EAS versions of the higher-order shell formulation (version 2 and version

3) have only one additional global degree of freedom with respect to standard
shell formulation, and can easily �t within the standard �nite element computer
program structure, but reduce further the stress results accuracy. Namely,
although version 3 is systematically better than version 2, neither can provide
the exact distribution of through-the-thickness stress. However, we can obtain
the good prediction for the average value at the point of optimal accuracy at
shell mid-surface. This indicates a potential bene�ts we could have for assumed
stress interpolation which can be proposed with desired stress variation and
enforced to match the computed average values.
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