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Abstract 

When only small samples are available, the characteristic value is usually determined 

with the assumption that the distribution is known. If we review the European standards 

different distributions are usually prescribed for the determination of the resistance of 

different materials and for the determination of the resistance of structures: normal, 

lognormal, Gumbel, and Weibull distribution. For most cases 5 % characteristic values 

are prescribed. All the standards use the normal or lognormal formulation regardless the 

distribution of the parameters used in reliability of structures. By the use of analytical 

formulae as well as numerical simulations the tables, similar to those in European 

standards, are presented for the normal, lognormal, Gumbel, and Weibull distribution. 

At the end the use of proposed tables is presented on the data of experimentally 

obtained bending strengths of finger jointed elements. 

 

Keywords: characteristic value, small sample, log-normal, Gumbel, Weibull 

 

1 Introduction 

 

The structural design is based on random variables which are represented by their 

characteristic values. This approach is suitable for further analysis and design because 



we can use the fixed values without employing any probabilistic methods. However, 

when only relatively small sample is available, the characteristic value is only estimated 

from that sample. The estimate is based on the assumption that the distribution of the 

variable is known and that its parameters are approximated from a sample. If we review 

the European standards (e.g. [3], [4]) different distributions are usually prescribed for 

the determination of the resistance of different materials and for the determination of the 

resistance of structures: normal, lognormal, Gumbel, Weibull, etc. For most cases 

formulae for the 75% confidence interval for the estimates of 5% characteristic values 

based on normal and occasionally lognormal distribution are prescribed.  

 

In Fig. 1 it is shown that the true characteristic value is deterministic but unknown. In 

the case the investigated variable is normally distributed, the estimate of the 

characteristic value is a random variable distributed according to the non-central t 

distribution. Its variance depends on the sample size. Smaller samples yield to larger 

variance of the characteristic value which is clearly illustrated. 

 

 



 

Figure 1: Probability density functions of the investigated variable and corresponding 

characteristic values  

 

The aim of this paper is to give general instructions for characteristic value 

determination for an arbitrary distribution. The approximation based on analytical 

equations is developed. The results are verified by the use of simulations. For the 

normal and lognormal distribution we confirm the analytically developed values. 

Because of some additional approximations made for arbitrary distribution some 



discrepancies are established for analytically obtained values; improved values are 

obtained by large number of simulations using bisection method. 

 

2 Basic assumptions and definitions 

 

Let X be a random variable with known cumulative distribution function (CDF) )(xFX . 

The characteristic value of X is such value αx , that the probability of X  being less than 

αx  equals α :  

 

[ ] ( ) ( )αα ααα
1                    −=→==≤ XX FxxFxXP . (1)

 

It is obvious from (1) that the characteristic value αx  depends on the distribution of the 

random variable. The characteristic value can be uniquely determined if the CDF is 

known; e.g. if its parameters are prescribed. )(xFX  is usually (directly or indirectly) 

described by the mean Xm  and by the standard deviation Xσ . 

 

It is common to many practical problems that the correct values of Xm and Xσ  are 

unknown and can only be estimated from a random sample, by standard estimates: 

sample average X  and sample standard deviation *
XS . Thus, instead of the correct 

characteristic value, only its estimate could be obtained. The characteristic value 

estimate is itself a random variable, here denoted as αX̂ . There are a number of 

possibilities for the determination of the characteristic value estimate. In the present 

paper we are interested in the estimates for which we can control the probability 

[ ]αα xXP ≤ˆ . Using the present approach for any prescribed confidence interval λα  such 

characteristic value estimate, λα ,X̂ , can be determined that 



 

[ ] λαλα α−=≤ 1ˆ
, xXP . (2)

 

The characteristic values and, consequently, their estimates are strongly dependent on 

distribution. Therefore, we need to discuss different distributions separately. Our 

approach is demonstrated in detail for the normal distribution and preformed also for the 

lognormal, Gumbel, and Weibull distribution. 

 

2.1 Normally distributed variables 

 

The basic idea on the characteristic value determination for normally distributed 

variables stems from the relationship between an arbitrary normal variable X  and 

standardized normal random variable U   
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where UF  is the CDF of standardized normal distribution, hence independent of 

parameters Xm  and Xσ . Therefore, the characteristic value can be expressed as: 

 

( )ασα
1−+= UXX Fmx . (4

 

The simple and understandable form of expression (4) represents the basic estimate of 

the characteristic value of normally distributed random variable. If we replace the 

unknown parameters Xm  and Xσ  by their sample estimates 

 



λλα
*

,
ˆ

XSXX += . (5

 

Note that we replaced ( )α1−
UF  with parameter λ  which is the only free parameter in (5) 

and needs to be determined with respect to the previously prescribed confidence interval 

λα . Details concerning the determination of  λ  can be found in [6] and [7]. 

 

As an example the results for 05.0=α  and 25.0=λα  which corresponds to the 

determination of strength parameters for different sample sizes are shown in Tab. 1. 

 

Table 1: Factor λ  for normal distribution for 05.0=α  and 25.0=λα   

n  3 4 5 7 10 20 50 100 

λ  –3.125 –2.681 –2.463 –2.250 –2.104 –1.932 –1.811 –1.758 

 

 

2.2 Lognormally distributed variables 

 

As it has already been explained, the estimates of the characteristic values are dependent 

on distribution. Thus we must handle each particular distribution separately. In this 

section we develop the procedure for 

characteristic value determination for lognormally distributed variable. The basic idea 

of the present approach is to employ the results of the normal distribution by using its 

relationship to the lognormal distribution. 

 

Lognormal random variable Y is related to normal variable X  through the exponential 

map: 

 



YXY ln                  eX =→= . (6)

 

It can easily be shown that the value of λ  used for normal distribution can be utilized 

for lognormal distribution as well. However, the characteristic value is estimated by the 

following equation 
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where Y  and *
YS  are the mean value and the standard deviation of the sample and λ  is 

the same parameter as in the previous section, i.e. the parameter from Tab. 1. 

 

2.3 Variables of other known distributions 

 

The idea for the lognormally distributed variable may in theory be extended to an 

arbitrary variable with known distribution. However, since the transformation from an 

arbitrary distribution to standardized normal always involves unknown parameters of 

the distribution, the results are not very accurate (see [6] for details). Therefore, it is 

impossible to use the same values λ  and modified formula for characteristic value 

determination. 

 

Alternatively, we use the definition of characteristic value estimate (5) to determine the 

value of λ  for different distributions, different sample sizes and for some distributions 

different coefficients of variation via numerical simulations. 

 



3 Simulations of the characteristic value determination 

 

A huge number of repetitions of the sample selections can easily be simulated by 

computer using a random number generator. In computer simulations we can prescribe 

the values of mean and standard deviations in contrast to practical sampling where these 

parameters are usually unknown. 

 

The simulations were performed by the following algorithm: 

 

 

 

The estimation of probability [ ]αλα xXP ≤,
ˆ  is obtained by counting the number of 

estimates λα ,X̂  that are less than αx  and by dividing this number by the number of 

simulations. In this procedure one million (1000000) simulations were employed. The 

maximum error δ  allowed in bisection procedure was set to 0.001. 

 

Reading the input values of Xm  and Xσ . 

Calculation of the exact characteristic value αx . 

Determination of initial values for λ . 

Start of bisection iterations. 

Loop over simulations. 

Loop over elements of the sample. 

Random variate generation according to the chosen distribution (see [2] for details). 

End loop. 

Calculation of sample statistics X  and *
XS  to estimate of Xm  and Xσ . 

Calculution of the estimate λα ,X̂  from equation (3).  

End loop. 

Estimation of probability [ ]αλα xXP ≤,
ˆ . 

Update the value of λ . 

Continue bisection iterations until [ ] ( ) δαλαλα ≥−−≤ 1ˆ
, xXP . 

 



The results of these simulations for Gumbel distribution are summarized in Tab. 2. In 

the case of Gumbel distributions the parameter Gλ  is independent of coefficient of 

variation which is an advantage compared to Weibull distribution. 

 

Table 2: Factor Gλ  for Gumbel distribution for 05.0=α  and 25.0=λα   

n  3 4 5 7 10 20 50 100 

Gλ  –4.429 –3.712 –3.351 –2.998 –2.730 –2.407 –2.174 –2.072 

 

Similarly, the values for Weibull distribution are summarized in Tab. 3. In this case the 

values depend on the coefficient of variation XV .  

 

Table 3: Factor Wλ  for Weibull distribution for 05.0=α  and 25.0=λα   

n  
XV  

3 4 5 7 10 20 50 100 

0.05 –4.204 –3.518 –3.192 –2.859 –2.618 –2.332 –2.125 –2.037 

0.10 –3.977 –3.337 –3.037 –2.732 –2.512 –2.256 –2.074 –1.995 

0.25 –3.353 –2.838 –2.602 –2.369 –2.208 –2.026 –1.898 –1.842 

0.50 –2.538 –2.183 –2.027 –1.878 –1.778 –1.659 –1.574 –1.535 

 

The values of parameter λ  for different distributions and different sample sizes are 

illustrated in Fig. 2. 

We may observe several things:  

(i) The highest values of λ  are needed in the case of Gumbel distribution. 

(ii) The value of λ  depends on coefficient of variation in the case of Weibull 

distribution. Interestingly, higher values of λ  correspond to lower variance. 

(iii) The values of λ  changes quite rapidly for smaller samples between 3=n  and 

20=n . For larger sample sizes this value doesn’t change much. 
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Figure 2: Value of λ  for different distributions and various sample sizes 

 

4 An example 

 

In order to define characteristic bending strength of finger jointed elements, destructive 

tests of small beams were performed in the laboratory  of Slovenian National Building 

and Civil Engineering Institute. For the tests 20 specimens with dimensions 40 x 140 x 

2600 mm, made from two pieces fully jointed in the middle of the length, were 

manufactured. The wood used was European spruce (Picea abies) and the joint was 

glued with one component polyurethane adhesive 1-K-PUR (PURBOND).  

 

Specimens were tested according to EN 408 (Section13 Determination of bending 

strength). Test pieces were symmetrically loaded at two points at the distance of l/3 

(820 mm) and were laterally restrained as shown in the Fig.3. Load was applied with the 

prescribed speed (maximum load was reached within ca 300 s).  

       



     

 

Figure 3: Test setup 

 

After the failure beams were examined to determine locations and types of failure. All 

the beams failed in the cross sections where constant bending moment was applied 

(between the forces) – most of them on the joints or adjacent to them. Typical failed 

beams and details of failure are presented in Fig. 4. 

 

The experimental results are summarized in Tab. 4. 

 

Table 4: Strength γ of beams (in MPa) 

No. 1 2 3 4 5 6 7 8 9 10 

γ 43.470 60.244 47.129 49.120 48.286 50.954 45.140 51.750 24.513 39.804 

No. 11 12 13 14 15 16 17 18 19 20 

γ 44.152 62.063 26.543 51.715 20.461 50.317 51.530 45.887 32.857 35.788 



 

      

 

       

 

Figure 4: Typical failures 
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Figure 5: Experimental data and fitted cumulative distribution functions (CDF) 

 



The experimental data and several fitted models according to different statistical 

distributions are shown in Fig. 5. The line for 5% probability is also shown, so that one 

can get an approximate estimate of 5% percentile, i.e. characteristic value, directly from 

the figure. The parameters of all distributions were obtained by the method of moments 

(see [1] or [5]). All parameters are summarized in the Tab. 5, where the parameters are 

defined as in Benjamin and Cornell reference book on statistics for civil engineers [1]. 

We may see that in the lower tail which is of our interest, the two distributions that 

corresponds the data best are Gumbel and Weibull. Lognormal distribution is the least 

suitable for our data. 

 

Table 5: Distribution parameters obtained by the method of moments and the 

characteristic value estimates 

Normal Lognormal Gumbel – min Weibull – min 

Xm  

[MPa] 

Xσ  

[MPa] 

charγ  

[MPa] 

Ym~  

[MPa] 

Ylnσ  

 

charγ  

[MPa] 

α  

 

u  

[MPa] 

charγ  

[MPa] 

k  

 

u  

[MPa] 

charγ  

[MPa] 

44.086 11.150 22.54 42.740 0.2490 26.42 0.1150 49.104 17.25 4.485 48.319 21.50 

 

Firstly, the characteristic value was determined according to EN 14358 [4] for 5% 

percentile. By using 20=n , 93.1=sk  the characteristic value is  MPa01.24=charγ . 

 

Alternatively, characteristic value was determined from equation (5) for normal, 

Gumbel and Weibull and equation (7) for lognormal distribution. The results vary 

considerably as can be observed from Tab. 5. The result obtained based on the 

assumption of lognormal distribution is considerably higher than other values (about 

15% higher than value according to the code[4]). On the other hand the value obtained 

for Gumbel (min) distribution gives a characteristic value that is 25% lower than the 

value according to the standard [4]. 



 

5 Conclusions 

 

Determination of the characteristic values from small samples was analyzed for several 

different distributions. The main points of the present approach are as follows: 

 

(i) For normal distribution exact analytical formulation of the problem can be found. 

Analytical derivation results in a one-dimensional non-linear formula for 

determination of parameters. 

 

(ii) These parameters are used directly with the estimates of mean and standard 

deviation from the sample to evaluate the estimate of the characteristic value with 

previously prescribed confidence interval. Analytical results are confirmed by 

simulations. 

 

(iii) Lognormal distribution is directly connected to normal distribution through the 

exponential map. This relationship allows us to extend the formal algorithm from 

the normal to lognormal distribution. 

 

(iv) For other distributions relation to normal distribution is more complicated. The 

parameters λ  used in equation (5) have to be determined via numerical 

simulations. The result is a number of useful tables which can be very easily used 

for the estimation of characteristic value if relatively small samples are available. 

 

(v) An example for characteristic value determination in the case of strength of timber 

beams is used to illustrate possible differences when different assumptions about 

the statistical distributions are taken. 



 

(vi) Lognormal distribution has a general shape which corresponds to the distributions 

of maximum values since its coefficient of asymmetry is always positive (it 

depends on coefficient of variation), whereas the coefficient of asymmetry is 

negative for all distributions of minimum values. As a result it is expected that the 

lognormal distribution would be a bad approximation for the strength of material 

where the distribution of minimum value (the weakest point) is sought. This is 

clearly true for the data analysed in this paper. 
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