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Abstract

The disposal of radioactive waste in geological formations is of great importance
for nuclear safety. The general reliability and accuracy of transport modelling de-
pends predominantly on input data such as hydraulic conductivity, water velocity,
radioactive inventory, and hydrodynamic dispersion. The most important input data
are obtained from field measurements, but they are not available for the entire re-
gion of interest. One way to study the spatial variability of hydraulic conductivity
is geostatistics. The numerical solution of partial differential equations (PDEs) has
usually been obtained by finite difference methods (FDM), finite element methods
(FEM), or finite volume methods (FVM). These methods require a mesh to support
the localized approximations. The multiquadric (MQ) radial basis function method
is a recent meshless collocation method with global basis functions. Solving PDEs
using radial basis function (RBF) collocations is an attractive alternative to these
traditional methods because no tedious mesh generation is required. We compare
the meshless method, which uses radial basis functions, with the traditional finite
difference scheme. In our case we determine the average and standard deviation of
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radionuclide concentration with regard to spatial variability of hydraulic conductiv-
ity that was modelled by a geostatistical approach.

Key words: Transport modelling, Kansa method, Radial basis function,
Geostatistics

1. INTRODUCTION

The objective of geological disposal of radioactive waste is to remove it from
the environment and to ensure that any release remains within accepted limits.
The modelling of radionuclide transport through the geosphere is necessary
in the safety assessment of repositories for radioactive waste. The numerical
solution of partial differential equations has been usually obtained by different
types of numerical methods which usually need a support mesh.

Recent research on the numerical method has focused on the idea of using
a meshless or mesh-free (gridless) methodology for the numerical solution of
PDEs. One of the common characteristics of all mesh-free methods is their
ability to construct functional approximation or interpolation entirely from
information at a set of scattered nodes, among which there is no relationship.
The best-known are the smoothed particle hydrodynamics method [1], the dif-
fuse element method [2], the element-free Galerkin method [3], the reproduc-
ing kernel particle method [4], the partition of unity method [5], the hp-clouds
method [6], the finite point method [7] and the meshless local Petrov-Galerkin
method [8].

During the past decade, increasing attention has been given to the develop-
ment of meshless methods using RBFs for the numerical solution of PDEs.
There are two major developments in this direction. The first is the method
of fundamental solutions (MFS) coupled with the dual reciprocity method
(DRM), which evolved from the dual reciprocity boundary element method
(DRBEM) [9]. More details about MFS can be found in review papers [10] and
[11]. RBFs played a key role in the theoretical establishment and applications
in the development of the DRM. With the combined features of the MFS and
DRM, a meshless numerical scheme for solving PDEs has been achieved.

The second meshless method using RBFs is the Kansa method [12], [13], where
the RBFs are directly implemented for the approximation of the solution of
PDEs introducing the concept of solving PDEs, using radial basic functions
for hyperbolic, parabolic and elliptic PDEs. A key feature of the RBF method
is that it does not need a grid. Hon et al. further extended the Kansa method
to the numerical solutions of various ordinary problems, as well as PDEs, for
example, the biphasic mixture model for tissue engineering problems [14]. In
contrast to the MFS-DRM boundary method, the Kansa method is considered
to be a domain type method, which has many features similar to the finite
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element method. Since the resultant coefficient matrix of the Kansa method
is not symmetric, Fasshauer [15] proposed the Hermite type method, which
can generate a symmetric coefficient matrix which guarantees that the related
linear equations are solvable. Strong development has taken place in this direc-
tion. However, as far as numerical performance is concerned, there is not much
difference between the two approaches. Even though the Hermite approach is
more theoretically robust, the Kansa method is much easier to implement.

In our case, we use the Kansa method, which uses radial basis functions and
the traditional finite difference scheme. In this study we determine the av-
erage and standard deviations of radionuclide concentrations with regard to
variable hydraulic conductivity modelled by a geostatistical approach. Using
this approach, the general applicability, reliability and sensitivity of the Kansa
meshless method and the finite difference method in transport modelling are
verified.

2. GEOSTATISTICS

Many processes are inherently uncertain, and this uncertainty is handled
through the use of stochastic realizations. The goal of stochastic simulation is
to reproduce geological texture in a set of equiprobable simulated realizations.
In mathematical terms, the most convenient method for simulation is sequen-
tial Gaussian simulation, because all successive conditional distributions from
which simulated values are drawn are Gaussian with parameters determined
by the solution of a simple kriging system.

Kriging (named after D. G. Krige, a South African mining engineer and pioneer
in the application of statistical techniques to mine evaluation) is a collection of
generalized linear regression techniques for minimizing an estimation variance
defined from a prior model for a covariance (semivariogram).

3. RADIAL BASIS FUNCTIONS

A radial basis function is a function φj(x) = φ(‖x − xj‖), which depends
only on the distance between x ∈ Rd and a fixed point xj ∈ Rd. Here, φ is
continuous and bounded on any bounded sub-domain Ω ⊆ Rd. Let r denote
the Euclidean distance between any pair of points in the domain Ω.

3



The commonly used radial basis functions are:

φ(r) = r, linear,

φ(r) = r3, cubic,

φ(r) = r2 log r, thin-plate spline,

φ(r) = e−αr2

, Gaussian,

φ(r) = (r2 + c2)
1
2 , multiquadric,

φ(r) = (r2 + c2)−
1
2 , inverse multiquadric.

In our case we used multiquadric (MQ) and inverse multiquadric radial basis
functions. The MQ method was first introduced by Hardy [16]. The parameter
c > 0 is a shape parameter controlling the fitting of a smoothing surface to
the data.

Since Kansa successfully modified the radial basis functions for solving PDEs
of elliptic, parabolic, and hyperbolic types, more and more computational tests
have shown that this method is feasible for solving various PDEs.

To introduce RBF collocation methods, we consider a PDE in the form of

L u(x) = f(x) in Ω ⊂ Rd, (1)

B u(x) = g(x) on ∂Ω, (2)

where d is the dimension, ∂Ω denotes the boundary of the domain Ω, L is the
differential operator on the interior, and B is an operator that specifies the
boundary conditions of the Dirichlet, Neumann or mixed type. Both f and g
are given functions mapping Rd → R.

Using Kansa’s asymmetric multiquadric collocation method, the unknown
PDE solution u is approximated by RBFs in the form

u(x) ≈ U(x) =
N∑

j=1

αjφj(x) +
M∑
l=1

γlvl(x), (3)

where φj(x) = φ(‖x − xj‖), and φ can be any radial basis function from the

list, v1, . . . , vM ∈ Πd
m is a polynomial of degree m or less, M :=

(
m−1+d

d

)
[17]

and ‖ · ‖ indicates the Euclidean norm. Let {(xj)}N
j=1 be the N = NI + NB

collocation points in Ω∪∂Ω. We assume the collocation points are arranged in
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such a way that the first NI points are in Ω, whereas the last NB points are on
∂Ω. To solve for the N +M unknown coefficients, N +M linearly independent
equations are needed. Ensuring that U satisfies (1) and (2) at the collocation
points results in a good approximation of the solution u. The first N equations
are given by

N∑
j=1

αj L φj(xi) = f(xi) for i = 1, . . . , NI

N∑
j=1

αj B φj(xi) = g(xi) for i = NI + 1, . . . , NI + NB (4)

The last M equations can be obtained by imposing some extra condition on
v1, . . . , vM :

N∑
j=1

αjvk(xj) = 0, k = 1, . . . ,M. (5)

In many practical applications (in the case of MQ), it is observed that the
term

∑M
l=1 γlvl(x) does not have a great effect on the accuracy of the method.

Our observations have shown that the errors are typically largest near the
boundary compared to the errors in the domain far from the boundary. It
therefore makes sense to impose more information there. Fedoseyev, Friedman
and Kansa [18] formulated a method that collocates both with the boundary
condition and the PDE at the boundary points.

In order to have a matching number of unknowns and equations, additional
expansion functions are added. The centers of these are placed outside the
boundary. Let the center points be denoted by zj, where

zj =

 zj, j = 1, . . . , N,

a point outside Ω, j = N + 1, . . . , N + NB.
(6)

The RBF interpolant now takes the form

u(x) =
N+NB∑

j=1

αjφj(‖x− zj‖). (7)
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The collocation equations are very similar to (3). The difference lies in the
extra collocation at the boundary and the added centers. Practical application
will be presented in the next chapter.

4. MODELING OF THE RADIONUCLIDE
MIGRATION

Assessment of the release and the transport of long-lived radioactive nuclides
from a repository to the biological environment is an important part of the
safety analysis of repository concepts. In this assessment mathematical models
describing the mechanisms involved in the nuclide transport from the reposi-
tory to the biosphere are essential tools. For example, the groundwater mod-
els are mathematical representations of the flow of water and the transport
of solutes in the subsurface. Models are used to compute the hydraulic head,
velocity, concentration, etc., from hydrologic and mass inputs, hydrogeologic
and mass-transfer parameters, and conditions at the boundary of the domain.

Groundwater models are presented by motion and continuity equations. The
majority of the codes currently used or under development are based on the
advective-dispersive equation with various physical phenomena added. Ac-
cording to this equation, mass transport is controlled by two mechanisms:
advection and dispersion. Advection accounts for the movement of the solute,
linked to the fluid by the water velocity. Water and solute velocity can be as-
sessed through Darcy’s law. Dispersion accounts for mixing caused by diffusion
and by random departures from the mean stream.

The simulation area will be 2D rectangular with the Neumann and Dirichlet
boundary conditions. The Neumann boundary conditions represent flow and
no-flow while Dirichlet boundary conditions represent constant pressure and
concentration.

4.1 Laplace equation

The first step of radionuclide transport modeling is to solve the Laplace equa-
tion to obtain the Darcy velocity. In this case the Neumann and Dirichlet
boundary conditions will be defined along the boundary. Heterogeneous and
anisotropic porous media and incompressible fluid are assumed. The equation
has the following form [19]:

Kx
∂2p

∂x2
+ Ky

∂2p

∂y2
+

∂Kx

∂x

∂p

∂x
+

∂Ky

∂y

∂p

∂y
= 0, (8)

where p [Pa] is the pressure of the fluid and Kx [m
y
] and Ky [m

y
] are the
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components of hydraulic conductivity tensor. The corresponding boundary
conditions are:

∂p

∂x
sx +

∂p

∂y
sy = g1(x, y), (9)

or

p = g2(x, y). (10)

where sx and sy are the components of the unit vector normal to the boundary.
The Laplace equation was solved by using direct collocation [18]. We add an
additional set of nodes (outside of the domain) adjacent to the boundary and
add an additional set of collocation equations. The approximate solution is
expressed as:

p(x, y) =
NI+2NB∑

j=1

αjϕj(x, y) (11)

where αj, j = 1, ..., NI + 2NB are the unknown coefficients to be determined

and ϕj(x, y) =
√

(x− xj)2 + (y − yj)2 + c2 are Hardy’s multiquadrics func-

tions. By substituting (11) into (8), (9) or (10), we have:

NI+2NB∑
j=1

(
Kx

∂2ϕj

∂x2
+ Ky

∂2ϕj

∂y2
+

∂Kx

∂x

∂ϕj

∂x
+

∂Ky

∂y

∂ϕj

∂y

) ∣∣∣∣
(xi,yi)

αj = 0,

i = 1, 2, . . . , NI + NB,

(12)

NI+2NB∑
j=1

(
∂ϕj(xi, yi)

∂x
sx +

∂ϕj(xi, yi)

∂y
sy

)
αj = g1(xi, yi),

i = NI + NB + 1, . . . , NI + 2NB,

(13)

or

NI+2Nb∑
j=1

ϕj(xi, yi)αj = g2(xi, yi), i = NI + NB + 1, . . . , NI + 2NB. (14)
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The pressure gradient is evaluated by:

∂p

∂x
=

NI+2NB∑
j=1

αj
∂ϕj(x, y)

∂x
,

∂p

∂y
=

NI+2NB∑
j=1

αj
∂ϕj(x, y)

∂y
. (15)

For the calculation of velocity in principal directions we use Darcy’s law [19]:

vx = − Kx

ωρa

∂p

∂x
, vy = − Ky

ωρa

∂p

∂y
. (16)

where ρ is the density of the fluid, ω is porosity and a is gravitational accel-
eration.

4.2 Advection-Dispersion Equation

In the next step, the velocities obtained from the Laplace equation are used
in the advection-dispersion equation. The advection-dispersion equation for
transport through the heterogeneous saturated porous media zone at a macro-
scopic level with retardation and decay is [19]:

R
∂u

∂t
=

(
Dx

ω

∂2u

∂x2
+

Dy

ω

∂2u

∂y2
+

∂Dx

∂x

∂u

∂x
+

∂Dy

∂y

∂u

∂y

)
−

−vx
∂u

∂x
− vy

∂u

∂y
−Rλu, (x, y) ∈ Ω , 0 ≤ t ≤ T,

u|(x,y)∈∂Ω = g(x, y, t), 0 ≤ t ≤ T

u|t=0 = h(x, y), (x, y) ∈ Ω,

(17)

where x is the Eulerian groundwater flow axis and y is the Eulerian trans-
verse axis in the 2D problem, u is the concentration of contaminant in the
groundwater [Bqm−3], Dx and Dy are the components of the dispersion tensor
[m2y−1] in the saturated zone, ω is porosity of the saturated zone [−], vx and
vy are components of velocity vector [my−1] at interior points, R is the retar-
dation factor in the saturated zone [−] and λ is the radioactive decay constant
[y−1]. In these cases [y] means years. For the parabolic problem, we consider
the implicit scheme:
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R
un+1 − un

δt
=

(
Dx

ω

∂2un+1

∂x2
+

Dy

ω

∂2un+1

∂y2
+

∂Dx

∂x

∂un+1

∂x
+

∂Dy

∂y

∂un+1

∂y

)
−

−vx
∂un+1

∂x
− vy

∂un+1

∂y
−Rλun+1,

(18)

where δt is the time step and un and un+1 are the contaminant concentrations
at the time tn and tn+1. The approximate solution is expressed as:

u(x, y, tn+1) =
N∑

j=1

αn+1
j ϕj(x, y) (19)

where αn+1
j , j = 1, ..., N are the unknown coefficients to be determined and

ϕj(x, y) =
√

(x− xj)2 + (y − yj)2 + c2 are Hardy’s multiquadrics functions.

By substituting (19) into (17), we obtain:

N∑
j=1

(
R

ϕj

δt
− Dx

ω

∂2ϕj

∂x2
− Dy

ω

∂2ϕj

∂y2
− ∂Dx

∂x

∂ϕj

∂x
− ∂Dy

∂y

∂ϕj

∂y

) ∣∣∣∣
(xi,yi)

αn+1
j +

+
N∑

j=1

(
vx

∂ϕj

∂x
+ vy

∂ϕj

∂y
+ Rλϕj

) ∣∣∣∣
(xi,yi)

αn+1
j = R

un(xi, yi)

δt
, i = 1, 2, . . . , NI

(20)

N∑
j=1

ϕj(xi, yi) αn+1
j = g(xi, yi, tn+1), i = NI + 1, . . . , N. (21)

The system of linear equations ((20)–(21)) for the unknown αn+1
j , j = 1, ..., N

has to be solved, where N = NI + NB is the number of collocation points, NI

is the number of interior points and NB is the number of boundary points.
Equation (19) gives the approximate solution at any point in the domain Ω.

5. NUMERICAL EXAMPLE

The simulation was implemented for a rectangular area which was 600 m long
and 300 m wide. The source (initial condition) was Thorium (Th− 230) with
activity 1 · 106Bq and half life of 77,000 years. The location of the radioactive
source is presented in Fig. 1. (symbol � in Fig. 1).
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Fig. 1: Distribution of hydraulic conductivity based on 8-point data set

The groundwater flow field is presented for steady-state conditions. Except
for the inflow (left side) and outflow (right side), all boundaries have a no-
flow condition ∂p

∂s
= 0 (s is normal to the boundary). The inflow rate was 1

m/y. At the outflow side, time-constant pressures at the boundaries were set.
Longitudinal dispersivity ax is 200 m and transversal dispersivity ay is 20 m.
For the porosity ω we used values 0.25. The retardation constant R is 800.

The traditional finite difference scheme was also used for solving the Laplace
and advection-dispersion equation. For the approximation of the first deriva-
tive second-order central difference or one-sided difference were used. But for
the approximation of the second derivatives we used the second-order central
second difference [20], [21]. The time dependent part we implemented with
the implicit scheme. To implement a finite difference method we constructed
a grid where the horizontal dimension represents discrete points of the variable
x with constant step ∆x while vertical dimension represents discrete points
with constant step ∆y. The discretization grid has actually 12 × 12 points.
Thus we had: N = 144, NI = 100 and NB = 44.

One of the difficulties encountered in applying these models to make predic-
tions involves securing good estimates of the hydrogeologic parameters. In
practice, our objective is to estimate a field variable z(x) over a region. Usu-
ally, because of scarcity of information, we cannot find a unique solution. It is
useful to think of the actual unknown z(x) as one of a collection of possibilities
z(x; 1), z(x; 2), . . . This collection (ensemble) defines all possible solutions to
our estimation problem. The ensemble of realizations with their probabilities
defines what is known as the spatial stochastic process. We used the averaging
process since specifying all possible solutions and their probabilities is not an
easy task, and it is more convenient to specify and to work with ensemble aver-
ages or statistical moments (mean and covariance function). The quality of the
results also depends on the quality of input data. The hydraulic conductivity
was modelled as a random field with mean and covariance functions.
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In mathematical terms, the most convenient method for simulation is sequen-
tial Gaussian simulation because all successive conditional distributions from
which simulated values are drawn are Gaussian with parameters determined
by the solution of a simple kriging system.

Sequential Gaussian simulation procedure [22]:

(1) First, use a sequential Gaussian simulation to transform the data into a
normal distribution.

(2) Then perform variogram modelling on the data. Select one grid node at
random, then krige the value at that location. This will also give us the
kriged variance.

(3) Then draw a random number from a normal distribution that has a vari-
ance equivalent to the kriged variance and a mean equivalent to the kriged
value. This number will be the simulated number for that grid node.

(4) Select another grid node at random and repeat. For the kriging, include
all the previously simulated nodes to preserve the spatial variability as
modelled in the variogram.

(5) When all nodes have been simulated, back transform to the original dis-
tribution. This gives us first realization using a different random number
sequence to generate multiple realizations of the map.

Following the above procedure, hydraulic conductivity was generated at differ-
ent points based on two different sets of input data. In the first one, hydraulic
conductivity at 8 different points is given (values are: 66.00, 71.00, 73.00, 75.00,
76.52, 77.02, 79.74, 83.41 [m

y
]). The distribution of hydraulic conductivity for

one specific simulation is shown in Fig. 1. The coordinates of these values are
also presented in Fig. 1 and marked with ”+”. In Fig. 1 we cannot see much
variability of hydraulic conductivity. One of the reasons could be that there are
not many differences between the prescribed values of hydraulic conductivity.
The following variogram parameters are chosen: positive variance contribu-
tion or sill is equal to 1.0 and nugget effect is 0.0. Simple kriging is chosen as
the type of kriging. A spherical model is chosen as a type of variogram struc-
ture. The element defining the geometric anisotropy is range. The maximum
horizontal range is 600 m and the minimum horizontal range is 300 m. It is
assumed that the mean in the case of simple kriging is known.

In the second case the database of 16 different points is used (values are: 66.00,
71.00, 73.00, 75.00, 76.52, 77.02, 79.74, 83.41, 86.00, 90.00, 93.00, 95.00, 96.52,
100.02, 107.74, 110.00 [m

y
]). The coordinates of these values are also presented

in Fig. 2 and marked with ”+”. It is also necessary to stress out that the
first 8 points of the 16 point set are those of the 8 point set. Positive variance
contribution or sill size 0.7 and nugget effect size 0.3 as variogram parameters
are chosen. Ordinary kriging is chosen as the type of kriging where the constant
mean value is replaced by the location-dependent estimate.
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Fig. 2: Distribution of hydraulic conductivity based on 16-point data set

Distribution of average of contaminant concentrations (8 points) for radial
basis function method and distribution of average of contaminant concentra-
tions (8 points) for FDM are shown in Figs. 3 and 4. Distribution of standard
deviation of contaminant concentrations (8 points) for radial basis function
method and distribution of standard deviation of contaminant concentrations
(8 points) for FDM are shown in Figs. 5 and 6. We can see that concentration
clouds in Fig. 4 are wider in the y direction than concentration clouds in Fig.
3.

Fig. 3: Distribution of average of contaminant concentrations (8 points)
(Radial basis function)
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Fig. 4: Distribution of average of contaminant concentrations (8 points)
(Finite difference method)

Fig. 5: Distribution of standard deviation of contaminant concentrations (8
points) (Radial basis function)

Fig. 6: Distribution of standard deviation of contaminant concentrations (8
points) (Finite difference method)

Possible reason for this is that the central difference schemes do not always
follow the proper flow of information throughout the flow field. In many cases,
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they draw numerical information from outside the domain of dependence of a
given grid point [21]. That mean that properties at grid point e. g. i should
depend only on the upstream flow field, i.e., on properties at grid poin i− 1.
Grid point i−1 is within the domain of dependence of point i. The properties
at grid point i + 1 do not physically influence point i, and a proper numerical
scheme should reflect this fact.

Distribution of average of contaminant concentrations (16 points) for radial
basis function method and distribution of average of contaminant concentra-
tions (16 points) for FDM after 100, 000 years are shown in Figs. 7 and 8.

Fig. 7: Distribution of average of contaminant concentrations (16 points)
(Radial basis function)

Fig. 8: Distribution of average of contaminant concentrations (16 points)
(Finite difference method)

Distribution of standard deviation of contaminant concentrations (16 points)
for radial basis function method and distribution of standard deviation of
contaminant concentrations (16 points) for FDM are shown in Figs. 9 and 10.
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Fig. 9: Distribution of standard deviation of contaminant concentrations (16
points) (Radial basis function)

Fig. 10: Distribution of standard deviation of contaminant concentrations
(16 points) (Finite difference method)

The same situation is evident here. We can also see that concentration clouds
in Fig. 8 are wider in the y direction than concentration clouds in Fig. 7.
The reason for this is that FDM includes upwinding. In other words, a finite
difference introduces artificial numerical dispersion that can be very significant
as compared to the physical dispersion.

FDM and the radial basis function method are both applied to the calcula-
tion of concentrations, average and standard deviation through 100 simula-
tions. For the purpose of comparing FDM and the Kansa method, we plotted
differences (Fig. 11 and Fig. 12). The so-called normalized error was defined
symbolically as:

|uFDM − uRBF |
max(uFDM , uRBF )

where uFDM is the value calculated with FDM and uRBF is the value calculated
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with RBF.

Fig. 11: Normalized error (8 points)

Fig. 12: Normalized error (16 points)

In the case of hydraulic conductivity based on an 8-point data set and a 16-
point data set, the normalized error is generally low (below 6 %) with exception
in the region with higher concentration (Fig. 11 and Fig. 12). Comparison
of normalized errors shows that the maximal value of normalized error in
Fig. 12 is higher than the maximal value of normalized error in Fig. 11. We
noticed that the standard deviation is also relatively large in the region with
higher concentration (Fig. 9 and 10). The reason for differences we can find
in influence of geostatistical parameters to choice of a shape parameter.

In our problem we used multiquadric (MQ). MQ’s performance depends on
the choice of shape parameter c. In the past, there have been several numer-
ical experiments and empirical formulas that suggest how to chose value of
such parameters, which in general depend on the density of the interpolation
centres. Hardy [23] showed a good recipe for a safe choice of this shape param-
eter to be about 85% of the average distance between pairs of points. Carlson
and Foley [24] showed that as the shape parameter increases, the errors de-
crease until ill-conditioning renders the solutions unstable. Kansa and Hon

16



[25] showed domain decomposition controls the ill-conditioning problem.

In practice, the optimal value of the shape parameter can be determined by
numerical experiments. The optimal shape parameter depends on the pro-
perties of numerical solution, number and locations of the collocations points.
Therefore, a question how to find the optimal shape parameter for arbitrary
real problem given by geometry and hydrological parameters of continuum
always appears as one of the key problems. The shape parameter was chosen
according to the graphic procedure [26] where we tried to answer the ques-
tion how to find good optimal shape parameter, which fulfils the equation
in more points. Many realizations of the equations were made using different
shape parameters at different points and different geostatistical parameters.
We calculated residual errors from the equation and boundary conditions at
different shape parameters, and tried to find minimum residual errors whose
shape parameter was chosen as optimal.

6. CONCLUSION

This work presents modelling of radionuclide migration through the geosphere
using the radial basis function method, finite difference method and geostatis-
tics. The influence of geostatistical data on the reliability and accuracy of
computational modelling of a mass transport problem was also investigated.
The only physical data modelled as a random field was hydraulic conductivity
of the investigated field.

In the case of radionuclide migration, two evaluation steps were performed. In
the first step the velocities in principal directions were determined from the
pressure of the fluid obtained from the Laplace differential equation. In the
second step the advection-dispersion equation was solved to find the concen-
tration of the contaminant. In this case the method of evaluation was verified
by comparing results with those obtained from the finite difference method.

Results show that differences exist between both numerical schemes. Different
sets of input data yield differences between schemes. In the simulation, a very
large scatter caused by different given values of hydraulic conductivity was
observed. Another reason for differences could be the result of which kriging
method was used to apply in the sequential Gaussian methods.

We conclude that the Kansa method is a valid alternative to the FDM because
of its simpler implementation. The only geometric properties that are used in
an RBF approximation are the pair-wise distances between points. Distances
are easy to compute in any number of space dimensions, so working in higher
dimensions does not increase the difficulty. The presence of a shape parameter
offers the opportunity to exploit its value to obtain a better solution. Results
show that the RBF solution has far less diffusion than the finite difference
method that includes upwinding. For public safety, we do not want numer-
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ical dispersion under-predicting the concentration contours; nor do we want
to show that the concentrations of radionuclides are more dilute than they
actually are.
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