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Modelling soil behaviour

in uniaxial strain conditions

by neural networks

Goran TURK∗, Janko LOGAR, Bojan MAJES

University of Ljubljana, Faculty of Civil and Geodetic Engineering,

Jamova 2, SI-1001 Ljubljana, Slovenia

Abstract— The feed-forward neural network was used to simulate the be-

haviour of soil samples in uniaxial strain conditions, i.e. to predict the oe-

dometer test results only on the basis of the basic soil properties. Artificial

neural network was trained using the database of 217 samples of different

cohesive soils from various locations in Slovenia. Good agreement between

neural network predictions and laboratory test results was observed for the

test samples. This study confirms the link between basic soil properties and

stress–strain soil behaviour and demonstrates that artificial neural network

successfully predicts soil stiffness in uniaxial strain conditions. The compari-

son between the neural network prediction and empirical formulae shows that

the neural network gives more accurate as well as more general solution of the

problem.

Keywords: oedometer test, artificial neural network, soil characteristics

1. Introduction

Neural networks have been extensively used in structural mechanics [1], predominantly

in structural optimization [2], damage detection and identification and finite element

mesh generation. Reports on using artificial neural networks in the prediction of material

behaviour are not so numerous. One of the early works in this area was reported by

Ghaboussi et al [3]. Biaxial monotonic and uniaxial cyclic behaviour of concrete was

modelled using feed–forward neural network based on a relatively large set of samples of

essentially the same material. Stress–strain relations of sands and the shearing behaviour

of residual soils in triaxial stress–strain conditions have been modelled by artificial neural

networks [4, 5].
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It is difficult to get several samples of soil with the same behaviour, even when the

samples are taken from the same soil layer. Slight changes of water content, liquid limit,

plasticity index, grain size distribution and different overburden pressure for samples taken

from different depths as well as other factors cause different behaviour of samples from

apparently the same material.

This is the reason for extensive testing of soil samples in each geotechnical engineering

project. A lot of experimental data are available which had been used in certain projects

and were practically forgotten later on. Could these old files be used as active knowledge

also in the present and future geotechnical projects? The main goal of our work was to

answer this question. We were encouraged by the fact that several authors have published

some simple correlation formulae between the basic soil properties, such as liquid limit

wL, plastic limit wp, plasticity index IP , and mechanical soil properties, such as the angle

of internal friction, compression index (Cc or λ) and expansion index (Ce or κ). A list of

empirical formulae presented by Azzouz et al. [6] is shown in Table 1.

In the first step, described in an earlier paper [7], we collected 46 oedometer test results

on samples from typical Ljubljana marshland soil. Even though all the samples belong to

the same soil layer, large differences in initial water content, liquid limit and plastic limit

were found (Figure 1a). Consequently the stress–strain behaviour of these samples was

also considerably different (Figure 1b).

We decided to train the feed-forward neural network on the behaviour of random

selection of 40 test results. The test results of the other 6 samples were used for testing

the neural network predictions. Due to differences in the basic soil properties, the training

data included, in addition to the stress– strain curve, also initial water content, liquid and

plastic limit and overburden pressure. Neural networks with different number of hidden

layers and different number of hidden neurones were tested. A good agreement between

the neural network prediction and the measured stress–strain curves was obtained using

a neural network with one hidden layer.

This result encouraged us to use the trained neural network as a material model in

a FEM code [8]. Since this task means the reproduction of trained data and not the

prediction of stress–strain curves which were unknown to the neural network, we expected

and obtained good results (Figure 2).

The present paper will discuss the next step in our research. The database of oedometer

test results was extended by adding tests performed on samples from many different sites
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all around the geologically heterogeneous Slovenian territory.

Additionally, the unloading parts of the oedometer curves were introduced wherever

they were available.

2. Artificial neural network

The geometry of a multi-layer feed-forward neural network is shown in Figure 3. Each

connection between two units is represented by its weight wk
ij, where index i corresponds

to the unit number of (k − 1)th layer, while index j corresponds to the unit number of

kth layer. The value of a unit is multiplied by the corresponding weight and added to the

value of signal in the unit of the next layer

yk
i = f(y′k

i ) = f




nk−1∑
j=1

wk
ij yk−1

i


 (1)

The activation function f(.) used in our application is a sigmoid function 1/(1+e−y). The

results of the neural network depend on the values of the weights wk
ij which have to be

determined by the learning (training) procedure.

A set of known input and output values is termed as input-output pair. All input-

output pairs are usually divided into two sets. The first is termed as learning or training

set which is used to determine the connection weights wk
ij. The second, named testing set

is used to test the performance of the taught neural network. The error back-propagation

(or “generalized delta rule”, as it was termed by its authors Rummelhart and McClelland

[9]) employed in the training procedure is a gradient method in which the weights are

changed for a chosen step size in the direction of the maximum descent for each input-

output pair. The procedure is repeated for each input-output pair until the error is smaller

than prescribed for all input-output pairs.

The details concerning artificial neural networks may be found in many textbooks (see

e.g. Reed and Marks II [10]).

3. Database

Oedometer test is a standard soil deformability test in uniaxial strain conditions. It is

normally performed in a stress loop. Only a smaller part of deformations observed during

the loading is recovered during the unloading. The typical oedometer curve is presented

in semi-logarithmic scale in Figure 4. The slope of the straight portion of the loading
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curve is a soil compression index Cc and the slope of the unloading curve is soil expansion

index Ce. Void ratio increment ∆e can be expressed in terms of compression index Cc or

expansion index Ce by the following equations:

∆e = Cc log
σ0 − ∆σ

σ0

normally consolidated

∆e = Ce log
σ0 − ∆σ

σ0

over − consolidated
(2)

These indices were used for the comparison of neural network predictions with the mea-

sured stress–strain curves.

We collected the oedometer test results from 241 samples. 217 tests were used for

training and 24 for the testing of neural network predictions. For all of these samples

initial water content and Atterberg limits were known. Figure 5 presents the plasticity

chart and the corresponding oedometer curves of all samples included in the database.

Table 2 shows the extreme and average values of relevant soil parameters.

Since some of the samples were taken from overconsolidated soils, the overburden

pressure could not be used any more as a stress history parameter and was substituted by

the overconsolidation pressure which had to be determined for each sample. The following

input parameters were used:

• w0 natural water content,

• wL liquid limit,

• IP plasticity index,

• σP overconsolidation pressure,

• σi−1 previous vertical stress,

• ei−1 previous vertical strain in terms of void ratio,

• ∆σi stress increment.

The only output parameter was

• ∆ei strain increment in terms of void ratio.

4. Neural network prediction of the oedometer loading curve

Different neural networks with 15 to 100 neurones in one hidden layer and 10 to 50 neu-

rones in each of two hidden layers were trained and tested later on. The best predictions

were obtained with 45 neurones in one hidden layer. Generally the neural network pre-

diction based on training with the extended database was slightly less accurate than the
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predictions in the previous case, where only one soil type was taken into consideration.

Some of the results of neural network predictions of test samples behaviour compared with

the measured results are shown in next figures. Figure 6 presents the results on samples

from test set with good agreement between the predicted and the measured values.

Some predictions exhibited interesting deviations from the expected results. Test sam-

ple No. 2 was tested up to unusually high vertical stress of 1700 kPa (Figure 7). There

was also a large stress increase from 400 to 1100 kPa. Within the training set all stress

increments were much lower. For this reason the neural network could not predict the

correct strain increment for this case, as shown in Figure 7 (case NN45). When this

stress increment was subdivided into smaller stress increments, the predicted curve got

the correct shape, however the exact values were not obtained.

The test sample No. 22 exhibited swelling during the first loading step (Figure 8).

This means that the laboratory test was not carried out strictly according to standards.

Moreover the liquid and plastic limits of the sample were outside the range of these

parameters within the training set. Nevertheless the neural network prediction agreed

well with the measurements. Only the swelling behaviour observed in the first load step

that had not been trained was not reproduced.

The measured stress–strain points of the test sample No. 24 show that an unwanted

loading occurred at the loading step of 24 kPa (Figure 9). Neural network prediction

follows the trained behaviour and at the end reaches the measured values of strains.

Generally it can be observed that some test results were predicted very well and others

with less accuracy. The main reason is attributed to the fact that 217 samples included in

the training set are still a small number compared to numerous combinations of the basic

soil parameters, stress–strain behaviour and laboratory conditions (stress increments) that

can be of our interest. We strongly believe that more reliable predictions can be obtained

with further enlargement of the database.

5. The neural network prediction of unloading curve

So far only the loading curve of the oedometer test results were studied. As a next step

we wanted to extend the research to the unloading part of the oedometer curve. We

used the same database. By simply repeating the procedure used in the prediction of the

loading curve extremely disappointing results were obtained. The predicted oedometer

curves had got not only wrong values but even wrong shape. From Figure 10 which shows

the results on test sample No. 4 it can be observed that even the loading curve which was
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previously determined with sufficient accuracy obtained a wrong shape. It was obvious

that the data on the unloading had a negative effect on the training of the loading part

of the oedometer curve. The solution to this problem was to add a switch for loading and

unloading as an additional input parameter. After that the predicted oedometer curves

got the right shape. The loading curve was still not predicted with the same accuracy as

in the case where only the loading curve was trained.

As the final step we tried to change the overconsolidation pressure after the completion

of the loading cycle. This is physically correct since the overconsolidation pressure is

defined as the highest pressure at which the sample has ever been consolidated. Such a

change in the training data set contributed to the improved prediction of the loading as

well as the unloading part of the oedometer curves. For certain tasks, e.g. prediction of

plastic (unrecoverable) deformations, where only the difference between the loading and

the unloading curve is important, the neural network prediction is acceptable, since the

unloading deformations are very small compared to loading deformations. If, however, an

accurate prediction of expansion index Ce is needed, the neural network results are at the

present stage not reliable enough. Figure 11 presents the results on selected test samples.

The results of two different training procedures are compared. Dashed line presents the

results obtained with eight input parameters (loading - unloading switch was added to

the original seven input parameters), whereas solid line presents the results with eight

input parameters and changed overconsolidation pressure.

6. Two cycles of loading and unloading

By changing the overconsolidation pressure after the last loading step we formed the

basis for the successful prediction of a new loading cycle. Since there was no such test in

our database, we could only make a qualitative judgement. Figure 12 shows the neural

network prediction of the soil behaviour during two loading - unloading cycles. We can

see that neural network can reproduce the general rules of elastoplastic soil behaviour in

uniaxial strain conditions.

7. Discussion

Five different training procedures were used in this study:

A. loading curve alone with the original seven input parameters and one output param-

eter,
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B. unloading curve alone with the original seven input parameters and one output pa-

rameter,

C. simultaneous training of the loading and unloading curve with the original seven input

parameters and one output parameter,

D. simultaneous training of the loading and unloading curve with a switch for loading

and unloading as the eighth input parameter,

E. simultaneous training of the loading and unloading curve with a switch for loading

and unloading as the eighth input parameter and changed overconsolidation pressure

after completed loading.

Table 3 shows the error analysis depending on the training procedure. Four parameters,

for which the maximum, the mean and the median are shown in Table 3, were used as a

measure of error:

• normalised error in individual stress–strain point prediction:

∆e1 =
∣∣∣∣
eNN − etest

etest

∣∣∣∣ , (3)

where etest and eNN are the values of void ratio in the testing data set and its neural

network approximation, respectively.

• the average error of individual stress–strain curve prediction:

∆e2 =
1

N

N∑
i=1

∆e1i, (4)

where N is the number of stress–strain points of oedometer curve.

• normalised error in the prediction of the compression index:

∆Cc =
∣∣∣∣
Cc NN − Cc test

Cc test

∣∣∣∣ , (5)

where Cc test and Cc NN are the values of the compression index determined from the

testing data set and its neural network estimate, respectively.

• error in the prediction of expansion index ∆Ce. The actual values of expansion index

Ce are relatively low. Therefore the normalised errors with respect to the value of Ce

are at times extremely high. As we tried to compare the prediction of loading and

unloading part of oedometer curves, the errors of index Ce prediction were normalised

with respect to the corresponding value of Cc:

∆Ce =
∣∣∣∣
Ce NN − Ce test

Cc test

∣∣∣∣ , (6)
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where Ce test and Ce NN are the values of the expansion index determined from the

testing data set and its neural network estimate, respectively.

Table 3 shows that training procedures A, D and E give similar results, if only the

loading part of the oedometer curve is considered. The predictions of individual points

are slightly less accurate when the loading and unloading curves are trained simultaneously

(cases D and E), whereas the prediction of the compression index Cc is slightly improved.

The overall prediction is the worst in case C, but surprisingly gives the lowest errors for

expansion index Ce.

During the training process it was observed that artificial neural network could not

learn some of the training data up to the required accuracy of 2%. After a careful analysis

of the training data set we found out that there were some groups of test samples in our

database that had very similar Atterberg limits and water content but exhibited different

behaviour in the oedometer test. An example of such a group of tests is presented in

Figure 13. Three samples (No. 26, 29 and 30) had been taken from the same soil layer.

Laboratory results showed that the differences in the basic soil parameters were within

2%. Two oedometer curves coincided well, the third, however, (No. 26) was slightly more

deformable. Incidentally, sample No. 26 was included in the training set and the other

two samples in the test data set. As one would expect, the neural network prediction

followed the trained behaviour. Such cases show the need for a much larger database.

We studied large differences in laboratory observations and neural network predictions

in more detail. No evident relationship between the errors in approximated indices, such as

Cc and Ce, and the basic soil parameters could be found. Since all the available data on the

tested soil samples were included in the training process, we can only state a hypothesis at

this stage that some other soil parameter governs the unloading behaviour of soil samples

in uniaxial strain conditions. This parameter can be either the shape of individual grains

or soil texture or shrinkage limit. These parameters are not routinely investigated and

were not known for the samples from our database. If such a hypothesis proved to be

correct, this would be of great importance for understanding the soil behaviour. Other

parameters such as grain size distribution and mineralogical composition are indirectly

included in the study via Atterberg limits.

Table 4 presents the comparison between the neural network prediction of compression

index Cc,ANN and empirical formulae Cc,1 to Cc,6 given in Table 1. It can be seen that the

neural network prediction gives the highest correlation coefficient and the lowest error for
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the testing data set. Also, it has to be noted, that the user of empirical formulae has to

make a correct choice of the most appropriate one for the type of soil under consideration,

whereas the neural network estimate includes all types of soils which were included in the

training database.

8. Conclusions

On the basis of the presented research we can draw the following conclusions:

• Artificial neural network can serve as a simple material model, since it can reproduce

the material behaviour without the necessity of understanding the background for

such behaviour.

• The loading curve of the oedometer test results obtained from very different soil sam-

ples can be not only reproduced but also predicted by using trained feed forward

neural networks. The prediction is based only on the basic soil parameters.

• At this stage we can only make the hypothesis that some other factors that were not

included in the training process (e.g. the shape of soil particles, soil texture, shrinkage

limit) play a major role in the unloading characteristics of soils.

• A much larger database would lead to better predictions. A special care should be

taken in the selection of the laboratory data. Not all tests are performed strictly

according to standards.

• Collecting all tests from past projects is of great importance, since such data can

be used to establish empirical correlation between soil parameters. The use of arti-

ficial neural networks is certainly an improvement with respect to known empirical

relationships between many soil parameters.
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Figures

Figure 1: a) Plasticity chart of 46 Ljubljana marshland soil samples

b) Oedometer curves of 46 oedometer tests of Ljubljana marshland soil

Figure 2: Comparison between settlement prediction of neural network and Cap model

Figure 3: Multi-layer feed-forward neural network

Figure 4: Typical oedometer curve with definitions of Cc and Ce

Figure 5: a) Plasticity chart of 241 soil samples from different parts of Slovenia

b) Corresponding oedometer curves

Figure 6: Some successfully approximated oedometer curves

Figure 7: Oedometer curve for exceptionally high stresses

Figure 8: Swelling behaviour has not been accounted for

Figure 9: Occurrence of an unexpected loading has not been accounted for

Figure 10: Initially trained neural network for loading and unloading is not adequate

Figure 11: Neural network trained with the additional input variable – loading-unloading
switch

Figure 12: Two loading cycles

Figure 13: Comparison between three oedometer curves with similar Atterberg limits and
water content
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Table 1: Some empirical formulae for Cc [6]

Equation Region of applicability

Cc,1 = 0.007 (wL − 7) Remolded clays

Cc,2 = 1.15 (e0 − 0.35) All clays

Cc,3 = 0.30 (e0 − 0.27) Inorganic, cohesive soil, silt

Cc,4 = 0.0115 w0 Organic soils–meadow mats, peats

Cc,5 = 0.75 (e0 − 0.5) Soils of very low plasticity

Cc,6 = (0.156 e0 + 0.0107)(1 + e0) All clays
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Table 2: Some numerical data about soil samples composing database

Parameter min. max. average

Initial void ratio e0 0.42 3.21 1.8

Initial water 15.7 119.3 39.6
content w0 (%)

Liquid limit wL (%) 23.1 133.1 51.6

Plastic limit wP (%) 15.0 53.4 26.6

Plasticity index IP (%) 2.9 90.6 25.0

Consistency index Ic (%) −2.97 2.3 0.50

Unit weight γ (kN/m3) 12.3 22.2 18.3

Depth z (m) 0.4 41.4 9.1

Overconsolidation 8 702 92
pressure σP (kPa)

Maximum applied stress 80 2000
during test σ′

v max (kPa)
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Table 3: Some data on attained accuracy of oedometer curve, compression
index Cc and expansion index Ce approximations

A B C D E

∆e1 max(%) 22.9 18.4 49.8 23.6 21.1

∆e1(%) 3.4 3.2 13.9 4.4 4.0

∆ẽ1(%) 2.8 2.3 12.8 3.3 3.2

∆e2 max(%) 9.1 9.3 30.4 9.2 9.1

∆e2(%) 4.1 3.2 14.0 4.3 4.0

∆ẽ2(%) 3.8 2.3 13.2 3.7 3.7

∆Cc max(%) 75.1 - 101 59.4 49.2

∆Cc(%) 25.9 - 50.6 22.0 21.1

∆C̃c(%) 20.1 - 49.5 20.8 13.6

∆Ce max(%) - 71.8 41.4 60.0 70.2

∆Ce(%) - 14.7 12.7 18.6 16.2

∆C̃e(%) - 8.0 8.2 13.8 12.1
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Table 4: Comparison between the neural network estimates
and some empirical formulae

Mean normalised errors
Cc,ANN Cc,1 Cc,2 Cc,3 Cc,4 Cc,5 Cc,6

0.2104 0.7835 2.9362 0.2556 1.5212 0.7562 0.9307
Coefficient of correlation

Cc,ANN Cc,1 Cc,2 Cc,3 Cc,4 Cc,5 Cc,6

0.9508 0.7404 0.9283 0.9283 0.8667 0.9283 0.9342
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