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Abstract

A new numerical model for prediction of temperature development in young concrete structures 

is briefly presented. This program consists of a pre-program and main program. With the pre-

program, adiabatic hydration curves, which are used to determine the internal heat generation, 

are calculated. An artificial neural networks approach is used for this purpose. Adiabatic 

hydration curves, which were included in the learning set, were determined by our own 

experiments, using the adiabatic calorimeter which uses air as the coupling media. The main

program is implemented in the finite element code. This program allows concrete structure 

designers and contractors to quantify and evaluate the effects of some concrete initial 

parameters on the adiabatic hydration curves and corresponding temperature development at an 

arbitrary point in the concrete element. Some examples are also presented and discussed.

Keywords: Young concrete; Adiabatic calorimetry; Adiabatic hydration curves; Artificial neural 

networks; Maturity, Finite element method.

1. Introduction

Hydration process in hydrating concrete is a complex phenomenon, which is influenced by 

many factors. These factors have to be accounted for, since they could influence the heat 

development, and thus the development of thermal stresses in concrete structures at early ages. 

The interaction of these factors is very complex. The cement composition, initial concrete 

temperature, amount of cement, water-cement ratio, presence of mineral and chemical 
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admixtures, etc., primarily influence the heat of hydration process in concrete structures. The 

hydration process is also strongly affected by its current temperature and moisture content. 

Therefore, ambient air temperature, wind speed, relative humidity, solar radiation, and cloud 

cover, cause the hydration behaviour in field conditions to be very different from hydration 

under laboratory conditions.

The hydration process of cement in concrete in laboratory conditions is usually the basis for 

further prediction of behaviour of concrete in structures. Development of hydration processes in 

qualitative respect may be followed by monitoring the development of hydration heat by direct 

or indirect methods. Adiabatic heat measurements would be the most precise for producing 

continuous heat of hydration curves under curing conditions close to or almost identical to mass 

curing. Therefore, adiabatic hydration curves would be the most suitable starting point for 

temperature calculations in hardening concrete structures.

A number of models have been proposed to predict the heat evolution and resulting temperature 

development characteristics in concrete during the early ages of hydration process. Such 

computer programs are based on finite difference [1] or finite element [2, 3, 4] method. The 

development of temperatures in hydrating concrete is usually determined from the transient heat

balance, as governed by Fourier's law

Q
z

T
k

zy

T
k

yx

T
k

xt

T
c zyxp 












































 , (1)

and boundary and initial conditions, for example

0)(  Aijij TThnTk (where the heat flux is prescribed) (2)

PTT  (where the temperature is prescribed) (3)

  )(0, iiniti xTxT  , (4)

where  , cp and ki (i = x,y,z) are the density, specific heat and thermal conductivity of concrete, 

respectively. In these equations, T = T(x,y,z,t) is the temperature in a concrete structure at point 

xi = (x,y,z) at time t and Q states for the internal heat of hydration which can be determined by 

adiabatic hydration curve. In Eq. (2-4), h, TA, TP, and Tinit denote the heat transfer coefficient,
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ambient temperature, prescribed temperature at the boundary, and prescribed initial temperature 

at point xi, respectively.

Several empirical equations have been proposed to predict the adiabatic hydration curves, i.e. 

the adiabatic temperature rise Ta(t) of concrete mixture [5, 6, 7, 8]. The main disadvantage of 

these equations is that the empirical coefficients have to be determined experimentally and 

specifically for each concrete mixture. This is time consuming and hence expensive. Ballim's 

model [1] incorporates the result of a rate of heat evolution determination using a low-cost 

adiabatic calorimeter for individual concrete mixture. It would be of great advantage if these 

adiabatic curves could be generated by adequate numerical models. 

Some numerical models exists, which are able to predict the adiabatic hydration curve for an 

arbitrary concrete mixture [8, 9, 10]. Evsukoff et al. presented a data mining approach for 

modelling the adiabatic temperature rise during cement hydration [11].

In this paper, a new computer program for predicting the temperature profile in concrete 

structures at early age is presented. The main advantage of this program is that the adiabatic 

hydration curves can be very reliably determined for an arbitrary concrete mixture. For this 

purpose a special program is prepared, which is able to determine the adiabatic hydration curve 

by artificial neural network, using the following parameters: the initial concrete temperature, 

amount of cement, type of cement, water-cement ratio, and some concrete admixtures. 

Adiabatic hydration curves, which were used in learning procedure, were determined 

experimentally in our laboratory. Adiabatic calorimeter which uses air as a coupling media was 

employed. The adiabatic hydration curve which is determined by this special pre-program is 

implemented into a main program for determination of a temperature profile in an arbitrary 

concrete structure. This program is based on finite element code and uses a heat rate-maturity 

relationship to determine the rate of heat of hydration at various times and locations in the 

concrete element [1]. The apparent activation energy, which plays the main role in the well-

known Arrhenious maturity equation, was determined according to the procedure, proposed by 

Morabito [5]. Several initial and boundary conditions, namely radiation, convection, constant or 

variable temperature at the element boundary, as described in [1], are included in this model. 
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Also, several models to determine the specific heat and thermal conductivity of concrete are 

built in [12, 13]. Finally, some results are briefly presented and discussed.

2. Determination of adiabatic hydration curve

2.1. Experimental work

To achieve the objective of this study, 24 adiabatic tests were performed. The influence of 

cement type, CT, water cement ratio, WC, amount of cement, AC, some concrete admixtures, 

CA, and initial concrete temperature at the adiabatic hydration test, T0, on the hydration process 

and thus adiabatic hydration curves were investigated. Adiabatic calorimeter of IGMAT -

Building Materials Institute, which uses air as the coupling media, was used. Adiabatic 

temperature rise was recorded automatically on PC. The duration of one test was about 168 

hours. Fig. 1 and Table 1 present some measured adiabatic hydration curves, used in this study. 

Within this study, cement type was descibed by the amount of ultimate heat of hydration of the 

cement, cemH [J/g]. 

Table 1

A method of estimating the maximum heat of hydration of cement is to determine the 

percentage of the total mass of each constituent and multiply these by the heat of hydration of 

the respective components as shown in Eq. 5.

 iicem phH ,               (5)

where ih  stands for the heat of hydration of individual i-th component [J/g] and ip stands for 

the mass ratio of i-th component of the total cement content. Table 2 presents the values of 

cemH for all cements, used in this study.

Table 2

Fig. 1
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2.2 Artificial neural networks

There are many applications of artificial neural networks (ANNs) in concrete structures. Some 

years ago, there have been reports on the use of ANNs in the modelling of concrete strength 

[14,15,16], but recently ANNs have also been efficiently used for the prediction of concrete 

compressive strength based on various non-destructive tests [17,18,19], compressive strength of 

concrete with some admixtures [20], and some other properties of concrete [21]. Artificial 

neural networks are networks, consisting of several very simple elements, called neurons. The 

connections between neurons are defined by their weights. Through connections a neuron 

receives signal from other neurons. The multi-layer feed-forward neural networks are usually 

employed as the approximators of an unknown functional relationship. The input units, which 

represent the input data, are connected to the first layer of hidden units, which are further 

connected to the units of the next hidden layer. The units of the last hidden layer are connected 

to the output units, which represent the output data. Each unit is represented by its value k
iy . 

Each connection between units is characterized by its weight k
ijw . The index i corresponds to 

the unit number of kth layer, while index j corresponds to the unit number of the (k − 1)th layer. 

The value of a unit is multiplied by the corresponding weight and added to the value of the 

signal in the unit of the next layer. In addition, the value of bias neuron or threshold k
i is 

added to the equation
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In equation (6), f(.) stands for the activation function which enables modelling of an arbitrary 

continuous non-linear relation between input and output variables. A set of known input and 

output values is termed an input-output pair. All pairs are divided into two sets. The first one is 

termed as the learning or training set, which is used to determine the weights k
ijw . When the 

learning procedure ends, the performance of the neural network is assessed on the testing data. 

The training procedure is, in fact, a general optimization problem in which the minimum of 

error Ep is sought
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where Tpi are the actual or target output values, ln
piy  are the values of neurons in the output layer 

nl, i.e. the output value obtained by ANN, and n0 is the number of neurons in the output layer.

2.3 Construction of ANN model for adiabatic hydration curves - construction of pre-program

The input layer was modelled with six input neurons, corresponding to the five influencing 

factors, namely cement type, amount of cement, w/c ratio, initial concrete temperature, amount 

of additive, and time t. The output layer was modelled with one output neuron corresponding to 

the adiabatic temperature rise Ta. Many calculations with different geometries of ANNs were 

carried out. On the basis of the results, the final solution was obtained by ANN having geometry 

6-30-30-30-1 - i.e. there were 3 hidden layers, each of them included 30 neurons. Different sizes 

of learning and testing sets were tried; however, the results did not differ considerably. Finally, 

about 75% of randomly selected pairs (ti - Tai; i ≈ 40000) were used for learning and the 

remaining 25% were used as testing pairs. The efficiency of the learning procedure was very 

good. The coefficient of correlation between the actual (target), Ta,exp, and calculated, Ta,ANN, 

values of adiabatic temperature rise was R2 = 0.9969. When all the weights k
ijw  were 

determined, a numerical subroutine was implemented into the Matlab programming 

environment to evaluate the adiabatic temperature rise at time t  for arbitrary values of factors.

2.4 Adequacy of the proposed model

In order to asses the adequacy of the proposed model, two studies have been done. These studies 

are briefly described in the following paragraphs.

2.4.1 Study 1: Approximation of some adiabatic hydration curves with this model

12 adiabatic hydration curves, which were used in learning set, were randomly chosen in order 

to establish the ability of the proposed model to approximate these adiabatic curves. The 

average coefficient of correlation was R2 = 0.9986.
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2.4.2 Study 2: Sensitivity of the proposed model to predict new adiabatic hydration curves

Several examples were done in order to check the sensitivity of the proposed ANN model to 

predict new adiabatic hydration curves. The effects of concrete initial parameters were in 

accordance with the well-known rules of mix proportioning and other initial characteristics of 

fresh concrete mixture. In some cases, none of the input parameters had extreme value with 

respect to parameter values of all other curves, which were included in the learning set. The 

ability of ANN model to predict new curves was very good in this case. On the other hand, 

examples were also done, where one or more input parameters had extreme values with respect 

to parameter values of all other curves, which were included in the learning set. In those cases, 

the accuracy of the proposed model was slightly lower. This indicates, that ANN has good 

capability for interpolation, and is not as efficient in the case of extrapolation. Detailed 

description of this phenomenon can be found in [22].

3. Development of the heat model - main program

3.1 Basic equation 

For clarity, a basic introduction to the finite element method (FEM) used in this analysis is 

briefly presented below. Eq. (1) can be written in the discretized form of the FE method as

  fCttHK t  (8)

where K , H , C , and f  are global conductivity matrix, global heat transfer matrix, global 

capacity matrix, and global load vector, respectively, and tt is the time derivative of 

temperature t . In Eq. (8), K  is an assemble of element conductivity matrices Nii ...1, eK , 

H  is an assemble of element heat transfer matrices Nii ...1, eH , and C  is composed of 

element capacity matrices Nii ...1, eC . Element matrices are evaluated by the following 

equations:


eV

T
i  dV k BBK e , (9)


eS

T
i  dS h NNHe , (10)
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
eS

p
T

i  dVρ c NNHe . (11)

In Eq. (9), B  stands for the derivatives of the shape function matrix N  with respect to 

Cartesian coordinates. Load vector f  is expressed as

hQq rrrf  (12)

where qr , Qr  and hr are global vectors, which take into account the radiation, internal heat 

generation and convection, respectively. Vector qr  is assembled from element vectors qer , 

vector Qr  is assembled from element vectors Qer  and vector hr  is assembled from element 

vectors her , where


eS

B
T

i
 dS qNrqe , (13)


eV

T

i
 Q dVNrQe , (14)


eV

f
T

i  dV h TNrhe . (15)

In Eq. (13-15), qB, Q, h and Tf are prescribed heat flux normal to surface (J/m2s), rate of internal 

heat generation per unit volume due to cement hydration (J/m3s), heat transfer coefficient, or 

film coefficient (J/m2s°C), and surrounding temperature (°C), respectively. Ve and Se denote the 

element volume and element surface, respectively.

3.2 Determining the rate of internal heat evolution Q

As stated in previous sections, internal heat evolution is a very important parameter in the 

transient heat balance equation (Eq. (1)) when dealing with concrete structures at early age. The 

heat liberated in adiabatic conditions at time t can be determined from continuous measurements 

of the relative adiabatic temperature rise Ta(t) and is expressed as

paa  c(t) T(t)Q  . (16)

As in the case with the most chemical reactions, the hydration of cement and thus the liberated 

heat of hydration is strongly affected by its current temperature and moisture state. 
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Environmental conditions causes the hydration behaviour under field conditions to be very 

different from hydration under laboratory conditions. The maturity method is an approach used 

to account for the combined effect of temperature and time on the development of concrete 

mechanical properties and the development of hydration. These effects can be quantified on the 

basis of the well known Arrhenious maturity function fA (Eq. 17), in which the temperature 

sensitivity factor is given by the apparent activation energy EA which is a function of the 

temperature and the degree of hydration. 
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In Eq. (17), R denotes the gas constant  (R = 8315 J/(mol K)). There exist many activation 

energy values as proposed by different research efforts. These values range from EA = 26700 to 

EA = 67000 J/mol and seem to vary depending on the type of materials used in the mixture [23].

The fact that the values of the apparent activation energy exhibit a wide scatter and a 

dependency on temperature is not surprising if we consider some well-known temperature 

effects observed in adiabatic hydration tests (section 4.1). A way to directly determine the 

activation energy consists in performing some adiabatic tests on concrete samples maturing at 

different temperatures. This can be achieved, for instance, by performing the tests with different 

initial temperature of fresh concrete [5]. With the presented ANN-based pre-program, the 

procedure to directly determine the activation energy as proposed by Morabito [5] can be

performed.

Therefore, the rate of heat evolution at time t in environmental conditions can be expressed as

aAQfQ  . (18)

4. Results and discussion

Several studies were done in order to check the adequacy of the proposed program. At the first 

stage, big concrete cylinder (h = 250 cm, Ф = 90 cm) was prepared. Geometry of this test  

specimens is shown in Fig. 2 and concrete mixture parameters (reference mixture) were as 
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follows: CT = CT1, WC = 0.67, AC = 180 kg/m3, CA = 1, Ti = 28°C. Here, Ti stands for the 

temperature of the fresh concrete mixture. Temperature profile was measured experimentally 

with the previously calibrated thermocouples at six points inside concrete cylinder (see Fig. 2). 

As an addition, environmental temperature was also measured (point 7).

Fig. 2.

4.1. Example 1. Adequacy of the proposed program

The objective of the first example was to validate the proposed numerical model. At the first 

stage, adiabatic hydration curve was calculated with the proposed ANN pre-program on the 

basis of concrete mixture parameters. Next, calculated adiabatic hydration curve was 

automatically inserted into the main program and the temperature profile was calculated. Fig. 3a 

and 3b present the temperature distribution within the analyzed system at times t = 10 hours and 

t = 100 hours, respectively. Axial symmetry was considered.

Fig. 3

Fig. 4a and 4b present measured and calculated temperatures at points 3 and 4, respectively.

Fig. 4

It can be seen from Fig. 4 that calculated temperatures are in good agreement with the 

experimentally determined temperatures. This indicates that both ANN pre-program and FE 

main program were able to correctly determine the adiabatic hydration curve and temperature 

profile, respectively. Maximum difference between experimentally determined and calculated 

temperatures was about 2°C.  Note, that these results were obtained only on the bases of some

well defined and easily obtainable fresh concrete mixture parameters and data about the 

experimental settings.

In further analysis some minor corrections of the adiabatic hydration curve were done. The 

calculated and experimentally determined temperatures were almost identical in this case (Fig. 

5).
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Fig. 5

4.2 Example 2. Influence of the initial concrete temperature and initial temperature of 

the adiabatic test

The objective of the second example was to show the ability of the proposed numerical model to 

predict the influence of the initial concrete temperature, Ti,  on the development of the 

temperature profile in the concrete element. Therefore, four equal concrete mixtures, including 

reference mixture at Ti = 28°C (labelled as "exp")  with different initial concrete temperatures

were analyzed. Fig. 6a and 6b present the influence of the initial concrete temperature on the 

development of the adiabatic hydration curves and temperature development at point 3, 

respectively. It can be seen from Fig. 6 that a change in initial concrete temperature affects the 

rate of heat development and consequently the development of the temperature inside the 

concrete element. The higher the fresh concrete temperature becomes the higher and more rapid 

the rate of the hydration process, which can be seen from adiabatic hydration curves (Fig. 6a). 

Another important statement results from Fig. 6a. It can be seen that the long-term adiabatic 

temperature rise is also strongly affected by the initial temperature magnitude. High initial 

temperatures may cause decreased long-term adiabatic temperature rise as compared to mixtures 

with lower initial temperatures. This phenomenon is referred as the cross-over effect and was 

also observed by some other researchers [8, 23]. It can be seen from Fig. 6a that calculated 

adiabatic hydration curves correspond to this statement very well too. A reason why the 

intersection of heat evolution curves occurs could be that at higher temperatures a denser gel is 

formed around the hydrating cement grains [24]. It can be seen from Fig. 6b that the higher the 

initial rate of hydration becomes the higher the development of in place concrete temperatures T

in the middle of the discussed concrete element. Due to the cross-over effect, the temperatures T

decrease slowly with the lower initial temperatures.

Fig. 6
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In the next study the robustness of the proposed procedure is verified. The analyses of the same 

concrete mixture based on adiabatic measurements with four different initial temperatures of the 

adiabatic test T0 were done. In this case it is expected that the results would be the same for all 

four analyses since the same physical problem was analysed.

Fig. 7 shows the influence of the initial temperature of the adiabatic hydration curve, T0, on the 

development of the temperature profile in the concrete element. It can be seen that the results 

were almost identical in all four cases. This effect can be explained by the physical meaning of 

the age conversion factor fA (see Eq. 17), associated with the Arrhenius equation. It converts a 

curing interval to the equivalent curing interval at the reference temperature. Should the 

temperature over the curing interval be larger than the reference temperature, then the age 

conversion factor will be grater than one. Conversely, if the temperature over the curing interval 

is less than the reference temperature, then the age conversion factor will be less than one.

Fig. 7

4.3 Example 3. Influence of the amount of cement

The objective of this example was to show the influence of the amount of cement on the 

adiabatic temperature rise and corresponding temperature development in concrete element. In 

this case, all concrete parameters were the same for all mixtures but the amount of cement 

varied. Fig. 8a and 8b present the influence of the amount of cement on the development of the 

adiabatic hydration curves and temperature development at point 3, respectively.

Fig. 8

It can be clearly seen from Fig. 8a that the higher cement content results to more intensive 

hydration process. It can be also seen that the long term adiabatic temperature rise is strongly 

affected by this variable. As expected, the higher cement content results in higher long-term 

adiabatic temperature rise. Therefore, the proposed ANN module was able to correctly predict 

the influence of the amount of cement on the development of the adiabatic hydration curves. It 
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can be seen from Fig. 8b that the higher cement content results in higher temperatures in the 

concrete element. The temperature decrease was similar for all concrete mixtures in this case.

5. Conclusions

New numerical procedure for the prediction of temperature development in early age concrete 

structures is briefly presented. Adiabatic hydration curves, from which internal heat generation 

is determined, are determined by a computer program, which is based on artificial neural 

networks. The adiabatic hydration curve is calculated, based on concrete intial parameters, 

which are easily estimated or predicted. Adiabatic hydration curve is then automatically inserted 

into the main program, which is used to calculate the temperature profile at an arbitrary point 

inside the concrete element. The main program is based on a finite element method. Both 

programs are implemented in Matlab programming environment.

a) The presented ANN-based pre-program allows us to determine the adiabatic heat of 

hydration curves very accurately. It was shown that the presented ANN model was able 

to correctly predict adiabatic hydration curves which were previously not used in 

analysis. The effects of concrete initial parameters were in accordance with the well-

known rules of mix proportioning and other initial characteristics of fresh concrete 

mixture. Several studies have shown that the learning data is very important and has to 

be well distributed over the predetermined ranges of values. This does not seem to be a 

problem, because new adiabatic hydration curves with some other initial parameters of 

the concrete mixture can easily be included in the learning set in order to expand the 

range of suitability of ANN to predict the adiabatic hydration curves.

b) The presented ANN-based model allows us to determine the apparent activation energy 

as proposed by Morabito [5]. However, several studies have shown that the values of 

the activation energy does not appear to affect the temperature development in concrete 

structures considerably.

c) With the temperature prediction program developed in this study, the effects of some 

concrete initial parameters on the development of the temperature at an arbitrary point 
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in the concrete element can easily be studied. This can allow concrete structure 

designers and contractors to quantify and evaluate the effect of various controllable and 

uncontrollable parameters on the temperature development in situ.
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Fig. 1. Some experimentally determined adiabatic hydration curves, used in this study
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Fig. 2. Showing a) the geometry of the concrete test cylinder with the side insulation and locations of the 

thermal probes inside the concrete element, b) finite element mesh (axial symmetry)
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Fig. 3. Calculated temperature distribution within the concrete element at different times, a) t = 10 hours, 

b) t = 100 hours.
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Fig. 4. Adequacy of the proposed numerical model, a) measured and calculated temperature development 

at point 3, b) measured and calculated temperature development at point 4. 
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Fig. 5. Actual and calculated temperature development at point 3 after minor corrections of adiabatic 

hydration curve.
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Fig. 6. Influence of the initial concrete temperature on the development of a) adiabatic hydration curve, b) 

in-place concrete temperature at point 3.  
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Fig. 7. Influence of the initial temperature at the adiabatic hydration test on the development of the in-

place concrete temperature at point 3.
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Fig. 8. Influence of the amount of cement on the development of a) adiabatic hydration curve, b) in-place 

concrete temperature at point 3.  
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Table 1

Characteristics of all adiabatic hydration curves, used in this study

parameters parameters

curve CT WC
AC 
[kg/m3] CA T0 [°C] curve CT WC

AC 
[kg/m3] CA T0 [°C]

A1 CT1 0.70 180 1 20.0 A13 CT3 0.47 360 2 7.2

A2 CT1 0.70 180 1 25.0 A14 CT3 0.50 350 1 22.7

A3 CT1 0.70 180 1 29.0 A15 CT3 0.50 360 1 23.6

A4 CT1 0.42 380 1 22.9 A16 CT3 0.50 360 1 24.1

A5 CT2 0.43 350 1 25.3 A17 CT3 0.54 370 1 17.4

A6 CT3 0.45 350 1 19.9 A18 CT3 0.54 370 1 13.1

A7 CT4 0.45 350 1 26.5 A19 CT3 0.54 370 1 7.9

A8 CT1 0.65 280 1 23.0 A20 CT3 0.50 370 3 18.5

A9 CT3 0.50 360 1 21.3 A21 CT3 0.50 370 3 12.8

A10 CT3 0.50 360 1 22.5 A22 CT3 0.50 370 3 7.9

A11 CT3 0.47 360 2 20.7 A23 CT3 0.52 370 4 19.0

A12 CT3 0.45 330 2 12.6 A24 CT4 0.52 370 4 11.0

Tables
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Table 2

Values of the calculated ultimate heat of hydration for all cements, used in this study

cement type cemH  [J/g]

CT1 400

CT2 370

CT3 435

CT4 430




