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Abstract

A mathematical model for a slip-buckling problem has been proposed and its exact

solution has been found for the analysis of materially inelastic two-layer composite

columns with non-linear interface compliance. The mathematical model has been

carried out to evaluate exact critical buckling loads. It has been demonstrated math-

ematically exactly, that exact critical buckling loads are influenced by the initial

stiffness, and hence on linear portion of the interface force-slip relationship. Be-

sides, it has been shown that material inelasticity can reduce the critical buckling

loads significantly and that the interlayer stiffness has an important effect on the

transition between the elastic and inelastic buckling.
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1 Introduction

Layered columns consisting of different or like materials are frequently encoun-

tered in a wide range of applications. Due to their high strength-to weight

and stiffness-to-weight ratios, slender composite columns are widely used in

in aerospace engineering, structural engineering, shipbuilding, and in other

branches of industry. In the field of structural engineering typical examples of

aforementioned layered structures are steel-concrete and timber-concrete com-

posite columns, layered timber columns, sandwich columns, concrete columns

externally reinforced with laminates, and many more. The behaviour of these

structures largely depends on the type of the connection between the layers

and the quality of the used materials.

Since absolutely stiff connection between the layers cannot be achieved in

practice, an inter-layer slip between these layers develops, which significantly

can affect the mechanical behaviour of layered structure. Accordingly, the

inter-layer slip has to be taken into consideration in what is called partial

interaction analysis of composite structures. Consequently, many published

papers that take into account the inter-layer slip analytically or numerically

are available in the literature. No attempt is made to discuss it here but the

interested reader is referred to the, e.g. [1–14].

The strength of straight layered columns depends to a great extent on their

stability and cohesion between the layers. It is therefore of practical impor-

tance to derive exact solutions for such problems. To date only a few exact

slip-buckling models of composite columns have been developed; see, for ex-

ample, [15–20].
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In all these previous exact investigations, linear stress-strain relations of the

material and linear interfacial constitutive laws between the layers have been

assumed. Actually, in reality a highly non-linear material and force-slip law

of the interface can be obtained. Notwithstanding, to the best of the authors’

knowledge, there exist relatively few exact solutions where linear material

an idealized bilinear force-slip law of the interface has been assumed, see,

for example [21], but no exact investigation of slip-buckling problem where

general inealstic material and non-linear interfacial constitutive law would be

employed.

Therefore, the main objective of this paper is to develop a mathematical model

for a slip-buckling analysis of geometrically perfect materially inelastic two-

layer composite columns with non-linear interfacial compliance between the

layers. In many cases, the compliant layer between the layers has been consid-

ered to be a very thin interphase layer with vanishing thickness; referred to in

the literature as an interface. The interface arises from the damage in compos-

ites, e.g. debonding, sliding and cracking across the interface. In this paper,

a non-linear tangentially compliant interface layer with non-zero thickness d

is assumed to occupy the area between the layers. The thickness of the inter-

face layer depends on the mechanical properties of the composite, and must

be determined experimentally. The mechanical behaviour of the interface is

described by the general nonuniform, non-linear interface constitutive law.

Exact critical buckling loads of geometrically perfect materially inelastic two-

layer composite columns with non-linear compliant interfaces are derived using

the linearized stability theory [22]. Therefore, the exact critical buckling forces

are determined from the solution of a linear eigenvalue problem, i.e., detKt =

0 (see, [25]).
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In the numerical examples, the proposed exact formulation of the inelastic slip-

buckling problem is used to investigate the influence of a non-linear interface

compliance and material inelasticity on buckling forces of geometrically perfect

two-layer composite columns with interlayer slip between the layers.

2 Formulation of an inelastic slip-buckling problem

2.1 Assumptions

An exact inelastic slip-buckling formulation of the planar two-layer composite

column with compliant interface between the layers used in this paper is based

upon the following basic assumptions: (1) the individual layer of the compos-

ite column is geometrically perfect and straight; (2) the axial load is loaded

eccentrically at a distance e from the reference axis of the two-layer composite

column in such a way that a homogeneous stress-strain state at primary con-

figurations is obtained; (3) the material of layers is inelastic; (4) displacements,

strains and rotations are finite (each of the layers satisfies the assumptions of

geometrically exact Reissner beam theory); (5) the effect of shear deformation

is not taken into account; (6) the ”Bernoulli hypothesis” of linear distribution

of strains over each layer is assumed; (7) the layers are continuously connected

through the compliant interface which obey a general nonuniform, non-linear

constitutive force-slip law; (8) shapes of the cross-sections are symmetric with

respect to the plane of deformation and remain unchanged in the form and size

during deformation; (9) an interlayer slip can occur at the interface between

the layers, but no transverse separation (uplift) between them is possible.

2.2 Governing equations

We consider an initially straight, planar, two-layer composite column of un-

deformed length L with. Layers as shown in Fig. 1 are marked by letters a
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and b. A compliant interface layer with its thickness d takes a position be-

tween the layers a and b. The column is placed in the (X,Z) plane of spatial

Cartesian coordinate system with coordinates (X, Y, Z) and unit base vectors

EX ,EY , and EZ = EX × EY . The undeformed reference axis of the layered

column is parametrized by the undeformed arc-length x. Local coordinate sys-

tem (x, y, z) is assumed to coincide initially with spatial coordinates, and then

it follows the deformation of the column. The geometrically perfect compos-

ite column is subjected to a conservative compressive axial force P centrally

located at both ends in such way that homogeneous strain and stress state

at primary configuration of the column is achieved. For further details an

interested reader is referred to e.g., [13, 16, 19].

Figure 1. Geometry and notation for a straight geometrically perfect two-layer com-

posite column with an interface layer between the layers.
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2.2.1 Kinematic equations

The deformed configurations of the reference axes of layers a and b are defined

by vector-valued functions (see Fig. 1)

Ri
0 = X iEX + Y iEY + ZiEZ = (xi + ui)EX + yiEY + wiEZ , (1)

where superscript i = a, b denotes that quantities are related to layer a and b,

respectively. Functions ui and wi denote the components of the displacement

vector of layer i at the reference axis with respect to the base vectors EX and

EZ . The geometrical components ui and wi of the the vector-valued functions

Ri
0 are related to the deformation variables with the equations derived by [26]:

1 + ui′ − (1 + εi) cosϕi = 0,

wi′ + (1 + εi) sinϕi = 0,

ϕi′ − κi = 0.

(2)

Here, the prime (•)′ denotes the derivative with respect to x. In (2), the

deformation variables εi are the extensional strains of the reference axes of

layers a and b; κi are the pseudocurvatures [27]; whereas ϕi are the rotations

of layers’ reference axes.

2.2.2 Equilibrium equations

The composite column is subjected to a force P at both ends. Furthermore,

each layer of the two-layer composite column is subjected to interlayer con-

tact tractions measured per unit of layer’s undeformed length. In order to

write constitutive equations in usually used coordinate system, it is suitable

to express the (X,Z) components of the interlayer contact tractions with the

tangential and normal components of the interlayer tractions pit and pin (see

Fig. 2):
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piX = pit cosϕi + pin sinϕi,

piZ = −pit sinϕi + pin cosϕi,

(3)

Figure 2. Interlayer contact tractions and generalized equilibrium internal forces

and moments with respect to the fixed global and rotated local coordinate system.

Using (3), the equilibrium equations of each layer are, see e.g. [16, 19, 26]:

Ri′
X + piX = Ri′

X + pit cosϕi + pin sinϕi = 0,

Ri′
Z + piZ = Ri′

Z − pit sinϕi + pin cosϕi = 0,

M i′
Y − (1 + εi)Qi +mi

Y = 0,

(4)

where
N i = Ri

X cosϕi −Ri
Z sinϕi,

Qi = Ri
X sinϕi +Ri

Z cosϕi,

Mi = M i
Y .

(5)

Ri
X , Ri

Z , and M i
Y in (4)–(5) represent the generalized equilibrium internal

forces and moments of a cross-section of layers a and b with respect to the

fixed coordinate basis. On the other hand,N i andQi represent the equilibrium
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axial and shear internal forces of the layers’ cross-sections with respect to the

rotated local coordinate system. Functions Mi are the equilibrium bending

moments.

2.2.3 Constitutive equations

To relate the equilibrium internal forces N i and Qi, and equilibrium internal

momentsMi to a material model, the following set of equations which assure

the balance of equilibrium and constitutive cross-sectional forces and bending

moments of the composite column have been introduced. Due to the assump-

tion that the transverse shear deformations are neglected, the constitutive

equations of a two-layer composite column are

N i −N i
C(Di) = N i −

∫
Ai
σiC(Di) dAi = 0,

Mi −Mi
C(Di) =Mi −

∫
Ai
zσiC(Di) dAi = 0.

(6)

The constitutive functions N i
C andMi

C introduced in (6) are dependent only

on deformation variables εi and κi and are subordinated to the adopted in-

elastic constitutive model defined by the uniaxial true stress-strain relations

σiC(Di) = F i(εi + zκi), (7)

where σiC are the true extensional stresses of layers a and b; Di are the me-

chanical extensional strains in longitudinal direction in layers a and b; and F i

are experimentally determined non-linear functions that describe a broad class

of materials. Moreover, the contact constitutive law must also be introduced.

In general, a non-linear constitutive law of bond slip between the layers is

present. Therefore, in the present analysis, a general nonuniform, non-linear

constitutive force-slip law of the interface between the layers is employed:

pat = H
(
∆
)
, (8)
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where H is a non-linear function dependent on the type of the connection.

2.2.4 Constraining equations

Once the layers are connected, the upper layer b is constrained to follow the

deformation of the lower layer a and vice versa. As already stated, the layers

can slip along each other but their transverse separation (uplift) or penetration

is not allowed. This fact is expressed by a kinematic-constraint requirement

Rb
0(x) = Ra

0(x
∗) + rd(x

∗), (9)

where x and x∗ are coordinates of two distinct particles T̄ b and Q̄ of layers b and

a in the undeformed configuration which are, in the deformed configuration,

related to each other by a vector-valued function rd(x
∗) = −d en(x∗), (see,

Fig. 1). Eq. (9) can be written equivalently in componential form as

x+ ub(x) =x∗ + ua(x∗)− d sinϕa(x∗),

wb(x) =wa(x∗)− d cosϕa(x∗).

(10)

By differentiating first equation of (10), adding the results with (2), the fol-

lowing direct relation between the differentials of material coordinates x and

x∗ is obtained

dx∗

dx
=

(
1 + εb(x)

)
cosϕb(x)(

1 + εa(x∗)− d κb(x∗)
)

cosϕb(x∗)
. (11)

Using (11), and taking into account the fact that the rotations of layers are

identical (see, [16])

ϕa(x∗) = ϕb(x), (12)

it can be shown that the pseudocurvatures of layers a and b are constrained

to each other by

κa(x∗)
1 + εb(x)

1 + εa(x∗)− d κa(x∗)
= κb(x). (13)
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The slip that occurs between the two particles of layers a and b which are in

the contact through the interphase layer in the undeformed configuration is

denoted by ∆ and defined as

∆′ = εa − εb − d κb. (14)

In addition to the above presented constraining equations, from the third

Newton’s law, an equilibrium of the interlayer contact tractions of the particles

in contact is expressed in the vector-valued function form as

pa + pb = 0, (15)

and, by substituting (3) to (15), in componential form as

pat cosϕa + pan sinϕa + pbt cosϕb + pbn sinϕb = 0,

−pat sinϕa + pan cosϕa − pbt sinϕb + pbn cosϕb = 0.

(16)

Consequently, a complete set of non-linear governing equations of a two-layer

composite column, Eqs. (2), (4)–(6), (8), (10), (14), and (16) consists of

28 equations for 28 unknown functions: ui, wi, ϕi, εi, κi, Ri
X , R

i
Z ,M

i
Y ,N i,Qi,

Mi, pit, p
i
n,∆, and, x∗.

2.3 Linearized equations

In order to investigate the stability of non-linear boundary value problems

the approximation methods should be used. In this paper, a linearized the-

ory of stability is used. This theory is based on the fact that the bifurcation

points of the non-linear system coincide with the critical points of its equiva-

lent linearized system [22]. The application of the linearized stability theory,

regarding the existence and uniqueness of the solution of Reissner’s elastica,

is presented by Flajs et al. [23].
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The above-mentioned linearized theory of stability is based upon the variation

of a functional F , which will here be made in the sense of the continuous linear

Gateaux operator or directional derivative, defined as follows [24]

δF(x, δx) = lim
α→0

F(x + αδx)−F(x)

α
=

d

dα


α=0

F(x + αδx), (17)

where the x and δx represent the generalized displacement field and its incre-

ment, respectively, and α is an arbitrary small scalar parameter. δF(x, δx) is

also called linearization or linear approximation of δF at x. Accordingly, it

is convenient for Eqs. (2), (4)–(6), (8), (10), (14), and (16) to be re-written

in compact form as F = {F1,F1, . . . ,F28}T , and their arguments as x =

{ui, wi, . . . , pin, ∆, x∗}T .

After the linearization of the governing Eqs. (2), (4)–(6), (8), (10), (14), and

(16) has been completed, the linearized equations of the two-layer composite

column buckling problem have to be evaluated at the primary configuration

of the column. The primary configuration of the column is here defined as the

configuration in which the composite column, which is subjected to the point

force P , remains straight:

εi = const., κi = 0,

ui = ui(0)− εix, wi = 0,

ϕi = 0, x∗ = x,

∆ = 0, Ri
X = N i = const.,

Ri
Z = Qi = 0, M i

Y =Mi = const.,

piX = pit = 0, piZ = pin = 0.

(18)

Finally, the linearized system of equilibrium Eqs. (2), (4)–(6), (8), (10), (14),

and (16) when written at the primary configuration (18) of the composite

column is easily derived in the following form:
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δF1 = δua′ − δεa = 0,

δF2 = δub′ − δεb = 0,

δF3 = δw′ + (1 + ε)δϕ = 0,

δF4 = δϕ′ − δκ = 0,

δF5 = δRa′
X − δpt = 0,

δF6 = δRb′
X + δpt = 0,

δF7 = δR′Z = 0,

δF8 = δM ′
Y +RXδw

′ − (1 + ε)δRZ − d δpt = 0,

δF9 = δRa
X − Ca

11δε
a − Ca

12δκ = 0,

δF10 = δRb
X − Cb

11δε
b − Cb

12δκ = 0,

δF11 = δMY − Ca
21δε

a − Cb
21δε

b − (Ca
22 + Cb

22)δκ = 0,

δF12 = δ∆− δua + δub − d δϕ = 0,

δF13 = δpt − C33δ∆ = 0,

δF14 = δx∗ + δua − δx− δub − d δϕ = 0,

(19)

where

δw = δwa = δwb, δϕ = δϕa = δϕb, δκ = δκa = δκb,

δRZ = δRa
Z + δRb

Z , δMY = δMa
Y + δM b

Y , δpt = δpat = δpbt ,

(20)

and

Ci
11 =

∂N i
C

∂εi
=
∫
Ai

∂σiC(εi, κi = 0)

∂εi
dAi = Ei

tA
i,

Ci
12 =

∂N i
C

∂κi
= Ci

21 =
∂Mi

C

∂εi
=
∫
Ai
z
∂σiC(εi, κi = 0)

∂εi
dAi = Ei

tS
i,

Ci
22 =

∂Mi
C

∂κi
=
∫
Ai

∂σiC(εi, κi = 0)

∂κi
dAi = Ei

tJ
i,

C33 =
∂pt
∂∆

=
∂H
∂∆

= K,

(21)
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in which the quantities Ci
11, C

i
12, C

i
22, and C33 are the components of the

tangent constitutive matrix of the cross-sections of layer a and b, and an in-

terphase layer. In addition, Ei
t denotes the uniaxial tangent modulus of the

layer’s material, K is the initial contact stiffness, and Ai, Si, and J i denote

the cross-sectional area, static moment and moment of inertia of layers a and

b with respect to the reference axis of the composite column, respectively.

Remark 1. It is, however, clear from the last equation of Eqs. (21) that C33

is the initial stiffness of the interface force-slip law. Hence, the critical loads

are dependent on the initial linear portion of the interface force-slip relation,

but not on its general form.

Thus, Eqs. (19) constitute a linear system of 14 algebraic-differential equa-

tions of the first order with constant coefficients for 14 unknown functions of

x: δui, δw, δϕ, δεi, δκ, δRi
X , δRZ , δMY , δpt, δ∆, and δx∗ along with the cor-

responding natural and essential boundary conditions which may be written

in the following general form, see e.g. [16, 19]:

s01δR
a
X(0) + s02δu

a(0) = 0, sL1 δR
a
X(L) + sL2 δu

a(L) = 0,

s03δR
b
X(0) + s04δu

b(0) = 0, sL3 δR
b
X(L) + sL4 δu

b(L) = 0,

s05δRZ(0) + s06δw(0) = 0, sL5 δRZ(L) + sL6 δw(L) = 0,

s07δMY (0) + s08δϕ(0) = 0, sL7 δMY (L) + sL8 δϕ(L) = 0,

(22)

where s0i , s
L
i ∈ {0, 1} are parameters that determine different combinations of

boundary conditions of the two-layer composite column. The superscript ”0”

and ”L” of s identifies its value at x = 0 and x = L, respectively.

Due to the fact that boundary conditions in the longitudinal and transverse di-

rection are interrelated (see, [19]), the general solution of the system of linear
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algebraic-differential equations (19) is determined by nine integration con-

stants C1, C2, C3, C4, C5, C6, C7, C8, and C9. These unknown integration constants

are determined from the boundary conditions (22) and their combinations [19].

As a results, a system of nine homogeneous linear algebraic equations for nine

unknown integration constants is obtained

Kt c = 0, (23)

where Kt and c denote a tangent matrix of the current equilibrium state on

the fundamental path and a vector of unknown constants, respectively. For

a non-trivial solution of (23), the determinant of the system matrix should

vanish, see e.g. [25]

detKt = 0. (24)

The condition (24) represents a linear eigenvalue problem and its solution, i.e.

the lowest eigenvalue, corresponds to the smallest critical buckling load, Pcr, of

the column. The condition (24) along with the boundary condition constitute

a system of two non-linear algebraic equations

f1(Pcr, εcr) = detKt = 0,

f2(Pcr, εcr) = N a +N b − Pcr = 0,

(25)

for the two unknowns, i.e. the critical axial load, Pcr, and the critical axial

strain, εcr. The system (25) is solved numerically using the Newton-Raphson

iterative method.

3 Comprehensive practical examples and discussion

3.1 Effect of non-linear interface compliance on critical buckling loads

The analytical results, for critical buckling loads of geometrically perfect two-

layer composite columns with interlayer slip, obtained herein with exact lin-

ear eigenvalue problem will be employed to analyze the non-linear interface
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compliance on critical buckling loads. With the intention of analyzing the

above-mentioned effect, an inelastic two-layer composite column is employed.

Geometrical and mechanical properties of the two-layer composite column are

presented in Fig. 3.

Figure 3. Geometrical and mechanical properties of the two-layer composite column;

(a) idealized bi-linear stress-strain constitutive law of timber [28]; (b) non-linear

constitutive law of the contact [14].

The critical buckling loads of the two-layer composite column with different

types of end conditions have been evaluated. Four sets of boundary condi-

tions have been considered of practical importance for columns with nonmov-

able supports: clamped-free column (C-F), clamped-clamped column (C-C),

clamped-pinned column (C-P) and pinned-pinned column (P-P). In accor-

dance to the boundary conditions (22) the classical boundary conditions of

two-layer Euler columns and the corresponding non-zero values of parameters

s0i , s
L
i , and effective length coefficient, βE, are summarized in Table 1.

The critical buckling loads have been calculated for different types of boundary

conditions, different values of an interlayer stiffness, K, and various thicknesses
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Table 1

Classical two-layer column boundary conditions and effective length coefficients βE

of solid Euler columns.

Classical cases C-F C-C C-P P-P

s02 = s04 = 1 s02 = s04 = 1 s02 = s04 = 1 s02 = s04 = 1

Non-zero values s06 = s08 = 1 s06 = s08 = 1 s06 = s08 = 1 s06 = s07 = 1

s0i and sLi sL1 = sL3 = 1 sL1 = sL3 = 1 sL1 = sL3 = 1 sL1 = sL3 = 1

sL5 = sL7 = 1 sL6 = sL8 = 1 sL6 = sL7 = 1 sL6 = sL7 = 1

Effective length βE = 2 βE = 0.5 βE = 0.699 βE = 1
coefficients

C = clamped (fixed); F = free; P = pinned

of an interface layer, d. The results are shown graphically in Figs. 4–6.

In Fig. 4, a critical buckling load of C-F two-layer composite column, Pcr,

normalized with respect to the critical buckling force of the corresponding

solid Euler column, PE, is shown for various inter-layer slip moduli, K and,

different thicknesses of an interfacial layer, d. Namely, P̄cr =
Pcr(d 6= 0)

PE(d 6= 0)
.

It is clear from Fig. 4 that by increasing the thickness of the interfacial layer,

d, the normalized critical buckling load P̄cr decreases. On the other hand, the

normalized critical buckling load P̄cr increases with increase of inter-layer slip

modulus, K. For instance, in the limiting case when there is an absolutely stiff

connection (δ∆ = 0;K →∞), P̄cr[d = 0 cm] = 1.0003; P̄cr[d = 1 cm] = 0.8642;

P̄cr[d = 2 cm] = 0.7521; P̄cr[d = 3 cm] = 0.6592; or there exists no connec-

tion between the layers (δ∆ = δ∆max 6= 0; K → 0), P̄cr[d = 0 cm] = 0.2503;

P̄cr[d = 1 cm] = 0.2160; P̄cr[d = 2 cm] = 0.1880; P̄cr[d = 3 cm] = 0.1648. Evi-

dently, by increasing the inter-layer slip modulus, K, the exact buckling load

16



Figure 4. Normalized critical buckling load, P̄cr, of geometrically perfect C-F

two-layer composite column for different thicknesses of interfacial layer, d and, dif-

ferent Ks.

of geometrically perfect two-layer composite column, Pcr, converges perfectly

to the buckling load of the corresponding Euler solid column, PE, only for

d = 0 cm.

Furthermore, in Fig. 5, the same plot for C-P two-layer composite column

is shown. Note that for the limiting case, the very resembling results to the

results for C-F two-layer composite column have been obtained.

Figure 5. Normalized critical buckling load, P̄cr, of geometrically perfect C-P

two-layer composite column for different thicknesses of interfacial layer, d and, dif-

ferent Ks.
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In addition, from Figs. 4 and 5, it is clear that the distribution of P̄cr versus

interlayer modulus K is different for different values of d and various types of

boundary conditions. Thus, for K = 1kN/cm2 (logK = 0), P̄cr[d = 0 cm] =

0.6692; P̄cr[d = 1 cm] = 0.5782; P̄cr[d = 2 cm] = 0.5032; P̄cr[d = 3 cm] =

0.4410 in case of C-F column, while, on the other hand, in case of C-P column

P̄cr[d = 0 cm] = 0.3477; P̄cr[d = 1 cm] = 0.3003; P̄cr[d = 2 cm] = 0.2614;

P̄cr[d = 3 cm] = 0.2291. Since, the distributions of P̄cr for C-C composite

column are very similar to distributions in case of C-F and C-P composite

column, the results are not described in this paper.

When treating various structural stability problems it is often useful to ex-

press the buckling load, Pcr, in the form of the Euler formula with a suitable

modification of the column length. Thus, the critical load of a layered geomet-

rically perfect composite column with an interlayer slip may be expressed in

terms of the classical Euler formula for a solid column as

Pcr =
π2(EJ)s
(βcrL)2

, (26)

in which (EJ)s is the flexural rigidity of the corresponding solid column and

βcr denotes the critical effective length parameter of the geometrically perfect

two-layer composite column which depends entirely on the particular buckling

mode, inter-layer contact stiffness, K, and layer’s thickness, d and, should not

be confused with the effective length coefficient, βE, that gives the distance

between the points of inflection in a solid column. The effective length coeffi-

cient, βcr, is obtained by a comparison of the critical force, Pcr, calculated with

the presented exact model and the Euler critical force, PE, for a corresponding
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solid column

βcr =

√
PE

Pcr

βE. (27)

The critical effective length coefficient, βcr, against the layer’s thickness, d,

is shown in Figs. 6 and 7 for different Ks and two kinds of end conditions,

such as C-F and C-P two-layer composite columns. From Fig. 6 it can be seen

Figure 6. Illustrations of critical effective length parameter, βcr, in case of C-F

composite column for different Ks and d.

that βcr is higher for lower values of K and higher values of d. The effect of

d on the βcr becomes less pronounced for higher values of K. For example,

when K = 0.2 kN/cm2, βcr[d = 0 cm] = 3.1558; βcr[d = 1 cm] = 3.3953;

βcr[d = 2 cm] = 3.6395; βcr[d = 3 cm] = 3.8876, while, for K = 10 kN/cm2,

βcr[d = 0 cm] = 2.0569; βcr[d = 1 cm] = 2.2130; βcr[d = 2 cm] = 2.3722;

and βcr[d = 3 cm] = 2.5339. Furthermore, if there exist no interface layer

between the layers, e.i. d = 0, the βcr is in case of a fully flexible connection

(K = 10−5 kN/cm2) two times higher than in the absolute stiff connection

case. On the other hand, in case of a rigid connection (K = 105 kN/cm2), βcr

almost equals βE. In this case, the critical load of two-layer composite column

is identical with the critical load of the corresponding solid column.
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Fig. 7 gives the βcr versus d response for different values of K for C-P boundary

conditions of the two-layer composite column. Likewise as in the C-F boundary

conditions case, the effect of d on the βcr in this case becomes less pronounced

for higher values of K. For example, when K = 0.2 kN/cm2, βcr[d = 0 cm] =

1.3397; βcr[d = 1 cm] = 1.4413; βcr[d = 2 cm] = 1.5450; βcr[d = 3 cm] = 1.6503,

while, for K = 10 kN/cm2, βcr[d = 0 cm] = 0.8405; βcr[d = 1 cm] = 0.9043;

βcr[d = 2 cm] = 0.9693; and βcr[d = 3 cm] = 1.0354.

Figure 7. Illustrations of critical effective length parameter, βcr, in case of C-P

composite column for different Ks and d.

3.2 Effect of material inelasticity on critical buckling loads

In order to simulate and investigate the inelastic buckling behavior of a P-P

two-layer composite column, the critical buckling loads have been calculated

for geometric and material data given in Fig. 8. These loads are further nor-

malized by the ultimate axial load-carrying capacity, Pult, and plotted as a

function of column slenderness, λ, in Fig. 9. Here the column slenderness, λ,

is defined as

λ =
βEL
√
Aa + Ab√

Ia + Ib
. (28)
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Variation in the column slenderness was achieved by considering a range of

column lengths.

Figure 8. Geometrical and mechanical properties of the composite column; (a) in-

elastic stress-strain constitutive law of timber [28]; (b) non-linear constitutive law

of the contact [14].

Note that the difference between the elastic and inelastic buckling loads de-

creases significantly as the column becomes more slender. Correspondingly, at

the specified column slenderness ratio λ2tr ≈ 38, there is a smooth transition

between the elastic and inelastic buckling. For λ > λ2tr, the elastic buckling

occurs and the column is treated as slender.

On the other hand, the transition between the crushing of the material and

inelastic buckling occurs at λ1tr ≈ 3. For λ < λ2tr, only the crushing of the

material occurs and the column is called short or stocky. Otherwise, for λ1tr <

λ < λ2tr, the column is called intermediate. For example, in this intermediate

inelastic region, the normalized inelastic buckling load, i.e. P ∗cr =
Pcr(d = 0)

Pult(d = 0)
,

reads as P ∗cr[λ = 12] = 0.9720; P ∗cr[λ = 19] = 0.9274; P ∗cr[λ = 26] = 0.8601;

and P ∗cr[λ = 33] = 0.7635. Besides, it is seen from Fig. 9 that the prevalent
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Figure 9. Non-dimensional column elastic and inelastic buckling curves for solid and

two-layer composite columns.

failure mode of the two-layer column is buckling and not the crushing of

the material. It is also seen that the effects of material inelasticity decreases

with increasing the column slenderness and becomes much less pronounced

for slender columns, as shown in Fig. 9.

In addition, the normalized critical buckling loads of the corresponding solid

column are calculated and shown in Fig. 9. It is seen that the interlayer stiff-

ness, K, has a significant influence on critical buckling loads and the type of

buckling. For example, when λ = 50, the normalized inelastic buckling load

of the composite column, P ∗cr[K = 1 kN/cm2], is 0.4320, while, the equivalent

normalized buckling load of a solid column is P ∗cr[K = ∞ kN/cm2] = 0.8267.

It is also apparent from Fig. 9 that in this particular case, the influence of

interlayer stiffness, K, on inelastic buckling loads, is the highest for column

slenderness ratios approximately between 40 and 70. As was already noted,

the interlayer stiffness, K, has a significant effect on the transition between

elastic and inelastic buckling. Thus, for a solid column, the transition column

slenderness, λ3tr, is always higher than for a composite column. In this partic-

ular case, λ3tr ≈ 64, which is almost twice as much as in case of the composite
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column where λ2tr ≈ 38.

4 Conclusions

A mathematical model for the slip-buckling problem has been proposed and

its exact solution has been found for the analysis of materially inelastic ge-

ometrically perfect two-layer composite columns with non-linear compliance

between the layers. The mathematical model has been applied to evaluate

exact critical buckling forces. For this purpose, a parametric study has been

performed by which the influence of various material and geometric parame-

ters on buckling forces have been investigated. The theoretical derivation, the

numerical computations and the analysis of the subsequent results have led to

the following conclusions:

(1) It has been mathematically exactly derived that the critical buckling

loads are influenced by the initial stiffness only, and hence on linear por-

tion of the interface force-slip relation, but not on its general form.

(2) The results have confirmed that the reduced stiffness between the lay-

ers can promote buckling which can lead to a drastic reduction of the

bifurcation loads.

(3) The influence of interlayer thickness on the exact critical buckling forces

is boundary conditions dependent.

(4) The material inelasticity can have an inportant influence on critical buck-

ling loads and thus especially in case of short columns should not be

neglected.

(5) The interlayer stiffness has a significant effect on the transition between

the elastic and inelastic buckling. The transition slenderness of a solid
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column is always higher than for a composite column.

(6) The timber composite columns fail predominantly by buckling and not

by crushing of the material.
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