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ABSTRACT 

This article deals with the characteristics of deformation of a body or a figure represented by discrete points of 

geodetic network. In each point of geodetic network kinematic quantities are considered: normal strain, shear strain 

and rotation. They are computed from strain and rotation tensors represented by displacement gradient matrix on the 

basis of known point displacement vector. Deformation analysis requires the appropriate treatment of kinematic 

quantities. Thus statistical properties of each quantity in a single point of geodetic network have to be known. 

Empirical results have shown that statistical properties are strongly related to the orientation in single point and local 

geometry of the geodetic network. Based on the known probability distribution of kinematic quantities the 

confidence areas for each quantity in certain point can be defined.  Based on this we can carry out appropriate 

statistical testing and decide whether the deformation of network in each point is statistically significant or not. On 

the other hand, we are able to ascertain the quality of the geometry of the geodetic network. Known characteristics of 

the probability distributions of two strain parameters and rotation in each point can serve us as useful tool in the 

procedures of optimizing the geometry of the geodetic networks.  

KEY WORDS: kinematic quantities; strain; rotation; tensor; normal strain; shear strain; geodetic network; 

probability distribution; confidence interval; confidence area; detection level of deformations  

 

                                                 
1
 assistant, Faculty of Civil and Geodetic Engineering, Univ. of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenia. 

E-mail: amarjeti@fgg.uni-lj.si 

2
 associate professor, Faculty of Civil and Geodetic Engineering, Univ. of Ljubljana, Jamova cesta 2, 1000 

Ljubljana, Slovenia. E-mail: tambrozi@fgg.uni-lj.si 

3
 professor, Faculty of Civil and Geodetic Engineering, Univ. of Ljubljana, Jamova cesta 2, 1000 Ljubljana, 

Slovenia. E-mail: gturk@fgg.uni-lj.si 

4
 assistant, Faculty of Civil and Geodetic Engineering, Univ. of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenia. 

E-mail: osterle@fgg.uni-lj.si 

5
 associate professor, Faculty of Civil and Geodetic Engineering, Univ. of Ljubljana, Jamova cesta 2, 1000 

Ljubljana, Slovenia. E-mail: bstopar@fgg.uni-lj.si 

Manuscript
Click here to download Manuscript: manuscript_rev_bw1.doc

http://www.editorialmanager.com/jrnsueng/download.aspx?id=60183&guid=5471f260-cd59-495f-8821-ddfc57b4bec9&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

INTRODUCTION 

 

Deformations are generally determined on the basis of the displacements of individual points of a deformable body 

represented by geodetic network. In this paper we will use a slightly different approach in determining statistically 

significant deformations in the geodetic network according to classical deformation analysis methods (Delft, 

Hannover, Karlsruhe, Fredericton... (Chrzanowski et al. 1983; Mierlo 1978; Welsch and Zhang 1983)). Deformation 

of the body, which is represented by a certain number of points in the geodetic network, will stem from the theory of 

the mechanics of solids. The values of kinematic quantities, normal strain, shear strain and rotation, which are 

calculated from displacement gradient matrix, will be treated. According to the known classical methods of 

deformation analysis, our focus is on finding a statistically significant deformation in each point. In order to perform 

the appropriate statistical testing for determing the statistical significance of deformations, we need information 

about the probability distribution of a particular kinematic quantity. The aim is therefore to provide the probability 

distribution of each strain parameter and rotation in each point and direction of geodetic network. Some researchers 

treated them as normally distributed random variables (Michel and Person 2003). The probability distributions of 

kinematic quantities as eigenspace components (principal eigenvalues) of the rank-two random tensor are 

significantly different from commonly used Gauss normal distribution (Cai et al. 2005; Cai and Grafarend 2007a/b; 

Xu and Grafarend 1996). The problem was already intensively studied and the probability properties of eigenvalues 

of rank-two random tensor which components are supposed to be normally distributed was analytically derived 

(Soler and Gelder 1991; Xu and Grafarend 1996; Cai et al. 2005). Even though the analytical solutions exists for 

linearized theory, we decided to use the empirical approach. As mechanical strains and rotations are in the functional 

relationship with the point displacements and therefore with the geodetic observations too, we are able to empirically 

determine the probability distribution of each quantity by varying the value of observations in geodetic network 

within their own confidence intervals. As is known in statistics, by identifying the characteristics of a sample of 

random variable, we can calculate the mean values and boundaries of confidence intervals at selected confidence 

level. These values allow us to determine statistical significance of deformation at a single point in the geodetic 

network. The size of the confidence interval of each kinematic quantity is unique for each point in the geodetic 

network and as will be shown also depends on the directon in which it is treated. So the term confidence interval will 

be replaced with the term confidence area. Comparison of the shapes and sizes of confidence areas at different points 

allows us to determine the parts of the network, where smaller deformations are detectable. On the other hand, we 
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are able to detect parts of the network, which are less sensitive to the deformations. No kinematic quantity, which 

occurs within the confidence area can be treated as statistically significant. This fact also makes it possible to define 

another measure of quality of the geometry geodetic network. 

 

The paper begins with brief summary of the strains and rotations and their eigencomponents and eigendirections 

computed under assumption of homogenous strains and rotations in certain areas in 2D geodetic network. Then we 

deal with the problem of statistical properties of kinematic quantities in certain network point using Monte Carlo 

simulations of geodetic observations. Our scope will focus on empirical determination of probability distribution 

functions of each kinematic quantity as random variable which differs to analytical determination of probability 

distributions of  quantities derived from symmetric random tensors made in earlier researches. 

 

STRAIN AND ROTATION TENSOR IN HORIZONTAL GEODETIC NETWORK 

 

Geodetic network is a finite set of points and represents part of the Earth’s physical surface. The mathematical and 

statistical treatment of geodetic networks based on the linearized Gauss-Markov model (Vaniček and Krakiwsky 

1986) results points coordinates and belonging statistical information of unknowns. Changes of point coordinates 

between epoch measurements can be treated as displacements, considered as the potential deformations in the 

geodetic network. The aim is thus to determine the value of deformation in each point of the geodetic network from 

changes in the value of geodetic observations or from changes in the coordinates of points between two time epochs. 

For each point the value of strain and rotation tensor or displacement gradient matrix iE  can be computed (Shames 

and Cozzarelli 1997; Vaniček et al. 2001; Vaniček et al. 2008; Berber 2006; Berber et al. 2006).  

 

Assumption of homogenous strains and rotation 

 

Definition of strain and rotation tensor is based on the displacement vector    
T

, x yx y u uu  for each point of 

the considered deformable body, where generally heterogeneous strains and rotations occur. In the case of geodetic 

network, we have a situation where informations about displacements only in some specific points of the inspected 

body are available. In this case we can determine the displacements and consequently the strain and rotation tensor 

only in geodetic points. In some arbitrary point, strain and rotation tensor is determined through various methods of 
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interpolation under the assumption of homogeneous deformations in certain areas where strains and rotations are 

constants. Such areas are e.g. triangles obtained by Deulanay triangulation (Cai and Grafarend 2007a, 2007b).  

 

In all cases we consider tensor of small strains and small rotations because the deformation of the object is assumed 

differentially small compared to the dimension of the object, represented by the geodetic network. Using that and the 

fact that the displacement vector and the associated vector field are in the case of homogeneous strains and rotations 

continuous, differentiable and regular, the displacement vector is totally differentiable and is connected with the 

displacement gradient matrix iE  in relation (Shames and Cozzarelli 1997; Vaniček et al. 2001; Vaniček et al. 2008; 

Berber 2006; Berber et al. 2006): 

    j i ijTu E r c ,         (1) 

where: 

x x

i
y y

u u

x y

u u

x y

  
  
 
  
 
  

E - displacement gradient matrix for point iT ,  

 
   

  

j i

j i

T T

ij j i
T T

x x

y y
r r r  - coordinate differences of points iT  and jT ,  

 
 

   
    
    

x i i

y i i

u T a

u T b
c  - constant vector.  

If the system of equations (1) is written in matrix form, we get (where indices for points are simplified with i  and 

j ): 

     
T

,1F : 1
  

        

xi xi
j j i j i i x j

u u
x x y y a u T

x y
,     (2) 

     
T

,2F : 1
  

        

yi yi

j j i j i i y j

u u
x x y y b u T

x y
. 

 

Primarily equations (1) and (2) represent a change of vector field of displacement along the connection between iT  

in jT  according to the starting point iT . In the case of the assumptions of homogeneous strains and rotation, 

displacement vector field varies linearly between two points. Here it is important to emphasize that such equations 
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are only valid for the connections between points in the geodetic network, which are located on the area of supposed 

homogenous strains and rotations. This is logical, since it is difficult to speak about the correlation between the 

strains of distant points.  

 

System of equations (2) represents the system of two linear equations for unknowns ,  ,
 

 

xi xi
i

u u
a

x y
, ,  ,

 

 

yi yi

i

u u
b

x y
. 

If the system (2) is written for all neighbouring points 0,1, , j k  to point i  in matrix form, we get (Cai and 

Grafarend 2007a, 2007b): 

   

   

   

   

   

   

11 1

11 1

22 2

2 2

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

   
       
    

  
         

  
          
     

    

     

i xi i

xi yi i

xi i

xi
i i

i

k i k i
yi

k i k i

yi

a ux x y y

u ux x y y
x ux x y y

u
ux x y y

y

b
x x y y

u
x x y y

x

u

y

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 


y

xk

yk

xi

yi

u

u

u

u

,   (3) 

or: 

  vec * i jF E u ,         (4) 

with F - design matrix, ju - vector of point displacement obtained by the least squares adjustment of observations 

and  vec *iE - displacement gradient matrix written in vector mode, expanded for the constant elements ia  and 

ib . The solution for  vec *iE  is computed from overdetermined system (3) and (4) by the least squares method: 

    
1T Tvec *


 i F F jE F P F F P u .       (5) 

 

Because distances between point iT   and neighbouring points vary, strains and rotations do not have equal impact on 

the strains and rotations in point iT . The longer the distance between two neighbouring points, the smaller the impact 

on the strains and rotations in point iT  can be expected. Because design matrix F  just connects deformation 

parameters in iT
 
with point displacements of jT  and does not provide the influence of different distance between 

points on deformations in point  iT  it is reasonable to use the diagonal weight matrix FP . It gives the proper 

treatment of the deformation influence of distant points. The weights in FP  can be defined as inverse square of 
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distance ijd  between two points, in order to further reduce the impact of strains and rotations occurred at distant 

points. The denominator is expanded with constant 1 to avoid infinite values in point iT  ( 0iid ): 

2

1

1



ij

ij

p
d

.          (6) 

 

We checked the appropriatness of equation (6) for the weight of each deformation (displacement) in point jT  by 

using the methods of optimization of second order design (Stopar 2001) in the case of selected geodetic network 

(Figure 2). Primarily, these methods of optimizations are used to determine the optimal measurement weights in the 

selected geometry of the geodetic network in relation to the desired precision of the unknown coordinates of points, 

as it is provided by a criterion matrix (Stopar 2001). In our case, we start with the required precision of the elements 

of displacement gradient matrix iE in equation (4). By taking into account all the possible connections between all 

points and single point iT  (to construct a matrix F ) we can optimize weights ijp  of each displacement of point jT  

and looking for functional dependence of the estimated weights on the distance between points. It can be seen from 

the graph (Figure 1) that the weights are decreasing with the square of the distance between two points. The 

interpolated trend does not fully coincide with the equation (6) in terms of constants in the numerator. The reason is 

that automatic interpolation of trend function is because of the configuration of the selected network carried out only 

for distances larger than 350 m (shortest distance in network), which may affect the interpolated trend function.  

 

Kinematic quantities in geodetic network 

 

The displacement gradient matrix iE  can be decomposed into symmetrical part – tensor of small strains ( ε ) and 

anti-symmetrical part – tensor of small rotations (ω ) (see e.g. Shames and Cozzarelli 1997): 

 
0

0

x x

xx xy z xx xy i
i

y y ixy z yy xy yy

u u

x y

u u

x y

     

    

  
                               
  

E ε ω .   (7) 

 

Since it is reasonable to present the strain and rotaion in point only with the maximum values, we focus only on the 

principal normal strain and the principle shear strain (see e.g. Shames and Cozzarelli 1997): 
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 principal normal strain: 

  
2 2

1,2

1

2 4

 
   


   

xx yyi
xx yy xy , in the direction 

1

21
arctan

2





 

 
  

  

xy

xx yy

  (8) 

 principal shear strain 

 
2 2

1,2

1

4
      i

xx yy xy , in the direction 
1

1
arctan

2 2


 




 
  

 
 

xx yy

xy

   (9) 

 and differential rotation in point i . 

We discuss only the maximum value of shear strain, because both extreme values differ only in the ± sign. 

The principal normal strain represents the maximum scale deformation, the principal shear strain the deformation of 

local network configuration and the differential rotation the local rotation of the network in the selected point.  

 

All three kinematic quantities are theoretically datum invariant (Shames and Cozzarelli 1997; Vaniček et al. 2001; 

Vaniček et al. 2008) and give strain and rotation properties of the deformable body (object or area or figure), which 

are invariant to the selected coordinate system in which they are treated. Strain and rotation tensors are invariant to 

the definition of coordinate system so the computed values of strain parameters and rotation in network points are 

independent of the definition of datum parameters in geodetic network. But it is important to emphasize that the 

invariance of strains and rotation to datum definition has no relation to the lack of uniformity of geodetic datums 

between two time epochs. It has been shown (Xu et al. 2000) that unequally defined geodetic datum between two 

time epochs, despite invariant nature of strains, leads to changes in computed kinematic quantities. With geodetic 

datum differences we cannot assure the consistency of deformation state in both time epochs and therefore the real 

point displacement field needed for determination of strains and rotations cannot be computed. In particular, 

concerning geodetic approach, there is a problem using free network adjustment, when geodetic network is not 

externally tied to a fixed reference frame (Xu et al. 2000). 

 

In the sequel the article will focus on the study of statistical properties of deformation parameters.  

 

STATISTICAL PROPERTIES OF STRAINS AND ROTATIONS 
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The statistical properties of strain and rotation tensor are represented by the probability distribution of appertaining 

kinematic quantities considered as random variables. Kinematic quantities, derived from strain and rotation tensor, 

are in a nonlinear functional relation with the point displacements in the network (equations (1) and (7)) occurring 

between different time epochs. This is why the analytical derivation of probability distribution functions is very 

complex (Soler and Van Gelder 1991, 2006; Xu and Grafarend 1996; Cai et al. 2005). Empirical determination of the 

probability distribution of each kinematic quantity could be therefore more appropriate. 

 

The probability distribution of kinematic quantities in geodetic network can be empirically derived by simulated 

observations in the network using Monte Carlo approach (Rubinstein 1981).  Simulated observations are adjusted 

using the least square method to obtain the vector of coordinate unknowns or corrections to approximate coordinates 

of points.  In this case we consider corrections of coordinates as random displacements of points, which are used to 

determine the strain and rotation tensor for each of these artificially generated displacements. The strain and rotation 

tensor can be then characterized by three values of kinematic quantities in each point. In this case we can determine 

how the network responds to any random change in observations within its confidence interval in relation to 

precision of used geodetic instruments and measurements methods. 

 

Statistical properties of kinematic quantities as random variable can be expressed by its probability distribution 

function or the first and second order moments of random variable (mean value and standard deviation). The number 

of simulated sets of observations (sim) is the sample size of computed kinematic quantities with their own directions 

(equations (8) and (9) – eigendirections of strain tensor) in particular point. Considering the fact that the deformable 

body, represented here by geodetic network, responds differently to the strains influencing in different directions, it 

is important to study the statistical behaviour of each kinematic quantity in certain point as function of orientation. 

Overall consideration, as e.g. made by Michel and Person (2003), without taking into account orientation of 

deformations cannot be complete except for differential rotation in point.  

 

From above it is necessary to divide the whole sample of computed kinematic quantities (for particular point) into 

groups belonging to different directions or from numerical aspect the direction intervals - sectors. For each sector 

with the sample size simsec of computed kinematic quantities the mean value of each quantity and its standard 

deviation for each point in the geodetic network can be computed as: 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1

1 secsim

i
sec sec

sec i
sim

 



  ,  
2

1

1

1

secsim

i
sec sec sec

sec i

s
sim

  


 

 ,     (10) 

1

1 secsim

i
sec sec

sec i
sim

 



  ,  
2

1

1

1

secsim

i
sec sec sec

sec i

s
sim

  


 

 ,  

1

1
sim

i

i
sim

 



  ,  
2

1

1

1

sim
i

i

s
sim

  


 

 , 

where simsec is the sample size for sector sec ( secsim sim ) and s is standard deviation of sample. 

 

Mean values and their standard deviations determine the limits of confidence interval at the chosen level of 

confidence 1  . For the chosen   the confidence interval includes 1   of all values in sample of certain size.  

det
sec sec sec secCV s     , 

det
sec sec sec secCV s     , 

det CV s     ,    (11) 

with CV – critical value at level α. CV depends on the distribution of the statistic and on level of significance α. 

 

The values of boundaries and the size of the confidence intervals for kinematic quantities depends on:  

 the direction in which they are treated,  

 random errors in observations conditional to accuracy of used geodetic instruments and measuring methods and  

 local geometry of the geodetic network were the point is situated (network geometry means geometric 

distribution of points and the observations in the network).  

 

Taking into account that the confidence intervals are different in different directions then it is more appropriate to 

talk about confidence areas at chosen confidence level. The shape and the size of confidence areas for each kinematic 

quantity in certain point represents the detection level of deformations in the geodetic network, which is understood 

as the level of sensitivity to the strains and rotations in the geodetic network. The higher detection level in particular 

point, the smaller deformations geodetic network is able to detect. We want to establish (in a phase of establishing 

network) such a network geometry that the detection levels are as high as possible, and confidence areas in their 

sizes as small as possible with homogenous shape in all directions. 
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At selected level of confidence, the critical values in equation (11) can be determined from the known probability 

distribution function. As it was shown by Savšek-Safić et al. (2006) a random variable, which is in nonlinear 

connections to normally distributed random variable is not normally distributed. Due to nonlinear functional 

relationship between normally distributed point displacements and kinematic quantities, the analytical derivation of 

probability distribution functions (Xu and Grafarend 1996) is very complex. The two main reasons to empirically 

derive probability distribution function are: 

 the fact that in such case there is no need to involve any linearization to simplify the existing mathematical 

model, which connect displacements and kinematic quantities and 

 possibility to use numerical methods to simulate large number of sample elements to obtain real properties of 

random variable.    

Similar to confidence intervals the probability distributions is going to be studied separately for each direction 

(sector) in certain point. An example of empirically derived probability distributions and confidence areas of 

deformation parameters is shown in the sequel. 

 

Statistical significance of strains and rotations  

 

Known confidence areas for kinematic quantities in each point of geodetic network can serve us as useful tool to  

determine the statistical significance of deformation when it actually occurs. The statistical significant strains and 

rotation can be determined using statistical testing. We pose null hypothesis as a statement that there are no strains 

and rotation in geodetic network: 

0H :  , , 0   i i i   (no strains and rotation in point i ). 

We specify an alternative hypothesis: 

1H :  , , 0   i i i  (network has deformed or rotated in point i ). 

 

The statistical tests are carried out on the basis of known probability distributions of random variables, in this case 

the kinematic quantities. The computed value of deformation parameter represents the test statistics. If the value of 

test statistics is outside the boundaries of confidence area, then we reject the null hypothesis at the level of the 

significance α/2 of the selected test. We then say that deformation in point exists and is statistically significant at 

significance level  .  
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Numerical example  

 

Detection level of deformations in the geodetic network is examined in the case of geodetic network in 2D 

(Figure 2). Points are located in the network in the way that we can assume that there is a part of the network with 

good geometry and a part of the network (near point 12), which is expected to be less sensitive to strains and 

rotations. Comparing the relative and absolute error ellipses (Figure 2), we can see that the geometry of the network 

is getting weak towards point 12. Therefore, we expect the geodetic network to be less sensitive to strains and 

rotations in this area. 

 

The Monte Carlo approach is used to simulate the number of sim sets of observed directions and distances in 

geodetic network. The sample size is of great importance to deduce real information about statistical property of 

random variable. The decision about sample size, used in simulations is made empirically. Since we are computing 

first and second order moments of kinematic quantities, we can easily compute these values after specific number of 

simulations. It is obvious from graph (Figure 3) that e.g. mean value converges to some value and therefore the 

sample size of sim = 100000 is large enough for apppropriate assessment of statistical properties. 

 

For each simulated set of observations in the network we compute correction vector of approximate values of 

coordinate unknowns using the least squares adjustment of observations within the free network. Understanding that 

corrections as displacements, kinematic quantities in each point of the network can be computed. For all simulations 

we compute for each point a multitude of size sim of all associated kinematic quantities ( , ,   ) with their 

directions. To determine the shape and the size of confidence areas considered as detection level of deformations for 

each quantity it is important to define the critical interval with its critical values at predefined confidence level for 

each direction sector. Critical values at level α can be deduced from empirically obtained probability distribution 

function.  

 

Empirical determination of probability distribution of kinematic quantities 
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Each direction sector contains the number of simsec computed values of particular kinematic quantity. With this 

multitude of values we can plot the shape of empirical probability distribution function. Since we doubt in the 

congruence of the probability distribution with the normal distribution, we proceed the Kolmogorov-Smirnov test for 

goodness of fit with the normal probability distribution. We pose null hypothesis (Lilliefors 1967): 

0H : random variable is normally distributed:  ,  x xX N , 

against the alternative hypothesis: 

1H : random variable is not normally distributed: X  , x xN . 

 

The statistical testing for normality of probability distribution is performed for each point and each kinematic 

quantity with sample size simsec separately. Numerical results for point 12 in Table 1 show that in most direction the 

Kolmogorov-Smirnov test rejects the null hypothesis at the 1% significance level. Test cannot reject the null 

hypothesis for normality in directions with low frequency and low amplitude of computed principal normal strain. 

But as we can see, for these sectors the value of test statistic for Kolmogorov-Smirnov test with confidence α = 1% is 

very tight to the appertaining critical value. 

 

General ascertainments after performed Kolmogorov-Smirnov test for empirically derived probability distribution of 

kinematic quantities are (Table 1): 

 Probability distribution of normal strain   and shear strain   depends on the direction of deformation in point. 

Statistical tests rejects the normality in many direction at certain point. For shear strain in all direction the 

probability distribution is not normal. 

 Rotation  , according to linear functional relationship to point displacements (equation (7)), is normally 

distributed (it applies to all points in the network). 

 

Once we have empirical probability distribution function in some direction we can determine the boundaries of 

orientation-wised confidence interval. We use the interpolation method to determine the upper and the lower critical 

value at the selected level of confidence 1  . The critical value (CV) is then for standardized form computed as: 
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where , ,  j  and 1, ,12 i . 

 

The boundaries of confidence intervals in certain directions allow us to determine the edge of the confidence area for 

each point in the network and for both deformation parameter (normal and shear strain). From Figure 5 and Figure 6 

it is obvious that confidence areas differ in shape and size from point to point. For points in hexagon 1-2-3-4-6-7 

with central point 5 the confidence areas are quite small and in shape very homogenous in all directions (almost 

circles) if we consider either normal or shear strain. Towards point 12 confidence areas become very heterogenous, 

having two main directions with bigger boundary values. This means that the network near the point 12 is less 

sensitive to strains and rotations and has in that area weaker geometry. 

 

Summarizing numerical results from Tables 1 and 2 and Figures 5 and 6, the detection level of deformation is 

relatively to other points much higher in areas with better network geometry, this is in area of hexagon 1-2-3-4-6-7. 

Consequently, any deformation, which occurs in geodetic network will be easily recognized as statistically 

significant in areas with higher detection level of deformations. Geodetic network with high detection level of 

deformations and homogenous shape confidence areas is therefore more appropriate for quality deformation analysis. 

 

CONCLUSION 

 

Deformations of an object, discretized by geodetic network, were considered as mechanical strains and rotation. We 

were computing the kinematic quantities from strain and rotation tensors, which are in a functional relationship to the 

vector field of point displacements. Because of the specific representation of deformable object by network points, 

the strains and rotation in the points were considered under the assumption that the strains and rotation between 

points are homogeneous. This is the only acceptable way, since we are dealing with discrete data of the vector field 

of displacements at the area (object or figure) i.e. with the points of geodetic network. We determined the strains and 

rotations from the known displacements of network points. The computations of kinematic quantities in particular 

point were not realized under the assumption of the differential closeness of neighbouring network points (from the 

theory of mechanics of solids). Thus, we introduced the so called weight matrix into computation of displacement 

gradient matrix. In this way we took into account the impact of strains and rotation of closer points.  

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

In order to reliably determine the statistical significance of strains and rotations, it is necessary to determine the 

probability distribution of kinematic quantities. Although many researchers dealt with this problem and analytically 

derived probability properties we used empirical approach. We empirically derived the probability distribution 

functions for normal and shear strain at different direction in each point of geodetic network using simulations of 

observations in the network. Based on the empirical determination of the probability distribution in certain direction, 

we found that: 

 the probability distribution of each kinematic quantity (mean and standard deviation) depends on the direction in 

which it is treated and on the local geometry of the geodetic network, 

 the principal strain is not normally distributed, 

 rotation is normally distributed independently of the position of point in the network. 

 

The empirical probability distribution function allows us to determine orientation-wised confidence intervals, which 

together for all directions define the confidence area. The shapes and the sizes of confidence areas for the assumed 

measurements accuracy depend on the location in geodetic network and local geometry of geodetic network and are 

considered as detection level of deformations. The larger the confidence area of certain kinematic quantity, less is the 

network sensitive to deformations and is less able to identify lower values of strains and rotations. In the particular 

case of the geodetic network it is clear that the network in points with less connections between neighbouring points 

is less capable of detecting smaller values of strains and rotations. 

 

The empirically defined statistical properties of kinematic quantities in individual point with known confidence areas 

can serve us as useful tool to determine statistical significant strains and rotations between two time epochs.  

 

NOTATION 

 

The following symbols are used in this paper: 

, ,x y z  = coordinate components; 

u  = vector of point displacements; 

,x yu u  = components of vector u ; 

,i jT T  = points; 
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,i j

 

= indexes for points ,i jT T ; 

, ,  xx yy xy  = elements of tensors of small strains; 

i  = differential rotation in point; 

,i jr r  = coordinate vector of points iT  and jT ; 

ijr  = coordinate differences of points iT  and jT ;  

c  = constant vector; 

,i ia b  = components of c ; 

iE  = displacement gradient matrix; 

FP  = weight matrix for computation of iE ; 

ijp  = weight for connection between iT  and jT ; 

ijd  = distance between points  iT  and jT ; 

1,2 i  = principle normal strain; 

1,2 i  = principle shear strain; 

sim  = number of simulations; 

 ,  ,   = mean values of kinematic quantities; 

s , s , s  = standard deviations of kinematic quantitie; 

det , det , det  = detection level of deformations for each kinematic quantity; 

CV  = critical value; 

d
 
= point displacement; 

, y x
 
= coordinate differencies; 

0y , 0x  = approximate values of point coordinates; 

iy , ix  = computed coordinates of the points; 

  = level of significance; 
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TABLES 
 

 
Table 1 

Statistical properties of principal normal strain in point 12. 

Point 

12 

 

Kolmogorov-Smirnov test  

α = 1% 

confid. interval – CI 

α = 5% 

stand. critical value – CV 

α = 5% 

1st & 2nd order  

moments 
  

 
 

Sector  reject H0? 

test  

statistic 

critical 

value 

lower 
boundary 

[ppm] 

upper 
boundary 

[ppm] lower tail upper tail 

mean 

[ppm] 

standard 
deviation 

[ppm] 

mean direction 
for sector 

[°] 

1 yes 
0.0302 0.0169 -20.3219 20.5433 -1.8491 1.8832 -0.0759 10.9493 4.5 

2 yes 
0.0246 0.0190 -18.5970 17.9309 -1.9182 1.8501 -0.0030 9.6934 13.5 

3 yes 
0.0298 0.0195 -17.6320 17.0450 -1.8876 1.8390 -0.0674 9.3055 22.5 

4 yes 
0.0257 0.0186 -16.9184 16.8615 -1.8641 1.9110 -0.2385 8.9480 31.5 

5 yes 
0.0182 0.0159 -17.3420 16.2671 -1.9973 1.8848 -0.0503 8.6575 40.5 

6 yes 
0.0202 0.0119 -17.1915 17.1410 -1.8739 1.8694 -0.0044 9.1718 49.5 

7 yes 
0.0217 0.0076 -19.4050 19.1882 -1.8772 1.8636 -0.0384 10.3168 58.5 

8 yes 
0.0206 0.0059 -18.9558 19.2445 -1.8702 1.8889 0.0493 10.1621 67.5 

9 no 
0.0052 0.0084 -14.1234 14.1438 -1.9315 1.9429 -0.0317 7.2959 76.5 

10 no 
0.0060 0.0127 -11.9871 12.1811 -1.9465 1.9401 0.1166 6.2184 85.5 

11 no 
0.0107 0.0169 -11.7915 11.2080 -1.9826 1.8857 -0.0037 5.9457 94.5 

12 no 
0.0152 0.0190 -12.0383 11.2802 -2.0274 1.9113 -0.0352 5.9204 103.5 

13 no 
0.0169 0.0195 -12.2625 12.0456 -2.0034 1.9864 -0.0568 6.0926 112.5 

14 no 
0.0081 0.0186 -12.3151 12.6863 -1.9218 1.9744 0.0167 6.4169 121.5 

15 yes 
0.0187 0.0159 -14.3416 14.6173 -1.9031 1.9627 -0.0854 7.4912 130.5 

16 yes 
0.0202 0.0119 -18.8744 18.6719 -1.9054 1.8739 0.0553 9.9349 139.5 

17 yes 
0.0437 0.0076 -30.8835 30.5242 -1.8408 1.8132 0.0524 16.8057 148.5 

18 yes 
0.0647 0.0059 -39.9685 40.2605 -1.7437 1.7707 -0.1622 22.8286 157.5 

19 yes 
0.0509 0.0084 -33.6691 33.4745 -1.7989 1.8055 -0.1583 18.6284 166.5 

20 yes 
0.0461 0.0127 -24.3771 24.4871 -1.8314 1.8176 0.1472 13.3914 175.5 

 

Table 2 

Statistical properties of principal shear strain in point 12. 

Point 

12 

 

Kolmogorov-Smirnov test  

α = 1% 

Confid. interval – CI 

α = 5% 

Stand. critical value – CV 

α = 5% 

1st & 2nd order  

moments 

  

 

 
Sector  reject H0? 

test  
statistic 

critical 
value 

lower 

boundary 
[ppm] 

upper 

boundary 
[ppm] lower tail upper tail 

mean 
[ppm] 

standard 

deviation 
[ppm] 

mean direction 

for sector 
[°] 

1 yes 
0.0815 0.0119 -13.4547 13.4670 -1.7466 1.7559 -0.0298 7.6864 4.5 

2 yes 
0.0764 0.0076 -21.2929 21.5586 -1.7477 1.7770 -0.0454 12.1575 13.5 

Table 1 and 2
Click here to download Table: tables_rev.doc

http://www.editorialmanager.com/jrnsueng/download.aspx?id=60178&guid=021c5b5e-633a-44b8-a0dd-22127aa4dec8&scheme=1
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3 yes 
0.0847 0.0059 -26.3888 26.3880 -1.7391 1.7252 0.1057 15.2344 22.5 

4 yes 
0.0778 0.0084 -19.6717 19.5354 -1.7774 1.7537 0.0633 11.1036 31.5 

5 yes 
0.0859 0.0127 -12.4080 12.3344 -1.7342 1.7282 -0.0153 7.1459 40.5 

6 yes 
0.0852 0.0169 -9.3203 9.1689 -1.7510 1.7092 0.0361 5.3434 49.5 

7 yes 
0.0882 0.0190 -7.9683 8.2121 -1.6986 1.7576 -0.0161 4.6816 58.5 

8 yes 
0.0895 0.0195 -7.8890 7.8775 -1.7209 1.7160 0.0053 4.5874 67.5 

9 yes 
0.0862 0.0186 -8.3592 8.3091 -1.7623 1.6989 0.1276 4.8157 76.5 

10 yes 
0.0885 0.0159 -9.6660 9.8980 -1.7120 1.7594 -0.0175 5.6358 85.5 

11 yes 
0.0815 0.0119 -13.4720 13.4499 -1.7566 1.7459 0.0298 7.6864 94.5 

12 yes 
0.0764 0.0076 -21.5858 21.2865 -1.7793 1.7472 0.0454 12.1575 103.5 

13 yes 
0.0847 0.0059 -26.4039 26.3854 -1.7262 1.7389 -0.1057 15.2344 112.5 

14 yes 
0.0778 0.0084 -19.5455 19.6659 -1.7546 1.7768 -0.0633 11.1036 121.5 

15 yes 
0.0859 0.0127 -12.3397 12.3985 -1.7290 1.7329 0.0153 7.1459 130.5 

16 yes 
0.0852 0.0169 -9.1741 9.3133 -1.7102 1.7497 -0.0361 5.3434 139.5 

17 yes 
0.0882 0.0190 -8.2301 7.9636 -1.7614 1.6976 0.0161 4.6816 148.5 

18 yes 
0.0895 0.0195 -7.8802 7.8836 -1.7166 1.7197 -0.0053 4.5874 157.5 

19 yes 
0.0862 0.0186 -8.3346 8.3469 -1.7042 1.7598 -0.1276 4.8157 166.5 

20 yes 
0.0885 0.0159 -9.9045 9.6474 -1.7605 1.7087 0.0175 5.6358 175.5 
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FIGURES 
 

Figure 1 

Functional relation of weight ijp

 

and distance between points. 

Figure 2 

Geodetic network of 12 points with measurement connections and absolute and relative error ellipses. 

Figure 3 

Convergence of mean value of principal normal strain in function of sample size. 

Figure 4 

Probability distribution function for principal normal strain (point 12, direction 157°)  

Figure 5 

95% confidence areas for principal normal strain. 

Figure 6 

95% confidence areas for principal shear strain. 
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