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Non-linear fire-resistance analysis of reinforced 
concrete beams

Sebastjan Bratina†, Igor Planinc‡, Miran Saje‡† and Goran Turk‡‡

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, 
SI-1115 Ljubljana, Slovenia

(Received February 24, 2003, Accepted September 26, 2003)

Abstract. The non-linear structural analysis of reinforced concrete beams in fire consists of 
separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (i
determination of the distribution of the temperature within the beam during fire; (iii) the evaluation o
mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (ii)
are dealt with in the present paper. We present a two-step computational procedure where a 2D 
thermal analysis over the cross-sections of beams are made first, followed by mechanical analysis
structure. Fundamental to the accuracy of the mechanical analysis is a new planar beam finite e
The effects of plasticity in concrete, and plasticity and viscous creep in steel are taken into consid
The properties of concrete and steel along with the values of their thermal and mechanical parame
taken according to the European standard ENV 1992-1-2 (1995). The comparison of our numeric
full-scale experimental results shows that the proposed mechanical and 2D thermal comput
procedure is capable to describe the actual response of reinforced concrete beam structures to fire.

Key words: fire design; heat conduction; Reissner beam; finite element method; reinforced con
creep.

1. Introduction

The performance-based approach to the design of structures under fire conditions is a pre
method with respect to prescriptive approach used in the past. A large amount of experim
analytical, and numerical research has been performed to support the use of performanc
approach and to expand the knowledge of fire loading and the behaviour of structures und
Most of experiments have been limited to tests on a single element of a structure under con
conditions, e.g. Ellingwood and Lin (1991), Gustaferro et al. (1971), Lin et al. (1981) and Lin et al.
(1988). Experiments are performed in specially designed furnaces in which the temperat
surrounding air follows the design fire temperature curves; these are prescribed by standard
as the ASTM Standard E119 (1976), ISO 834 (1999), or SDHI (1980) (see Fig. 1). There ar
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reports on full-scale fire tests on more complex structures, such as multistory buildings. Thes
not only make possible to assess the actual behaviour of the structure, but also identify ad
mechanisms that may develop during fire in complex structures (see, e.g. Armer and O’Dell
and Lennon et al. 2000).

The theoretical analysis of the structural behaviour under fire conditions consists of several
In the first step, we have to identify the characteristics of fire, such as its type and extent. The
spread of fire is affected by several factors which are difficult to identify reliably and their influ
and interaction are even more difficult to predict. We will not discuss these issues in the p
paper. The next step is the estimation of the heat transfer from fire into the structure. If the st
is directly exposed to fire, radiation is the pre-dominant type of the heat transfer. If the struct
its part is in the shadow from fire, the heat transfers through the air by the forced or n
convection. If temperature in one part of the structure increases, the heat transfers throu
structure by conduction. In order to determine the temperature distribution within the structu
three phenomena should be considered in the analysis. A simplified analysis is usually perfor
which the heat conduction problem, governed by the partial differential equation of heat condu
is solved while the effect of heat radiation and convection from fire to the structure is taken into
count only by boundary conditions. In such an analysis it is important to note that ma
parameters are strongly temperature dependent in the temperature range of fire (see, e.g. 
1977, Harmathy 1970, Lie and Irwin 1993). In the present analysis a 2D finite element computer
programme developed by Saje and Turk (1987) is applied to determine the temperature distribution
over the cross-section of the structure. In the case of concrete and timber structures, there e
additional phenomenon which may considerably affect the temperature distribution: the eleme
structures may not be oven-dry. Therefore, water tries to evaporate from the structure whic
cause a considerable delay in temperature rise at temperatures about 100oC. The delay is clearly
visible in some experimental data, see Gustaffero et al. (1971). Computational models that accou
for this phenomenon have been proposed by several authors (among others, Budaiwi et al. 1999, Lie
and Irwin 1993, Vasile et al. 1998).

Fig. 1 Furnace atmosphere temperature for ASTM, ISO, and SDHI fire
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In the final step, we have to estimate the mechanical response of the structure. The deform
the structure is caused by shrinkage, creep, temperature strains, changing mechanical pro
mechanical loads, etc. There are various computational models for the mechanical analysis
frame-like structure, e.g. the elastic model (often suggested by standards), the visco-elastic mo
the rigid-plastic model, the visco-elastic-plastic model.

Also, the structure can be modelled by 1D, 2D or 3D elements. The more advanced non
fire analyses are based on the 2D and 3D finite elements (see, e.g. Huang et al. 1997, Nechnech
et al. 2002). The 3D theories are computationally very demanding and are at present limited 
prediction of the fire resistance of only simple concrete members. Therefore, most researche
their analyses of reinforced concrete frame structures exposed to fire on beam finite elemen
the plane section hypothesis (see, e.g. Ellingwood et al. 1991, Lie et al. 1993, Sidibé et al. 2000).

In this paper, we present the two-step computational procedure for the non-linear thermo-
mechanical analysis of reinforced concrete planar beams subjected to fire. Fundamental 
mechanical analysis is a new and very efficient planar beam finite element derived by Planincet al.
(2001). The physical, material and geometric non-linearity of the beam as well as tempe
dependent material properties are taken into account.

2. Heat conduction

The temperature distribution T(x1, x2, x3) at time t is governed by the differential equation of heat
conduction

(1)

and the boundary conditions 

(2)

on surface  where the temperature, Ts, is prescribed, and

(3)

on surface  where the heat flow, qs, is prescribed. The initial temperature distribution in the
structure must be known:

(4)

Material parameters kij, ρ, and c denote the symmetric tensor of the conductivity, the density, 
the specific heat, respectively. Q is the specific volumetric heat source, in concrete often due to the
heat of hydration, some other chemical reaction in material, or plastic deformations. As a
indicated, Cartesian coordinates are denoted by x1, x2, x3, whereas the components of the un

:
∂

∂xi

------- kij
∂T
∂xj

-------
j 1=

3

∑
 
 
 

Q ρc
∂T
∂t
------–+ 0=

i 1=

3

∑

: Ts T– 0=

: kij
∂T
∂xi

-------nj
j 1=

3

∑
i 1=

3

∑ qs– 0=

: T x1 x2 x3 0, , ,( ) T0 x1 x2 x3, ,( ).=
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normal to the surface of the structure are denoted by n1, n2, n3. The prescribed heat flow at the
surface may be decomposed into several parts

qs = qc + qr + qf + qi,

where qc, qr, qf and qi are the convection, the radiation, the fire induced and the insolation par
the surface heat flow, respectively. The convection part is usually assumed to be a linear func
the difference between the surrounding air temperature and the temperature at the surface
structure

qc = hc(TA − T), (5)

where hc is the convection heat transfer coefficient, which depends on the wind speed, the sh
the structure, roughness of the surface, etc. (Özis ̧ik 1985). Heat flow due to the radiation depend
on the geometric shape of the structure and the radiative body. It is usually assumed to foll
Stefan law, see, e.g. Özis ̧ik (1985):

,  (6)

where Tr is the absolute temperature of the radiative body, T is the absolute temperature of the bod
surface, εr is the emissivity, and B the Stefan-Boltzmann constant.

The heat flow due to the solar radiation is given by a simple equation (Dilger et al. 1983)

qi = Isc kT a cosθ  (7)

where Isc is the solar constant, kT is the air transmissivity factor which depends on the air polluti
the date and the height above the sea level, a is the surface absorption coefficient, and θ is the
inclination angle which depends on the space orientation of the boundary surface, the da
geographic latitude and the height above the sea level. In assessing the effect of fire, the in
of the insolation is neglected.

Alternatively, the effect of fire can be accounted for by a single comprehensive term qf (see, e.g.
Mendes et al. 2000), which is the function of the emissive power of fire, an atmosph
transmissivity, the shape of the structure, the distance from fire, etc. We do not follow this app
here.

A large set of experiments has been performed by several research groups, and they all 
that thermal properties of concrete are strongly temperature dependent (see, e.g. Abram
Harmathy 1970). According to the European code EVN 1992-1-2 (1995), the conductivity
specific heat and the density depend on temperature by the following relations:

(8)

, (9)

qr εrB Tr
4 T4–( )=

kc T( ) 1.6 0.16
T

120
---------– 0.008

T
120
--------- 

 
2 W

m Co
---------- ,+=

cc T( ) 900 80
T

120
--------- 4

T
120
--------- 

 
2

–+=
J

kg Co
------------



Non-linear fire-resistance analysis of reinforced concrete beams 699

 on the

 finite

of the

 in the

am
erature
t

 
spect
(10)

Thermal properties of steel reinforcement are not given because the effect of reinforcement
heat conduction in concrete is only minor and therefore was not considered.

The solution of the boundary value problem (1) and (2)-(4) was obtained numerically by the
element method (Saje and Turk 1987).

3. The mechanical analysis of a planar beam

3.1 Basic equations of a straight planar beam

The present finite element formulation is based on Reissner’s kinematically exact model 
beam (Reissner 1972). It is assumed that the compatibility of deformations at the contact of the
reinforcement bar and concrete holds. Large membrane and flexural deformations are allowed
analysis, whereas shear strains are small and their effect can be neglected.

The stress-strain state of the beam of initial length L is analysed in the plane x, z of the Cartesian
coordinate system x, y, z. The x-axis coincides with the centroidal axis of the undeformed be
element . The beam element is assumed to be loaded by a time-dependent temp
over the cross-section, by conservative distributed forces px and pz, conservative distributed momen
my, and generalised conservative concentrated loads at the ends of the beam element, Si (i = 1, 2, ..., 6)
(see Fig. 2).
The so called ‘geometric’ (or total) extensional strain, D, of an arbitrary fibre is a function of
extensional strain of the centroidal axis ε (membrane deformation), and its pseudocurvatureκ
(flexural deformation). In Reissner’s beam model geometric extensional strain is linear with re
to z

D(x, z) = ε (x) + zκ (x), (11)

ρc T( )
2400 20 Co T 100 Co≤ ≤,

2300 100 Co T< 1200 Co≤,
kg m3⁄[ ].





=

x 0 L,[ ]∈( )

Fig. 2 Beam element in the initial and deformed state
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and it is assumed to be the sum of mechanical extensional strain, thermal strain and viscous
The deformation quantities, ε, κ, are related to the kinematic ones, u, w, ϕ, by the kinematic
equations (Reissner 1972):

1 + u' − (1 + ε) cosϕ = 0, (12)

(13)

(14)

where the prime (') denotes the derivative with respect to x. In Eqs. (12)-(14), u and w are
displacements of the centroidal axis in the x- and z-directions, and ϕ is its rotation about the y-axis.

The equilibrium generalised internal forces, �, �, �, and the conservative distributed loads, px,
pz, my, of the element are related by the equilibrium equations

(15)

(16)

(17)

The third set of basic equations is provided by the constitutive law. Two equations o
constitutive law are used to relate the equilibrium quantities, �, and �, with the constitutive
internal forces, �c and �c, via the deformation quantity Dm:

(18)

(19)

It can easily be derived from (18)-(19) that the constitutive quantities, �c and �c, depend on a
chosen material model which is defined by the relationship between the longitudinal normal 
σ, and the mechanical extensional strain, Dm, of a longitudinal fibre. The relationship must b
determined experimentally.

3.2 Modified principle of virtual work

Eqs. (12)-(19) together with the corresponding boundary conditions constitute a set of eigh
linear equations for eight unknowns: two deformation functions ε (x) and κ (x), three equilibrium
quantities �1(x) = �cosϕ + �sinϕ, R2(x) = −�sinϕ + �cosϕ and �(x), and three kinematic
functions u(x), w(x) and ϕ (x). Analytical solutions are known only for some very elementary ca
which may serve for the verification of numerical procedures. Generally, the problem has 
solved numerically, in this case by the finite element method. A beam finite element has
derived by the use of the modified Hu-Washizu functional

w′ 1 ε+( )sinϕ+ 0,=

ϕ′ κ– 0,=

�cosϕ �sinϕ+( )′ px+ �1
′ px+ 0,= =

�– sinϕ �cosϕ+( )′ pz+ �2
′ pz+ 0,= =

�′ 1 ε+( )�– my+ 0.=

� �c– 0, �c σ Dm( ) A,d
A

 ∫==

� �c– 0, �c zσ Dm( ) A.d
A

 ∫==
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where u(0), u(L), ..., ϕ (L) are the generalised kinematic quantities at the two ends of the f
element. The modified principle of virtual work is very suitable for materially non-linear proble
since the deformation quantities, ε (x) and κ (x), are the only functions involved, wherea
displacements, u(x), w(x), rotation ϕ (x), equilibrium forces �1(x), �2(x) and equilibrium moment
�(x) are represented in functional (20) only by their boundary values.

3.3 The finite element formulation

In our previous formulation (Planinc et al. 2001), we assumed that �c − � = 0. Therefore only
κ (x) was interpolated. In the present paper, both strain measures, extensional strain ε (x) and
pseudocurvature κ (x) of the centroidal axis, are interpolated over the finite element length. We
the Lagrangian interpolation through equidistant nodes. Thus,

(21)

(22)

where εn(n = 1, 2, ..., Nε) and κn(n = 1, 2, ..., Nκ) are nodal extensional strains an
pseudocurvatures, respectively, and δεn and δκn are their variations. Pnε and Pnκ are the Lagrangian
polynomials of orders Nε − 1 and Nκ − 1, respectively.

After expressions (21)-(22) are introduced into functional (20), the Euler-Lagrange equatio
the finite element are obtained. There are Nε + Nκ + 9 non-linear algebraic equations for Nε + Nκ + 9
unknowns of the form G(x, λ) = R(x) − λP = 0, where x is the vector of unknowns of the elemen
and λ is the loading factor. Among the unknowns, there are Nε + Nκ +3 internal degrees of freedom
εn(n = 1, 2, ..., Nε), κn(n = 1, 2, ..., Nκ), �1(0), �2(0), and �(0), and six external degrees o
freedom u(0), u(L), w(0), w(L), ϕ (0), ϕ (L) of the element.

In the analysis of reinforced concrete structures under fire conditions, where the geometr
material non-linearity is taken into account, the algebraic system of non-linear equations 
written for the structure needs to be solved by an incremental-iterative way. The time intervalt]
is divided into time steps [t j−1, t j]. For each step j and a given loading factor increment ∆λ j, the

δW*
�c �–( )δεdx

0

L∫ �c �–( )δκdx
0

L∫+ +=

ϕ L( ) ϕ 0( )– κdx
0

L∫–( )δ� 0( ) +

u L( ) u 0( )– 1 ε+( )cosϕ xd
0

L∫– L+( )δ�1 0( ) +

w L( ) w 0( )– 1 ε+( )sinϕdx
0

L∫+( )δ�2 0( ) –

S1 �1 0( )+( )δU1 S2 �2 0( )+( )δU2– S3 � 0( )+( )δU3 ––

S4 �1 L( )–( )δU4 S5 �2 L( )–( )δU5– S6 � L( )–( )δU6– 0,=

ε x( ) Pnε x( )εn,
n 1=

Nε

∑= δε x( ) Pnε x( )δεn,
n 1=

Nε

∑=

κ x( ) Pnκ x( )κn,
n 1=

Nκ

∑= δκ x( ) Pnκ x( )δκn,
n 1=

Nκ

∑=
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iterative corrections of nodal displacements, , are determined by Newton’s iterative method
(i = 1, 2, ...)

(23)

where  is a tangent stiffness matrix of the structure. The corrections of displace
increments  at the end of time step j and the loading factor are determined by the equations

(24)

3.4 The decomposition of the geometric strain increment

The geometric, i.e. total extensional strain increment ∆Dj is assumed to be the sum of mechanic
extensional strain increment  and thermally induced strain increment . In addition, a
of geometric extensional strain of the steel reinforcement is attribute to the influence of vi
creep in steel, . Thus,

for concrete: 

for steel: 

3.5 Numerical computional procedure

In Box 1 the numerical computional procedure to determine the mechanical behavio
reinforced concrete planar beams due to simultaneous action of static and fire load is present
detail evaluation of several strain components is shown in the next chapter.

4. Mechanical properties of concrete and steel

4.1 The constitutive law of concrete and steel

The mechanical part of the geometric extensional strain increment, ∆Dm, does not directly depend
on temperature or time. It is related to the longitudinal normal stress by a constitutive law. The
reliability of results of a fire analysis is strongly affected by the choice of the constitutive law
the values of its parameters. Again the parameters are temperature dependent (see, e.g.
1977, and Harmathy 1970).

In the present analysis, the constitutive law for concrete is used according to the Eur
standard ENV 1992-1-2 (1995) (Fig. 3):

δx i 1+
j

K xi
j λ j∆ T j t j, , ,( )δx i 1+

j G xi
j λ j∆ Tj t j, , ,( )+ 0,=

K Gx∇≡
x∆ i 1+

j

x∆ i 1+
j x∆ i

j δ xi 1+
j

,+=

xi 1+
j xj 1– x∆ i 1+

j
,+=

λ j λ j 1– λ j
.∆+=

D∆ m
j DT

j∆

DC
j∆

D j∆ Dcm
j∆ DcT

j∆+ Dcm
j∆ D j∆ DcT

j ;∆–=→=

D j∆ Dsm
j∆ DsT

j∆ DC
j∆+ + Dsm

j∆ D j∆ DsT
j DC

j∆– .∆–=→=
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Temperature dependent mechanical characteristics of concrete according to this law are: u
strain Dcu, compressive strength fc, and strain at compressive strength Dc1. The beneficiary effect of
small tensile strength of the concrete is at this stage of research neglected. The stress incre
concrete in the ith iteration of time step [t j−1, t j] is determined by the equation

(26)

The constitutive law of the steel reinforcement is also taken according to the European st

σc

0,   Dcm 0 or Dcm Dcu T( )<>

fc T( )
Dcm

Dc1 T( )
----------------- 3

2
Dcm

Dc1 T( )
----------------- 

 
3

+

----------------------------------

 
 
 
 
 

– Dcu T( ) Dcm 0≤ ≤,









=

σc i,
j∆ σc Dcm i,

j( ) σc Dcm
j 1–( ).–=

  
Box 1 Numerical computional procedure

TIME STEP [t j−1, t j]:

t j = t j−1 + ∆t j, Tj = Tj−1 + ∆Tj, λ j = λ j−1 + ∆λ j,

• Structure level - Newton’s iterative method (i = 1, 2, ...):
• Element level: initial displacement increments 

° Reinforcing bar  of cross-section with coordinate x on centroidal axis:
 Newton’s iterative method to evaluate  and 
° Element level at cross-section:  and 
° The tangent stiffness matrix of the element Kel and corresponding loading vector Gel:

• The tangent stiffness matrix of the structure  and corresponding loading vector G:

• The corrections of displacement increments:

• Stop iteration if:

 < prescribed precision

DcT sT( )
j∆ DcT sT( )

j DcT sT( )
j 1––=

xi 1=
j∆ 0=

ys
k zs

k,( )
σ∆ s i,

j Dsm i,
j( ) D∆ C i,

j σs i,
j( )

�c i,
j

�c i,
j

Kel x j 1– xi
j∆+ λ j T j t j, , ,( )

Gel x j 1– x i
j∆+ λ j T j t j, , ,( )

K Gx∇=

K x j 1– x i
j∆+ λ j T j t j, , ,( )

G x j 1– x i
j∆+ λ j T j t j, , ,( )

δx i 1+
j K– 1– G=

x i 1+
j∆ x i

j∆ δxi 1+
j+=

δxi 1+
j

x i 1+
j xj 1– x i 1+

j∆+=
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ENV 1992-1-2 (1995). There, the stress-strain law is described by four functions, as indica
Fig. 3, and given by the relations

(27)

where I, II, III, IV, and V are the domains defined by:

σs

Es T( )Dsm    …I

sgn Dsm( ) b T( )
a T( )
----------- a T( )2 0.02 Dm–( )2– σspr T( ) c T( )–+ 

  …II

sgn Dsm( )fy T( )   … III

sgn Dsm( )fy T( ) 1
Dsm Dy2 T–

Dyu T( ) Dy2 T( )–
----------------------------------------– 

       …IV

0    …V











=

Fig. 3 Stress-strain relations for concrete and steel at various temperatures
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The temperature dependent steel parameters are: elastic modulus, Es; elastic limit stress, σspr; yield
stress, fy; strain at yield stress, Dy2; and ultimate strain of steel, Dyu. Precise functional relations
between the above listed parameters as well as the parameters a, b, and c, and temperature are given
in the European standards ENV 1992-1-2 (1995). The stress increment in the reinforcemenith

iteration of j th time step [t j−1, t j] is determined from the equation

(28)

4.2 Thermal deformation of concrete and steel

When a piece of material is heated or cooled, its dimensions increase and decrease which
in thermal strains. We assume thermal strains according to European standards ENV 19
(1995) (Fig. 4). The thermal strain, DcT, for concrete with calcareous aggregates, as a function
temperature, is given by

(29)

0 Dsm

σspr T( )
Es T( )

----------------- ,≤ ≤

σspr T( )
Es T( )

----------------- Dsm 0.02,≤ ≤

0.02 Dm< Dy2 T( ),≤

Dy2 T( ) Dsm< Dyu T( ),≤

Dsm Dyu T( ).>

σs i,
j∆ σs Dsm i,

j( ) σs Dsm
j 1–( ).–=

DcT T( )
1.2– 10 4–⋅ 6 10 6– T⋅ 1.4 10 11– T3, 20 Co T 805 Co≤ ≤⋅+ +

12 10 3–⋅    805 Co T< 1200 Co≤,



=

Fig. 4 Thermal strain of concrete and reinforcement
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Similarly, the thermal strain for reinforcing steel, DsT, is given by

(30)

The expressions (29)-(30) are used to determine the thermal strain increments in jth time step for
concrete

(31)

and likewise for the reinforcing steel

(32)

4.3 Viscous creep strain in steel reinforcement

The viscous creep strain in steel is negligible if the temperature is moderate. Only 
temperature of steel exceeds 400oC, the strain rate becomes considerable. There are a numb
creep models available. In our research, the Williams-Leir model is chosen (Williams-Leir 1983)
The original model offers analytical expressions for viscous creep strain under constant stre
temperature. After an appropriate modification has been completed, the model can also be u
changing temperature and stress, see Srpc

�
i c
�

(2000). Viscous creep strain  at the end of time step
[t j−1, t j] is determined by the following equation

. (33)

The related viscous creep strain increment is given by

(34)

where  is the viscous creep strain at time , coefficients b1 and b2 in (33) are given
functions of stress, temperature and some additional material constants to be determined
laboratory experiments. Parameter η = ∆T/∆t is the average rate of temperature change in a ti
step. Non-linear Eq. (33) is solved numerically by Newton’s method, while the integral in (3
evaluated numerically.

5. Numerical example

The proposed numerical method is verified by the comparison of numerical results to the 
of a full-scale laboratory test of a simply supported reinforced concrete beam exposed to the 
119 standard fire load (Gustaferro et al. 1971). Geometric, material and loading data are given
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Fig. 5. In the experiment, the web of the beam was exposed to hot air with the tempe
changing according to the ASTM standard fire curve, allowing for the tolerances of ±1oC. The
flange was isolated from the bottom and lateraly, whereas the upper side of the flange w
exposed to fire or isolated. The thermal properties of concrete and steel used in the experim
not given in Gustaferro et al. (1971); therefore, these values are assumed to follow the Euro
standard ENV 1992-1-2 (1995) (see Eqs. (8)-(10)). The heat transfer coefficient is assumed
hc = 25 W/(m2oC) for the exposed surfaces, and hc = 9 W/(m2oC) for the upper surface. For the
isolated part of the flange, hc is taken to be 0.8 W/(m2oC) (see Eq. (5)). The emissivity of the
concrete surface was not determined in the experiment and is here assumed to be either εr = 0.56 or
εr = 0.3 (see Eq. (6)). The fire induced part of the surface heat flow (qf ) and the solar radiation par
(qi) was neglected and have no effect on temperature distribution.

It is further assumed that the heat transfer in the longitudinal direction is sufficiently s
compared to the heat transfer across the cross-section, so that it can be neglected. Cons
only the 2D transient heat conduction problem over a typical cross-section governed by 
differential Eq. (1) is solved. A computer programme based on the finite element method is
(Saje and Turk 1987). The cross-section is modelled by 796 four-node finite elements an
nodes (Fig. 6a), which we find to be sufficient for our purposes.

The beam is modelled by two beam finite elements described previously, for which
extensional strain, ε, and the pseudocurvature, κ, are interpolated by the Lagrangian polynomials 
the fourth order, whereas the numerical integration along the element is performed by the five
Lobatto integration rule. The integration of �c, �c, and the cross-sectional tangent stiffnesses o
the cross-section is performed by the Gaussian integration (using 3 × 3 integration points) over 12
sectors (Fig. 6b).

The reduced value of emissivity, εr = 0.3, gives better results for temperature development in tim
this is indicated in Fig. 7, where the temperatures in the least and the most exposed bars are

The actual time to failure as measured in experiment is 373 minutes, and the related v
displacement is 66 cm. If viscous effects in steel are neglected, and the reduced emissiv
employed, the numerically estimated vertical displacement at 373 minutes is 52.77 cm (curve A
Fig. 8), which is considerably better than the displacement 85.11 cm obtained for higher va
emissivity 0.56 (the curve is not shown in Fig. 8).

Fig. 5 A simply supported beam (Gustaferro et al. 1971)
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Fig. 6 (a) Finite element mesh for heat conduction analysis, (b) stress integration scheme over cross-section

Fig. 7 Temperature increase in two reinforcement bars
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There are substantial disagreements in temperature time graphs between numerical and expe
results at 100oC (see Fig. 7). The experiments show that the temperature development is de
and it resumes the growing trend only after about 30 minutes. The differences betwee
numerical and measured results is probably caused by the fact, that the structure was not o
before the experiment started. When the temperature of the concrete reached 100oC, water started to
evaporate, for which some amount of heat was consumed. The vapour which developed dur
evaporation could not escape from the concrete structure immediately, which prolonged the
At this stage of our research, the coupled effect of vapour diffusion and heat conduction inc
the effect of latent evaporation heat was not possible to be taken into account.

Therefore, in the subsequent numerical analyses, temperatures in the reinforcement bars a
to be equal to those obtained by the experiment. Fig. 8 shows that, in this case, the cal
vertical displacement at the midspan virtually coincides with the measured one up to abou
minutes (curves B, C, and D in Fig. 8). Afterwards, the agreement strongly depends on the t
viscous creep in steel considered in the analysis. 

If the viscous creep strains in steel are not accounted for, the ultimate vertical displacement at the
midspan is much underestimated - only 40.36 cm or 61% of the observed ultimate displacement 66
cm (curve B in Fig. 8). The parameters of viscous creep strain in steel were taken from Wil
Leir (1983). We employed two types of steel. Using the parameters of medium viscous creep, ste
X-60, results in the midspan displacement of 108.23 cm at time 373 minutes (curve D in F
Using the parameters of steel Au 50 that exhibits small viscous creep, gives the ultimate m
displacement 65.27 cm at 373 minutes (curve C in Fig. 8) which agrees well with
experimentally obtained values (373 minutes and 66 cm).

Fig. 9 shows the corresponding development of viscous strain for Au 50 steel in the reinforc
bar which is the most exposed to fire. From Fig. 9 it is clearly seen that the viscous creep be
an important factor once the temperature in the reinforcement reaches about 450oC at 200 minutes.
The related stress in the bar is also shown in Fig. 9.

Fig. 10 shows the distributions of the calculated temperatures, stresses, mechanical and geome
strains in concrete in the midspan cross-section at time t = 50 minutes. Due to the non-linea
distribution of temperature over the cross-section, considerable gradients of stresses in the 

Fig. 8 Vertical displacement at the midspan of the beam
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ting to

ar

s-
section occur, regardless of the fact that the structure is statically determinate. It is interes
observe the compressive stresses in concrete at the bottom part of the cross-section of the beam.

Fig. 9 Viscous strain, temperature and stress developement in the most exposed reinforcement b

Fig. 10 (a) Temperature distributions in midspan cross-section at t = 50 min [oC], (b) stress distributions in
midspan cross-section at t = 50 min [kN/cm2], (c) mechanical strain distributions in midspan cros
section at t = 50 min [‰], (d) geometric strain distributions in midspan cross-section at t = 50 min [‰].
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6. Conclusions

This paper has provided a study of the numerical model for the non-linear analysis of a rein
concrete beam under fire. Since the interaction between the fire and the structure is a com
process that is not yet well understood, the analysis is simplified by decomposing the num
procedure into three separate steps: (i) the determination of fire extent, fire temperature devel
and duration of fire; (ii) the determination of the temperature distribution in the structure; (iii) the
mechanical analysis of the structure. The determination of fire extent was not the subject 
paper. In the thermal analysis, it was assumed that the heat flow in the axial direction of the e
was small and performed only 2D thermal transient analysis over the cross-sections. 
mechanical analysis the structure was modelled by high precision, newly developed geomet
exact planar beam finite elements. The geometric and material non-linearities were considere
with the viscous creep deformation in steel induced by high temperatures.

A relatively good agreement between the numerical results and the results of the full-scale
obtained. Therefore, it is possible to conclude that the present rather simple 1D mechanical 
thermal model seems satisfactory to describe the behaviour of reinforced concrete frames 
Further calculations of statically indeterminant structures and their comparisons to full-
experiments will be addressed elsewhere.

From the comparison between the numerical and experimental results for tempe
development with time, it is clear that the effects of evaporization and vapour transport are
important in concrete. As accurate temperature distributions are fundamental for the accuracy
mechanical analysis, the coupled vapour diffusion and heat conduction problem seems 
required in the analysis of concrete in fire. The softening of concrete in fire conditions is
evident. Its effect on the structural behaviour and, in particular, the appearance of localized
and the overall softening of the structure, are also very important. These issues will be add
elsewhere.
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