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Prediction of subsidence due to underground mining by artificial

neural networks
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Abstract

Alternatively to empirical prediction methods, methods based on influential functions

and methods based on mechanical model, artificial neural networks can be used for

the the surface subsidence prediction. In our case, the multi-layer feed-forward neural

network was used. The training and testing of neural network is based on available

data. Input variables represent extraction parameters and coordinates of the points

of interest, while the output variable represents surface subsidence data. After the

neural network has been successfully trained, its performance is tested on a separate

testing set. Finally, the surface subsidence trough above the projected excavation is

predicted by the trained neural network. The applicability of artificial neural network

for the prediction of surface subsidence was verified in different subsidence models

and proved on actual excavated levels and in levelled data on surface profile points in

the Velenje Coal Mine.
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1 Introduction

Underground mining causes the formation of surfacesubsidence trough. The predic-

tion of the consequences of mining is an important task for the mine surveying service.

The knowledge about the surface activity caused by mining, and the prediction of sub-

sidence enable efficient repairs of the mining damage, and has a positive impact on the

economic results of mining. Accurate and reliable prediction can, beside other factors,

influence significantly the strategy of the operation of a mine. Due to a large number

of parameters influencing the behaviour of the rock above the excavated space, the

prediction of mining consequences is a demanding task. It is difficult to determine all

the parameters, and it is even more difficult to determine their relative impact.

Displacements cause damage in different objects on the surface. Therefore the aim

of mine surveyors at the beginning of the last century was to estimate the impact of

underground mining on buildings, transport systems and surface above mines. They

started to measure the displacements of points in the mine and on the surface, in order

to be able to control the subsidence process and to diminish the damages caused by the

excavation. They prescribed procedures of monitoring displacements and developed

the methods for the prediction of surface subsidencein individual mines (Kratzsch,

1983). Several prediction methods have been developed.

The first methods for the prediction of surface subsidence wereempirical prediction

methods. These methods are based on the correlation of the measuring data and the

related measuring results with the geometric parameters of the excavations (height and

depth of the excavation or thickness and depth of the layer, as well as the quantity of

the excavation, the location of the excavated edge, etc.). As these methods are derived



from the measurements in a specific area, they are in direct relation to it, and the results

are valid only for the investigated area. Examples of such methods are: the method of

the angle of intersection, the Russian, Polish, Hungarian and the programmed profile

curve methods, methods of the integration grid as well as the prediction model of the

Velenje Coal Mine.

Prediction methods based on influential functionsform the second group of predic-

tion methods. The influential function is used to describe the value of the impact of

elementary part of the excavation on the formation of subsidence. This group of predic-

tion methods is based on seven assumptions or principles which simplify the calculus

and make the methods generally applicable. The principle of using the methods is

to select the influential function for each mine and then determine the coefficients in

order to ensure that the subsidence curve is similar to the form of the subsidence in

nature. The methods are simple and efficient, but it is difficult to calculate the coeffi-

cients in the equations of influential functions, as in nature the subsidence is influenced

by numerous geomechanical and geological phenomena.

The third group of prediction methods consists of themodel prediction methods.

Their origin is in mathematical-physical models. The behaviour of roof and the devel-

opment of subsidence are calculated according to the laws of mechanics. The elastic

and plastic models of subsidence belong to this group of prediction methods. When

using these models, the problem is usually solved by numerical methods, such as the

finite element method, the finite difference method or the boundary element method.

An alternative to the above stated methods is theprediction of surface subsidence

with artificial neural networks. An important advantage of such prediction of subsi-



dence is that one does not need to know the geological and geomechanical conditions

in the slope above the excavation. However, we need to have access to the data on

excavations and the data on the displacements of points on the surface or the data on

the causes of subsidising and the data on the consequences of excavations. It is much

easier to get these data than to acquire all the influences needed for the previously

mentioned methods of subsidence prediction.

2 Artificial neural networks

Artificial neural networks are networks, consisting of an arbitrary number of very sim-

ple elements, called neurons. Neurons, presented in the network as variables with the

values of the momentary signals, are connected by connections. These are defined by

weights. Through connections a neuron receives a signal from other neurons. The acti-

vation function intensifies or weakens the signal which is transmitted to other neurons.

Considering the geometry of the network, there are several types of neural networks:

Hopfield, Hamming, Campenter and Grossberg, Kohonen,multi-layer feed-forward

neural networkand others (Lippmann, 1987; [1]). Neural networks with different ge-

ometry are used for solving various problems. The first three types of neural networks

are usually used for binary input data and with problems of classification into classes.

The last two types of neural networks are appropriate for the approximation of an un-

known function. For the prediction of subsidence, the multi-layer feed-forward neural

network is used, as our aim is to approximate an unknown relationship between the

input and output data. The input data include the data on excavations and location

coordinates of grid or profile points on the surface, and the output data are their height



coordinates.

2.1 Multi-layer feed-forward neural network

The geometry of a multi-layer feed-forward neural network is shown in Fig. 1. Input

units are connected to the first layer of hidden units which are further connected to the

units of the second hidden layer. The units of the last hidden layer are connected to

the output units. The multi-layer feed-forward networks are usually employed as the

approximators of the unknown functional relation. In fact, it was shown in (Hornik

et al., 1989) and (Funahashi, 1989) that any continuous function may be accurately

approximated by the multi-layer feed-forward neural network.

The input units represent the input data, and the output units represent the output

data. The hidden layers may be considered as a black box which performs the neces-

sary transformations of the input data so that the target output data are obtained.

Each unit is represented by its valueyk
i . Each connection between the units is

represented by its weightwk
ij, where indexi corresponds to the unit number of thekth

layer, while indexj corresponds to the unit number of the(k − 1)th layer. The input

layer is denoted by 0, whereas the output layer is denoted bynl. The signals travel in

one direction only, i.e. from the input layer toward the output layer. The value of a unit

is multiplied by the corresponding weight and added to the value of the signal in the

unit of the next layer. In addition, the value of bias neuron or thresholdϑk
i is added to

the equation

yk
i = f

(
nk−1∑
j=1

wk
ij yk−1

j + ϑk
i

)
. (1)

This equation is illustrated in Fig. 1.Activation functionf(.) enables the modelling of



an arbitrary non-linear relation between input and output variables. Different functions

could be used as an activation function. The usual choices of activation function are a

sigmoid function

f(y) =
1

1 + e−y
, (2)

tanh y, or Gaussian. The behaviour of the neural network depends on the values of

weightswk
ij and thresholdsϑk

i which have to be determined by the training (learning)

procedure.

The set of known input and output values is termed aninput-outputpair. All input-

output pairs are usually divided into three sets. The first islearning or training set

which is used to determine the connection weightswk
ij and thresholdsϑk

i . When the

training procedure ends, after the neural network performs adequately for all input-

output pairs in the training set, the neural network is assessed using thevalidationset

of input-output pairs and the optimal neural network is chosen. Finally the chosen and

taught neural network is tested, using thetestingdata set.

For numerical reasons the values of input and output units have to be normalized.

The normalization of the values of output units depends on the range of activation

function. Usually, the linear transformation works well, although sometimes a non-

linear transformation may help if the data are clustered.

The supervised training is in fact a general optimization problem in which the min-

imum of errorEp is sought

Ep =
1

2

no∑
i=1

(
tpi − ynl

pi

)2
, (3)

wheretpi are the target output values,ynl
pi are the values of neurons in the output layer,

i.e. the output values evaluated by neural network,no is the number of neurons in



output layer, i.e. the number of output variables.

Numerically this is a very demanding problem since there normally exists a large

number of local minima. There are two essentially different approaches:error back-

propagationalgorithms which is basically a gradient method, and genetic algorithms

which is in fact a stochastic search (Goldberg, 1989). There are many variations and

combinations of the above mentioned method, see e.g. Treadgold and Gedeon (1998).

If the number of weights is relatively small, the gradient method is a good choice. The

error back-propagation or generalized delta rule as it was termed by its authors Rumel-

hart and McClelland (1986) is a gradient method in which the weights are changed for

a chosen step size in the direction of the maximum descent for each input-output pair.

However, there is always a possibility of finding only a local minimum which may

not give satisfactory set of weights. One solution to this problem is simply to run the

error back-propagation procedure for different starting points and then choose the best

result.

In the error back-propagation the weights are changed in the direction of maximum

descent of each input-output pairp

∆wk
ij = −∆w

∂Ep

∂wk
ij

, and ∆ϑk
i = −∆ϑ

∂Ep

∂ϑk
i

, (4)

where∆w is the step size defining the rate of changing the weightswk
ij, and∆ϑ is the

step size defining the rate of changing the thresholdsϑk
i . The derivatives in Eq. (4)

are determined consecutively from the weights between the output layer and the last

hidden layer towards the weight between the input layer and the first hidden layer by

the chain rule

∂Ep

∂wk
ij

=
∂Ep

∂yk
pi

∂yk
pi

∂wk
ij

and
∂Ep

∂ϑk
i

=
∂Ep

∂yk
pi

∂yk
pi

∂ϑk
i

. (5)



The derivatives∂yk
pi/∂wk

ij and∂yk
pi/∂ϑk

i are obtained from Eq. (1)

∂yk
pi

∂wk
ij

=
df
(
y′kpi

)
dy′kpi

yk−1
pj and

∂yk
pi

∂ϑk
i

=
df
(
y′kpi

)
dy′kpi

. (6)

In the case of neurons in the output layer the derivatives∂Ep/∂yk
pi are determined by

the following equation which stems from (3)

∂Ep

∂ynl
pi

= −
(
tpi − ynl

pi

)
. (7)

In the case of all other neurons the derivatives are obtained from Eq. (1)

∂Ep

∂yk−1
pi

=

nk∑
j=1

∂Ep

∂yk
pj

∂yk
pj

∂yk−1
pi

. (8)

The process is repeated for each input-output pairp until the error is smaller than

prescribed for all input-output pairs. If the prescribed error is too small, overfitting

may occur. Overfitting means that the neural network may reproduce input-output

pairs used in the training procedure, but it fails to generalize them and may produce

erroneous results, if some values of the input units are changed.

There are two major difficulties when using error back-propagation: it is almost

impossible to choose the optimal step size, and quite often the procedure converges to

a local minimum. If the step size is too large, we may overshoot the minimum. On the

other hand, if the step size is too small, the convergence is very slow. Both difficulties

may be overcome by different procedures with adaptive step size (Janakiraman and

Honavar, 1993), or with the introduction of the inertial term (Lippmann, 1987).

The parameters, i.e. the number of hidden layers and the number of hidden neurons,

of the optimal neural network are problem dependent. One of the methods how to

choose the right network is by using the validation set to determine which one performs

best. However, some general guidelines can be given. If the number of units is very



large, the training procedure may be very slow, since each forward calculation takes a

substantial computational effort. Although larger networks are usually able to learn the

sought relationship, this may sometimes be a drawback. A large network may easily

reproduce the training set of input-output pairs but it fails to generalize, yielding to a

poor testing performance. Networks with insufficient units may have problems to learn

properly during the training procedure.

2.2 Use of neural network in mining

The use of neural networks in engineering has become extremely widespread in the

last few years. Let us describe only a few examples of using neural networks in mining

and in similar expert fields.

Neural networks were used to determine ore boundary delineation, aggregate qual-

ity and rock indentation depth (Huang and Wänstedt, 1997; Huang and Wänstedt,

1998), ore reserve estimation (Wu and Zhou, 1993), and real-time roof pressure (Feng

et al., 1996).

In geotechnical researches neural networks were also used for the approximation of

oedometer curves (Turk et al., 2001) and as a constitutive model of several soils (Logar

and Turk, 1997) and other materials (Ghaboussi et al., 1991).

In the field of satellite remote sensing, neural networks were used for the determina-

tion of different lithological regions (Hafner and Komac, 1998). There are some other

works dealing with ore and rock characterisation (Cutmore et al., 1997; Millar and

Hudson, 1994; Utt, 1999). Neural network can also serve as a tool which helps to de-

termine the relative importance of the factors influencing the stability of underground



objects according to their importance (Yang and Zhang, 1997). An interesting use of

neural network is reported in Dysart and Pulli (1990), Finnie (1999) and Musil and

Plesinger (1996) where neural networks were used to determine the event type (earth-

quake, quarry and mining blasts, chemical explosions, etc.) from the seismological

data. Similar topic is covered also by in Rudajev andČı́ž (1999) in which the mining

tremor occurrence is estimated by ANN.

3 Numerical examples

The results of subsidence prediction using artificial neural network (ANN) are com-

pared to the results of the stochastic method of subsidence (Todorović, 1986) and uni-

form prediction model of the Velenje Coal Mine (Medved, 1994). Finally, the effi-

ciency of the ANN is checked also against actual results of subsidence measurements,

caused by the underground mining in the Velenje Coal Mine.

The neural network is trained with input-output pairs of a training data set by the

generalised delta rule. The iterations are repeated as long as the relative error in all

input-output pairs is larger than 5%. The relative error is obtained as the difference

between the actual value and the value obtained by ANN, divided by the size of the

actual value of the subsidence.

The success of ANN training is evaluated on a testing data set with the difference

δ, between the actual value of subsidence, and the value, obtained by neural network.

For the assessment the following statistics are used:

• minimum value of differencesδmin = min
i

δi ,



• maximum value of differencesδmax = max
i

δi ,

• mean value of differences̄δ =
∑

i δi

Ni−o
,

• standard deviation of differencess =

√∑
i(δi−δ̄)

2

Ni−o−1
,

• mean deviation of differencesd =
∑

i|δi−δ̄|
Ni−o

,

whereNi−o is the number of input-output pairs.

During a preliminary research the comparison between the programmed profile

curve method and the ANN approximation is caried out. The preliminary research

lets us conclude the following: first, the use of neural networks is appropriate for dif-

ferent lengths and depths of the excavations, furthermore it is more appropriate to use

a coarse grid of input-output pairs, the networks can be trained even if there is only one

hidden layer of neurons, and the results are poorer if there are three or more hidden

layers of neurons. In such case the optimal geometry of ANN results to be the one with

two hidden layers, each containing 40 neurons.

3.1 Comparison with stochastic model of subsidence

The slope subsidence above the excavated space is to be predicted by using the stochas-

tic model of subsidence. With the coordinates of these points and the calculated ap-

pertaining subsidences the input-output pairs of the training and testing data sets are

formed.

Beside coordinatesY andX of the surface point of subsidence the input data consist

also of width, length, depth and the excavated height of the excavation. The output data

are the calculated subsidence or coordinateZ of surface point. To prepare the training



data set, eight different sizes of excavations (Table 1) are used. They are located at

three different depths (300 m, 350 m and 400 m) and have different excavated heights

(4 m, 5 m and 6 m). The subsidence is presented in equidistant square grid of11 × 11

points. In the training data set there areNi−o = 8 · 3 · 3 · 11 · 11 = 8712 input-output

pairs. When calculating subsidences, other parameters of the excavations are the same

for all excavations (the angle of dip is0◦, the subsidence factor is 1, the influence

angle in the direction of dip is70◦, and in the direction of strike is55◦, relative limit

subsidence for the edge of subsidence in floor, roof and in the direction of strike is 1%

of the maximum subsidence).

Based on the previously obtained experience, the neural network with two hidden

layers with forty neurons per layer is selected. Thus the geometry of ANN is6− 40−

40− 1. There are6 · 40+40 · 40+40 · 1 = 1880 connections between neurons and the

same number of weights that the neural network needs to define in the training stage.

Also, 40 + 40 + 1 = 81 values of threshold are to be determined.

The testing of the trained neural network is carried out for different examples of

the excavation. Fig. 2 presents the results of the prediction of subsidence caused by a

350 m wide and 400 m long excavation with the excavating height of 4.0 m and mean

depth of 325 m. In this case the testing statistics are as follows:δmin = −0.283 m,

δmax = 0.255 m, δ̄ = 0.039 m, s = 0.093 m, d = 0.065 m, and correlation coefficient

r = 0.997 (see Fig. 3).

In addition to the previously mentioned parameters the angle of dip was added as

one of the parameters influencing the subsidence. All the treated excavations are cal-

culated for three angles of dip:0◦ (already calculated),10◦ and20◦. If the subsidence



was transposed into a grid of11× 11 points, there would beNi−o = 8712 · 3 = 26136

input-output pairs in the training data set. Due to the large number of input-output pairs

the decision was taken not to present the subsidence in a grid, but by point subsidences

of the selected profile. The selected profile is presented in Fig. 4. The selected (main)

profile consists of eleven grid points: from grid point No. 6 to grid point No. 116.

With the profile presentation of the subsidence there areNi−o = 11 · 8 · 3 · 3 · 3 = 2376

input-output pairs in the training data set.

Since various values of the angle of dip of the levels (inclined excavations) are

given, a neuron representing the angle of dip is added into the input layer. Thus there

are seven neurons in the input layer. The geometry of ANN is7 − 40 − 40 − 1.

The testing of the trained neural network is performed on several profiles. Fig.

5 shows the test results of the excavation with the width of 200 m, length of 450

m, excavation height of 5.5 m, excavation depth of 325 m and angle of dip0◦ (1st

case), and the test results of the excavation with the width of 450 m, length of 450 m,

excavation height of 5.5 m, excavation depth of 375 m and angle of dip15◦ (2nd case).

The statistics of this testing are presented in Table 2.

3.2 Comparison with uniform prediction model of the Velenje Coal

Mine

The prediction of slope subsidence above the excavated levels with neural networks is

continued with a subsidence obtained by uniform prediction model of the Velenje Coal

Mine.

For the training of ANN, 33 levels of the southern wing of the cave Preloge in the



Velenje Coal Mine were used with the following parameters (Fig. 6):

• level heights or names from ET.k.+100 up to ET.k.–65/D,

• level widths from 62 m up to 141 m,

• level lengths from 82 m up to 853 m,

• middle level depths from 260 m up to 425 m,

• angle of dip – inclination of all levels is equal to0◦,

• excavation heights of levels from 8.0 m up to 13.9 m,

• subsidence factor 0.86,

• average residual angle of internal friction23◦.

In Velenje Coal Mine the levels are labeled by ”ET.k.+h”, whereh is the elevation

above the see level in meters. The same labels of levels are kept in this paper.

The influential area due to the excavation of all levels is covered by a network of

grid points. In these points the subsidences that occur due to the excavation in an

individual level are calculated. Beside the coordinates of grid points the input data

consist also of level length and width, rotation of the main axis of the level in the

coordinate system, excavation height of the level, multiplied by the subsidence factor,

coordinates of levelsY andX centroide, and level depth. The geometry of ANN is

9−40−40−1. Thus, there are nine neurons in the input layer, two hidden layers with

forty neurons in each hidden layer and one neuron in the output layer.

When the subsidence is treated by grids, the influential area is covered by a grid

consisting of20 × 20 grid points. Since there are 33 levels used for the training, the



selected grid would yield 13200 input-output pairs in the training data set. Due to the

large number of input-output pairs we decided to decrease their number by removing

them randomly. Thus there remain 7989 or 60% of the input-output pairs in the training

data set.

For the testing of neural network we used the level ET.k.–80/A of the southern wing

of the cave Preloge with the following parameters (in Fig. 6 the test level is marked):

• level width 101 m,

• level length 794 m,

• middle level depth 440 m,

• angle of dip – level inclination0◦,

• excavation height of the level 11.0 m,

• subsidence factor 0.86,

• average residual angle of internal friction23◦.

The test results are presented in Fig. 7. The figure shows that the predicted sub-

sidence is to a large extent similar to the one calculated by the neural network. In

this case the testing statistics are as follows:δmin = −0.300 m, δmax = 0.180 m,

δ̄ = −0.004 m, s = 0.071 m, d = 0.044 m, and correlation coefficientr = 0.998 (see

Fig. 8).



3.3 Prediction based on long term measurements

Finally, the subsidence of the slope above the excavated levels is to be predicted using

the data supplied by the mine surveying service of the Velenje Coal Mine. The data

can be divided into two groups.

The first complex consists of the data pertaining to the points in the selected profiles,

stabilised by iron wedges (Fig. 6), i.e. location coordinates of the point, levelling

year and levelled altitude of the point. The data are available for 37 points located

in four profiles. The second complex consists of the data pertaining to these levels

(Fig. 6). These are: level name, indicating also its altitude, coordinates of corner and

fraction points of the level corners, excavating height of the level and subsidence factor,

excavating direction in the level and the date of the first and the last day of excavation

in the level. We use data on 33 levels of the southern wing of the cave Preloge in

Velenje Coal Mine that were being excavated between 1973 and 1997. The available

data allow us to form input-output pairs of the training and testing data sets.

From the coordinates of corner and fraction points of level corners the rectangular

levels are calculated in such way that the new rectangular levels, with the same surface

as the real ones, match the real levels as much as possible. The transformation needs

to be carried out due to different shapes of levels (from almost regular rectangular,

presented with four points up to the shape given by twenty-two points). From the cor-

ner points the coordinates of transformed rectangular forms of levels, the lengths and

widths of levels, rotations of main level axes in the coordinate system and coordinates

of the levelsY andX centroides are calculated. The stated parameters of levels present

the first five input variables necessary for the ANN training and testing procedure. The



sixth input variable is the excavating height of each level multiplied by subsidence fac-

tor. For the subsidence factor the value 0.86 is assumed. The seventh input variable is

the depth of the level, calculated from the altitude of each level. It is assumed that the

surface is 360 m above the sea.

Based on the analysis of level excavation it is established that in almost all the years

the subsidence of each surface point is influenced by two levels. This finding dictates

the form of the data file with input-output pairs of training and testing data sets. They

are composed in such a way that two levels influence the subsidence of each levelled

point. Since individual level is described by seven parameters, each input-output pair

consists of seventeen variables. The first sixteen variables pertain to input data. The

first seven relate to the first influencing level, the second to the second level, and the

fifteenth and the sixteenth input variables to coordinatesY andX of the chosen profile

point on surface. The seventeenth variable represents the output data: the levelled

subsidence of the chosen profile point on the surface in a certain year.

The geometry of ANN is chosen to be16−40−40−1, where the number of neurons

in the input layer corresponds to the number of input variables, and one neuron in the

output layer represents the output data. Each of the two hidden layers consists of forty

neurons.

The ANN training and testing is carried out gradually. First the neural network is

trained with the data of five years of excavations (from 1974 to 1978). Then the trained

neural network is tested for the sixth year (1979). The obtained predicted subsidences

of points are compared to the levelled results (obtained in 1979) and the successfulness

of the training is assessed. Then the neural network is trained with the data obtained



in the first six years of excavations (from 1974 to 1979) and the subsidences in the

seventh year (1980) is predicted and tested with the measured values in 1980. The

procedure is repeated for all periods for which the data on levels and levelled heights

of points on the surface are available for. In the last example of training, the excavated

levels are used from ET.k.+100 to ET.k.–65/D, and the prediction is tested for level

ET.k.–80/A. The test results are presented in Fig. 9.

Since there were three or four levels influencing the point subsidence between 1981

and 1984, the data on the levels and levelling in this time frame are not considered in

the process of the ANN training.

Fig. 9 and Fig. 10 show that the prediction of the subsidence of surface points using

ANN is completely satisfactory, with the exception in the years 1979, 1986, 1988 and

1994, when some deviations of the values obtained by ANN from the levelled data can

be noticed. The reasons for the deviations are as follows:

• in 1979 the surface points were influenced by the excavated level ET.k.+60 that

was excavated in 1978, and it was located much more to the east than all levels

excavated by then;

• in 1986 and 1988 the points on the surface were influenced by excavated levels in

the eastern part of the southern wing of the cave Preloge; by then all the levels had

been excavated in the western part;

• in 1994 level ET.k.–45/B caused chaos in the ANN training; it was excavated in

1993, the level centroide was located in the eastern most part of the treated levels.

All the calculated and four presented profile points let us conclude that the ANN

training was successful, since the results of point subsidence are very similar to the



levelled data. The largest deviation between the calculated results obtained by the

trained neural network and the levelled data is in the point X1 in 1997 and it amounts

to 34 mm, which is less than 10% of the subsidence – the final subsidence at the point

X1 is 383 mm. The correlation coefficient is 0.9980 in the training phase and 0.9873

in the testing phase.

4 Conclusion

The paper deals with the prediction of surface subsidence due to underground mining

using neural networks, which is a novelty, as up to the present time only empirical

prediction methods, prediction methods based on influential function and model pre-

diction methods have been used. The research used a multi-layer feed-forward neu-

ral network. The applicability of ANN for the prediction of surface subsidence was

first checked in various models (model of subsidence according to programmed pro-

file curve method, stochastic model and uniform prediction model of the Velenje Coal

Mine). We concluded that ANN with two hidden layers with forty neurons in each

layer gives satisfactory results. It was established that the successfulness of prediction

does not depend on the manner of subsidence presentation. Small deviations between

the predicted and the expected – measured values were obtained when the subsidences

were presented in a grid of points or with points distributed in profiles. The practical

applicability of the neural network was shown in real condition of excavated levels and

levelled data on surface profile points in the Velenje Coal Mine. The result obtained by

neural networks does not depend on geological and geomechanical conditions of roof.

This, of course, is an advantage, as it is normally difficult to determine which parame-



ters influence the subsidence, and it is even more difficult to determine the magnitude

of their impact.
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δmin [m] δmax [m] δ̄ [m] s[m] d[m]
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