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Abstract

A new mathematical model for the non-linear analysis of two-layer planar beams

considering flexible connections is introduced and an effective, strain-based fi-

nite element numerical solution method derived. The model and the solution

method account for the exact geometrically non-linear behaviour in each sepa-

rate layer. Material is assumed homogeneous but can be different in each layer.

The shear strains are neglected. The laws of contact in both tangent and nor-

mal directions are taken non-linear. Numerical examples verify the proposed

approach. The comparisons with numerical and experimental results from lit-

erature are made and the effects of uplift on ductility and stress distribution in

beams are systematically explored. The theoretical model, combined with the

present numerical formulation, has been found to result in realistic behaviour,

while the numerical method proves to be accurate, reliable and computationally

effective.
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element

∗Corresponding author
Email address: igor.planinc@fgg.uni-lj.si (I. Planinc)

Preprint submitted to Elsevier April 18, 2011



1. Introduction

New building technologies, materials and structural elements are invented

on a daily basis in civil engineering. A great deal of these inventions emerge in

the field of composite structures. Yet only a profound understanding of their

behaviour may lead to an optimized combination of materials, geometry and

building technology.

The key in understanding the behaviour of composite structures is to perform

extensive experimental and/or computational tests to assess effects of various

parameters. The parameter of an utmost importance is the stiffness of the

contact between the layers, which may dramatically change the mechanical per-

formance of a structure, including its stiffness, ductility and load capacity. For

that reason, much of the research in the composites attempts to find out what

is the effect of the contact properties on both global and local behaviour ([1],

[2], [3], [4], [5], [6]), [7], [8]). The majority of analyses have been performed by

computer methods rather than experimentally.

The early numerical modelings of multi-layer composite structures date back

to the middle of the previous century ([9], [10], [11], [12]). Researchers attempted

to describe the partial interface connection with relatively simple mathematical

models. With the increase of computer power, complex numerical models were

developed for the analysis of composite beams ([8], [13], [14], [15], [16], [17]).

These models neglected uplift at the contact and focused primarily on differ-

ent non-linear layer material models and contact slip laws ([18], [19], [20], [21],

[22], [23], [24], [25], [26]). The models based on the geometrically non-linear

beam theory have been very rarely discussed ([1], [21], [27], [28]). The partic-

ular examples studying the effect of slip on the buckling capacity of two-layer

composite beams are given in ([6], [29], [30]).

Adekola [13] was probably the first to discuss analytically the combined effect

of both slip and uplift on the behaviour of two-layer composite beams. Robinson

and Naraine [3] presented the solution in the form of explicit expressions of

a somewhat modified Adekola’s system of differential equations. The above
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mentioned authors considered only a geometrically and materially linear model.

The models that account for a bilinear or fully non-linear contact model for the

uplift have been given only recently, see ([31], [32], [33]).

When employing a finite element type of numerical solution, one has to

select the optimal set of basic variables of the problem. There are several solu-

tions available that consider displacement-based formulations ([20], [31], [34]).

Salari et al. [5] and Ayoub [2] considered a finite element formulation based on

the force interpolation. Dall’Asta and Zona [35] and Ayoub and Filippou [36]

employed mixed elements, where both the displacements and forces have been

interpolated.

Here a new finite element formulation for fully geometrically and materially

non-linear analysis of two-layer beams is presented whose basic variables are

strains. Hence, the only unknown functions of the formulation are strains. The

Galerkin-type of the finite element formulation is employed as in Planinc et al.

[37]. The mathematical model of the composite beam considers the following

assumptions: the composite structure, an external loading and deformations are

planar; the material of each layer is taken to be non-linear and homogeneous,

yet it can differ from layer to layer; the geometrically and materially non-linear

Reissner’s beam theory is assumed for each layer; shear strains are neglected.

After the new formulation has been set up, the numerical solution of the

present model is compared with the Girhammar and Gopu analytical solution,

derived from the second-order geometrically non-linear theory [38], and with the

experimental results by Ansourian [39] to validate our model. Finally, the effect

of the choice of the uplift constitutive law on the global response is presented

and discussed.

2. Basic equations of a two-layer beam

The set of governing equations of a two-layer beam with the interlayer slip

and uplift being taken into account consists of kinematic, equilibrium and con-

stitutive equations supplemented by the proper natural and essential boundary
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conditions of each layer. Bonded behaviour of the layers is dictated by proper

constraining conditions [1].

2.1. Kinematic, equilibrium and constitutive equations

A planar, two-layer, geometrically and materially non-linear beam of inital

length L is assumed here. The generalization of equations from a two-layer

beam to a multi-layer one can be derived in a similar way.

Fig. 1 presents the undeformed and deformed configurations of a two-layer

beam. The beam consists of the bottom layer, henceforth called layer a, and the

upper layer, called layer b. The layers have constant cross-sections Aa and Ab

along the length. We assume that the connection between the layers is flexible

enough to allow for some slip and uplift between the layers.
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Figure 1: Undeformed and deformed configurations of a two-layer beam.

Large displacements of each layer are assumed, so that the geometrically

non-linear beam model is necessary. Behaviour of the beam is assumed to

be planar in the (X, Z)-plane of a fixed spatial Cartesian coordinate system

(X, Y, Z) with base vectors eX , eY , eZ , where eY = eZ × eX . Each layer
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is additionally parametrized by its own material coordinate system placed on

the contact of the layers so that the two coordinate systems coincide in the

undeformed configuration: xa ≡ xb ≡ x, ya ≡ yb ≡ y, za ≡ zb ≡ z. In

what follows the material axes xa ≡ xb ≡ x will be termed the ‘reference

axes’. Furthermore, we take that the undeformed axes of the material coordinate

systems initially coincide with the spatial coordinate axes (X, Y, Z) such that

x ≡ X, y ≡ Y , z ≡ Z.

The position vector of a material point (x, 0, 0) on the deformed reference

axes of the two layers is defined by (i = a, b)

Ri = x eX + ui =
(
x + ui

)
eX + wieZ , (1)

where (•)i denotes quantities related to layers a and b, respectively. ui, wi in

Eq. (1) denote the X– and Z–components of the displacement vectors of the

material point (x, 0, 0) of the reference axes of the layers.

Bernoulli’s hypothesis of planar cross-sections that the plane cross-section of

each layer remains planar and perpendicular to its deformed axis is assumed for

each layer. This leads to Reissner’s [40] exact, shear-stiff non-linear kinematic

equations (i = a, b)

1 + ui′ − (
1 + εi

)
cosϕi = 0,

wi′ +
(
1 + εi

)
sinϕi = 0, (2)

ϕi′ − κi = 0,

where εi denotes extensional strains, κi curvatures, and ϕi rotations of the

reference axes of layers a and b. The prime represents the derivative with respect

to x. Note that the effect of shear strains is neglected in the above equations.

According to Bernoulli’s hypothesis, the extensional strain, Di (i = a, b), of an

arbitrary axial fibre of layer a or b is a linear function of the sectional coordinate

z:

Di = εi + zκi. (3)
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The equilibrium equations relate the equilibrium internal forces Ri
X , Ri

Z and

M i of layers i with the distributed line loads qi
X , qi

Z , mi
Y , pi

X , pi
Z [19] (Fig. 2):

Ri′
X + qi

X + pi
X = 0,

Ri′
Z + qi

Z + pi
Z = 0, (4)

M i′ − (
1 + εi

)
Qi + mi

Y = 0,

where Ri
X , Ri

Z , pi
X , pi

Z , qi
X and qi

Z are the X– and Z–components of the equi-

librium internal forces, the contact traction vector, and the external distributed

line loads, respectively. The forces Ri
X , Ri

Z (i = a, b) are related to the layer

equilibrium axial forces N i and shear forces Qi with respect to the rotated

cross-section by

N i = Ri
Xcosϕi −Ri

Zsinϕi, (5)

Qi = Ri
Xsinϕi + Ri

Zcosϕi.

M i and mi
Y are the cross-sectional equilibrium bending moment and the

external line moment traction, respectively. The final set of equations concern

the constitutive equations and is called the consistency conditions. They re-

quire that the internal equilibrium and the internal constitutive axial forces

and moments are equal over each cross-section on the reference axis. Satisfying

these conditions results in four equations, which relate the equilibrium-satisfying

forces N i, M i to the constitutive forces N i
c , M i

c obtained as the stress-resultants

of the normal stress, σi, over the cross-section of layer i:

N i = N i
c =

∫

Ai

σi
(
Di

)
dA,

M i = M i
c =

∫

Ai

ziσi
(
Di

)
dA. (6)

σi
(
Di

)
is a function of the extensional strain Di in the fibre z of layer i. The

constitutive quantities, N i
c , M i

c , depend on a chosen material model defined

by the relationship σi = σi
(
Di

)
to be determined experimentally. Note that

N i
c and M i

c are the stress-resultants of the normal stress over the cross-section

of layer i with respect to the coordinate system (y, z) whose null point is not

coincident with the geometrical centre of the layer.
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The presented system of equations cannot be solved uniquely without con-

sidering the appropriate natural and essential boundary conditions which, for

the problem at hand, takes the form:

x = 0:

Ri
X (0) + Si

1 = 0, ui (0) = ui
1,

Ri
Z (0) + Si

2 = 0, or wi (0) = ui
2, (7)

M i (0) + Si
3 = 0, ϕi (0) = ui

3;

x = L :

−Ri
X (L) + Si

4 = 0, ui (L) = ui
4,

−Ri
Z (L) + Si

5 = 0, or wi (L) = ui
5, (8)

−M i (L) + Si
6 = 0, ϕi (L) = ui

6.

In the above equations, ui
m (m = 1, ..., 6) denote the prescribed boundary dis-

placements, whereas Si
m (m = 1, ..., 6) are the prescribed complementary bound-

ary forces at x = 0 and x = L of layers a and b.

2.2. Constraining equations

It is clear that two bodies transmit forces when they are in contact. When

considering a geometrically non-linear problem, it is not suitable to relate the

constraining equations in the eX and eZ directions, as is standard for the geo-

metrically linearized models ([8], [13], [14], [15], [16], [17]). Instead, we introduce

a so-called ‘mean contact surface (or line)’ whose normal and tangential vectors,

e∗n and e∗t , at the point of contact are defined as [41] (see Fig. 2):

e∗n =
ζea

n + (1− ζ) eb
n

||ζea
n + (1− ζ) eb

n||
= e∗nXeX + e∗nZeZ ,

e∗t =
ζea

t + (1− ζ) eb
t∣∣∣∣ζea

t + (1− ζ) eb
t

∣∣∣∣ = e∗tXeX + e∗tZeZ . (9)

Here ζ represents the weight with some value between [0, 1], ei
n (i = a, b)

represents the deformed normal and ei
t the deformed tangent of the contact
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point on the surfaces of layers a and b. The norm ||•|| is the length of the vector,

and e∗nX , e∗nZ , e∗tX , e∗tZ denote the X– and Z–components of the unit vectors e∗n

and e∗t . If not stated otherwise ζ = 0.5 is taken to determine the mean normal

and tangential vectors of the deformed mean contact surface. It should be also

pointed out that e∗n and e∗t in Eq. (9) cannot be uniquely determined when

ea
n = −eb

n and/or ea
t = −eb

t . This condition, however, represents no limitation

in solving practical problems. The action-reaction law between the contact
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Figure 2: Geometrical meaning of the normal and the tangent to the mean contact line.

Description of contact and external tractions.

surfaces requires that the contact tractions satisfy the equilibrium condition

padSa + pbdSb = 0, (10)

where padSa and pbdSb represent the contact forces (Fig. 2). After considering

the assumption that dSa = dSb, we can write

pa + pb = 0. (11)

To simplify the notation, we further introduce p as

p = pa = −pb = pXeX + pZeZ , (12)

where pX , pZ denote the components of p with respect to the spatial coordinate

system per unit of initial length. They can also be expressed with respect to
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the mean basis:

pX = p∗t e
∗
tX + p∗ne∗nX , pZ = p∗t e

∗
tZ + p∗ne∗nZ , (13)

where p∗t is the component of the contact traction force along the vector e∗t ,

while p∗n is its component along the vector e∗n.

Similarly, the components of the displacement vectors ui with respect to the

mean base vectors (i = a, b) take the form

wi∗
n = ui · e∗n,

ui∗
t = ui · e∗t .

Mean uplift, d∗, and mean slip, ∆∗, are defined as

∆∗ = ua∗
t − ub∗

t , d∗ = wa∗
n − wb∗

n . (14)

According to Alfano and Crisfield [33], there are roughly two models available

to formulate the contact constitutive relationship. The coupled (mixed) model is

capable of considering the mixed mode delamination with simultaneous opening

and sliding processes as a coupled act. Consequently, there the contact traction

components are assumed dependent on both d∗ and ∆∗, so that a rather general

constitutive law is possible to be defined as

p∗t = F (∆∗, d∗) , p∗n = G (∆∗, d∗) . (15)

As having in mind structural engineering applications, we here consider only

an uncoupled model of the contact constitutive relationship, which has already

been used by, e.g. Adekola [13] and Gara et al. [31]. This model assumes an

independent behaviour in each direction, which is expressed as

p∗t = F (∆∗) , p∗n = G (d∗) . (16)

It is worth mentioning that a consistent linearization of Eqs. (13) and (14)

around an undeformed configuration and the consideration of (16) results in the

simplified relationships

∆∗ = ∆ = ua − ub, d∗ = d = wa − wb, (17)

p∗t = pX = F (∆) , p∗n = pZ = G (d) , (18)
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which have been derived in [15] already.

For given data, i.e. geometry of the beam, external loadings, boundary

conditions and material parameters, Eqs. (2), (4), (5), (6), (14), (16) constitute

a system of 26 differential and algebraic equations for 26 unknown functions ua,

ub, wa, wb, ϕa, ϕb, εa, εb, κa, κb, Ra
X , Rb

X , Ra
Z , Rb

Z , Na, N b, Qa, Qb, Ma, M b,

∆∗, d∗, pa∗
t , pb∗

t , pa∗
n , pb∗

n with the corresponding natural and essential boundary

conditions (7)–(8).

3. The finite element formulation

The introduction of an exact analytical solution of the stress-strain state of

a composite beam is possible only in the rare cases such as is the case of linear

models (Adekola [13], Robinson and Naraine [3], Kroflič et al. [15]). In order to

obtain the solution of non-linear models of much more complexity, we have to

adress approximative numerical methods. In the present paper the above given

equations will be solved numerically by the strain-based finite element method

([1], [19]). To that end we first introduce a modified principle of virtual work,

in which the deformations become the only unknown functions of the problem

(Planinc et al. [37]). The remaining unknowns are involved in the functional

only through their boundary values. The modified principle of virtual work

reads
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δW ∗ =
b∑

i=a

δW i∗ =

b∑

i=a

∫ L

0

((
N i

c −N i
)
δεi +

(
M i

c −M i
)
δκi

)
dxi+

+

(
ui (L)− ui (0)−

∫ L

0

((
1 + εi

)
cosϕi − 1

)
dξ

)
δRi

X(0)+

+

(
wi (L)− wi (0) +

∫ L

0

((
1 + εi

)
sinϕi

)
dξ

)
δRi

Z(0)+

+

(
ϕi (L)− ϕi (0)−

∫ L

0

κidξ

)
δM i (0)+

+
(−Si

1 −Ri
X (0)

)
δui (0) +

(−Si
2 −Ri

Z (0)
)
δwi (0)+

+
(−Si

3 −M i (0)
)
δϕi (0) +

(−Si
4 + Ri

X (L)
)
δui (L)+

+
(−Si

5 + Ri
Z (L)

)
δwi (L) +

(−Si
6 + M i (L)

)
δϕi (L) = 0.

(19)

As observed from Eq. (19), the principle depends on deformation functions

εa(x), εb(x), κa(x) and κb(x), boundary forces Ra
X(0), Ra

Z(0), Ma(0), Rb
X(0),

Rb
Z(0), M b(0), and boundary displacements and rotations ua(0), ua(L), wa(0),

wa(L), ϕa(0), ϕa(L), ub(0), ub(L), wb(0), wb(L), ϕb(0) and ϕa(L) at x = 0 and

x = L.

In order to discretize Eq. (19), the interpolation functions for deformations

εa, εb, κa and κb have to be introduced. The variation of extensional and

bending strains of layers with x are approximated by the interpolation (i = a, b):

εi (x) =
M∑

m=1

Lm (x) εi
m, (20)

κi (x) =
M∑

m=1

Lm (x) κi
m,

where Lm (m = 1, 2, ...,M) are the Lagrangian polynomials of order (M − 1);

M is the number of interpolation points, and index m denotes the interpolation

point at x = xm; εi
m = εi(xm), κi

m = κi(xm) are the strains at xm. The
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interpolation points along the finite element are taken to be equidistant, xm =
L

M−1m. Following the interpolation in Eqs. (20), we derive the same expressions

for the variations of the deformation quantities as

δεi (x) =
M∑

m=1

Lm (x) δεi
m, (21)

δκi (x) =
M∑

m=1

Lm (x) δκi
m.

When we insert the interpolated functions into the modified principle of

virtual work, the coefficients at the independent variations of functional (19)

must equal to zero resulting in the following system of discrete equilibrium

Euler–Lagrangian equations of a two-layer composite beam accounting for an

interlayer slip and uplift:
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gm =
∫ L

0

(Na
c −Na)Lm dx = 0, m = 1, ..., M

gM+m =
∫ L

0

(
N b

c −N b
)
Lm dx = 0, m = 1, ..., M

g2M+m =
∫ L

0

(Ma
c −Ma) Lm dx = 0, m = 1, ..., M

g3M+m =
∫ L

0

(
M b

c −M b
)
Lm dx = 0, m = 1, ..., M

g4M+1 = ua (L)− ua (0)−
∫ L

0

((1 + εa) cosϕa − 1) dx = 0,

g4M+2 = wa (L)− wa (0) +
∫ L

0

((1 + εa) sinϕa) dx = 0,

g4M+3 = ϕa (L)− ϕa (0)−
∫ L

0

κadx = 0,

g4M+4 = ub (L)− ub (0)−
∫ L

0

((
1 + εb

)
cosϕb − 1

)
dx = 0,

g4M+5 = wb (L)− wb (0) +
∫ L

0

((1 + εa) sinϕa) dx = 0,

g4M+6 = ϕb (L)− ϕb (0)−
∫ L

0

κbdx = 0, (22)

g4M+7 = −Sa
1 −Ra

X (0) = 0,

g4M+8 = −Sa
2 −Ra

Z (0) = 0,

g4M+9 = −Sa
3 −Ma (0) = 0,

g4M+10 = −Sb
1 −Rb

X (0) = 0,

g4M+11 = −Sb
2 −Rb

Z (0) = 0,

g4M+12 = −Sb
3 −M b (0) = 0,

g4M+13 = Sa
4 −Ra

X (L) = 0,

g4M+14 = Sa
5 −Ra

Z (L) = 0,

g4M+15 = Sa
6 −Ma (L) = 0,

g4M+16 = Sb
4 −Rb

X (L) = 0,

g4M+17 = Sb
5 −Rb

Z (L) = 0,

g4M+18 = Sb
6 −M b (L) = 0.
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The system of Eqs. (22) constitutes an algebraic system of 4M + 18 dis-

crete governing equations of the two-layer composite beam for 4M + 18 pri-

mary unknowns. These consist of 4M + 6 internal degrees of freedom, εi
m, κi

m

(m = 1, 2, ...,M), and Ri
X(0), Ri

Z(0), M i(0), and 12 classical external degrees of

freedom, ui(0), wi(0), ϕi(0), ui(L), wi(L), ϕi(L) of a composite beam finite

element. The secondary unknown functions, ui, wi, ϕi, Ri
X , Ri

Z , M i , ∆∗, d∗,

pa∗
t , pa∗

n , pb∗
t , pb∗

n , when needed at a particular value of x in the above Eqs. (22),

are obtained by the equations

ui (x) = ui (0) +
∫ x

0

((
1 + εi

)
cosϕi − 1

)
dξ,

wi (x) = wi (0)−
∫ x

0

((
1 + εi

)
sinϕi

)
dξ,

ϕi (x) = ϕi (0) +
∫ x

0

κidξ,

Ri
X (x) = Ri

X (0)−
∫ x

0

(
qi
X + pi

X

)
dξ,

Ri
Z (x) = Ri

Z (0)−
∫ x

0

(
qi
Z + pi

Z

)
dξ,

M i (x) = M i (0) +
∫ x

0

((
1 + εi

)
Qi −mi

Y

)
dξ, (23)

d∗(x) = wa∗
n − wb∗

n ,

∆∗(x) = ua∗
t − ub∗

t ,

pa∗
t (x) = −pb∗

t (x) = F (∆∗) ,

pa∗
n (x) = −pb∗

n (x) = G (d∗) .

After the boundary conditions have been inserted in the system, the incremental-

iterative Newton–Raphson method is employed for the solution of the assembled

system of the discrete equations of the structure.

4. Numerical examples

Our first numerical examples verify the proposed approach. Only then we

validate our numerical model against the numerical and experimental results
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from literature [39].

4.1. Verification of the mathematical model

The present numerical model is verified:

• by comparing numerical results of the present model with the analytical

solution of Girhammar and Gopu [38],

• by studying p- and h-convergence of the numerical results of a simply

supported, elastic, two-layer beam, and

• by studying p- and h-convergence of the numerical results of a geometri-

cally and materially non-linear two-layer timber beam.

Girhammar and Gopu [38] presented exact solutions of the first- and second-

order theories for the stress and strain state of a simply supported elastic com-

posite beam with the partial interaction only in the tangential direction. The

data of the beam are given in Fig. 3 where K and C denote the linearized con-

tact stiffnesses in the axial and transverse direction. A nearly rigid connection

(C = 1000 kN/cm2) in the normal direction, e∗n, has been considered in the

present verification.

The comparison between the present numerical and Girhammar’s analytical

results [38] is displayed in Table 1. The numerical results have been obtained

with the use of 2 finite elements E5 (5 interpolation and 5 integration points

along the axis of the finite element, see [37] for a detailed description of the

strain-based finite elements). The results of the geometrically linear beam model

as obtained by Kroflič et al. [42] are also shown in Table 1.

An excellent accuracy of the present results for both geometrically linear

and geometrically non-linear theory can be observed with the use of only two

finite elements E5.

Our further verification step comprises analyses of p- and h-convergence of

the method. The effects of the number of elements, the degree of interpolation

and the order of numerical integration on the accuracy of the results are pre-

sented in two verification cases. Geometry, loading and material properties of
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Figure 3: Loading, geometrical and material data of the Girhammar and Gopu beam [38].

Table 1: Analytical [38] and numerical results of a simply supported linear elastic composite

beam.

Analytical [38] 2 FE E5

quantity GLT1 MSOT2 GLT3 GNT4

wa
C [mm] 7.560 9.276 7.560 9.273

Na
C [kN] 0.863 3.897 0.862 3.927

N b
C [kN] –50.863 –53.897 –50.862 –53.927

Ma
C [kNm]∗ 0.4977 0.6162 0.4978 0.6136

M b
C [kNm]∗ 0.1659 0.2054 0.1659 0.2069

p∗t,A [kN/cm] 11.444 13.878 11.447 13.858
1 Geometrically linear theory [38]
2 Modified second-order theory [38]
3 Geometrically linear theory [42]
4 Geometrically non-linear theory (present)
∗ Bending moment with respect to the centroidal

line of the layer

the first, linear elastic, yet geometrically non-linear verification case, i.e. a fully

clamped, two-layer beam, are displayed in Fig. 4.
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Figure 4: Loading, geometrical and material data of a fully clamped beam.

We measure convergence of finite elements using the relative error, defined

as

errorw =
wa

A,20,E6
− wa

A,k

wa
A,20,E6

100%, (24)

where wa
A,20,E6

denotes the vertical displacement of layer a at the beam midspan

(point A) for a 20 E6 finite-element mesh, and wa
A,k is the vertical displacement

for a k finite-element mesh. The results of the 20 E6 finite-element mesh are

taken as the reference results whose absolute error is far less than a promile.

The convergence of displacement wa
A is shown in Fig. 5 for two load levels,

λ = 25 and λ = 900 (P = 10 kN), and for finite elements of various degrees,

N=2 ,..., 6. In element EN , the N -point Gaussian integration was employed.

A substantial decrease in error always occurs with an increase of the number

of finite elements. The solutions applying a high degree polynomial interpolation

are highly accurate even with the use of a small number of finite elements. For

example, the relative error of the vertical displacement, wa
A, when evaluated

with four finite elements E5, is roughly 0.12% for λ = 25 (Fig. 5(a)) and 0.55%

for λ = 900 (Fig. 5(b)). The deformed shapes of the beam are presented in Fig.

6 for load levels λ = 25, 50 and 900. Note a large value of the central deflection

of the two layers of the beam as well as their large uplift.
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Figure 5: The relative error of vertical displacement wA vs. number of elements for load level

(a) λ = 25 and (b) λ = 900.

In our second verification case, we consider both geometrical and material

non-linearity. A timber, two-span continuous beam is analysed. The overall

length of the beam is L = 600 cm, while the spans are L1 = 2
3L = 400 cm and

L2 = 1
3L = 200 cm. Loading and geometrical data of the beam are given in

Fig. 7. Timber rafters are connected to each other with standard nails 40/100

in two rows. The axial distance between the nails is 6 cm. Please observe that

only the bottom layer of the composite beam is supported (Fig. 7).

The non-linear stress-strain relationship of timber proposed by Pischl [43]

(Fig. 8) is assumed with the values of material parameters as follows: Dc,e =

−200/85 h, Dc,f = −6.5 h, Dt,f = 32/10 h, fc,f = −2.88 kN/cm2, ft,f =

2.56 kN/cm2 and Ec = Et = 800 kN/cm2. The non-linear mean slip (∆∗) –

traction force (p∗t ) relationship and the corresponding uplift (d∗) – traction force

(p∗n) relationship are taken from [44], see Figs. 9(a) and 9(b) for their graphs.

The convergence analysis is made firstly for a nearly rigid normal connection,

assuming a big number C = 1000 kN/cm2, and only then the realistic non-linear

relationship shown in (Fig. 9(b)) is considered.
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The measure of convergence of finite elements is again defined to be the

relative error of the deflection

errorw =
wa

A,21 − wa
A,k

wa
A,21

100%, (25)

where wa
A,21 is the vertical displacement of point D of layer a (Fig. 7) for the

21 E4 finite-element mesh, and wa
A,k is the value corresponding to the k finite-

element mesh. The results are presented for two load levels, λ = 10 and λ = 54,

using elements E4 with 3rd degree polynomial interpolation. The load level

λ = 54 represents the collapse load of the structure which occurs due to the

tensile failure of timber fibres at the bottom part of the cross-section.
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Fig. 10 shows the plots of the relative error of vertical displacement wD

vs. the number of elements for load levels λ = 10 and λ = 54 for (a) a rigid

connection (C = 1000 kN/cm2) and (b) a non-linear contact in the normal

direction according to Fig. 9(b). An excellent convergence can be observed for

both load levels and both types of the connection model. The mesh of only 3

finite elements is sufficient to obtain the results within the 0.25% error.

4.2. The influence of ζ

We added a new parameter ζ in Eqs. (9) to a definition of the mean contact

surface vectors. Here we study the effect of ζ on the vertical and transverse

displacement of layers. The analysis is carried out for two similar cases. We

consider a two-layer beam whose geometrical and material properties are iden-

tical to those of Fig. 4. The boundary conditions and the load arrangement are,

however, different, see Figs. 11 and 13. In the first numerical case, the beam is

subject to transverse forces λP1 = λ · 10 kN and λP2 = λ · 5 kN, and an axial

force λP3 = λ · 50 kN at the free end of the upper layer applied at the contact

surface (see Fig. 11). In the second numerical case, we replaced the axial force

with a bending moment λM = λ ·50 kNcm (see Fig. 13). A bilinear constitutive

relationship in the normal direction is considered in both cases, with a tangen-
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λ = 10 and λ = 54: (a) rigid normal connection (C = 1000 kN/cm2), and (b) non-linear

contact in the normal direction (as in Fig. 9(b)).

tial moduli in compression (tension) Cc = 100 kN/cm2 (Ct = 1 kN/cm2), while

a linear constitutive relationship in the tangential direction is assumed with

K = 1 kN/cm2.

Table 2 displays the results for various ζ. There we compare transverse and

axial displacements of the layers at the midspan and at the unsupported end

of the upper layer for different values of ζ. The relative difference between the

results appears to be rather small. Fig. 12 shows the deformed shape of the
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axially loaded two-layer beam for the load level λ = 100 assuming ζ = 0.5. As

seen, there exists a significant relative motion of the contact surfaces in both

normal and tangential directons.

x, X

layer a’’

layer b’’

L =200 cm

�P

�P

z, Z

�P

1

2

3

Figure 11: Geometry, loading and supports of axially loaded two-layer beam.

Table 2: Axially loaded two-layer beam. Comparison of results for different ζ at λ = 100.

ζ wa[L/2] wb[L/2] ua[L/2] ub[L/2] wb[L] ub[L]

0.50 -3.06 cm -13.22 cm 2.59 cm 10.69 cm -11.45 cm 25.87 cm

0 -1.98% 0.17% -1.15% -0.11% 0.45% 0.03%

0.25 -1.01% 0.16% -0.75% -0.08% 0.38% 0.04%

0.75 -0.01% -0.32% 1.05% 0.12% -0.69% 0.15%

1.00 0.30% -0.59% 2.06% 0.24% -1.28% 0.22%

0 50 100 150 200

[cm]�

20

0

–20

[c
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]
�

layer �’ ’
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Figure 12: The deformed shape of axially loaded two-layer beam. Load level λ = 100, ζ = 0.5.

Table 3 presents the analogous results of the beam when loaded with the

bending moment at its free end. We compared transverse and vertical displace-
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ments of each beam layer at beam midspan and at the unsupported end of a

beam for different values of ζ. As in the previous case the relative difference

between the results is small again. Fig. 14 presents the deformed shape for

the moment level λ = 150 and ζ = 0.5. Again, a severe relative motion of the

contact surfaces takes place both in normal and tangential directons.

x, X

layer a’’

layer b’’

L =200 cm
z, Z

�M

�P

�P1

2

Figure 13: Geometry, loading and supports of two-layer beam subject to bending moment.

Table 3: A two-layer beam subject to bending moment. Comparison of results for different ζ

at λ = 150.

ζ wa[L/2] wb[L/2] ua[L/2] ub[L/2] wb[L] ub[L]

0.50 -11.71 cm -32.62 cm -0.76 cm -3.26 cm -24.50 cm -18.04 cm

0 -0.02% -0.01% -0.22% 0.28% -0.26% 0.95%

0.25 -0.01% -0.00% -0.16% 0.14% -0.08% 0.45%

0.75 0.02% 0.01% 0.20% -0.09% 0.05% -0.31%

1.00 0.01% 0.02% 0.54% -0.12% -0.32% -0.63%

4.3. Validation of the model

The model is validated by the laboratory results of Ansourian [39] for the

continuous steel-concrete composite beam and the numerical results of Čas et

al. [44]. The model in [44] assumes a geometrically linear theory of composite

beams. Loading, supporting and geometrical properties of the beam are shown

in Fig. 15.
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λ = 150, ζ = 0.5.

The concrete part of the cross-section is reinforced both at the top and at the

bottom region with the steel reinforcement bars, yet the reinforcement differs in

the areas of sagging and hogging moments: Asag
top = 0 cm2, Asag

bottom = 1.6 cm2,

Ahog
top = 8.0 cm2 and Ahog

bottom = 3.16 cm2.

Fig. 16 presents the material models employed in the analysis. The three-

linear constitutive model is considered for steel (Fig. 16(a)), where Es =

21000 kN/cm2, Esh = 0.008Es, fflange
y = 27.7 kN/cm2, fflange

u = 42.1 kN/cm2,

fweb
y = 34.0 kN/cm2, fweb

u = 44.0 kN/cm2, f reinforcement
y = 43.0 kN/cm2,

f reinforcement
u = 53.3 kN/cm2 and Dsh = 0.012. The model of Desayi and

Khrishnan [45] (Fig. 16(b)) is assumed for concrete, where fcm = 3.0 kN/cm2,

Dc1 = −2.25 h and Dcu = −21 h. The non-linear mean slip – tangential

traction force relationship is assumed as proposed by Ollgaard et al. [4] (Fig.

16(c)). The material parameters of their model (Fig. 16(c)) are: α = 0.558,

β = 10 cm−1 and p∗t,max = 6.53 kN/cm.

There are several mean uplift – normal traction force relationships available

in literature. The graphs of linear, bi-linear [31] and non-linear [33] contact

models often used in research are depicted in Fig. 16(d).

Fig. 17 shows some comparisons between the results of Ansourian [39], Čas

et al. [44] and the present model. There the vertical displacements of point 1

(w1) and point 2 (w2) for a normal rigid connection (C = 1000 kN/cm2) are
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[39].

compared. 9 E4 element meshes were employed in our numerical calculations.

The comparisons between the results show that the stiffness, ductility and load

capacity are well described by the present model. The ultimate load 192 kN

was estimated particularly well being only slightly less than the one obtained

experimentally (196 kN). Results also indicate that the chosen number of studs

results in a very stiff contact in the normal direction, as the numerical results

for the loading capacity and ductility for the rigid contact (C = 1000 kN/cm)

compare best with the experimental ones. The comparisons with Čas et al. [44]

also reveal a very good agreement. These results also indicate that displace-

ments, rotations and deformations are rather small quantities. This is due to

the experimental fact that the structure collapsed shortly after the simultane-

ous localization of deformations in the concrete slab and a huge development of

plastic deformations of steel took place [39]. The same mechanism of collapse

is established by the present numerical model.

We have also studied the effect of the contact model in the normal direction

e∗n on the load-deflection curve. We employed two linear (with the tangential
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e∗n.

moduli C = 1 kN/cm2 and C = 1000 kN/cm2), a bi-linear (Cc = 100 kN/cm2

and Ct = 1 kN/cm2) and a non-linear relationship (Cc = 100 kN/cm2, Ct1 =

40 kN/cm2, Ct2 = 13.33 kN/cm2, d∗t1 = 0.25 cm and d∗tu = 1 cm).

The comparisons are shown in Fig 18. It is clearly seen from Fig. 18 that

a lower rigidity decreases both the ultimate loading and the ductility of the

beam. It can also be observed that the choice of the contact model in the

normal direction has only a minor effect on the load-deflection curve in the

linear regime of deformation.

The choice of the constitutive law in the normal direction e∗n on tractions,

p∗t and p∗n, is finally studied. For the sake of better graphic representation, we

consider the 20 finite-element mesh with E4 elements, although even a much
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Figure 17: Comparison of load-deflection curves of vertical displacement at points 1 and 2.

smaller number of finite elements would give sufficiently accurate results. A de-

tailed analysis shows a negligible effect of the contact model on static quantities,

as clearly seen from Fig. 19, where the variation of bending moments Ma and

M b along the reference axis of the beam is depicted.

The effect of different contact laws on p∗t and p∗n is presented in Fig. 20. As

seen from Fig. 20(a), the effect on p∗t is minor. This is not the case with p∗n,

however, where a flexible type of connection may result in a substantially differ-

ent p∗n compared to the rigid connection. Note, however, that major differences

are localized around the point of application of the load.

5. Conclusions

We have introduced the mathematical model of the geometrically exact two-

layer planar composite beam whose material properties and the behaviour of

connection are fully non-linear. The model is capable of describing large dis-

placements and rotations as well as large slip and uplift between the layers.

The governing equations of the model have been discretized by the strain-

based finite element mehod where only the strain measures, the extensional

strain and the curvature of the axis, are interpolated. The formulation enables us
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Figure 18: Load-deflection graphs of vertical displacement at point 1, w1 vs. load factor, λ,

for various normal contact laws.

to obtain the solution for arbitrary frame-like structures made up of individual

composite beams. Both slip and uplift are allowed between the layers. The

results may well depend on the nature of the contact law which has to be referred

to the rotated normal and tangential directions of the deformed contact surface.

Material properties of layers are also assumed non-linear and easily include

such combinations as timber-timber, timber-concrete and steel-concrete, being

often used in structural engineering.

Numerical analyses indicate that the present strain-based finite element for-

mulation:

• is very accurate in both linear and non-linear regime, so that only a few

finite elements E4 are needed to obtain almost exact results;

• is computationally efficient, because its p- and h-convergence is fast and

practically monotonous, the overall iterative solution algorithm very ro-

bust, and the results reliable;

• is thus highly convenient for the analysis of stiffness, ductility, load capac-

ity and collapse mode of civil engineering composite structures.
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