Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

Podiplomski program Gradbeništvo Konstrukcijska smer

Kandidatka: Alenka Robas

Uporaba presiometrskih meritev za napoved nosilnosti vertikalno obremenjenih pilotov

Magistrska naloga št. 193

Mentor: izr. prof. dr. Janko Logar Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2, p.p. 3422 1115 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

PODIPLOMSKI ŠTUDIJ GRADBENIŠTVA Magistrski študij Konstrukcijske smeri

Kandidatka: ALENKA ROBAS, univ.dipl.inž.grad.

UPORABA PRESIOMETRSKIH MERITEV ZA NAPOVED NOSILNOSTI VERTIKALNO OBREMENJENIH PILOTOV

Magistrsko delo štev.: 193

APPLICATION OF PRESSUREMETER MEASREMENTS FOR THE PREDICTION OF BEARING CAPACITY OF VERTICALY LOADED PILES

Master of Science Thesis No.: 193

Mentor: doc. dr. Janko Logar

Predsednik komisije: izr. prof. dr. Goran Turk

Člana: doc. dr. Vojkan Jovičič

prof. dr. Bojan Majes

Ljubljana, _____ 2007

IZJAVA O AVTORSTVU

Podpisana ALENKA ROBAS, univ.dipl.inž.grad., izjavljam, da sem avtorica magistrskga dela z naslovom: »UPORABA PRESIOMETRSKIH MERITEV ZA NAPOVED NOSILNOSTI VERTIKALNO OBREMENJENIH PILOTOV«.

Ljubljana, 31. maj 2007

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	531.7:624.131.5:624.154/.155(043.3)
Avtor:	Alenka Robas
Mentor:	doc. dr. Janko Logar
Naslov:	Uporaba presiometrskih meritev za napoved nosilnosti vertikalno obremenjenih pilotov
Obseg in oprema:	204 str., 97 pregl., 67 sl., 39 en.
Ključne besede:	Presiometer, terenske preiskave, nosilnost pilotov, vertikalno obremenjeni piloti

IZVLEČEK

Presiometrska preiskava je terenska preiskava, ki je močno razširjena v Franciji, v zadnjem desetletju pa se je uveljavila v večini dežel in tudi pri nas. Uporablja se predvsem za določitev karakteristik zemljin, ki so potrebne pri različnih načinih temeljenja. Naloga obravnava presiometrske meritve na podlagi katerih smo po različnih postopkih določili nosilnost tlačno obremenjenih pilotov.

Obravnavali smo le globoko temeljene objekte in ker bo z letom 2008 v Sloveniji uporaba Evrokoda 7 »obvezna«, smo želeli preveriti, kako na račun nosilnosti globoko temeljenih objektov vplivajo novi predpisi. V ta namen je v drugem poglavju na kratko predstavljena vsebina Evrokoda 7 - 1 in 7 - 2.

V nadaljevanju je podana predstavitev Ménardovega presiometera, z opisom celotnega poteka presiometrske preiskave, od umerjanja presiometra, priprave vrtine, izvedbe preiskave, do vrednotenja rezultatov (ISO/DIS 22476-4).

Na osnovi obsežnega arhiva izvedenih presiometrskih preiskav smo predstavili rezultate s sedmih lokacij po vsej Sloveniji, kjer je bila predvidena izgradnja 15 objektov. Na teh lokacijah smo izračunali nosilnosti po različnih projektnih pristopih Evrokoda 7 - 1 (PP1 in PP2) in po različnih postopkih (osnovna metoda 1a ter metodi 1b in 1c), kjer pomembno vlogo igra določitev karakterističnih vrednosti ter po dosedanji praksi.

Glavni cilj naloge je bil preveriti razliko med nosilnostjo vertikalno obremenjenih pilotov po sedanji praksi in po Evrokodu 7, določiti modelni faktor za alternativno metodo računa nosilnosti pilotov, podan v Nacionalnem dodatku k Evrokodu 7 in določiti globalni faktor varnosti med mejno nosilnostjo določeno z obremenilnimi testi in dopustno nosilnostjo izračunano po Evrokodu 7 na osnovi presiometrskih testov. Poleg tega smo preučili tudi vpliv števila izvedenih sondiranj na izračun nosilnosti.

Ugotovili smo, da je nosilnosti izračunana po Evrokodu 7 glede na dosedanjo prakso v povprečju višja za 25%, kar pomeni cenejše temeljenje. Poleg tega pa je ugotovljen globalni faktor med mejno nosilnostjo, dobljeno iz statičnih obremenilnih preizkusov pilotov, in dopustno nosilnostjo, izračunano po vseh postopkih na osnovi presiometrskih meritev po Evrokodu 7, večji od 2.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION

UDC:	531.7:624.131.5:624.154/.155(043.3)
Author:	Alenka Robas
Supervisor:	doc. dr. Janko Logar
Title:	Application of pressuremeter measurements for the prediction of bearing
	capacity of verticaly loaded piles
Notes:	204 p., 97 tab., 67 fig., 39 eq.
Ključne besede:	Pressuremeter, field tests, bearing capacity of verticaly loaded piles

SUMMARY

Pressuremeter is an in situ test widely in operation in France, and in the last decade it has won recognition all over the world, as well as in Slovenia. Basically it is used to determinate the soil characteristics needed for the design of foundations. This thesis deals with the calculation of the bearing capacity of the vertically loaded piles using different methods based on pressuremeter measurements.

The thesis deals only with buildings on deep foundations and because the use of Eurocode 7 will become obligatory in Slovenia at the beginning of 2008, we wanted to check how these new regulations influence the bearing capacity computation. For this purposes a short introduction of Eurocode 7 is represented in the second chapter.

Further on, the Ménard pressuremeter is presented with the description of the test, from calibration of the equipment, preparation of borehole, running the test to the evaluation of the results (ISO/DIS 22476-4).

Based on extensive records of the pressuremeter tests carried out, the present work presents results from seven different locations all over Slovenia, where 15 structures were designed. On those locations we calculated the bearing capacity using different design approaches presented in Eurocode 7 (DA1 and DA2) and different procedures (basic method 1a and alternative methods 1b and 1c) where the determination of the characteristic values plays an important role, and using global safety factor.

The main aim of the thesis was to check the difference between the bearing capacity of vertically loaded piles by using the global safety factor and by Eurocode 7, to determine the model factor for the alternative method of the pile bearing capacity that is presented in the National appendix to Eurocode 7, as well as to determine the global factor of safety between the ultimate bearing capacity measured from the load tests on test piles and the bearing capacity calculated by Eurocode 7 based on pressuremeter tests. We also studied the influence of the number of the executed probes on the bearing capacity calculation.

Final conclusions are that the bearing capacity calculated by Eurocode 7 compared to the one calculated by the global safety factor is on average by 25% higher, which brings us to cheaper foundations. Besides, the determined global safety factor between the ultimate bearing capacity measured from the static load tests on test piles and the bearing capacity calculated on the base of pressuremeter tests by the Eurocode 7 is higher than 2.

ZAHVALA

Prof. dr. Bojanu Majesu in mentorju doc. dr. Janku Logarju se zahvaljujem za strokovno pomoč in nasvete pri nastajanju magistrske naloge. Zahvaljujem se tudi Igorju Špacapanu in Matjažu Kromarju, ki sta mi omogočila vpogled v vse geološko geotehnične elaborate, Mateju Mačku, Juretu Klopčiču, asist. dr. Boštjanu Pulku in izr. prof. dr. Goranu Turku za vsestransko pomoč in nasvete ter vsem ostalim, ki so mi kakorkoli pomagali pri izdelavi magistrske maloge.

Zahvaljujem se tudi svojim staršem, ki sta me podpirala na moji začrtani poti.

KAZALO VSEBINE

1	UVOD	1
2	POSTOPKI PROJEKTIRANJA TEMELJENJA NA OSNOVI	
	TERENSKIH MERITEV PO EVROKODU 7	3
2.1	Uvod - predstavitev Evrokodov	3
2.2	Vsebina Evrokoda 7 (SIST EN 1997)	3
2.2.1	1. del: Splošna pravila (SIST EN 1997-1)	4
2.2.1.1	Osnove geotehničnega projektiranja (SIST EN 1997-1, 2)	5
2.2.1.1.1	Projektne zahteve (SIST EN 1997-1, 2.1)	5
2.2.1.1.2	Projektna stanja (SIST EN 1997-1, 2.2)	6
2.2.1.1.3	Trajnost (SIST EN 1997-1, 2.3)	6
2.2.1.1.4	Geotehnično projektiranje na osnovi računskih analiz	6
2.2.1.1.4.1	Splošno (SIST EN 1997-1, 2.4)	6
2.2.1.1.4.2	Mejna stanja nosilnosti (SIST EN 1997-1, 2.4.7)	6
2.2.1.1.4.3	Mejna stanja uporabnosti	11
2.2.1.1.4.4	Mejne vrednosti premikov temeljev	12
2.2.1.1.4.5	Projektiranje s predpisovanjem ukrepov	12
2.2.1.1.4.6	Opazovalna metoda	12
2.2.1.1.4.7	Poročilo o geotehničnem projektu	12
2.2.1.2	Temeljenje na pilotih (SIST EN 1997-1, 7)	13
2.2.1.2.1	Splošno (SIST EN 1997-1, 7.1)	13
2.2.1.2.2	Mejna stanja (SIST EN 1997-1, 7.2)	13
2.2.1.2.3	Vplivi in obtežna stanja (SIST EN 1997-1, 7.3)	14
2.2.1.2.4	Projektne metode in konstrukcijske zahteve (SIST EN 1997-1, 7.4)	14
2.2.1.2.5	Obremenilni preizkusi pilotov (SIST EN 1997-1, 7.5)	15
2.2.1.2.6	Osno obremenjeni piloti (SIST EN 1997-1, 7.6)	16
2.2.2	2. del: Geotehnično raziskovanje in preskušanje	23
3	NAPOVED NOSILNOSTI VERTIKALNO OBREMENJENIH	
	PILOTOV NA OSNOVI TERENSKIH MERITEV (PMT)	25

3.1	Uvod	25
3.2	Potek presiometrskega preizkusa (PMT)	25
3.2.1	Oprema presiometra	28
3.2.2	Preiskava	30
3.2.3	Vrednotenje rezultatov	32
3.2.3.1	Mejni tlak p_L , tlak na meji elastičnosti p_y in učinkoviti mejni tlak p_L^*	32
3.2.3.2	Presiometrski modul prve obremenitve E_0 in presiometrski modul	
	ponovne obremenitve E_R	33
3.3	Postopek določitve nosilnosti vertikalno obremenjenih pilotov po	
	dosedanji praksi	34
3.3.1	Uvod	34
3.3.2	Splošno	35
3.3.3	Enačba mejnega odpora konice pilota q_L	35
3.3.4	Izračun ekvivalentnega mejnega tlaka p _{Le}	36
3.3.5	Določitev koeficienta presiometrske nosilnosti <i>k</i>	37
3.3.6	Določitev ekvivalentne globine vpetja D_e pilota	38
3.3.7	Izračun nosilnosti konice pilota	38
3.3.8	Določitev trenjske nosilnosti plašča pilota f_L	39
3.3.9	Določitev mejnega trenjskega odpora	40
3.3.10	Določitev celotne mejne odpornosti	40
3.3.11	Določitev celotne priporočene obtežbe na vrhu pilota $Q_{SAFE}(=R_{dop})$ in	
	obtežbe na meji lezenja Q_{CREEP}	40
3.3.12	Zaključek	41
3.4	Postopek določitve nosilnosti vertikalno obremenjenih pilotov po	
	Evrokodu 7-1	42
3.4.1	Karakteristična vrednost geotehničnih parametrov (SIST EN 1997-1,	
	2.4.5)	42
3.4.1.1	Izbrana kot varna ocena vrednosti	42
3.4.1.2	Določena z uporabo statističnih metod (SIST EN 1997-1, 2.4.5.2.10-	
	11)	46
3.5	Račun nosilnosti po Evrokodu 7-1 v primerjavi z dosedanjo prakso	48
3.5.1	Uvod	48

3.5.2	Lokacije	48
3.5.3	Predstavitev postopkov	48
3.5.4	A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep	
	Dragučova, viadukt 6-1 in 6-2	51
3.5.4.1	Uvod k lokaciji	51
3.5.4.2	Vrtine na lokaciji z rezultati presiometrskih meritev	53
3.5.4.3	Določitev karakterističnih slojev	56
3.5.4.4	Določitev karakterističnih vrednosti parametrov	56
3.5.4.4.1	Karakteristične vrednosti v posamezni vrtini	56
3.5.4.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	56
3.5.4.4.3	Karakteristične vrednosti kot previdne ocene	58
3.5.4.4.4	Inženirski pristop (po dosedanji praksi)	59
3.5.4.5	Račun nosilnosti vertikalno obremenjenih pilotov	60
3.5.4.6	Primerjava rezultatov	64
3.5.5	A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Cogetinci - Vučja	
	vas, viadukt 6-3 - "Kupetinci"	66
3.5.5.1	Uvod k lokaciji	66
3.5.5.2	Vrtine na lokaciji z rezultati PMT	67
3.5.5.3	Določitev karakterističnih slojev	70
3.5.5.4	Določitev karakterističnih vrednosti parametrov	71
3.5.5.4.1	Karakteristične vrednosti v posamezni vrtini	71
3.5.5.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	71
3.5.5.4.3	Karakteristične vrednosti kot previdne ocene	73
3.5.5.4.4	Inženirski pristop (po dosedanji praksi)	74
3.5.5.5	Račun nosilnosti vertikalno obremenjenih pilotov	74
3.5.5.6	Primerjava rezultatov	76
3.5.6	A5 Pesnica - Lendava - meja H, Maribor - Lenart, II. etapa, Pernica,	
	nadvoz 4-2 in 4-3	78
3.5.6.1	Uvod k lokaciji	78
3.5.6.2	Vrtine na lokaciji z rezultati PMT	79
3.5.6.3	Določitev karakterističnih slojev	82
3.5.6.4	Določitev karakterističnih vrednosti parametrov	83

3.5.6.4.1	Karakteristične vrednosti v posamezni vrtini	83
3.5.6.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	83
3.5.6.4.3	Karakteristične vrednosti kot previdne ocene	84
3.5.6.4.4	Inženirski pristop (po dosedanji praksi)	84
3.5.6.5	Račun nosilnosti vertikalno obremenjenih pilotov	85
3.5.6.6	Primerjava rezultatov	87
3.5.7	A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, nadvoz 4	-
	1	89
3.5.7.1	Uvod k lokaciji	89
3.5.7.2	Vrtine na lokaciji z rezultati PMT	90
3.5.7.3	Določitev karakterističnih slojev	92
3.5.7.4	Določitev karakterističnih vrednosti parametrov	92
3.5.7.4.1	Karakteristične vrednosti v posamezni vrtini	92
3.5.7.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	92
3.5.7.4.3	Karakteristične vrednosti kot previdne ocene	93
3.5.7.4.4	Inženirski pristop (po dosedanji praksi)	93
3.5.7.5	Račun nosilnosti vertikalno obremenjenih pilotov	94
3.5.7.6	Primerjava rezultatov	95
3.5.8	AC2 Karavanke - Obrežje, Novo mesto vzhod - Kronovo, Lešnica -	
	Kronovo, Viadukt 6-1 in nadvoz 4-2	97
3.5.8.1	Uvod k lokaciji	97
3.5.8.2	Vrtine na lokaciji z rezultati PMT	98
3.5.8.3	Določitev karakterističnih slojev	100
3.5.8.4	Določitev karakterističnih vrednosti parametrov	100
3.5.8.4.1	Karakteristične vrednosti v posamezni vrtini	100
3.5.8.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	101
3.5.8.4.3	Karakteristične vrednosti kot previdne ocene	102
3.5.8.4.4	Inženirski pristop (po dosedanji praksi)	102
3.5.8.5	Račun nosilnosti vertikalno obremenjenih pilotov	103
3.5.8.6	Primerjava rezultatov	105
3.5.9	A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Lenart - spodnja	
	Senarska, podvoz 3-20 in nadvoz 4-5	107

3.5.9.1	Uvod k lokaciji	107
3.5.9.2	Vrtine na lokaciji z rezultati PMT	108
3.5.9.3	Določitev karakterističnih slojev	111
3.5.9.4	Določitev karakterističnih vrednosti parametrov	111
3.5.9.4.1	Karakteristične vrednosti v posamezni vrtini	111
3.5.9.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	111
3.5.9.4.3	Karakteristične vrednosti kot previdne ocene	113
3.5.9.4.4	Inženirski pristop (po dosedanji praksi)	114
3.5.9.5	Račun nosilnosti vertikalno obremenjenih pilotov	114
3.5.9.6	Primerjava rezultatov	116
3.5.10	A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Spodnja Senarska	
	- Cogetinci, nadvoz 4-1, 4-3, 4-4, 4-6 in most 5-1	118
3.5.10.1	Uvod k lokaciji	118
3.5.10.2	Vrtine na lokaciji z rezultati PMT	120
3.5.10.3	Določitev karakterističnih slojev	124
3.5.10.4	Določitev karakterističnih vrednosti parametrov	125
3.5.10.4.1	Karakteristične vrednosti v posamezni vrtini	125
3.5.10.4.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	125
3.5.10.4.3	Karakteristične vrednosti kot previdne ocene	128
3.5.10.4.4	Inženirski pristop (po dosedanji praksi)	128
3.5.10.5	Račun nosilnosti vertikalno obremenjenih pilotov	129
3.5.10.6	Primerjava rezultatov	133
3.5.11	Zaključek	138
3.6	Vpliv števila sondiranj na izračun nosilnosti	141
3.6.1	Uvod	141
3.6.2	A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep	
	Dragučova, viadukt 6-1	141
3.6.3	AC Koper - Lendava, odsek Klanec - Srmin	145
3.6.4	AC Koper - Lendava, odsek Klanec - Srmin, izmišljene vrednosti <i>R</i> s	151
3.6.5	Zaključek	153
3.7	Primerjave izračuna nosilnosti na osnovi presiometrskih meritev z	
	dinamičnimi in statičnimi obremenilnimi preizkusi	155

Robas, A. 2007. Mag. d. Ljubljan	Uporaba presiometrskih meritev za napoved nosilnosti vertikalno obremenjenih pilotov a,UL, FGG, Odd. za gradbeništvo, Katedra za mehaniko tal z laboratorijem.	Х
3.7.1	Uvod	155
3.7.2	Lokacije	156
3.7.3	Predstavitev postopkov	156
3.7.4	AC Koper - Lendava, odsek Šentjakob - Blagovica, nadvoza 4-6 in 4-	
	7	158
3.7.4.1	Uvod	158
3.7.4.2	Nadvoz 4-6	158
3.7.4.2.1	Uvod k lokaciji	158
3.7.4.2.2	Dinamični in statični obremenilni preizkus pilota	159
3.7.4.2.2.1	Rezultati obeh izvedenih obremenilnih preizkusov	159
3.7.4.2.2.2	Določitev karakterističnih vrednosti nosilnosti na podlagi	
	obremenilnih preizkusov	160
3.7.4.2.2.3	Račun dopustne nosilnosti pilotov na podlagi obremenilnih	
	preizkusov	161
3.7.4.2.3	Presiometerske meritve	162
3.7.4.2.3.1	Vrtina na lokaciji z rezultati PMT	162
3.7.4.2.3.2	Določitev karakterističnih slojev	163
3.7.4.2.3.3	Določitev karakterističnih vrednosti parametrov	163
3.7.4.2.3.3.1	Karakteristične vrednosti v vrtini	163
3.7.4.2.3.3.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	164
3.7.4.2.3.3.3	Karakteristične vrednosti kot previdne ocene	164
3.7.4.2.3.3.4	Inženirski pristop (po dosedanji praksi)	165
3.7.4.2.3.4	Račun nosilnosti vertikalno obremenjenih pilotov	165
3.7.4.2.3.5	Primerjava rezultatov nosilnosti	167
3.7.4.2.4	Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov	
	in PMT	168
3.7.4.3	Nadvoz 4-7	170
3.7.4.3.1	Uvod k lokaciji	170
3.7.4.3.2	Dinamični in statični obremenilni preizkus pilota	170
3.7.4.3.2.1	Rezultati obeh izvedenih obremenilnih preizkusov	170
3.7.4.3.2.2	Določitev karakterističnih vrednosti nosilnosti na podlagi	
	obremenilnih preizkusov	171

3.7.4.3.2.3	Račun dopustne nosilnosti pilotov na podlagi obremenilnih	
	preizkusov	172
3.7.4.3.3	Presiometrske meritve	174
3.7.4.3.3.1	Vrtina na lokaciji z rezultati PMT	174
3.7.4.3.3.2	Določitev karakterističnih slojev	174
3.7.4.3.3.3	Določitev karakterističnih vrednosti parametrov	175
3.7.4.3.3.3.1	Karakteristične vrednosti v vrtini	175
3.7.4.3.3.3.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	175
3.7.4.3.3.3.3	Karakteristične vrednosti kot previdne ocene	176
3.7.4.3.3.3.4	Inženirski pristop (po dosedanji praksi)	177
3.7.4.3.3.4	Račun nosilnosti vertikalno obremenjenih pilotov	177
3.7.4.3.3.5	Primerjava rezultatov nosilnosti	178
3.7.4.3.4	Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov	
	in PMT	179
3.7.4.4	Zaključek	180
3.7.5	AC Lenart - Beltinci, odsek Cogetinci - Vučja vas, viadukt 6-3	
	Kupetinci	180
3.7.5.1	Uvod k lokaciji	180
3.7.5.2	Dinamični obremenilni preizkus pilota	181
3.7.5.2.1	Rezultat obremenilnega preizkusa	181
3.7.5.2.2	Določitev karakterističnih vrednosti nosilnosti pilota na podlagi	
	dinamičnega obremenilnega preizkusa	182
3.7.5.2.3	Račun dopustne nosilnosti pilotov na podlagi dinamičnega	
	obremenilnega preizkusa	182
3.7.5.3	Primerjava rezultatov nosilnosti na osnovi dinamičnega	
	obremenilnega preizkusa in PMT	184
3.7.6	AC Koper - Lendava odsek Slivnica Pesnica, most čez Kanal in	
	Dravo	185
3.7.6.1	Uvod k lokaciji	185
3.7.6.2	Dinamični in statični obremenilni preizkus pilota	186
3.7.6.2.1	Rezultati izvedenih obremenilnih preizkusov	186
3.7.6.2.2	Določitev karakterističnih vrednosti nosilnosti na podlagi	

	obremenilnih preizkusov	187
3.7.6.2.3	Račun dopustne nosilnosti pilotov na podlagi obremenilnih	
	preizkusov	188
3.7.6.3	Presiometrske meritve	189
3.7.6.3.1	Vrtini na lokaciji z rezultati PMT	189
3.7.6.3.2	Določitev karakterističnih slojev	190
3.7.6.3.3	Določitev karakterističnih vrednosti parametrov	190
3.7.6.3.3.1	Karakteristične vrednosti v vrtini	191
3.7.6.3.3.2	Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)	191
3.7.6.3.3.3	Karakteristične vrednosti kot previdne ocene	191
3.7.6.3.3.4	Inženirski pristop (po dosedanji praksi)	192
3.7.6.3.4	Račun nosilnosti vertikalno obremenjenih pilotov	193
3.7.6.3.5	Primerjava rezultatov nosilnosti na lokaciji podpore 3	193
3.7.6.4	Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov	
	in PMT	194
3.7.7	Zaključek	196
4	ZAKLJUČEK	199
5	VIRI	202

KAZALO SLIK

Slika 1:	Razporeditev in približno število izvedenih presiometrskih testov v	
	Sloveniji v letih od 2000 do 2007	26
Slika 2:	Oprema presiometra značilna za vse tipe	28
Slika 3:	Pravilna oblika presiometrske krivulje	32
Slika 4:	Razbremenilno - obremenilna zanka med potekom presiometrskega testa	34
Slika 5:	Parametri, potrebni za določitev ekvivalentnega mejnega tlaka konice pilota	36
Slika 6:	Normalna porazdelitev	46
Slika 7:	Prikaz postopka računa po Evrokodu 7-1 - osnovna metoda	50
Slika 8:	Prikaz postopka računa po Evrokodu 7-1 - alternativna metoda s	
	karakteristično vrednostjo po statistični definiciji	51
Slika 9:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-2	54
Slika 10:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-1	55
Slika 11:	Prikaz podanih vrednosti - dolžina pilota in globina odkopa oz. temeljenja	60
Slika 12:	Prikaz rezultatov izračunov R_{dop} za viadukt 6-1	64
Slika 13:	Prikaz rezultatov izračunov R_{dop} za viadukt 6-2	65
Slika 14:	Shematski prikaz geološke sestave tal, p_L in E_0 za levi del viadukta 6-3	68
Slika 15:	Shematski prikaz geološke sestave tal, p_L in E_0 za desni del viadukta 6-3	69
Slika 16:	Prikaz rezultatov izračunov R_{dop} za levi del viadukta 6-3	76
Slika 17:	Prikaz rezultatov izračunov R_{dop} za desni del viadukta 6-3	77
Slika 18:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 4-3	81
Slika 19:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-2	82
Slika 20:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-2	88
Slika 21:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-3	89
Slika 22:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-1	91
Slika 23:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-1	96
Slika 24:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-1	99
Slika 25:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-2	99
Slika 26:	Prikaz rezultatov izračunov R_{dop} za viadukt 6-1	106
Slika 27:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-2	107
Slika 28:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji podvoza 3-20	110

Slika 29:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-5	110
Slika 30:	Prikaz rezultatov izračunov R_{dop} za podvoz 3-20	116
Slika 31:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-5	117
Slika 32:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-1	122
Slika 33:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-3	122
Slika 34:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-4	123
Slika 35:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-6	123
Slika 36:	Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji mostu 5-1	124
Slika 37:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-1	134
Slika 38:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-3	135
Slika 39:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-4	135
Slika 40:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-6	136
Slika 41:	Prikaz rezultatov izračunov R_{dop} za most 5-1	137
Slika 42:	Prikaz izračuna $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2	143
Slika 43:	Primerjava $R_{s,dop}(5)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število	
	in vrednost sondiranj po PP1 in PP2	145
Slika 44:	Prikaz izračuna $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2	148
Slika 45:	Primerjava $R_{s,dop}(7)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število	
	in vrednost sondiranj po PP1 in PP2	150
Slika 46:	Prikaz izračuna $R_{s,dop}$ za različno število sondiranj po PP1 in PP2 pri	
	privzetih enakih nosilnostih $R_{s,cal}$	151
Slika 47:	Primerjava $R_{s,dop}(8)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število	
	in vrednost sondiranj po PP1 in PP2 pri privzetih enakih nosilnostih $R_{s,cal}$	153
Slika 48:	Vpliv števila sondiranj na vrednost $R_{s,dop}$ po PP1 in PP2 projektnem pristopu	155
Slika 49:	Prikaz mejne nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-6	159
Slika 50:	Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za	
	nadvoz 4-6	162
Slika 51:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-6	168
Slika 52:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za nadvoz 4-6	169
Slika 53:	Prikaz mejne nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-7	171

Slika 54:	Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za	
	nadvoz 4-7	173
Slika 55:	Prikaz rezultatov izračunov R_{dop} za nadvoz 4-7	178
Slika 56:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za nadvoz 4-7	179
Slika 57:	Prikaz mejne nosilnosti pilota dinamičnega obremenilnega preizkusa za	
	viadukt 6-3	181
Slika 58:	Prikaz rezultatov izračunov R_{dop} na podlagi dinamičnega obremenilnega	
	preizkusa za viadukt 6-3	183
Slika 59:	Prikaz nosilnosti pilotov, določen na osnovi PMT in dinamičnega	
	obremenilnega preizkusa za viadukt 6-3	184
Slika 60:	Prikaz mejne nosilnosti pilota obremenilnih preizkusov za most 10-3, 6-1	187
Slika 61:	Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za	
	most 10-3, 6-1	189
Slika 62:	Prikaz rezultatov izračunov R_{dop} za most 10-3, 6-1	194
Slika 63:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za most 10-3, 6-1,	195
Slika 64:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za nadvoz 4-6	197
Slika 65:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za nadvoz 4-7	197
Slika 66:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za viadukt 6-3	198
Slika 67:	Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih	
	preizkusov za most 10-3	198

KAZALO PREGLEDNIC

Preglednica 1:	Presiometrske preiskave na lokaciji viadukta 6-1	53
Preglednica 2:	Presiometrske preiskave na lokaciji viadukta 6-2	54
Preglednica 3:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	viadukt 6-1	57
Preglednica 4:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	viadukt 6-2	57
Preglednica 5:	Karakteristične vrednosti mejnega tlaka p_L - za viadukt 6-1	58
Preglednica 6:	Karakteristične vrednosti mejnega tlaka p_L - za viadukt 6-2	59
Preglednica 7:	Podatki o objektu, pilotih in številu presiometrskih testov za viadukt 6-	
	1	60
Preglednica 8:	Podatki o objektu, pilotih in številu presiometrskih testov za viadukt 6-	
	2	60
Preglednica 9:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-1	63
Preglednica 10:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-2	63
Preglednica 11:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	66
Preglednica 12:	Presiometrske preiskave na lokaciji viadukta 6-3	67
Preglednica 13:	Karakteristične vrednosti parametrov presiometrskih preiskav za levi	
	del viadukta 6-3	72
Preglednica 14:	Karakteristične vrednosti parametrov presiometrskih preiskav za desni	
	del viadukta 6-3	72
Preglednica 15:	Karakteristične vrednosti parametrov presiometrskih preiskav za desni	
	del viadukta 6-3	73
Preglednica 16:	Podatki o objektu, pilotih in številu presiometrskih testov za levi del	
	viadukta 6-3	74
Preglednica 17:	Podatki o objektu, pilotih in številu presiometrskih testov za desni del	
	viadukta 6-3	74
Preglednica 18:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za levi del viadukta 6-3	75
Preglednica 19:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za desni del viadukta 6-3	75
Preglednica 20:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	78
Preglednica 21:	Presiometrske preiskave na lokaciji nadvoza 4-2 in 4-3	79

Preglednica 22:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-2	83
Preglednica 23:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-3	84
Preglednica 24:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-3	85
Preglednica 25:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	2	86
Preglednica 26:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	3	86
Preglednica 27:	Prikaz rezultatov izračunov nosilnosti (R _{dop}) za nadvoz 4-2	86
Preglednica 28:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-3	87
Preglednica 29:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	89
Preglednica 30:	Presiometrske preiskave na lokaciji nadvoza 4-1	91
Preglednica 31:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-1	93
Preglednica 32:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-1	94
Preglednica 33:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	1	94
Preglednica 34:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-1	95
Preglednica 35:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	97
Preglednica 36:	Presiometrske preiskave na lokaciji viadukta 6-1 in nadvoza 4-2	98
Preglednica 37:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	viadukt 6-1	101
Preglednica 38:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-2	101
Preglednica 39:	Karakteristične vrednosti mejnega tlaka p_L za viadukt 6-1	103
Preglednica 40:	Podatki o objektu, pilotih in številu presio. testov za levi del viadukta	
	6-1	103
Preglednica 41:	Podatki o objektu, pilotih in številu presiometrskih testov za desni del	
	nadvoza 4-2	104
Preglednica 42:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-1	104
Preglednica 43:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-2	105

Preglednica 44:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	106
Preglednica 45:	Presiometrske preiskave na lokaciji podvoza 3-20 in nadvoza 4-5	109
Preglednica 46:	Karakteristične vrednosti parametrov presio. preiskav za podvoz 3-20	112
Preglednica 47:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-5	112
Preglednica 48:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-5	113
Preglednica 49:	Podatki o objektu, pilotih in številu presiometrskih testov za podvoz	
	3-20	114
Preglednica 50:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	5	114
Preglednica 51:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za podvoz 3-20	115
Preglednica 52:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-5	115
Preglednica 53:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	118
Preglednica 54:	Presiometrske preiskave na trasi Sp. Senarska - Cogetinci	120
Preglednica 55:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-1	126
Preglednica 56:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-3	126
Preglednica 57:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-4	127
Preglednica 58:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-6	127
Preglednica 59:	Karakteristične vrednosti parametrov presiometrskih preiskav za most	
	5-1	128
Preglednica 60:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-6	129
Preglednica 61:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	1	129
Preglednica 62:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	3	130
Preglednica 63:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	
	4	130
Preglednica 64:	Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-	

	6	130
Preglednica 65:	Podatki o objektu, pilotih in številu presiometrskih testov za most 5-1	130
Preglednica 66:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-1	131
Preglednica 67:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-3	131
Preglednica 68:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-4	132
Preglednica 69:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-6	132
Preglednica 70:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za most 5-1	133
Preglednica 71:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	138
Preglednica 72:	Varnostni faktorji F vseh štirih postopkov računa nosilnosti	
	$(R_{c,k}/R_{c,dop})$	140
Preglednica 73:	Izračun nosilnosti plašča pilota v posamezni vrtini na lokaciji viadukta	
	6-1	142
Preglednica 74:	Izračun $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2	144
Preglednica 75:	Presiometrske preiskave na lokaciji nasipa Srmin	146
Preglednica 76:	Izračun nosilnosti plašča pilota v posamezni vrtini na lokaciji nasipa	
	Srmin	147
Preglednica 77:	Izračun $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2	149
Preglednica 78:	Prikaz izračuna $R_{s,dop}$ za različno število sondiranj po PP1 in PP2 pri	
	privzetih enakih nosilnostih $R_{s,cal}$	152
Preglednica 79:	Rezultati dinamičnega in statičnega obremenilnega preizkusa za nadvoz 4-6	159
Preglednica 80:	Rezultati izračunov nosilnosti na podlagi obremen. preizkusov za	
	nadvoz 4-6	161
Preglednica 81:	Presiometrske preiskave na lokaciji nadvoza 4-6	163
Preglednica 82:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-6	164
Preglednica 83:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-6	165
Preglednica 84:	Prikaz rezultatov izračunov nosilnosti za nadvoz 4-6	166
Preglednica 85:	Rezultati dinamičnega in statičnega obremenilnega preizkusa za	
	nadvoz 4-7	170
Preglednica 86:	Rezultati izračunov nosilnosti na podlagi obremen. preizkusov za	
	nadvoz 4-7	173

Robas, A. 2007. Upc Mag. d. Ljubljana,U	oraba presiometrskih meritev za napoved nosilnosti vertikalno obremenjenih pilotov L, FGG, Odd. za gradbeništvo, Katedra za mehaniko tal z laboratorijem.	XX
Preglednica 87:	Presiometrske preiskave na lokaciji nadvoza 4-7	174
Preglednica 88:	Karakteristične vrednosti parametrov presiometrskih preiskav za	
	nadvoz 4-7	175
Preglednica 89:	Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-7	176
Preglednica 90:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-7	177
Preglednica 91:	Rezultatov izračunov nosilnosti na podlagi din. obr. preizkusa za	
	viadukt 6-3	183
Preglednica 92:	Rezultati dinamičnega in statičnega obremenilnega preizkusa za most	
	10-3, 6-1	186
Preglednica 93:	Rezultati izračunov nosilnosti na podlagi obremenilnih preizkusov za	
	most 10-3, 6-1	188
Preglednica 94:	Presiometrske preiskave na lokaciji mostu 10-3, 6-1	190
Preglednica 95:	Karakteristične vrednosti parametrov presio. preiskav za most 10-3, 6-	
	1	191
Preglednica 96:	Karakteristične vrednosti mejnega tlaka p_L za most 10-3, 6-1	192
Preglednica 97:	Prikaz rezultatov izračunov nosilnosti (R_{dop}) za most 10-3, 6-1	193

LIST OF FIGURES

Arrange and approximate number of PMT in Slovenia from 2000 to 2007	26
Pressuremeter equipment typical for all types	28
The correct shape of the pressuremeter curve	32
Unload – reload loop during a pressuremeter test	34
Parameters for determining the equivalent limit pressure of the pile point	36
Normal distribution	46
Description of the calculation procedure according to EC 7-1 - basic method	50
Description of the calculation procedure according to EC 7-1 - alternative	
method with characteristic values according to the statistical method	51
Schematic description of geological profile, p_L and E_0 at the location of	
viaduct 6-2	54
Schematic description of geological profile, p_L and E_0 at the location of	
viaduct 6-1	55
Description of values - length of a pile and depth of foundations	60
Calculation results of R_{dop} for viaduct 6-1	64
Calculation results of R_{dop} for viaduct 6-2	65
Schematic description of geological profile, p_L and E_0 for left side of viaduct	
6-3	68
Schematic description of geological profile, p_L and E_0 for right side of	
viaduct 6-3	69
Calculation results of R_{dop} for the left side of viaduct 6-3	76
Calculation results of R_{dop} for the right side of viaduct 6-3	77
Schematic description of geological profile, p_L and E_0 at the location of	
crossover 4-3	81
Schematic description of geological profile, p_L and E_0 at the location of	
crossover 4-2	82
Calculation results of R_{dop} for crossover 4-2	88
Calculation results of R _{dop} for crossover 4-3	89
Schematic description of geological profile, p_L and E_0 at the location of	
crossover 4-1	91
	Arrange and approximate number of PMT in Slovenia from 2000 to 2007 Pressuremeter equipment typical for all types The correct shape of the pressuremeter curve Unload – reload loop during a pressuremeter test Parameters for determining the equivalent limit pressure of the pile point Normal distribution Description of the calculation procedure according to EC 7-1 - basic method Description of the calculation procedure according to EC 7-1 - alternative method with characteristic values according to the statistical method Schematic description of geological profile, p_L and E_0 at the location of viaduct 6-2 Schematic description of geological profile, p_L and E_0 at the location of viaduct 6-1 Description of values - length of a pile and depth of foundations Calculation results of R_{dop} for viaduct 6-1 Calculation results of R_{dop} for viaduct 6-2 Schematic description of geological profile, p_L and E_0 for left side of viaduct 6-3 Schematic description of geological profile, p_L and E_0 for right side of viaduct 6-3 Calculation results of R_{dop} for the left side of viaduct 6-3 Calculation results of R_{dop} for the left side of viaduct 6-3 Schematic description of geological profile, p_L and E_0 at the location of crossover 4-3 Schematic description of geological profile, p_L and E_0 at the location of crossover 4-3 Schematic description of geological profile, p_L and E_0 at the location of crossover 4-2 Calculation results of R_{dop} for crossover 4-2 Calculation results of R_{dop} for crossover 4-3 Schematic description of geological profile, p_L and E_0 at the location of crossover 4-2 Calculation results of R_{dop} for crossover 4-3 Schematic description of geological profile, p_L and E_0 at the location of crossover 4-2

Figure 23:	Calculation results of R_{dop} for crossover 4-1	96
Figure 24:	Schematic description of geological profile, p_L and E_0 at the location of	
	viaduct 6-1	99
Figure 25:	Schematic survey of geological profile, p_L and E_0 at the location of crossover	
	4-2	99
Figure 26:	Calculation results of R_{dop} for viaduct 6-1	106
Figure 27:	Calculation results of R_{dop} for crossover 4-2	107
Figure 28:	Schematic description of geological profile, p_L and E_0 at the location of	
	underpass 3-20	110
Figure 29:	Schematic description of geological profile, p_L and E_0 at the location of	
	crossover 4-5	110
Figure 30:	Calculation results of R_{dop} for underpass 3-20	116
Figure 31:	Calculation results of R_{dop} for crossover 4-5	117
Figure 32:	Schematic description of geological profile, p_L and E_0 at the location of	
	crossover 4-1	122
Figure 33:	Schematic description of geological profile, p_L and E_0 at the location of	
	crossover 4-3	122
Figure 34:	Schematic description of geological profile, p_L and E_0 at the location of	
	crossover 4-4	123
Figure 35:	Schematic description of geological profile, p_L and E_0 at the location of	
	crossover 4-6	123
Figure 36:	Schematic description of geological profile, p_L and E_0 at the location of	
	bridge 5-1	124
Figure 37:	Calculation results of R_{dop} for crossover 4-1	134
Figure 38:	Calculation results of R_{dop} for crossover 4-3	135
Figure 39:	Calculation results of R_{dop} for crossover 4-4	135
Figure 40:	Calculation results of R_{dop} for crossover 4-6	136
Figure 41:	Calculation results of R_{dop} for bridge 5-1	137
Figure 42:	Calculation results of $R_{s,dop}$ for the different number and value of the	
	borehole with PP1 and PP2 design approaches	143
Figure 43:	Comparison of $R_{s,dop}(5)/R_{s,dop}(i)$ with correlation factor ξ for the different	
	number and value of boreholes according to PP1 and PP2 design approaches	145

Figure 44:	Calculation results of $R_{s,dop}$ for the different number and value of boreholes	
	according to PP1 and PP2 design approaches	148
Figure 45:	Comparison of $R_{s,dop}(5)/R_{s,dop}(i)$ with correlation factor ξ for the different	
	number and value of boreholes according to PP1 and PP2 design approaches	150
Figure 46:	Calculation results of $R_{s,dop}$ for the different number and value of boreholes	
	according to PP1 and PP2 design approaches at the same assumed bearing	
	capacities $R_{s,cal}$	151
Figure 47:	Comparison of $R_{s,dop}(8)/R_{s,dop}(i)$ with correlation factor ξ for the different	
	number and value of boreholes according to PP1 and PP2 design approaches	
	at the same assumed bearing capacities $R_{s,cal}$	153
Figure 48:	Influence of the number of boreholes on the value of $R_{s,dop}$ according to PP1	
	and PP2	155
Figure 49:	Results of bearing capacity from pile load tests for crossover 4-6	159
Figure 50:	Calculation results of R_{dop} from pile load tests for crossover 4-6	162
Figure 51:	Calculation results of R_{dop} for crossover 4-6	168
Figure 52:	Results of bearing capacity from the PMT and the pile load tests for	
	crossover 4-6	169
Figure 53:	Results of bearing capacity from pile load tests for crossover 4-7	171
Figure 54:	Calculation results of R_{dop} from pile load tests for crossover 4-7	173
Figure 55:	Calculation results of R_{dop} for crossover 4-7	178
Figure 56:	Results of bearing capacity from the PMT and the pile load tests for	
	crossover 4-7	179
Figure 57:	Results of bearing capacity from dynamic pile load test for viaduct 6-3	181
Figure 58:	Calculation results of R_{dop} from dynamic pile load test for viaduct 6-3	183
Figure 59:	Results of bearing capacity from the PMT and the dynamic pile load test for	
	viaduct 6-3	184
Figure 60:	Results of bearing capacity from pile load tests for bridge 10-3, 6-1	187
Figure 61:	Calculation results of R_{dop} from pile load tests for bridge 10-3, 6-1	189
Figure 62:	Calculation results of R_{dop} for bridge 10-3, 6-1	194
Figure 63:	Results of bearing capacity from the PMT and the pile load tests for bridge	
	10-3, 6-1	195

Figure 64:	Results of bearing capacity from the PMT and the pile load tests for	
	crossover 4-6	197
Figure 65:	Results of bearing capacity from the PMT and the pile load tests for	
	crossover 4-7	197
Figure 66:	Results of bearing capacity from the PMT and the pile load tests for viaduct	
	6-3	198
Figure 67:	Results of bearing capacity from the PMT and the pile load tests for bridge	
	10-3	198

LIST OF TABLES

Table 1:	Pressuremeter tests at the location of viaduct 6-1	53
Table 2:	Pressuremeter tests at the location of viaduct 6-2	54
Table 3:	Characteristic values of the pressuremeter tests parameters for viaduct 6-1	57
Table 4:	Characteristic values of the pressuremeter tests parameters for viaduct 6-2	57
Table 5:	Characteristic values of the limit pressure p_L - for viaduct 6-1	58
Table 6:	Characteristic values of the limit pressure p_L - for viaduct 6-2	59
Table 7:	Structure and pile data with the number of pressuremeter tests for viaduct 6-1	60
Table 8:	Structure and pile data with the number of pressuremeter tests for viaduct 6-2	60
Table 9:	Calculation results of bearing capacity (R_{dop}) for viaduct 6-1	63
Table 10:	Calculation results of bearing capacity (R_{dop}) for viaduct 6-2	63
Table 11:	Factors of safety F for all of the bearing capacity calculation procedures	66
Table 12:	Pressuremeter tests at the location of viaduct 6-3	67
Table 13:	Characteristic values of the pressuremeter tests parameters for left side of	
	viaduct 6-3	72
Table 14:	Characteristic values of the pressuremeter tests parameters for right side of	
	viaduct 6-3	72
Table 15:	Characteristic values of the pressuremeter tests parameters for right side of	
	viaduct 6-3	73
Table 16:	Structure and pile data with the number of PMT for the left side of viaduct 6-	
	3	74
Table 17:	Structure and pile data with the number of PMT for the right side of viaduct	
	6-3	74
Table 18:	Calculation results of bearing capacity (R_{dop}) for the left side of viaduct 6-3	75
Table 19:	Calculation results of bearing capacity (R_{dop}) for the right side of viaduct 6-3	75
Table 20:	Factors of safety F for all of the bearing capacity calculation procedures	78
Table 21:	Pressuremeter tests at the location of the crossover 4-2 and 4-3	80
Table 22:	Characteristic values of the pressuremeter tests parameters for crossover 4-2	83
Table 23:	Characteristic values of the pressuremeter tests parameters for crossover 4-3	84
Table 24:	Characteristic values of the limit pressure p_L for crossover 4-3	85

Table 25: Structure and pile data with the number of pressuremeter tests for crossover

	4-2	86
Table 26:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-3	86
Table 27:	Calculation results of bearing capacity (R _{dop}) for crossover 4-2	86
Table 28:	Calculation results of bearing capacity (R_{dop}) for crossover 4-3	87
Table 29:	Factors of safety F for all of the bearing capacity calculation procedures	89
Table 30:	Pressuremeter tests at the location of crossover 4-1	91
Table 31:	Characteristic values of the pressuremeter tests parameters for crossover 4-1	93
Table 32:	Characteristic values of the limit pressure p_L for crossover 4-1	94
Table 33:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-1	94
Table 34:	Calculation results of bearing capacity (R_{dop}) for crossover 4-1	95
Table 35:	Factors of safety F for all of the bearing capacity calculation procedures	97
Table 36:	Pressuremeter tests at the location of viaduct 6-1 and crossover 4-2	98
Table 37:	Characteristic values of the pressuremeter tests parameters for viaduct 6-1	101
Table 38:	Characteristic values of the pressuremeter tests parameters for crossover 4-2	101
Table 39:	Characteristic values of the limit pressure p_L for viaduct 6-1	103
Table 40:	Structure and pile data with the number of PMT for the left side of viaduct 6-	
	1	103
Table 41:	Structure and pile data with number of PMT for the right side of crossover 4-	
	2	104
Table 42:	Calculation results of bearing capacity (R_{dop}) for viaduct 6-1	104
Table 43:	Calculation results of bearing capacity (R_{dop}) for crossover 4-2	105
Table 44:	Factors of safety F for all of the bearing capacity calculation procedures	106
Table 45:	Pressuremeter tests at the location of underpass 3-20 and crossover 4-5	109
Table 46:	Characteristic values of the pressuremeter tests parameters for underpass 3-20	112
Table 47:	Characteristic values of the pressuremeter tests parameters for crossover 4-5	112
Table 48:	Characteristic values of the limit pressure p_L for crossover 4-5	113
Table 49:	Structure and pile data with the number of pressuremeter tests for underpass	
	3-20	114
Table 50:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-5	114

Table 51:	Calculation results of bearing capacity (R_{dop}) for underpass 3-20	115
Table 52:	Calculation results of bearing capacity (R_{dop}) for crossover 4-5	115
Table 53:	Factors of safety F for all of the bearing capacity calculation procedures	118
Table 54:	Pressuremeter tests on the motorway line Sp. Senarska - Cogetinci	120
Table 55:	Characteristic values of the pressuremeter tests parameters for crossover 4-1	126
Table 56:	Characteristic values of the pressuremeter tests parameters for crossover 4-3	126
Table 57:	Characteristic values of the pressuremeter tests parameters for crossover 4-4	127
Table 58:	Characteristic values of the pressuremeter tests parameters for crossover 4-6	127
Table 59:	Characteristic values of the pressuremeter tests parameters for bridge 5-1	128
Table 60:	Characteristic values of the limit pressure p_L for crossover 4-6	129
Table 61:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-1	129
Table 62:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-3	130
Table 63:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-4	130
Table 64:	Structure and pile data with the number of pressuremeter tests for crossover	
	4-6	130
Table 65:	Structure and pile data with the number of pressuremeter tests for bridge 5-1	130
Table 66:	Calculation results of bearing capacity (R_{dop}) for crossover 4-1	131
Table 67:	Calculation results of bearing capacity (R_{dop}) for crossover 4-3	131
Table 68:	Calculation results of bearing capacity (R_{dop}) for crossover 4-4	132
Table 69:	Calculation results of bearing capacity (R_{dop}) for crossover 4-6	132
Table 70:	Calculation results of bearing capacity (R_{dop}) for bridge 5-1	133
Table 71:	Factors of safety F for all of the bearing capacity calculation procedures	138
Table 72:	Factors of safety F for all of the bearing capacity calculation procedures	140
Table 73:	Calculation of the shaft bearing capacity of the pile in the individual borehole	
	at the location of the viaduct 6-1	142
Table 74:	Calculation of $R_{s,dop}$ for the different number and value of boreholes according	
	to PP1 and PP2	144
Table 75:	Pressuremeter tests at the location of the embankment Srmin	146
Table 76:	Calculation of the shaft bearing capacity of individual borehole at the location	

of the embankment Srmin	147
Table 77: Calculations of $R_{s,dop}$ for the different number and value of borehole	S
according to PP1 and PP2	149
Table 78: Calculation results of $R_{s,dop}$ for the different number of boreholes according to	Э
PP1 and PP2 design approaches at the same assumed bearing capacitys $R_{s,cal}$	152
Table 79: The results from dynamic and static pile load test for crossover 4-6	159
Table 80: Results of bearing capacity calculations from pile load tests for crossover 4-6	161
Table 81: Pressuremeter tests at the location of crossover 4-6	163
Table 82: Characteristic values of the pressuremeter tests parameters for crossover 4-6	164
Table 83: Characteristic values of the limit pressure p_L for crossover 4-6	165
Table 84: Results of bearing capacity calculations for crossover 4-6	166
Table 85: Results from dynamic and static pile load tests for crossover 4-7	170
Table 86: Results of bearing capacity calculations from pile load tests for crossover 4-7	173
Table 87: Pressuremeter tests at the location of crossover 4-7	174
Table 88: Characteristic values of the pressuremeter tests parameters for crossover 4-7	175
Table 89: Characteristic values of the limit pressure p_L for crossover 4-7	176
Table 90: Results of bearing capacity calculations (R_{dop}) for crossover 4-7	177
Table 91: Results of bearing capacity calculations from dynamic pile load test for	r
viaduct 6-3	183
Table 92: Results from dynamic and static pile load tests for bridge 10-3, 6-1	186
Table 93: Results of bearing capacity calculations from pile load tests for bridge 10-3	2
6-1	188
Table 94: Pressuremeter tests at the location of bridge 10-3, 6-1	190
Table 95: Characteristic values of the pressuremeter tests parameters for bridge 10-3, 6	-
1	191
Table 96: Characteristic values of the limit pressure p_L for bridge 10-3, 6-1	192
Table 97: Results of bearing capacity calculations (R_{dop}) for bridge 10-3, 6-1	193

1 UVOD

V zadnjih letih je z intenzivnim projektiranjem in izgradnjo avtocest v Sloveniji prišlo do vpeljave novih terenskih preiskav. Razlogov za to je več: hitrejše vrednotenje testov in podajanje rezultatov, neposredne (polempirične) metode za določitev nosilnosti in posedkov, postopki izvedbe, vrednotenja, poročanja in računskih analiz temeljev so standardizirani, dobra korelacija rezultatov preiskav z merjenim obnašanjem temeljev ter nenazadnje tudi velika zasedenost geomehanskih laboratorijev. Ena takšnih terenskih oprem je tudi presiometer. V nalogi smo se osredotočili na račun nosilnosti globoko temeljenih objektov na osnovi presiometrskih testov. Opravili smo že preko 900 takih testov po vsej Sloveniji. Oprema, potrebna za izdelavo testov - Ménardov presiometer, ki se vstavi v že vnaprej pripravljeno vrtino in ki smo jo uporabljali za vse v nalogi uporabljene meritve, je Francoske izdelave.

Postopki za vrednotenje rezultatov in dimenzioniranje temeljenja na pilotih, ki smo jih uporabljali v dosedanji praksi, so povzeti po francoskih predpisih. V zadnjih letih so bili postopki izračunov pridobljenih s presiometrsko preiskavo, vključeni tudi v standard Evrokod 7. Ta prinaša nekaj sprememb, saj omogoča uporabo metod, preverjenih s statičnimi obremenilnimi preizkušnjami, uvede koncept delnih faktorjev in dodatno preko korelacijskih koeficientov upošteva zanesljivost podatkov glede na število izvedenih testov.

Ob uveljavitvi Evrokoda 7, katerega uporaba bo z letom 2008 v Sloveniji obvezna, smo želeli preveriti, kako na račun nosilnosti globoko temeljenih objektov vplivajo novi predpisi. Zato smo račun nosilnosti po dosedanji praksi primerjali z novostmi, ki jih prinaša Evrokod 7-1. Primerjali smo torej izračune nosilnosti po različnih projektnih pristopih Evrokoda 7-1 (PP1 in PP2) z izračunom, ki upošteva globalne varnostne faktorje.

Evrokod 7 dopušča tudi alternativni izračun nosilnosti pilotov iz presiometrskih meritev, pri kateri za vsak značilni sloj določimo karakteristično vrednost mejnega tlaka in presiometrska modula. Nato iz takega računskega modela določimo nosilnost. Ker pri takem načinu računa

izgubimo informacijo o številu sondiranj, Evrokod 7 nadomesti korelacijske koeficiente, odvisne od števila sondiranj, z modelnim faktorjem, ki ga mora vsaka država določiti v svojem nacionalnem dodatku. Pričujoče delo na osnovi številnih meritev in analiz predlaga vrednost tega modelnega faktorja.

Pri izračunu nosilnosti pilotov na podlagi presiometrskih preiskav pomembno vlogo igra tudi število izvedenih testov oziroma število sondiranj, to je število vrtin, v katerih je izvedeno več presiometrskih preiskav. Pokazali smo, kako število izvedenih testov vpliva na izračun nosilnosti.

Na različnih lokacijah po Sloveniji so bili izvedeni tudi statični in dinamični obremenilni preizkusi pilotov. Na teh lokacijah smo naknadno izvedli presiometrske teste in nato izračune nosilnosti, ki smo jih primerjali z vsemi prej naštetimi izračuni.

2 POSTOPKI PROJEKTIRANJA TEMELJENJA NA OSNOVI TERENSKIH MERITEV PO EVROKODU 7

2.1 Uvod - predstavitev Evrokodov

Konstrukcijski evrokodi so standardi za projektiranje zgradb, mostov in ostalih gradbenih inženirskih objektov. Vsebujejo skupna pravila za vsakdanjo rabo pri projektiranju običajnih in inovativnih konstrukcij kot celote ali posameznih konstrukcijskih delov. Projektiranje temelji na metodi mejnih stanj z uporabo delnih faktorjev varnosti. Sestavljeni so iz 10 standardov: "Evrokod: Osnove projektiranja konstrukcij" (SIST EN 1990) in Evrokodi od 1 do 9 (SIST EN 1991 do SIST EN 1999, kjer SIST pomeni Slovenski standardi, EN pa Evropska Norma). Evrokodi 2, 3, 4, 5, 6 in 9 so "materialni" Evrokodi, ki predstavljajo projektiranje zgradb iz danega materiala in sicer, armiranega betona, jekla, kombinacije jekla in betona (sovprežne konstrukcij, SIST EN 1991 - Vpliv na konstrukcije, SIST EN 1997 - Geotehnično projektiranje in SIST EN 1998 - Projektiranje potresno odpornih konstrukcij, pa ustrezajo vsem tipom konstrukcij, ne glede na material iz katerega so narejene.

2.2 Vsebina Evrokoda 7 (SIST EN 1997)

Evrokod 7 postavlja načela in zahteve glede varnosti (trdnost, stabilnost) in uporabnosti (trajnosti), opisuje osnove geotehničnih vidikov projektiranja in preverjanja ter podaja smernice za med seboj odvisne vidike zanesljivosti stavb in gradbenih inženirskih objektov. Uporablja se pri interakciji med konstrukcijo in tlemi (v zemljinah in hribinah), preko temeljev oziroma podpornih konstrukcij ter omogoča izračun geotehničnega vpliva, ki ga na konstrukcijo prenašajo tla, kot tudi odpornost tal.

Evrokod 7 je sestavljen iz dveh delov: SIST EN 1997-1 \rightarrow Geotehnično projektiranje - 1. del: Splošna pravila in SIST EN 1997-2 \rightarrow Geotehnično projektiranje - 2. del: Geotehnično raziskovanje in preskušanje, ki podaja zahteve glede izvedbe in vrednotenja terenskih in laboratorijskih preiskav.

2.2.1 1. del: Splošna pravila (SIST EN 1997-1)

Prvi del Evrokoda 7 se uporablja kot splošna osnova za geotehnične vidike projektiranja stavb in gradbenih inženirskih objektov, ki temelji na metodi mejnih stanj. Ti vidiki ustrezajo (so relevantni) izračunom geotehničnih vplivov na konstrukcijski element v kontaktu s tlemi (temelji, piloti, kletne stene, itd.), kot tudi deformacijam in odporom tal zaradi vpliva konstrukcije same. Obravnava naslednje teme:

- 1. poglavje: Splošno
- 2. poglavje: Osnove geotehničnega projektiranja
- 3. poglavje: Geotehnični podatki
- 4. poglavje: Nadzor gradnje, tehnično opazovanje in vzdrževanje
- 5. poglavje: Nasutje, odvodnjavanje, poboljšanje in armiranje tal
- 6. poglavje: Plitvo temeljenje
- 7. poglavje: Temeljenje na pilotih
- 8. poglavje: Sidra
- 9. poglavje: Podporne konstrukcije
- 10. poglavje: Hidravlične porušitve
- 11. poglavje: Globalna stabilnost
- 12. poglavje: Nasipi

in vsebuje dodatke od A do J, ki podajajo: v A priporočene vrednosti delnih faktorjev varnosti, v B do J pa dodatne informativne smernice (n.pr. mednarodno uveljavljene računske metode).

Dodatek A je pomemben, saj podaja vrednosti delnih faktorjev γ pri analizah mejnega stanja nosilnosti za trajna in začasna projektna stanja ter za vse projektne primere pilotnih konstrukcij tudi vrednosti korelacijskih faktorjev ξ . Vrednosti delnih in korelacijskih faktorjev podanih v dodatku A so le priporočene in so podane v nacionalnem dodatku posamezne države.

V nadaljevanju naloge so povzeta poglavja, ki se nanašajo na projektiranje stavb in gradbenih inženirskih objektov temeljenih na pilotih.

V uvodnem poglavju so podana področja splošne uporabe SIST EN 1997-1, zveze z drugimi standardi, predpostavke, definicije in simboli.

2.2.1.1 Osnove geotehničnega projektiranja (SIST EN 1997-1, 2)

2.2.1.1.1 Projektne zahteve (SIST EN 1997-1, 2.1)

V poglavju o projektiranju so podane projektne zahteve za različna stanja in vplivi. Potrebno je preveriti, da katero koli geotehnično projektno stanje (kratkoročno ali dolgoročno), ne presega nobenega bistvenega mejnega stanja, definiranega v kateremkoli EN. Za poenostavitev projektnih postopkov obstajata dve različni mejni stanji, ki imata vsak sebi primeren projektni kriterij.

- Mejno stanje nosilnosti (ULS), definirano kot stanje povezano s porušitvijo konstrukcije oz. s konstrukcijski porušitvi podobno obliko (n.pr. porušitev temeljev zaradi nezadostne nosilnosti tal).
- Mejno stanje uporabnosti (SLS), definirano kot stanje v katerem konstrukcija oz. konstrukcijski element ne ustreza podanim zahtevam (n.pr. prekomerni posedki glede na predvideno uporabo konstrukcije).

Za določitev zahtev geotehničnega projektiranja so konstrukcije predhodno razvrščene v določeno geotehnično kategorijo. Geotehnična kategorija 1 vključuje majhne in relativno preproste konstrukcije z zanemarljivim tveganjem, za katere je možno zagotoviti, da bo osnovnim zahtevam zadovoljeno na osnovi izkušenj in kvalitativnih geotehničnih preiskav. Pri projektiranju in izvedbi konstrukcij geotehnične kategorije 2 se lahko uporabijo rutinski postopki za terenska in laboratorijska testiranja. Vključuje običajne vrste konstrukcij in temeljenja, brez izjemnega tveganja ali zahtevnih tal ter obremenitev (t.j.: plitvo temeljenje, temeljne plošče, temeljenje na pilotih, izkopi, nasipi in zemeljska dela, predori v trdni nerazpokani kamnini, ...). Da zagotovimo izpolnjevanje bistvenih projektnih zahtev morajo projekti vsebovati kvantitativne geotehnične podatke in analize. Geotehnična kategorija 3 vsebuje konstrukcije ali dele konstrukcij, ki ne sodijo v geotehnični kategoriji 1 in 2 (to so: zelo velike in nenavadne konstrukcije, konstrukcije na področjih z visoko potresno ogroženostjo, kjer obstaja verjetnost nestabilnosti terena ali stalnih premikov tal,...).

2.2.1.1.2 Projektna stanja (SIST EN 1997-1, 2.2)

Upoštevati je potrebno kratkoročna in dolgoročna projektna stanja. Projektna stanja, ki zajamejo vsa možna stanja, do katerih lahko pride med gradnjo in med uporabo konstrukcije.

2.2.1.1.3 Trajnost (SIST EN 1997-1, 2.3)

V fazi geotehničnega projektiranja je pomembna tudi trajnost, ki je sposobnost konstrukcije, da ostane uporabna svojo celotno življenjsko dobo (vključno z vzdrževanjem). Podana mora biti ocena okoljskih pogojev, da se zagotovi potrebne ukrepe za zaščito ter ustrezno odpornost materialov.

2.2.1.1.4 Geotehnično projektiranje na osnovi računskih analiz

2.2.1.1.4.1 Splošno (SIST EN 1997-1, 2.4)

V nadaljevanju je podano obširno poglavje, v katerem so opisani možni vplivi, ki jih v računih upoštevamo, lastnosti tal, ki jih opredelimo z geotehničnimi parametri ter geometrijski podatki, ki podajajo vse nivoje in nagnjenosti površin vključno z dimenzijami konstrukcij. Podana je definicija karakterističnih vrednosti geotehničnih parametrov, katerih izbira temelji na dobljenih vrednostih, ki so rezultat laboratorijskih in terenskih preiskav, dopolnjenih z uveljavljenimi izkušnjami (glej poglavje 3.4.1).

Karakteristično vrednost geotehničnega parametra moramo izbrati kot varno oceno vrednosti, ki vpliva na pojav mejnega stanja. Sledi definicija projektnih vrednosti vplivov $(F_d = \gamma_F \cdot \psi \cdot F_k)$, geotehničnih parametrov $(X_d = X_k / \gamma_M)$ in geometrijskih podatkov (povečamo dimenzije z Δa , v primerih, ko imajo odstopanja v geometrijskih podatkih pomemben učinek na zanesljivost konstrukcije), kjer γ predstavlja delne faktorje varnosti podane v dodatku A, ψ je podan v EN 1990 do 2002, F_k in X_k pa predstavljata karakteristično vrednost parametrov.

2.2.1.1.4.2 Mejna stanja nosilnosti (SIST EN 1997-1, 2.4.7)

Evrokod 7-1 zahteva, da se preveri za projekt značilna mejna stanja s spodnjega seznama:
- izguba statičnega ravnotežja konstrukcije ali tal kot togega telesa, pri čemer trdnosti materialov konstrukcije in tal niso pomembne pri zagotavljanju odpornosti (EQU),
- notranja odpoved ali pretirana deformacija konstrukcije ali konstrukcijskih elementov vključno s temelji, piloti, kletnimi stenami itd., kjer je za zagotavljanje odpornosti pomembna trdnost materialov v konstrukciji (STR),
- odpoved ali pretirana deformacija tal, pri čemer je za zagotavljanje odpornosti pomembna trdnost zemljine ali kamnine (GEO),
- izguba ravnotežja konstrukcije ali tal zaradi dviga kot posledica vodnega pritiska (vzgon) ali drugih vertikalnih vplivov (UPL),
- hidravlični lom tal, notranja erozija in tvorba podzemnih poti vode v tleh kot posledica hidravličnih gradientov (HYD).

Uporabiti je potrebno delne faktorje za trajna in spremenljiva stanja iz preglednic v dodatku A, ki navajajo priporočene vrednosti (nacionalni dodatek). Vse vrednosti delnih faktorjev za vplive ali učinke vplivov v nezgodnih stanjih naj bodo običajno enake 1,0. Strožje vrednosti kot jih priporoča dodatek A, je potrebno uporabiti v primerih izjemno velikega tveganja, nenavadnih ali izjemno zahtevnih pogojev tal ali obremenitve. Manj stroge vrednosti, kot jih priporoča dodatek A, lahko uporabimo za začasne konstrukcije ali spremenljiva projektna stanja, če to opravičujejo pričakovane posledice.

Da zagotovimo, da bodo rezultati projektnega računskega modela bodisi točni ali na varni strani, pri računu projektne vrednosti odpornosti (R_d) ali projektne vrednosti učinkov vplivov (E_d), uporabimo modelne faktorje ($\gamma_{R;d}$ oz. $\gamma_{S;d}$).

Predvsem pri projektiranju konstrukcij, je potrebno preveriti tudi *statično ravnovesje* (SIST EN 1997-1, 2.4.7.2). Mejno stanje (EQU) preverjamo tako, da med seboj primerjamo vplive, ki povzročajo nestabilnost, z vplivi, ki na stabilnost ugodno vplivajo:

$$E_{dst;d} \le E_{stb;d}$$
, kjer je (2.1)

$$E_{dst;d} = E \left\{ \gamma_F \; F_{rep}; X_k / \gamma_M; a_d \right\}_{dst}$$

$$(2.2)$$

$$E_{stb;d} = E \left\{ \gamma_F \; F_{rep}; X_k / \gamma_M; a_d \right\}_{stb}$$
(2.3)

Pri tem je F_{rep} reprezentativna vrednost vplivov, X_k karakteristična vrednost materialne lastnosti, a_d pa projektna vrednost geometrijskih količin. Vrednosti delnih faktorjev za trajna in spremenljiva stanja so podana v nacionalnem dodatku A in prikazana v spodnji preglednici.

Trajni vpliv	Oznaka	Vrednost	Spremen. vpliv	Oznaka	Vrednost				
Neugodni	% G;dst	1,1	Neugodni	γQ;dst	1,5				
Ugodni	∕ G;stb	0,9	Ugodni	YQ;stb	0				
Delni faktorji za parametre zemljin									
Drenirana trdnost		Nedrenira	ana trdnost	Prostorninska teža					
$\gamma_{\phi} = \gamma_{c} = 1,25$		$\gamma_{cu} = \gamma_{cu}$	$_{1u} = 1,40$	$\gamma_{\gamma} = 1,0$					

Delni faktorji za preverjanje mejnega stanja:

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.1 in A.2, 2004, str 126 in 127)

V nadaljevanju sledi preverjanje odpornosti za *mejna stanja konstrukcije* (STR) (lom ali prekomerne deformacije konstrukcijskega elementa) *in tal* (GEO) pri trajnih in spremenljivih stanjih (SIST EN 1997-1, 2.4.7.3), kjer je potrebno zagotoviti pogoju, da je:

$$E_d \le R_d , \qquad (2.4)$$

kjer E_d predstavlja projektne učinke vplivov in delne faktorje za vplive lahko uporabimo neposredno za vplive (F_{rep}) ali za njihove učinke (E):

$$E_{d} = E\left\{\gamma_{F} \; F_{rep}; X_{k} / \gamma_{M}; a_{d}\right\} \text{ali } E_{d} = \gamma_{E} \; E\left\{F_{rep}; X_{k} / \gamma_{M}; a_{d}\right\},$$
(2.5)

 R_d pa predstavlja projektne odpornosti, kjer delne faktorje lahko uporabljamo za lastnosti tal (*X*) ali za odpornosti (*R*) ali za oboje kot sledi:

$$R_{d} = R \left\{ \gamma_{F} F_{rep}; X_{k} / \gamma_{M}; a_{d} \right\} \text{ ali } R_{d} = R \left\{ \gamma_{F} F_{rep}; X_{k}; a_{d} \right\} / \gamma_{R}$$

$$(2.6)$$

ali
$$R_d = R \left\{ \gamma_F F_{rep}; X_k / \gamma_M; a_d \right\} / \gamma_R$$
 (2.7)

Pri tem so vsi delni faktorji podani v dodatku A.

Podani so tudi projektni pristopi, ki so v nadaljevanju predstavljeni (SIST EN 1997-1, 2.4.7.3.4). V vsakem projektnem pristopu je potrebno preveriti, da ne bo prišlo do mejnega stanja porušitve ali prekomernih deformacij za nobeno od naštetih kombinacij naborov delnih faktorjev. Pri tem oznaka A velja za vplive ali učinke vplivov, M za materialne parametre in R za odpornosti. Delne faktorje vplivov označimo z γ_F (SIST EN 1997-1, Dodatek A,

Preglednica A.3), učinkov vplivov z γ_E , materialnih parametrov tal z γ_M (SIST EN 1997-1, Dodatek A, Preglednica A.4) in delne faktorje odporov z γ_R (SIST EN 1997-1, Dodatek A, Preglednica A.5 in A.6).

Projektni pristop PP1

Pri uporabi projektnega pristopa PP1 je treba preveriti dve kombinaciji delnih faktorjev.

Kombinacija 1; kombinacija uporabljenih delnih faktorjev je *A1 "+ "M1 "+ "R1*, ki zagotavlja varno projektiranje glede na neugodna odstopanja vplivov od njihovih karakterističnih vrednosti. Tako so pri kombinaciji 1 delni faktorji, večji od 1,0, uporabljeni za stalne in spremenljive vplive, ki izvirajo iz konstrukcije in iz tal. Priporočene vrednosti delnih faktorjev so: $\gamma_G = 1,35$ za neugodne stalne vplive, $\gamma_{G;inf} = 1,0$ za ugodne stalne vplive in $\gamma_Q = 1,50$ za spremenljive vplive. Nasprotno pa se odpornost tal izračuna s karakterističnimi vrednostmi strižnih karakteristik, torej so delni faktorji γ_{φ} ; $\gamma_{c'}$ in γ_{cu} vsi enaki 1,0, prav tako pa je tudi delni faktor γ_R za odpornost tal enak 1,0.

Kombinacija 2; kombinacija uporabljenih delnih faktorjev je A2 "+ "M2 "+ "R1, ki zagotavlja varnost projekta glede na neugodna odstopanja trdnostnih lastnosti tal od njihovih karakterističnih vrednosti ter glede na nezanesljivosti uporabljenega računskega modela. Za odpornost tal uporabimo torej delne faktorje γ_{φ} , γ_c z vrednostima 1,25 in γ_{cu} z vrednostjo 1,40 za karakteristične vrednosti strižnih parametrov zemljin, hkrati pa pri tem preverjanju uporabimo karakteristične vrednosti stalnih vplivov, ki izvirajo iz konstrukcije ($\gamma_G = 1,0$), medtem ko za neugodne spremenljive vplive uporabimo vrednost delnega faktorja $\gamma_Q = 1,30$.

Pri projektiranju osno obremenjenih pilotov in sider (A2 "+" (M1 ali M2) "+" R4), projektno vrednost odpornosti izračunamo z delnimi faktorji $\gamma_{\varphi} = \gamma_c = \gamma_{cu} = 1,0$ (karakteristične vrednosti) strižnih parametrov zemljin, pri neugodnih vplivih pa uporabimo delne faktorje γ_{φ} ; γ_c z vrednostima 1,25 in γ_{cu} z vrednostjo 1,40. Delni faktor za odpore pa je $\gamma_R > 1,0$ (nabor delnih faktorjev *R4* podan v tabelah A.6 do A.8 in A.12 do A.14 v SIST EN 1997-1, Dodatek A).

Večinoma je »geotehnično projektiranje« definirano s kombinacijo 2 in konstrukcijsko

projektiranje s kombinacijo 1. Seveda pa je odločilna tista od obeh kombinacij, ki bo dala večjo dimenzijo temelja (pilota, sidra,...).

Projektni pristop PP2

Kombinacija uporabljenih delnih faktorjev je *A1 "+" M1 "+" R2*, ki zahteva samo eno preverjanje, razen v posebnih primerih, ko je treba ločeno obravnavati različne kombinacije delnih faktorjev za ugodne in neugodne vplive. Pri projektnem pristopu PP2 se uporabijo enaki delni faktorji za geotehnične vplive in učinke vplivov kot tudi za vplive na konstrukcijo oziroma tiste, ki izvirajo iz konstrukcije: $\gamma_G = 1,35$, $\gamma_{G:inf} = 1,0$ in $\gamma_Q = 1,50$. Delni faktorji odpornosti tal pa so $\gamma_{\varphi} = \gamma_c = \gamma_{cu} = 1,0$ in $\gamma_{R,v} = 1,40$ pri nosilnosti tal oziroma $\gamma_R = 1,10$ za vse vrste tlačno obremenjenih pilotov.

Projektni pristop PP3

Tudi pri projektnem pristopu PP3 je potrebno eno samo preverjanje. Kombinacija uporabljenih delnih faktorjev je (*A1* ali *A2*) "+" *M2* "+" R3). Delni faktorji za vplive na konstrukcijo (*A2*; $\gamma_G = 1,0$ in $\gamma_Q = 1,30$) in za vplive, ki izvirajo iz konstrukcije (*A1*; $\gamma_G = 1,35$ in $\gamma_Q = 1,50$) so identični kot pri projektnem pristopu PP2. Pri vplivih in odpornostih tal pa delnih faktorjev ne uporabimo neposredno za vplive in odpornosti, temveč za strižne parametre tal φ' , c' ali c_u . Priporočeni vrednosti za $\gamma_{\varphi'}$ in $\gamma_{c'}$ sta 1,25 in za γ_{cu} 1,40. Delne faktorje uporabimo za reprezentativne vrednosti vplivov in za karakteristične vrednosti trdnostnih parametrov tal na začetku računa. Tako se pri projektnem pristopu PP3 celoten račun izvede s projektnimi vrednostmi vplivov in projektno strižno trdnostjo tal.

Mejno stanje dviga tal ali konstrukcije (UPL) (SIST EN 1997-1, 2.4.7.4) preverjamo tako, da medsebojno primerjamo projektno vrednost vertikalnih vplivov, ki zmanjšujejo stabilnost ($V_{dst;d}$, n.pr. vodni pritiski pod konstrukcijo) z vsoto projektnih vrednosti trajnih vertikalnih vplivov (n.pr. lastna teža konstrukcije in/ali tal), ki povečujejo stabilnost ($G_{stb;d}$) in projektne vrednosti katerekoli dodatne odpornosti proti dvigu (R_d):

$$V_{dst,d} \le G_{stb,d} + R_d , \qquad (2.8)$$

kjer je $V_{dst;d}$ vsota trajnih in spremenljivih za dvig neugodnih vertikalnih vplivov $V_{dst,d} = G_{dst,d} + Q_{dst,d}$. (2.9) Vrednosti delnih faktorjev za trajna in spremenljiva stanja so podana v nacionalnem dodatku A in prikazana v spodnji preglednici.

Delni faktorji za preverjanje mejnega stanja UPL:

Trajni vplivi	Oznaka	Vrednost	Začasni vplivi	Oznaka	Vrednost			
Neugodni Ugodni	YG;dst YG;stb	1,0 0,9	Neugodni	YQ;dst	1,5			
Delni faktorji za parametre zemljin in konstrukcijskih elementov								
Drenirana	ı trdnost	Nedren	irana trdnost	Natezna odpornost pilotov in sider				
$\gamma_{\phi} = \gamma_{c}$	=1,25	$\gamma_{\rm cu} =$	$\gamma_{qu} = 1,40$	$\gamma_{\rm a} = \gamma_{\rm s;t} = 1,4$				
(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.15 in A.16, 2004, str 134 in 135)								

Mejno stanje hidravličnega loma tal, ki je posledica strujanja vode v tleh (HYD) (SIST EN 1997-1, 2.4.7.5), preverimo tako, da za vsak merodajen stolpec zemljine primerjamo projektno vrednost tlaka porne vode, ki zmanjšuje stabilnost, ($u_{dst;d}$) na dnu stolpca s totalno vertikalno napetostjo, ki povečuje stabilnost, ($\sigma_{stb;d}$). Alternativno lahko pokažemo, da je projektna vrednost navpične komponente strujne sile ($S_{dst;d}$) v stolpcu zemljine manjša ali enaka potopljeni teži istega stolpca zemljine ($G'_{stb;d}$):

$$u_{dst,d} \le \sigma_{stb,d} \,, \tag{2.10}$$

$$S_{dst,d} \le G'_{stb,d} \,. \tag{2.11}$$

Vrednosti delnih faktorjev za trajna in spremenljiva stanja so podana v nacionalnem dodatku A in prikazana v spodnji preglednici.

Trajni vpliviOznakaVrednostZačasni vpliviOznakaVrednostNeugodni $\gamma_{G;dst}$ 1,35Neugodni $\gamma_{Q;dst}$ 1,5Ugodni $\gamma_{G;stb}$ 0,90Neugodni $\gamma_{Q;dst}$ 1,5

Delni faktorji za preverjanje mejnega stanja HYD:

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.17, 2004, str 135)

2.2.1.1.4.3 Mejna stanja uporabnosti

Mejna stanja uporabnosti v tleh (SIST EN 1997-1, 2.4.6) ali v elementu konstrukcije preverimo tako, da dokažemo, da je učinek vseh vplivov kar se tiče premikov, deformacij ali

razpok (
$$E_d$$
) manjši od še sprejemljive velikosti iste količine (C_d):

 $E_d \le C_d \,, \tag{2.12}$

ali pa dokažemo, da je mobiliziran dovolj majhen delež trdnosti tal ali konstrukcije. Vrednosti delnih faktorjev pri preverjanju mejnega stanja uporabnosti so običajno enake 1,0.

2.2.1.1.4.4 Mejne vrednosti premikov temeljev

Pri projektiranju temeljev je potrebno določiti mejne vrednosti za premike temeljev (ki so lahko podani v nacionalnem dodatku), tako da zaradi diferenčnih premikov temeljev, ki vodjo do deformacije v konstrukciji v le-tej ne pride do mejnega stanja.

2.2.1.1.4.5 Projektiranje s predpisovanjem ukrepov

Predpisovanje ukrepov lahko uporabimo v primeru projektnih stanj za katera računski modeli niso na voljo ali niso primerni. Primeri predpisovanja ukrepov so večinoma povezani s trajnostjo (n.pr. povečana debelina, za preprečitev prekoračitve mejnih stanj zaradi korozije) ali kot pravila dobre prakse (n.pr. globina temeljenja naj bo pod cono zmrzovanja).

2.2.1.1.4.6 Opazovalna metoda

Kadar je napoved geotehničnega obnašanja težavna, je lahko ustrezna uporaba pristopa, znanega kot »opazovalna metoda«, pri katerem se projekt preverja med gradnjo. Bistvo te metode je natančen plan opazovanja in ukrepov, ki jih bo potrebno izvajati, glede na rezultat opazovanj. Uporaba te metode se odsvetuje v primerih, kjer obstaja možnost pojava nenadne porušitve, brez predhodnih opozoril!

2.2.1.1.4.7 Poročilo o geotehničnem projektu

Poročilo o geotehničnem projektu mora vsebovati predpostavke, podatke, računske metode, rezultate preverjanja varnosti in uporabnosti. Nivo natančnosti obdelave v Poročilu o geotehničnem projektu je lahko glede na vrsto projekta zelo različen. Podan je kontrolni seznam vseh vključenih točk. Pomemben je načrt nadzora, tehničnega opazovanja in vzdrževanja zgrajene konstrukcije, ki ga je potrebno s Poročilom dostaviti investitorju oz. naročniku.

2.2.1.2 Temeljenje na pilotih (SIST EN 1997-1, 7)

Poglavje 7- Temeljenje na pilotih, podaja v večji meri obnašanje temeljev na pilotih, ki so osno (vertikalno) obremenjeni. Poudarjena je pomembnost statičnega obremenilnega preizkusa kot osnova projektnih metod za dimenzioniranje pilotov. Vpeljan je nov koncept uporabe korelacijskih faktorjev ξ (glede na običajno projektiranje pilotov), za določitev karakterističnih vrednosti tlačnih in nateznih odporov pilotov iz statičnega obremenilnega preizkusa oz. iz rezultatov terenskih preiskav. V obeh primerih je korelacijski faktor odvisen predvsem od števila izvedenih preiskav, naj si bo to statičnih obremenilnih preizkusov ali terenskih preiskav.

2.2.1.2.1 Splošno (SIST EN 1997-1, 7.1)

Predpisi tega poglavja so namenjeni vsem tipom pilotov ne glede na njihov način vgrajevanja in pričakovano obnašanje (nosilnost po konici ali plašču). Tu so piloti uporabljeni za prenos obtežbe s konstrukcije v temeljna tla. Kadar jih uporabljamo le za redukcijo posedkov plitvih temeljev ali plošč, standard neposredno ne podaja zahtev, saj je v primerjavi s klasičnimi piloti, zahtevana varnost takšnih pilotov veliko manjša.

2.2.1.2.2 Mejna stanja (SIST EN 1997-1, 7.2)

Pri projektiranju temeljenja na pilotih je potrebno preučiti in ustrezno upoštevati vsa mejna stanja, tako mejno stanje nosilnosti (ULS);

- izguba globalne stabilnosti;
- presežena mejna nosilnost temelja na pilotih;
- dvig ali nezadostna natezna odpornost temelja na pilotih;
- porušitev temeljnih tal zaradi prečnih obremenitev temelja na pilotih;
- konstrukcijska porušitev pilota v tlaku, nategu, upogibu, uklonu ali v strigu;
- skupna porušitev tal in temelja na pilotih in
- skupna porušitev tal in konstrukcije,

kot tudi mejno stanje uporabnosti (SLS):

- prekomerni posedki;
- prekomerni dvižki;

- prekomerni pomiki prečno na os pilota;
- nesprejemljive vibracije.

2.2.1.2.3 Vplivi in obtežna stanja (SIST EN 1997-1, 7.3)

Pri izbiri obtežnih stanj, upoštevamo vse vplive na konstrukcijo, podane v poglavju osnove geotehničnega projektiranja (2.2.1.1). Vplivi, najpogosteje upoštevani pri temeljenju na pilotih, so:

- stalna in začasna obtežba konstrukcije,
- dodatna in prometna obremenitev ter
- premiki temeljnih tal.

Ponavadi se ločeno obravnava osno in prečno obremenjene pilote. Kadar so pri v nadaljevanju opisanih obtežnih primerih premiki dovolj majhni, sile, premike in deformacije v pilotu določimo z interakcijsko metodo.

Vplivi zaradi **pomikov tal**, ki jih povzroča konsolidacija, nabrekanje, obtežbe v neposredni bližini, lezenje zemljine, plazovi in potresi, lahko povzročijo negativno trenje, dvigovanje, raztezanje zemljine, prečne obremenitve in premike. Za takšne obtežne primere se za projektne vrednosti privzamejo višje vrednosti trdnosti in togosti premikajočih se tal, kjer se pomik obravnava kot vpliv. Pilote podvržene **negativnemu trenju** ponavadi projektiramo na konzervativen način, tako da ocenimo maksimalno vrednost obtežbe negativnega trenja, ki ga upoštevamo kot vpliv, pri čemer se moramo zavedati, da so rezultati lahko tudi nerealni. Predvsem v primeru debelega stisljivega sloja in/ali kadar so pričakovani posedki tal zelo majhni. Učinek **dvižka tal**, upoštevamo kot vpliv. Dvižke tal lahko med drugim povzroči nabrekanje tal, razbremenitev, zmrzovanje, zabijanje pilotov v bližini... Tudi pri pilotih obremenjenih prečno na os, ki jih povzročajo predvsem pomiki tal v okolici pilota, Evrokod predlaga analizo interakcije med pilotom in zemljino.

2.2.1.2.4 Projektne metode in konstrukcijske zahteve (SIST EN 1997-1, 7.4)

Kot je bilo omenjeno že v začetku, **metode projektiranja** pilotov v Evrokodu večinoma temeljijo na direktnih ali posrednih rezultatih statičnih obremenilnih preizkusov. Lahko pa

tudi na rezultatih dinamičnih obremenilnih preizkusov, katerih veljavnost je bila izkazana s statičnimi obremenilnimi preizkusi, v primerljivih situacijah, ali na rezultatih opazovanja obnašanja primerljivega temelja na pilotih, če je takšen pristop podprt z rezultati preiskav terena in lastnosti tal. Pri upoštevanju **projektnih zahtev** obstaja dolg seznam zahtev projektiranja pilotov vključno z izbiro tipa pilota. Nekatere od teh zahtev težko izpolnimo, medtem, ko so nekatere ustaljena preksa. Kadar uporabimo rezultate statičnih obremenilnih preizkusov je potrebno natančno upoštevati način obremenjevanja ter potencialne spremembe v tleh in pogojih podtalnice.

2.2.1.2.5 Obremenilni preizkusi pilotov (SIST EN 1997-1, 7.5)

Sledi obširno poglavje, ki podaja zahteve obremenilnih preizkusov pilotov za statične in dinamične obremenilne preizkuse. Obremenilni preizkusi pilotov so potrebni predvsem kadar obstaja dvom o zanesljivosti obnašanja pilota zaradi metode vgrajevanja, pogojev tal in pričakovanih obremenitev ali zaradi nepričakovanega obnašanja tekom vgrajevanja. Kjer obremenilni preizkusi niso primerni zaradi težavnosti modeliranja spremembe obtežbe (n.pr. ciklična obremenitev), naj se uporabijo zelo previdno ocenjene projektne vrednosti lastnosti materiala. Število in lokacija obremenilnih preizkusov pilotov mora biti izbrana glede na pogoje tal, predvsem je potrebno preveriti lokacijo, kjer se pojavljajo najbolj neugodni pogoji tal. Reprezentativnost obremenilnih preizkusov pilotov je zelo pomembna, saj rezultati neposredno vplivajo na projektiranje pilotov.

Statične obremenilne preizkuse se lahko izvaja pred zaključkom projektiranja na pilotih, vgrajenih samo za potrebe preizkusov, ali na delovnih pilotih, ki so sestavni del temeljenja. Iz opravljenih meritev na pilotu tekom statičnega obremenilnega testa, mora biti mogoče dobiti podatke o deformacijah pri obremenjevanju, razbremenjevanju in lezenju pilota. Ti podatki bodo uporabni predvsem pri kontroli mejnega stanja uporabnosti (SLS), medtem ko za kontrolo mejnega stanja nosilnosti (ULS), potrebujemo podatke o mejni obremenitvi, vsaj za vertikalno obremenitev. Pri tem Evrokod navaja, da mora projektant zaključke o mejni obremenitvi pridobiti izključno iz testnih pilotov, vgrajenih samo za potrebe preizkusov. Ni nujno, da so piloti porušeni, potrebno je le določiti mejno obremenitev z ekstrapolacijo z grafa obtežba - pomik. Obtežba delovnega pilota pri obremenilnem preizkusu ne sme biti manjša od

projektne (trajne) obtežbe temelja. Za projektiranje natezno obremenjenega temelja na pilotih naj se obremenilni preizkusi izvedejo vse do porušitve. Ekstrapolacija grafa obtežba - pomik naj se za natezne preiskuse ne uporablja. Na lokaciji, kjer se izvaja preizkus pilota, je treba pogoje tal temeljito raziskati. Globina vrtin ali terenskih preiskav mora biti zadostna, da zagotovi podatke o lastnostih tal v okolici in pod konico pilota. Potrebno je preiskati vse sloje, ki lahko pomembno vplivajo na obnašanje pilota in podati podrobno dokumentacijo o metodi vgrajevanja.

Dinamične obremenilne preizkuse lahko uporabljamo za ugotovitev tlačne odpornosti pilota v primeru, ko so bile izvedene ustrezne preiskave tal na lokaciji in je bila metoda umerjena na statične obremenilne preizkuse izvedene na enaki vrsti pilota, podobne dolžine in prereza ter v primerljivih geotehničnih pogojih. Lahko se uporabljajo tudi kot pokazatelj zveznosti pilotov ter za odkrivanje slabših pilotov. Če se uporabi več vrst dinamičnih preizkusov, je potrebno rezultate različnih vrst dinamičnih preizkusov vedno preučiti z upoštevanjem relacij med temi testi. Za vsak izveden obremenilni preizkus mora biti napisano **poročilo o obremenilnem preizkusu,** da v nobenem primeru ne pride do dvoma o natančnem pomenu rezultatov, pred dejanskim končnim projektiranjem in zato, da iz testa res zajamemo vse potrebne informacije.

2.2.1.2.6 Osno obremenjeni piloti (SIST EN 1997-1, 7.6)

V poglavju temeljenje na pilotih je del o osno obremenjenih pilotih bistvenega pomena. Tu določamo <u>tlačno in natezno nosilnost tal</u> za kontrolo mejnega stanja nosilnosti (ULS) in vertikalne pomike za kontrolo mejnega stanja uporabnosti (SLS) konstrukcije. **Projektiranje po metodi mejnih stanj** zahteva, da v projektu dokažemo, da je prekoračenje naslednjih mejnih stanj dovolj malo verjetno:

- mejno stanje zaradi prekoračitve tlačne ali natezne nosilnosti posameznega kola (ULS),
- celotne temeljne konstrukcije (ULS),
- mejno stanje porušitve ali resne poškodbe zgornje konstrukcije zaradi prevelikih pomikov ali diferenčnih pomikov temeljne konstrukcije na pilotih (ULS) ter
- mejno stanje uporabnosti zgornje konstrukcije zaradi prevelikih pomikov (SLS).

Praviloma mora projekt upoštevati varnost glede na prekoračitev tlačne ali natezne

odpornosti, ki ustreza obremenitvi, pri kateri pomiki temelja na pilotih navzdol ali navzgor zelo narastejo ob zanemarljivem povečanju ali zmanjšanju odpornosti. Pri tlačno obremenjenih pilotih je na podlagi krivulje obtežba - pomik, ki je vseskozi ukrivljena, pogosto težko zanesljivo določiti mejno stanje. V takih primerih naj se privzame, da je porušitev nastopila, ko znaša posedek pilota 10% premera na konici pilota. Pri pilotih, ki se znatno posedajo, lahko nastopijo mejna stanja nosilnosti v zgornjih konstrukcijah, še preden je v celoti mobilizirana nosilnost pilotov. V takih primerih je potrebno pri projektiranju previdno oceniti možno območje pomikov. Analiza **globalne stabilnosti** temeljne konstrukcije, ki je sestavljena iz tlačno obremenjenih pilotov mora biti izvedena skladno s poglavjem 11 (SIST EN 1997-1, 11, Globalna stabilnost). Pri analizi je potrebno preveriti tako porušnice pod piloti, kot tiste, ki pilote sekajo.

Tlačno in natezno odpornost tal (SIST EN 1997-1, 7.6.2) za vsa mejna stanja nosilnosti (ULS) preverimo z uporabo osnovne neenačbe:

$$F_{c(t);d} \le R_{c(t);d},$$
 (2.13)

kjer predstavlja $F_{c(t);d}$ projektno tlačno (natezno) osno obtežbo posameznega pilota ali skupine pilotov, vključno z lastno težo, $R_{c(t);d}$ pa projektno vrednost odpora zemljine v tlaku (nategu) na nivoju konice pilota/ov.

Poudarek je na tem, da mejno stanje nosilnosti (ULS) nastopi le v primeru, ko hkrati odpove večje število pilotov. Dejstvo je, da dokler temelj na pilotih ne postane mehanizem (v statičnem smislu), mejno stanje ni doseženo. Mehanizem pri tem lahko predstavlja odpoved večjega števila pilotov, kot tudi preseženo togost in/ali trdnost konstrukcije, ki povezuje skupino pilotov.

Sledi določitev mejne tlačne (natezne) odpornosti iz statičnih obremenilnih preizkusov, določene iz rezultatov terenskih preiskav in ugotovljene z dinamičnimi obremenilnimi preizkusi. Karakteristično vrednost tlačnega ali nateznega odpora R_k določimo iz vrednosti R (izmerjena vrednost R_m ali izračunana vrednost R_{cal}):

$$R_k = R/\xi , \qquad (2.14)$$

kjer je ξ korelacijski faktor. Priporočene vrednosti korelacijskih faktorjev ξ so podane v

dodatku A ter v preglednici za projektiranje na podlagi statičnih obremenilnih preizkusov pilotov, preglednici za projektiranje na podlagi rezultatov terenskih preiskav in preglednici za projektiranje na podlagi dinamičnih obremenilnih preizkusov (samo tlačnih) pilotov. Projektne vrednosti odpora R_d tako lahko izrazimo kot:

$$R_d = R_k / \gamma_t \text{ ali } R_d = R_{b,k} / \gamma_b + R_{s,k} / \gamma_s , \qquad (2.15)$$

kjer predstavljajo γ_t , oziroma γ_s in γ_b delne faktorje odpornosti (γ_R) za celotni odpor R_k , oziroma odpor po plašču $R_{s,k}$ in odpor po konici $R_{b,k}$. Priporočene vrednosti faktorjev so podane v preglednici v nadaljevanju (priporočeno je, da velja za pilote v nategu $R_{b,k}=0$ in $\gamma_{s,t}$ > γ_s). Na drugi strani pa je projektna vrednost tlačne/natezne obtežbe F_d enaka:

$$F_d = \gamma_F \cdot F_k \,, \tag{2.16}$$

kjer je F_k karakteristična vrednost obtežbe in γ_F delni faktor vpliva (ali učinka vpliva) podan tabelarično za trajno in spremenljivo projektno stanje. Za vse nezgodne (slučanje) projektne situacije je $\gamma_F = 1, 0$.

$$F_d \le R_d \,, \tag{2.17}$$

ali z upoštevanjem vseh enačb zgoraj (od 2.14 do vključno 2.17)

$$F_k \le R/(\gamma_F \ \gamma_t \ \xi) = R/FS , \qquad (2.18)$$

kjer $FS = \gamma_F \gamma_t \xi$ predstavlja globalni faktor varnosti, ki smo ga uporabljali v preteklosti.

Vrednosti korelacijskih ξ in delnih faktorjev γ

Vse vrednosti podane v Dodatku A Evrokoda so priporočene vrednosti in so lahko spremenjene v nacionalnem dodatku. Kadar projektiramo temelje na pilotih na osnovi **statičnega obremenilnega testa** (SIST EN 1997-1, 7.6.2.2), uporabimo naslednjo enačbo:

$$R_{k} = Min\{R_{m,mean} / \xi_{1}; R_{m,min} / \xi_{2}\}, \qquad (2.19)$$

kjer je/so R_m izmerjen/i odpor/i, ξ_1 in ξ_2 pa sta korelacijska faktorja, odvisna od števila preizkušenih pilotov *n* in se nanašata na srednjo vrednost (mean) oziroma najmanjšo (min) vrednost izmed vrednosti R_m , podana tabelarično. Za konstrukcije, ki so dovolj toge in trdne, da prenašajo obtežbo s »slabših« na »boljše« pilote, se sme vrednost faktorjev deliti ξ_1 in ξ_2 z 1,1 (to velja le pri tlačni odpornosti tal), vendar ne sme biti vrednost ξ_1 nikoli manjša od 1,0. Korelacijski faktorji ξ za izračun karakteristične vrednosti na podlagi n statičnih obremenilnih preizkusov pilotov:

п	1	2	3	4	≥5
ξι	1,4	1,3	1,2	1,1	1,0
ξ2	1,4	1,2	1,05	1,0	1,0

⁽Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.9, 2004, str 131)

Pri projektiranju temeljev na pilotih na podlagi **rezultatov terenskih preiskav** (SIST EN 1997-1, 7.6.2.3), uporabimo sledečo enačbo (pri natezni odpornosti $R_k = R_s$ saj je $R_b=0$):

$$R_{k} = R_{b,k} + R_{s,k} = (R_{b,cal} + R_{s,cal})/\xi = R_{cal}/\xi = Min\{R_{cal,mean}/\xi_{3}; R_{cal,min}/\xi_{4}\},$$
(2.20)

kjer sta ξ_3 in ξ_4 korelacijska faktorja odvisna od števila profilov terenskih meritev *n* in veljata za srednjo vrednost oziroma najmanjšo vrednost izmed vrednosti R_{cal} , podana tabelarično in so R_{cal} izračunane vrednosti odporov iz rezultatov terenskih meritev. Za konstrukcije, ki so dovolj toge, da prenašajo obtežbo s »slabših« na »boljše pilote, se sme vrednost faktorjev deliti ξ_3 in ξ_4 z 1,1 (to velja le pri tlačni odpornosti tal), vendar na sme biti vrednost ξ_3 nikoli manjša od 1,0.

Korelacijski faktorji ξ za izračun karakteristične vrednosti na podlagi n rezultatov terenskih preiskav:

п	1	2	3	4	5	7	10
ξ3	1,4	1,35	1,33	1,31	1,29	1,27	1,25
ξ4	1,4	1,27	1,23	1,20	1,15	1,12	1,08

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.10, 2004, str 131)

Kadar temelje na pilotih projektiramo na podlagi rezultatov terenskih preiskav, je to možno tudi po alternativni metodi. Pri tej metodi karakteristično vrednost odpornosti konice q_{bk} in karakteristično vrednost strižne odpornosti plašča q_{sik} v posameznih slojih, določimo direktno iz parametrov zemljine, z uporabo ustreznih enačb oziroma diagramov. Tako velja:

$$R_{bk} = q_{bk} A_{bk} \text{ in } R_{sk} = \sum q_{sik} A_{si}, \qquad (2.21)$$

kjer sta A_b in A_{si} površini konice in plašča pilota v *i*-tem sloju. Standard navaja, da je pri

uporabi te metode, priporočljivo na parcialna faktorja γ_s in γ_b , uporabiti modelni faktor večji od 1,0, saj v tem postopku korelacijski faktor ξ neposredno ni uporabljen.

Temelje na pilotih lahko projektiramo tudi na osnovi **dinamičnega obremenilnega preizkusa** (SIST EN 1997-1, 7.6.2.4, 5, 6) in sicer z dinamičnim zabijanjem (merjenje deformacij in pospeškov pilota v odvisnosti od časa med udarcem zabijala), z uporabo zabijalnih obrazcev ali z valovno analizo. Zadnji dve od naštetih metod se sme uporabiti le v primeru, če je slojevitost tal poznana, t.j. ugotovljena z vrtanjem in s terenskimi preiskavami. Projektno vrednost odpornosti R_k pilota je potrebno določiti z enačbo:

$$R_{k} = Min\{R_{m,mean}/\xi_{5}; R_{m,min}/\xi_{6}\}, \qquad (2.22)$$

kjer so R_m izmerjeni odpori, ξ_5 in ξ_6 pa sta korelacijska faktorja, odvisna od števila preizkušenih pilotov *n* in se nanašata na srednjo vrednost oziroma najmanjšo vrednost izmed vrednosti R_m in sta podana tabelarično.

Korelacijski faktorji ξ za izračun karakteristične vrednosti na podlagi n dinamičnih obremenilnih preizkusov^{a, b, c, d, e}

п	≥2	≥5	≥10	≥15	≥20
ξ5	1,60	1,50	1,45	1,42	1,40
ξ6	1,50	1,35	1,30	1,25	1,25
50	1,00	1,55	1,50	1,20	1,20

^a Tabelirane vrednosti ξ veljajo za dinamične obremenilne preizkuse.

^b Pri din. obr. preizkusih, analiziranih z ujemanjem merjenih signalov, se vrednosti ξ lahko množijo z modelnim faktorjem 0,85.

^c Pri uporabi zabijalnih obrazcev z merjenjem kvazi-elastičnih pomikov glave pilota med zabijanjem se vrednosti ξ množijo z modelnim faktorjem 1,10.

- ^d Pri uporabi zabijalnih obrazcev brez merjenja kvazi-elastičnih pomikov glave pilota med zabijanjem se vrednosti ξ množijo z modelnim faktorjem 1,20.
- ^e Če so v temeljni konstrukciji uporabljeni različni piloti, se pri izbiri števila testnih pilotov (*n*) posamezne skupine pilotov upoštevajo ločeno.

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.11, 2004, str 132)

Delni faktorji γ odporov in vplivov oz. učinkov vplivov

Pri analizi mejnega stanja nosilnosti (ULS) trajnih in začasnih projektnih stanj, so v Evrokodu predlagani trije projektni pristopi (prikazani v poglavju 2.2.1.1.4.2): projektni pristop 1 (PP1),

kjer moramo preveriti dve različni kombinaciji vplivov, projektni pristop 2 (PP2) in projektni pristop 3 (PP3). Ustrezni delni faktorji γ_t oziroma γ_b in γ_s , za odpore, ter γ_F za vplive, so podani tabelarično v spodnji preglednici.

ULS, trajna in začasna projektna stanja - priporočene vrednosti delnih faktorjev za odpornost γ_b oziroma γ_s in γ_t :

		Projek	tni pri	רחת	200%				
	Kon	ibinac	ija 1	Kom	ibinac	ija 2	PP2	PP3 "	
Tip pilota	γ_b γ_s γ_t			γь	γs	γ _t	$\gamma_b = \gamma_s = \gamma_t$	$\gamma_b = \gamma_s = \gamma_t$	
Tlak									
Zabiti	1,0	1,0	1,0	1,3	1,3	1,3	1,1	1,0	
Uvrtani	1,25	1,0	1,15	1,6	1,3	1,5	1,1	1,0	
CFA	1,1	1,0	1,1	1,45	1,3	1,4	1,1	1,0	
Nateg									
Yst		1,25			1,6		1,15	1,1	
* pri PP3: z delnimi faktorji obremenimo parametre zemljine. PP3 ne									
uporabljamo v rezultatov obr	v prime emenil	erih, ko lnih pr	o odpo eizkus	re dolo ov pilo	očimo otov.	na osn	iovi		
rezultatov obr	emeni	lnih pr	eizkus	ov pilo	otov.				

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.6, A.7 in A.8, 2004, str 130)

ULS, trajna in začasna projektna stanja - priporočene vrednosti delnih faktorjev γ_F vplivov:

Vpliv			PP1-1 (B)	PP1-2 (C)*	PP2	<i>PP3**</i>			
Sta	alni Neugodni γ_G		1,35	1,0	1,35	1,35			
		Ugodni	1,0	1,0	1,0	1,0			
Spr	emenljiv	Neugodni ₇₀	1,5	1,3	1,5	1,5			
		Ugodni	0	0	0	0			
*	z delnimi	faktorji obrem	enimo param	netre zemljine					
**	** velja le za konstrukcijske vplive; pri geotehničnih vplivih z delnimi								
	faktorji o	bremenimo par	ametre zemlj	jine.					

(Povzeto po: SIST EN 1997-1, Dodatek A, tabela A.3, 2004, str 128)

Pri analizi mejnega stanja nosilnosti (ULS) nezgodnih (slučajnih) projektnih stanj, so vse vrednosti delnih faktorjev γ_F vplivov enake 1,0. Vrednosti delnih faktorjev γ_t oziroma γ_b in γ_s , za odpore, pa so odvisne od posamezne situacije slučajnih vplivov in so podane v nacionalnem dodatku posamezne države.

Vertikalni premiki temeljev na pilotih (uporabnost zgornje konstrukcije) (SIST EN 1997-1, 7.6.4) za mejno stanje uporabnosti, morajo biti določeni in preverjeni glede na mejne vrednosti. Pri tlačno obremenjenih pilotih je potrebno upoštevati posedanje skupine pilotov in tudi negativno trenje, kjer obstaja možnost, da se le-to pojavi. Za natezno obremenjene pilote pa je potrebna kontrola dvižkov.

Pri **prečno obremenjenih pilotih** (SIST EN 1997-1, 7.7), mora biti projektni prečni odpor $R_{tr,d}$, za vsa mejna stanja nosilnosti (ULS) in vse obtežne kombinacije, takšen, da velja neenačba:

$$F_{tr,d} \le R_{tr,d} , \qquad (2.23)$$

kjer $F_{tr,d}$ predstavlja projektno vrednost prečne obtežbe. Upošteva naj se eden od dveh porušnih mehanizmov:

- za kratke pilote; rotacija ali translacija pilota kot togega telesa,
- za dolge vitke pilote; upogibna porušitev pilota s spremljajočim lokalnim plastičnim tečenjem in premiki zemljine v bližini vrha pilota.

Odpornost na prečno obtežbo R_{tr} lahko določimo z obremenilnimi preizkusi pilotov oziroma iz rezultatov preiskav temeljnih tal in trdnostnih karakteristik pilota. Račun prečne odpornosti dolgega, vitkega pilota se lahko izvede na podlagi teorije linijskega nosilca, ki ga modeliramo s horizontalnim modulom reakcije tal.

Pri določitvi prečnih premikov temelja na pilotih je treba upoštevati (SIST EN 1997-1, 7.7.4):

- togost tal in odvisnost togosti od velikosti deformacij,
- upogibno togost posameznih pilotov,
- vpetost pilotov na mestu, kjer je pilot povezan s konstrukcijo.
- učinek skupine pilotov,
- učinek spremembe smeri delovanja obtežbe ter cikličnih obremenitev.

Dimenzioniranje pilotov (SIST EN 1997-1, 7.8) mora biti takšno, da v nobenem slučaju ne pride do nevarnosti konstrukcijske porušitve. Načrtovani morajo biti tako, da ne pride do poškodb med transportom, med vgradnjo (samice, strmo nagnjena površina, kakovost stikov,...) ali tekom uporabe (korozija). Vitke pilote je včasih potrebno preveriti na uklon

(kadar potekajo skozi vodo ali debele plasti slabo nosilne zemljine $c_u < 10$ kPa).

Nadzor izgradnje (SIST EN 1997-1, 7.9) igra pomembno vlogo pri vgradnji pilotov, saj le na osnovi kvalitetne izdelave (vgradnje), zagotovimo ustrezno obnašanje nosilne konstrukcije. Pred začetkom vgradnje mora biti izdelan natančen načrt, ki omogoča izvajanje kontrole in zapisnika vgradnje vsakega pilota. Če zapažanja na terenu in pregled zapisnikov pokažejo nezanesljivost glede kakovosti vgrajenih pilotov, je potrebno izvesti dodatne preiskave kot so statične obremenilne preizkuse, ali preiskave zveznosti, vgradnjo novega pilota ali v primeru vtisnjenih pilotov ponovno zabijanje v kombinaciji s preiskavami tal ob sumljivem pilotu.

2.2.2 2. del: Geotehnično raziskovanje in preskušanje

Drugi del Evrokoda 7 predstavlja povezavo med projektnimi zahtevami prvega dela (predvsem 3. poglavje: Geotehnični podatki) in med rezultati terenskih in laboratorijskih preiskav. Obravnava naslednje teme:

- 1. poglavje: Splošno
- 2. poglavje: Načrtovanje geotehničnih raziskav
- 3. poglavje: Odvzem vzorcev zemljin in hribin ter meritve podtalnice
- 4. poglavje: Terenske preiskave zemljin in hribin
- 5. poglavje: Laboratorijske preiskave zemljin in hribin
- 6. poglavje: Zapisnik (poročilo) geotehničnih raziskav

V poglavju terenskih preiskav zemljin in hribin so opisani naslednji preizkusi: statični konusni penetracijski test (CPT in CPTU), presiometrski test (PMT), test zemljin in hribin z upogibnim dilatometrom (FDT), standardni penetracijski test (SPT), dinamični penetracijski test (DP), težnostni sondirni test (WST), preizkus s terensko krilno sondo (FVT), ploskovni dilatometrski test (DMT) in test z obremenilno ploščo (PLT).

Poglavje laboratorijskih preiskav zemljin in hribin obravnava pripravo vzorcev zemljin in hribin za nadaljnje testiranje. Nato podaja teste za preiskovanje zemljin, s katerimi določimo klasifikacijo, identifikacijo in opis, kemično sestavo zemljin in podtalnice, trdnostni indeks, trdnost, stisljivost in deformabilnost, zgoščnost oz. sposobnost zgoščevanja in vodoprepustnost, kot preiskovanje hribin pa podaja teste, s katerimi določimo klasifikacijo,

nabrekalno sposobnost in trdnost.

Tudi drugi del vsebuje dodatke, ki podajajo le informativne smernice korelacij in izpeljav geotehničnih parametrov dobljenih iz terenskih preiskav. Informativni dodatek D.3 podaja določitev posedkov plitvega temelja iz rezulatov CPT meritev, D.6 in D.7 določitev tlačne nosilnosti pilotov, prav tako iz rezultatov CPT meritev, dodatka E.1 in E.2 podajata določitev nosilnosti in posedkov plitvega temelja iz presiometrskih meritev, dodatek E.3 **določitev tlačne nosilnosti pilotov iz presiometrskih meritev**, dodatek F.3 pa podaja določitev posedkov plitvega temelja na osnovi SPT meritev. Vsi ti dodatki, kot že omenjeno, podajajo le informativne izpeljave in izračune.

Evrokod 7 za projektiranje pilotov vpelje nekaj bistvenih sprememb:

- uporabljajo se lahko metode, preverjene s statičnimi obremenilnimi preizkušnjami,
- uvede koncept delnih faktorjev,
- dodatno preko korelacijskih koeficientov upošteva zanesljivost podatkov glede na število izvedenih testov.

3 NAPOVED NOSILNOSTI VERTIKALNO OBREMENJENIH PILOTOV NA OSNOVI TERENSKIH MERITEV (PMT)

3.1 Uvod

V tem poglavju se bomo osredotočili na račun nosilnosti globoko temeljenih objektov na osnovi presiometrskih preiskav. Na naši fakulteti uporabljamo Ménardov presiometer, ki izvira iz Francije. Od leta 1999 pa do danes smo uspešno izvedli preko 900 testov po vsej Sloveniji (Slika 1). Presiometer je bil preizkušen na lokacijah, ki se po geoloških pogojih med seboj zelo razlikujejo t.j. v najrazličnejših zemljinah, od lahko gnetne gline preko peščenih in prodnatih slojev do mehkih kamnin. Postopki za vrednotenje rezultatov in dimenzioniranje temeljenja na pilotih so povzeti po francoskih predpisih, ki so vključeni tudi v Evrokodu 7.

V nadaljevanju bo sledila kratka predstavitev opreme presiometra ter potek preizkusa in vrednotenja rezultatov (povzeto po standardih: ISO/DIS 22476-4; Geotechnical investigation and testing – Field testing – Part 4: Ménard pressuremeter test, SIST EN 1997-2; Ground investigation and testing in LCPC-SETRA).

3.2 Potek presiometrskega preizkusa (PMT)

Ideja presiometrskega preizkusa je razširitev cilindrične sonde v vrtini, ki s pomočjo tekočine oz. plina izvaja hidravlični pritisk na stene vrtine preko raztegljive gumijaste membrane. S tem omogoča neposredno meritev odnosa med napetostmi in deformacijami v vrtini.

V svetu obstaja več tipov presiometrov. Presiometri, ki se vstavijo v že vnaprej izdelano vrtino, takšni, ki se uvrtajo sami, in konusni presiometri. Največ se uporabljajo presiometri, ki se vstavijo v že vnaprej izdelano vrtino (v uporabi jih je kar 8-krat več, kot ostalih tipov) in prav takega (Ménardov) imamo tudi pri nas. Zato se bomo omejili na opis le-tega.

Slika 1: Razporeditev in približno število izvedenih presiometrskih testov v Sloveniji v letih od 2000 do 2007

Figure 1: Arrange and approximate number of PMT in Slovenia from 2000 to 2007

Sonda presiometra je lahko sestavljena iz ene ali treh celic. Deformacije pa lahko merimo z volumometrom ali pa tipali na sondi. Največ se uporablja Ménardov presiometer, ki ima tri celice. Srednja celica je merilna in se polni z vodo, robni celici pa sta varovalni celici in se napolnita s plinom. Naloga varovalnih celic je blažitev učinkov končne dolžine merilne celice in preprečitev njene spremembe dolžine. Prisotnost varovalnih celic pomeni tudi obremenitev večjega dela dolžine vrtine. Zaradi upoštevanja predpostavke, da je dolžina sonde neskončna, v okolni zemljini lahko predpostavimo ravninsko deformacijsko stanje.

Najpomembnejše za kakovosten rezultat meritve pri presiometru, ki se vstavi v že vnaprej izdelano vrtino, je pravilno vstavljanje sonde in seveda pravilno izbrana tehnologija vrtanja. Ta mora zagotoviti kar najmanjše motnje na stenah vrtine in v okolni zemljini. Zaradi tega moramo ločiti med pripravo vrtine za odvzem intaktnih vzorcev, ki povzroči porušitev sten vrtine, od vrtine pripravljene za presiometrski test, kjer je jedro porušeno in primerno le za oceno vrste zemljine! Če na mestu predvidenih testov že vnaprej vsaj približno poznamo sestavo tal, se lažje odločimo za primerno vrtalno tehniko. V praksi se je izkazalo, da je vrtina primerna, če njen premer ne preseže 110% premera sonde, saj je kapaciteta volumometra in deformacija sonde omejena. Tako dobimo podatek o trdnosti tal, saj lahko določimo vrednost mejnega tlaka p_L na mestu porušitve obodne zemljine. V nasprotnem primeru pa, če je vrtina premajhna in sondo na silo potisnemo (nedopustno) na globino testa, dobljena presiometrska krivulja ne bo vsebovala pseudo linearne faze in s tem bomo izgubili informacijo o deformabilnosti zemljine (E_0). V zemljinah, ki so stisljive ali sipke in preplavljene z vodo, je priporočljiva uporaba polimerne izplake, saj zmanjšuje mehčanje sten vrtine in ima nizko viskoznost, kar pomeni tudi manjšo erozijo. Ko je vrtina pripravljena, je potrebno presiometrsko sondo takoj vstaviti v vrtino in izvesti test. Praviloma se za vsak test posebej na določeni globini vrtina pripravi sproti.

Zaradi kompleksnega napetostnega stanja v okolici sonde izmerjeni presiometrski modul ni kar enak elastičnemu modulu in tudi izmerjeni mejni tlak ne omogoča izračuna trdnostnih parametrov zemljine. V preteklosti so različni avtorji razvili neposredne metode, ki na osnovi profila presiometrskih modulov in mejnega tlaka z globino omogočajo račun nosilnosti in posedkov plitvih temeljev in pilotov v vseh vrstah tal.

Če pred začetkom preiskav vsaj približno poznamo dimenzije temeljev načrtovanega objekta, lahko že v naprej določimo tako število kot tudi globine posameznih testov za kasnejše optimalno dimenzioniranje.

3.2.1 Oprema presiometra

Presiometer je sestavljen iz treh glavnih delov (Slika 2) in sicer iz:

- kontrolne enote, ki obsega izvor tlaka in sistem za zajem podatkov,
- kablov in cevi, ki služijo za povezavo kontrolne enote s sondo,
- sonde.

Slika 2: Oprema presiometra značilna za vse tipe Figure 2: Pressuremeter equipment typical for all types

Kontrolna enota je nameščena na primernem mestu na terenu, blizu vrtine, njena funkcija pa je nadzor in prikaz deformacije sonde. Širitev sonde se izvaja z večanjem tlaka ali volumna v prirastkih preko kontrolne enote. Sočasno se izvaja merjenje spremembe volumna merilne celice. Izvor tlaka je jeklenka s stisnjenim plinom. Dotok vode iz cilindričnega rezervoarja v merilno celico se meri z volumometrom.

Cevi so potrebna povezava med kontrolno enoto in sondo, da lahko voda in plin nemoteno potekata od ene k drugi. Po kablih pa se pretakajo v sondi izmerjeni podatki, ki se izpisujejo v kontrolni enoti.

Sonda je sestavljena iz treh celic in sicer merilne celice in dveh varovalnih celic. Ponavadi se za izvajanje pritiska na zemljino in merjenje spremembe volumna uporablja voda. Ta voda je v raztegljivi neprepustni membrani iz gume, ki se pri obremenitvi nasloni na stene vrtine. Gumijasta membrana nudi zadostno raztegljivost, tako da zagotovi enoten pritisk sonde na stene vrtine. Da pa zagotovimo pravilni potek širjenja merilne celice, ima le-ta na svoji zgornji in spodnji strani še varovalni celici, ki sta po sestavi enaki merilni celici in sta lahko napolnjeni z vodo ali plinom. Sonda je bistvo presiometra, saj preko nje neposredno obremenimo zemljino in z nameščenimi merilci pomikov oz. sprememb volumna, merimo odziv zemljine.

Na fakulteti imamo Ménardov presiometer tipa G, letnik 1999, z vsemi pripadajočimi deli, ki so opisani v nadaljevanju. Oprema je bila kupljena pri dobavitelju APEGEO SEGELM iz Francije. Oznaka G predstavlja merilno sondo sestavljeno iz treh celic. Kontrolno enoto sestavlja volumometer, barometra za merjenje tlakov v merilni in dveh varovalnih celicah, ter konektorji za priključitev kablov, ki povezujejo kontrolno enoto s sondo. Barometre na kontrolni enoti lahko zamenjamo z bolj občutljivimi oziroma z bolj robustnimi. Kabli, ki jih imamo so sestavljeni iz dveh cevk, v eni cevki se pretaka voda, v drugi pa plin. Vse v nalogi uporabljene rezultate smo dobili z meritvami volumske spremembe pri pripadajočem tlaku vode v merilni celici sond BX ali AX.

Sonda BX se uporablja v drobnozrnatih zemljinah od lahko gnetne pa vse do trdne konsistence. Njen zunanji premer je enak 59 mm, dolžina merilne celice je 22 cm in celotna dolžina merilnega dela (merilna celica in dve varovalni celici) je enaka 42 cm. Glede na konsistenco zemljin imamo na voljo več zunanjih membran različnih togosti. Pri židkih zemljinah uporabimo najtanjšo in najmanj togo membrano, medtem ko pri zemljinah trdne konsistence, uporabimo zelo toge s tekstilom ali jeklenimi žicami ojačane membrane. Pred izvajanjem testov s sondo BX je obvezna priprava vrtine, katere premer je malenkost večji od zunanjega premera sonde.

Sonda AX se uporablja v grobozrnatih zemljinah. Za razliko od sonde BX se sonda AX ponavadi na globino testa zabije. Njen zunanji premer je enak 44 mm, dolžina merilne celice je 36 cm in celotna dolžina merilnega dela (merilna celica in dve varovalni celici) je enaka 59 cm. Sonda AX se pred zabijanjem v zemljino vstavi v zaščitno cev, ki je jeklena in vzdolžno prerezana, tako da tvori 6 enakih lističev, ki sondi dopuščajo deformacijo. Tudi tu imamo na voljo več različnih togosti membran. Zunanji premer zaščitne cevi je 59 mm, debelina sten meri 7 mm in njena dolžina je enaka 108 cm.

3.2.2 Preiskava

Preiskava poteka v več korakih. Po končani kalibraciji opreme in pravilno izdelani vrtini se presiometer vstavi v prej izvrtano vrtino in na določeni globini se izvede preiskava, katere potek je točno določen (ISO/DIS 22476-4, 2005, SIST EN 1997-2, 2005, LCPC-SETRA, 1994, Briaud, 1992; Clarke, 1995).

Kalibracija presiometra je potrebna za korektno vrednotenje rezultatov meritev. Da bi dobili prave karakteristike presiometrskega testa, t.j. pravo vrednost tlaka p_c , ki deluje na steno vrtine, in pravo vrednost povečanja volumna sonde v_c , je potrebno dobljene grobe rezultate presiometrskega testa korigirati. Pri tem moramo zagotoviti tesnjenje celotnega sistema in določiti začetni volumen sonde, upoštevati korekcije zaradi stisljivosti sistema, odpora membrane, hidrostatičnega pritiska in začetnih odčitkov rezultatov presiometrskega testa. Kalibracija se izvaja vsakič, ko pride do okvare presiometra, kot npr. preboda membrane, hipne spremembe temperature okolice, itd. V primeru, da do poškodb ne pride, pa je potrebno kalibracijo izvesti vsaj po vsakem desetem preizkusu.

Priprava vrtine je eden najpomembnejših korakov pri zagotavljanju kvalitetnega presiometrskega preizkusa. Presiometer ima relativno majhen premer, ki znaša v povprečju okoli 60 mm. Pri tem je potrebno upoštevati dva bistvena pogoja:

• premer vrtine mora biti v mejah tolerance in mora zadostiti dvema pogojema; $D_2 \le D_1 \le 1.03 \cdot D_2$ in $1.03 \cdot D_2 \le D_3 \le 1.20 \cdot D_2$, kjer so: $D_1...$ premer vrtalne krone $D_2...$ začetni premer sonde ($2R_0$) $D_3...$ začetni premer vrtine ($2R_C$).

oprema in metoda vrtanja naj bi povzročila čim manj poškodb v zemljini na stenah vrtine. Zato naj bo rezilo vrtalne naprave obrnjeno proti notranjosti vrtine, kar povzroči porušitev jedra, ki ga nato skozi odprtino v sredini cevi izplaka potisne navzgor. Ta zemljina (jedro) sicer ni primerna za izvajanje preiskav v laboratoriju, lahko pa se približno oceni kvaliteta in vrsta zemljine. Stene vrtine pa tako ostanejo intaktne. Prav tako so primerne tudi druge metode vrtanja oz. vrtalne glave (npr. s polžem), če le zagotavljajo intaktne stene vrtine.

Meje tolerance premera vrtine zagotavljajo, da vrtina ni ne premajhna in ne prevelika. Če je vrtina premajhna, imamo probleme s spuščanjem sonde v globino. V primeru, da je prevelika, pa zemljino težko obremenimo do mejnega tlaka, saj je maksimalno povečanje sonde, tudi zaradi majhne kapacitete rezervoarja z vodo, enako dvojnemu začetnemu volumnu vrtine.

Standardna presiometrska preiskava se izvede v desetih enakih prirastkih tlaka t.j. v približno 10-ih minutah. Prirastek tlaka ocenimo glede na vrsto zemljine, ki se nahaja na globini meritve, na odpor zemljine pri izdelavi vrtine, na rezultate predhodnih preiskav v isti oz. sosednjih vrtinah, itd. Teh prirastkov je lahko tudi nekaj manj ali več, bistveno je, da povzročijo porušitev okolne zemljine in je s tem dosežen mejni tlak, oz. dvakratno povečanje prostornine sonde.

Tipičen rezultat presiometrskega testa je krivulja, prikazana na grafu (Slika 3). Slika prikazuje odnos odčitkov tlaka proti odčitkom volumna po 60-ih sekundah.

Slika 3: Pravilna oblika presiometrske krivulje Figure 3: The correct shape of the pressuremeter curve

Zadnji del preiskave je korekcija izmerjenih rezultatov glede na predhodne rezultate kalibracije in ovrednotenje rezultatov. Po končani korekciji zrišemo presiometrsko krivuljo (Slika 3) in glede na njeno obliko ocenimo, ali so rezultati uporabni ali ne. V kolikor je oblika krivulje ustrezna, določimo presiometrske parametre, potrebne za nadaljnjo računsko obdelavo.

3.2.3 Vrednotenje rezultatov

Iz rezultatov presiometrskega testa lahko iz oblike krivulje določimo vrednosti presiometrskega modula prve obremenitve E_0 in mejni tlak p_L (Briaud, 1992). Če iščemo še druge parametre zemljine, npr. presiometrski modul ponovne obremenitve E_R , moramo izvesti dodatne posebne teste, kot so ciklično obremenjevanje, lezenje, relaksacija, ...

3.2.3.1 Mejni tlak p_L , tlak na meji elastičnosti p_y in učinkoviti mejni tlak p_L^*

Mejni tlak p_L , ki nosi podatek o trdnosti tal na koti testa, odčitamo iz presiometrske krivulje na mestu porušitve obodne zemljine, oziroma na mestu, ko sonda podvoji začetni volumen. Na zgornji sliki (Slika 3) je to točka C. Tlak na meji elastičnosti p_y odčitamo na koncu linearnega dela presiometrske krivulje (Slika 3, tč. B).

Učinkovit mejni tlak p_L^* pa izračunamo po enačbi:

$$p_L *= p_L - u_0, \tag{3.1}$$

kjer *u*⁰ predstavlja hidrostatski porni tlak v globini sonde.

3.2.3.2 Presiometrski modul prve obremenitve E_0 in presiometrski modul ponovne obremenitve E_R

Oba izračunamo iz naklona linearnega dela presiometrske krivulje. Enačbi sta podobni, zato bomo zapisali le enačbo presiometrskega modula prve obremenitve E_0 . Na sliki spodaj (Slika 4) je to del med točkama 2 in 1 (oz. med točkama 3 in 4 za določitev presiometrskega modula ponovne obremenitve E_R):

$$E_{0} = (1+\nu) \cdot (p_{2} - p_{1}) \cdot \frac{\left(1 + \left(\frac{\Delta R_{0}}{R_{0}}\right)_{2}\right)^{2} + \left(1 + \left(\frac{\Delta R_{0}}{R_{0}}\right)_{1}\right)^{2}}{\left(1 + \left(\frac{\Delta R_{0}}{R_{0}}\right)_{2}\right)^{2} - \left(1 + \left(\frac{\Delta R_{0}}{R_{0}}\right)_{1}\right)^{2}}, \qquad (3.2)$$

pri čemer je potrebno predpostaviti Poissonovo število v = 0.3.

Presiometrski modul E_0 lahko določimo tudi iz zveze:

$$G = \frac{E_0}{2(1+\nu)},$$
(3.3)

kjer je *G* strižni modul. Izračun strižnega modula je enostaven, poleg tega pa ne potrebujemo predpostavke Poissonovega števila. Določimo ga iz naklona linearno-elastičnega dela presiometrske krivulje z enačbo:

$$G = V_C \frac{\Delta p}{\Delta V_C}, \qquad (3.4)$$

kjer je: *V*_C...volumen vrtine;

p...tlak v vrtini in

 ΔV_C ...volumen prikazan na zgornji sliki (Slika 3, $\Delta V_C = V_B - V_A$).

Slika 4: Razbremenilno - obremenilna zanka med potekom presiometrskega testa Figure 4: Unload – reload loop during a pressuremeter test

3.3 Postopek določitve nosilnosti vertikalno obremenjenih pilotov po dosedanji praksi

3.3.1 Uvod

Pred nakupom presiometrske opreme smo preučili njeno uporabnost, prednosti in slabosti ter način vrednotenja preiskave. Izdelali smo program za obdelavo podatkov (Robas, Logar, 1999; Kuder, 2000), pridobljenih s presiometrsko preiskavo, ki vključuje vse korekcije in izračune posedkov ter nosilnosti plitvih temeljev in vertikalno obremenjenih pilotov. Ménardov presiometer izvira iz Francije, kjer ga zelo uspešno uporabljajo že več kot 50 let in zaseda na področju terenskih preiskav prvo mesto. Posledično so bili pravilniki (standardi) razviti na osnovi teoretičnih dognanj francoskih raziskovalcev. Tudi mi smo pri izdelavi računalniškega programa izhajali iz njihovih pravilnikov. Na kratko je princip vrednotenja in izračunov opisan v nadaljevanju, kjer lahko vidimo, da je varnost upoštevana v zadnjem koraku, z globalnim faktorjem varnosti. Tu dobljeno mejno nosilnost zmanjšamo za varnostni faktor (2,8). V zadnjih letih so bili postopki vrednotenja rezultatov presiometrskih preiskav,

vključeni v standard Evrokod 7, ki prinaša nekaj sprememb. Vpeljan je nov koncept uporabe korelacijskih faktorjev ξ (glede na prej uveljavljene postopke projektiranja pilotov) za določitev karakterističnih vrednosti tlačnih in nateznih odporov pilotov iz statičnega ali dinamičnega obremenilnega preizkusa oz. iz rezultatov terenskih preiskav. V nadaljevanju je opisan princip izračuna nosilnosti globoko temeljenih objektov (Briaud, 1992; Clarke, 1995).

3.3.2 Splošno

Mejno obtežbo Q_L , ki jo še lahko prenese vrh pilota, izračunamo z enačbo:

$$Q_L = Q_P + Q_S - W_P, \tag{3.5}$$

kjer so: Q_P ...nosilnost konice pilota (R_b),

 Q_S ...nosilnost plašča pilota (R_s),

 W_P ...lastna teža pilota.

Vrednosti Q_P in Q_S sta podani z enačbama:

$$Q_P = q_L A_P \text{ in } Q_S = f_L A_S, \qquad (3.6)$$

kjer so: q_L ... mejni odpor na konici pilota,

 f_L ... mejno trenje ob plašču pilota,

 A_P ... površina konice pilota,

 A_S ... površina plašča pilota.

V zadnjih 30-ih letih je bilo predlaganih več metod za določitev nosilnosti konice pilota q_L . Zasnove vseh metod so zelo podobne, glavne razlike pa so nastale predvsem zaradi naraščanja števila dejanskih rezultatov raziskav na tem področju. Temeljna zasnova vseh metod je določitev mejnega odpora pod konico pilota q_L iz znanega mejnega tlaka presiometerske preiskave p_L . Pri tem je treba glede na znane karakteristike zemljine in pilotov uporabiti primeren koeficient nosilnosti k. Podobno določimo tudi mejno trenje vzdolž plašča pilota f_L iz povezav z izmerjenim mejnim presiometrskim tlakom p_L .

3.3.3 Enačba mejnega odpora konice pilota q_L

Zapišemo jo z izrazom:

$$q_{L} = k \left(p_{Le} - p_{0H} \right) + p_{0V} \tag{3.7}$$

kjer so: *k* ... koeficient nosilnosti;

 p_{Le} ... ekvivalentni mejni tlak na območju debeline 2a v okolici dna pilota (Slika 5);

 p_{OH} ... mirni horizontalni pritisk zemljine;

 p_{OV} ... vertikalni pritisk v zemljini, $p_{OV} = \gamma_z h$.

Slika 5: Parametri, potrebni za določitev ekvivalentnega mejnega tlaka konice pilota Figure 5: Parameters for determining the equivalent limit pressure of the pile point

3.3.4 Izračun ekvivalentnega mejnega tlaka *p*_{Le}

Ekvivalentni mejni tlak p_{Le} predstavlja povprečje mejnih tlakov homogene plasti zemljine v bližini konice pilota. Homogena plast je definirana kot plast, kjer maksimalni mejni tlak ni večji od minimalnega, povečanega za faktor 1,5. V tem primeru velja:

$$p_{Le} = \frac{1}{2a} \int_{-a}^{+a} p_L(z) dz .$$
 (3.8)

Če je *B* ekvivalenten premer pilota, je vrednost *a* podana z izrazom: a = 0.5 m, če je $B \le 1.0$ m oziroma a = B/2, če je B > 1.0 m. (3.9) Vrednost ekvivalentnega premera pilota *B* je enaka B = 4A/P, kjer sta *A* in *P* ploščina in obseg prečnega prereza pilota. Za pilot okroglega prereza je ekvivalenten premer pilota enak B = 2r.

Količina
$$\int_{-a}^{+a} p_L(z) dz$$
 predstavlja ploščino diagrama $p_L(z)$ na globini od $-a$ do $+a$. Če nosilna plast ni homogena, na profil, prikazan na sliki (Slika 5), nanesemo vrednost minimalnega mejnega tlaka, povečanega za faktor 1,5, in to vstavimo v enačbo za p_{Le} . Vrednost konstante a je relativno majhna, vendar moramo zagotoviti, da so pod nosilno plastjo plasti, ki imajo nosilnost večjo ali vsaj enako tej nosilni plasti. V primeru, ko imamo pod nosilno plastjo šibkejše plasti, je potrebno upoštevati vpliv teh šibkih plasti na nosilnost konice pilota oziroma skupine pilotov. Če je globina vpetja pilota D v nosilno plast manjša od konstante a , je potrebno ekvivalentni mejni tlak p_{Le} izračunati po enačbi:

$$p_{Le} = \frac{1}{a+D} \int_{-D}^{+a} p_L(z) dz .$$
(3.10)

3.3.5 Določitev koeficienta presiometrske nosilnosti k

Koeficient nosilnosti k je podan v spodnji preglednici v odvisnosti od kategorije zemljine, ki jo označimo z indeksi A, B in C (A predstavlja najmanj odporno in C najbolj odporno zemljino). Vrednosti k so določene eksperimentalno ter so podane le za pilote okrogle in kvadratne oblike. V primeru diafragme, ki se uporabi namesto pilotov, kadar mora biti pilotna stena hkrati tudi vodonepropustna, vrednosti koeficienta k iz preglednice reduciramo s faktorjem 1,2. Za stene oziroma pilote, ki niso ne eno ne drugo, pa upoštevamo linearno interpolacijo in sicer, če je

$$k_{KV,OK} = k$$
 in $k_{ST} = k/1.2$, je $k_{INT} = k/1.2 + B/L \cdot (k - k/1.2)$

Vrednosti koeficienta k so podane za polno vpetje pilota v nosilno plast.

Kategorija zemljine		p _{Le} (MPa)	Uvrtani piloti (i)	Zabiti piloti (ii)		
Glina in melj	Α	< 0,7	1,1	1,4		
_	В	1,2-2,0	1,2	1,5		
	С	> 2,5	1,3	1,6		
Pesek in gramoz	А	< 0,5	1,0	4,2		
	В	1,0-2,0	1,1	3,7		
	С	> 2,5	1,2	3,2		
Kreda	Α	< 0,7	1,1	1,6		
	В	1,0-2,0	1,4	2,2		
	С	> 3,0	1,8	2,6		
Lapor	Α	1,5-4,0	1,8	2,6		
	В	> 4,5	1,8	2,6		
Preperela skala	А	2,5-4,0	(;;;;)	(;;;;)		
	В	> 4,5	(111)	(111)		

Koeficient presiometrske nosilnosti, k, osno obremenjenih pilotov:

(Povzeto po: SIST EN 1997-2, Dodatek E, tabela E.4, 2005, str 101)

(i) piloti izdelani z nič ali malo izpodrivanja zemljine,

(ii) piloti izdelani s polnim izpodrivanjem zemljine,

(iii) izbrani k, katerega vrednost je najbližja kategoriji zemljine.

3.3.6 Določitev ekvivalentne globine vpetja D_e pilota

Ekvivalentna globina vpetja je definirana z enačbo:

$$D_e = \sum_i \Delta z_i \, \frac{p_{Li}}{p_{Le}},\tag{3.11}$$

kjer so: p_{Li} ... mejni tlaki v plasteh znotraj globine vpetja D v nosilno plast;

 Δz_i ... debeline plasti med podanimi p_{Li} znotraj globine vpetja D.

Polno vpetje pilota je doseženo, ko je vrednost D_e večja od 5*B*. Če ta pogoj ni izpolnjen, moramo vrednosti koeficienta *k* reducirati po enačbi:

$$k_{(D_e/B)} = 0.8 + \left(\frac{k - 0.8}{2.5}\right) \frac{D_e}{B} \left(10 - \frac{D_e}{B}\right),\tag{3.12}$$

kjer je *k* koeficient podan v zgornji preglednici.

3.3.7 Izračun nosilnosti konice pilota

Mejni tlak v konici pilota izračunamo z enačbo (3.7). Mejna nosilnost konice je podana z izrazom: $Q_P = q_L A_P$, kjer je A_P površina konice pilota. Za pilote, ki imajo odprto konico

(votli cevni piloti), je vrednost mejne nosilnosti konice reducirana in znaša polovico vrednosti $(Q_P/2)$ mejne nosilnosti pri polnih pilotih z zaprto konico Q_P .

3.3.8 Določitev trenjske nosilnosti plašča pilota f_L

Vrednost trenjske nosilnosti f_L na globini z je odvisna od tipa zemljine, tipa pilota in mejnega tlaka na globini z ($p_L(z)$). Najprej iz preglednice, podane v nadaljevanju, glede na te karakteristike izberemo primerno krivuljo podano na grafu (Povzeto po: LCPC-SETRA, 1985, str 101). Nato pri znanem mejnem tlaku na globini z ($p_L(z)$) in izbrani krivulji Q_i iz grafa (Povzeto po: LCPC-SETRA, 1985, str 101) odčitamo vrednost trenjske nosilnosti oboda pilota na tej globini z.

Zemljina Pilot		lina/N	Ielj	Pesek/Gramoz			Kreda			Lapor		Razpokana hribina
	Α	В	С	А	В	С	Α	В	С	Α	В	
Suho uvrtani	Q_1	Q_1/Q_2	Q_2/Q_3	-		-	Q ₁	Q3	Q4/Q5	Q3	Q4/Q5	Q6
Uvrtani z izplako	Q_1	Q_1/Q_2	Q_1/Q_2	Q ₁	Q_1/Q_2	Q_2/Q_3	Q ₁	Q3	Q4/Q5	Q3	Q4/Q5	Q6
Uvrtani z opažno cevjo, ki jo kasneje izvlečemo	Q ₁	Q_1/Q_2	Q_1/Q_2	Q ₁	Q_1/Q_2	Q ₂ /Q ₃	Q1	Q ₂	Q ₃ /Q ₄	Q ₃	Q ₄	-
Uvrtani z opažno cevjo, ki jo pustimo v zemljini	Q_1	Q1	Q1	Q ₁	Q1	Q ₂				Q ₂	Q ₃	-
Vodnjaki	Q_1	Q ₂	Q3	-	-	-	Q ₁	Q ₂	Q3	Q4	Q5	Q6
Zabiti jekleni - z zaprto konico	Q_1	Q ₂	Q ₂	Q ₂	Q ₂	Q ₃				Q ₃	Q ₄	Q4
Zabiti betonski	Q_1	Q ₂	Q ₂	Q3	Q3	Q3				Q3	Q4	Q4
Zabita opažna cev (i)	Q_1	Q ₂	Q2	Q ₂	Q2	Q3	Q ₁	Q ₂	Q3	Q3	Q4	-
Zabiti - poinjektirani (ii)	Q_1	Q ₂	Q2	Q3	Q3	Q4				Q3	Q4	-
Injektirani z nizkim tlakom	Q ₁	Q ₂	Q ₂	Q ₃	Q ₃	Q ₃	Q ₂	Q ₃	Q ₄	Q ₅	Q ₅	-
Injektirani z visokim tlakom	Q ₁	Q4	Q ₅	Q5	Q5	Q ₆	-	Q ₅	Q ₆	Q ₆	Q ₆	Q ₇
(i) Zabit opaž z zaprto	kon	ico, k	i se na	ı kon	čni gl	obini z	zapo	lni z	beton	om.	Po ko	nčanem

Izbira kivulj Q za določitev mejnega trenjskega odpora oboda pilota:

 (i) Zabit opaž z zaprto konico, ki se na končni globini zapolni z betonom. Po končanem betoniranju konica ostane v zemljini, opaž se izvleče.

 (ii) Uvrtan pilot, kjer se uvrta cev v obliki vijaka, ko je dosežena končna globina se cev začne izvijati, istočasno pa se v nastalo izvrtino injektira beton (dosežena je visoka trenjska nosilnost).

(Povzeto po: SIST EN 1997-2, Dodatek E, tabela E.5, 2005, str 101)

Graf vrednosti trenjske nosilnosti plašča pilota v odvisnosti od mejnega tlaka p_L in krivulje Q_i (za izbiro krivulje glej tabelo zgoraj):

3.3.9 Določitev mejnega trenjskega odpora

Mejni trenjski odpor Q_S je določen z izrazom:

$$Q_S = P \cdot \int_0^H f_L(z) dz , \qquad (3.13)$$

kjer so: $f_L(z)$...diagram trenjske odpornosti z globino (na stiku pilota z zemljino);

P ...obseg pilota;

H ...globina vpetja.

3.3.10 Določitev celotne mejne odpornosti

Celotna mejna odpornost je podana z enačbo:

$$Q_L = Q_P + Q_S - W_P, (3.14)$$

kjer so: W_P ...lastna teža pilota;

 Q_L ... mejna odpornost, ki ustreza posedkom, enakim desetini premera pilota (2r/10).

3.3.11 Določitev celotne priporočene obtežbe na vrhu pilota $Q_{SAFE}(=R_{dop})$ in obtežbe na meji lezenja Q_{CREEP}

Vrednost celotne priporočene obtežbe na vrhu pilota zapišemo z enačbo:

$$Q_{SAFE} = \frac{Q_P + Q_S}{F} - W_P, \qquad (3.15)$$

kjer je F faktor varnosti. Iz več obremenilnih testov, narejenih v preteklosti, so avtorji različnih metod prišli do zaključka, da varnostni faktor 2,8 vodi do dovolj majhnega tveganja porušitve. Tveganje je definirano kot verjetnost, da je predpostavljena mejna obtežba reducirana s faktorjem varnosti, večja od mejne obtežbe izmerjene na dejanskem obtežnem testu pilota.

Obtežba na meji lezenja Q_{CREEP} je definirana kot obtežba, pri kateri naklon krivulje na grafu obtežba - posedki, začne naglo naraščati. Preden obtežba doseže Q_{CREEP} so posedki v splošnem majhni in je lezenje omejeno. Obtežba Q_{CREEP} je podana z enačbo:

$$Q_{CREEP} = \frac{Q_P}{2} + \frac{Q_S}{1.5}, \text{ za uvrtane pilote in}$$
(3.16)

$$Q_{CREEP} = \frac{Q_P}{I,5} + \frac{Q_S}{I,5}, \text{ za zabite pilote.}$$
(3.17)

3.3.12 Zaključek

Opisali smo celoten postopek izračuna nosilnosti vertikalno obremenjenih pilotov. Predno pa se lotimo izračuna, moramo zbrati rezultate terenskih meritev, ki smo jih pred tem skrbno načrtovali.

Najprej izdelamo načrt preiskav na določeni lokaciji, kjer poznamo vrsto - tip objekta in okvirno sestavo temeljnih tal. Število preiskav je odvisno od zahtevnosti in obširnosti predvidenega objekta ter slojevitosti, kvalitete in tipa tal. Na terenu izvedemo predvideno število preiskav, ki je pogosto skromno, zaradi časovne omejitve in omejitve sredstev. Pri tem nam včasih ponagaja vreme (dež, mraz,...), včasih pa tudi oprema (puščanje kablov, puščanje sond,...). Vendar se v vsakem primeru potrudimo izdelati vsaj toliko preiskav, kot smo jih predvideli. Kadar neko preiskavo izvedemo in je ocena kvalitete testa že na terenu vprašljiva, izvedemo na globini tik pod tem še dodatni test, da potrdimo oz. ovržemo dvom. Tako dobimo v večini primerov dobre podatke o preiskanih tleh. Nato vse rezultate po globini pregledamo in glede na izkušnje določimo mejni tlak p_L , modul prve E_0 in modul ponovne E_R obremenitve, posameznih karakterističnih slojev. Kadar imamo na isti lokaciji na voljo več

sondiranj (vrtin) s presiometrskimi preiskavami, je zanesljivost rezultatov večja, oziroma vse rezultate, ki izkazujejo bistveno drugačne vrednosti (in so bili pogoji pri izvedbi testa sumljivi, n.pr. vrtina, izdelana pred izvedbo testa, je zapolnjena z vodo, ki zmehča stene vrtine, stene vrtine so zelo poškodovane, test je izveden ravno na meji med mehkejšim in trdnejšim slojem,...) od ostalih, izločimo iz računa. Kadar je takšnih slabih rezultatov več, kar ponavadi pomeni dejanske oslabljene cone na lokaciji, izvedemo izračune za najslabši, najboljši in najbolj verjeten scenarij. Nato vse te rezultate primerjamo med seboj in se po pogovoru z geologom skupaj odločimo za marodajni izračun. Od naročnika dobimo preliminarne podatke o dimenzijah pilotov (premer, dolžina, oblika, tip izvedbe, material pilota, ...) in o pričakovani obtežbi posameznega pilota. Kadar izračun obtežbe pilota pokaže, da nima zadostne nosilnosti, povečujemo njegov premer in/ali dolžino, do podlage oz. globlje v podlago. Kot rezultat podamo za dejanski objekt izračunano nosilnost po plašču, po konici ter nosilnost na vrhu pilota Q_{SAFE} , kjer je že upoštevan globalni varnostni faktor (2,8). Poleg tega podamo tudi vrednosti posedkov pilota pri vrednosti Q_{SAFE} .

3.4 Postopek določitve nosilnosti vertikalno obremenjenih pilotov po Evrokodu 7-1

Računski postopki za izračun dopustne nosilnosti vertikalno obremenjenih pilotov so enaki kot v prejšnjem poglavju (3.3). Razlika se pojavi pri izbiri vhodnih podatkov, t.j. karakterističnih vrednosti parametrov in sicer; mejnega tlaka p_L , modula prve E_0 in modula ponovne E_R obremenitve. V Evrokodu je podana definicija karakterističnih vrednosti geotehničnih parametrov, katerih izbira temelji na dobljenih vrednostih, ki so rezultat terenskih preiskav, dopolnjenih z uveljavljenimi izkušnjami. Karakteristično vrednost geotehničnega parametra moramo izbrati kot varno oceno vrednosti, ki vpliva na pojav mejnega stanja. V nadaljevanju je podano podrobno poglavje določevanja karakterističnih vrednosti na različne načine.

3.4.1 Karakteristična vrednost geotehničnih parametrov (SIST EN 1997-1, 2.4.5)

3.4.1.1 Izbrana kot varna ocena vrednosti

Karakteristične vrednosti geotehničnih parametrov iz rezultatov laboratorijskih in/ali terenskih meritev ponavadi določimo v dveh korakih (SIST EN 1997-1, 2.4.5.2.1 in 2):
- korak 1: zberemo in uredimo vse rezultate posameznih parametrov tal in
- korak 2: izmed vseh, izberemo karakteristično vrednost kot varno oceno vrednosti, ki vpliva na pojav mejnega stanja, upoštevaje vse dodatne koristne informacije (uveljavljene izkušnje).

Vse v zvezi s korakom 1 je podano pri opisu posameznih terenskih preiskav (SIST EN 1997-1, 3.3) iz katerih nato vrednotimo geotehnične parametre. V nadaljevanju pa bomo pozornost posvetili koraku 2, ki definira karakteristično vrednost kot *izbiro previdne ocene mehanskega parametra, ki vpliva na pojav mejnega stanja*. Vsak del tega stavka je pomemben:

- *izbira* poudarja pomembnost inženirske presoje,
- varna ocena poudarja, da je pri oceni potrebna konzervativnost,
- *mejno stanje* izbrana vrednost je v povezavi z mejnim stanjem, ki ga preverjamo.

Pri izbiri karakteristične vrednosti obstajata dva glavna vidika, ki ju je potrebno upoštevati (SIST EN 1997-1, 2.4.5.2.4):

- količina merjenih podatkov ter zanesljivost dobljenih parametrov,
- obseg sodelujočega območja tal v obravnavanem mejnem stanju in sposobnost konstrukcije do prerazporeditve obtežbe z območja slabih na boljša temeljna tla.

Količina in zanesljivost podatkov

Previdnost, s katero izberemo karakteristično vrednost, je med drugim odvisna od zaupanja, ki ga ima geotehnični inženir do svojega znanja - izkušenj o tleh in predvsem od:

- količine informacij (podatki iz prejšnjih projektov),
- spremenljivosti vrednosti merjene lastnosti.

Brez dvoma, večje kot je število izvedenih preiskav ter količina koristnih informacij na dani lokaciji, boljšo določitev karakteristične vrednosti lahko pričakujemo. Med koristne informacije štejemo vse rezultate preiskav, izvedenih v okolici obravnavane lokacije ter regionalne geotehnične podatkovne baze. Ti podatki pridejo v poštev predvsem pri manj zahtevnih projektih, kjer je običajno na voljo le majhno število rezultatov namenskih preiskav. Vendar se moramo zavedati, da večji kot je raztros rezultatov, večja je

nezanesljivost vrednosti, ki vpliva na pojav mejnega stanja v tleh. Razlika med previdno izbrano karakteristično vrednostjo in na primer povprečno vrednostjo rezultatov preiskav, bo večja pri velikem raztrosu rezultatov. Potrebno je poudariti, da je previdna ocena karakteristčne vrednosti v sloju zemljine včasih lahko zavajujoča, saj ne odraža dejanskih karakteristik oslabljene cone (n.pr. fosilna drsina), ki lahko vpliva na pojav mejnega stanja v tleh.

Obseg območja tal in sposobnost konstrukcije do prerazporeditve obtežbe (SIST EN 1997-1, 2.4.5.2.5-9)

Območje tal, ki bistveno vpliva na obnašanje geotehnične konstrukcije v mejnem stanju, je običajno veliko večje kot vzorec tal ali območje tal, ki vpliva na rezultat terenske preiskave. Zato je pogosto vrednost odločilnega parametra povprečje vrednosti, ki so dobljene na celotni površini ali prostornini tal. Karakteristična vrednost mora biti varna ocena te povprečne vrednosti. Ob izbiri področja tal, ki bistveno vpliva na obnašanje geotehnične konstrukcije v mejnem stanju, je potrebno upoštevati, da je to mejno stanje lahko odvisno od obnašanja konstrukcije. Torej je karakteristična vrednost zelo blizu povprečne vrednosti parametrov tal, kadar v mejnem stanju velja, da je konstrukcija sposobna prerazporediti sile - obtežbo s slabih na boljša temeljna tla ali pa je celotno območje zemljine sposobno kompenzirati območja slabših karakteristik z boljšimi (t.j. prednost temeljenja na pilotih je zmožnost konstrukcije, da prerazporedi obtežbo med piloti. Pri tem mora biti konstrukcija dovolj toga, da dopušča prenos obtežbe s "slabših" na "boljše" pilote). Po drugi strani pa je karakteristična vrednost lahko zelo blizu najnižje vrednosti parametrov tal, kadar v mejnem stanju velja, da je obravnavano neznatno območje tal in do porušitve lahko pride znotraj območja slabših karakteristik ali pa pride do potrušitve konstrukcije pred prerazporeditvijo obtežbe, zaradi njene nezadostne odpornosti in togosti.

Kot primer so na spodnji sliki podani rezultati meritev nedrenirane strižne trdnosti c_u z globino. Odpor plašča pilota izračunamo iz karakteristične vrednosti, določene kot varna ocena rezultatov meritev nedrenirane strižne trdnosti c_u vzdolž plašča, med globinama z_1 in z_2 . Odpor konice, ki je določen za majhno območje tal v okolici konice pilota, v primeru, da na območju konice pilota nimamo meritev, izračunamo iz karakteristične vrednosti določene na podlagi najnižjih rezultatov meritev med globinama z_1 in z_4 . Kadar pa imamo na območju konice meritve, kot je prikazano na spodnji sliki, varno oceno določimo iz povprečja rezultatov meritev med globinama z_3 in z_4 . Karakteristična vrednost, prikazana na sliki je zelo previdna ocena povprečja, z večjim poudarkom na nižji vrednosti, zaradi majhnega števila rezultatov meritev med globinama z_3 in z_4 .

Prikaz karakteristične vrednosti nedrenirane strižne trdnosti c_u za določitev odpora plašča in konice pilota:

(Povzeto po: R. Frank et al., 2004, str 28)

Če na obnašanje geotehnične konstrukcije v obravnavanem mejnem stanju odločilno vpliva najnižja ali najvišja vrednost lastnosti tal, mora biti karakteristična vrednost varna ocena najnižje ali najvišje vrednosti na območju tal, ki bistveno vpliva na obnašanje geotehničnega objekta. Karakteristične vrednosti so lahko nižje vrednosti (kadar nižje vrednosti parametrov tal dajo bolj konservativne rezultate, n.pr. pri določitvi nosilnosti tal), ki so manjše od najbolj verjetnih vrednosti, ali višje vrednosti, ki so večje. Za vsak izračun mora biti uporabljena

najbolj neugodna kombinacija spodnjih in zgornjih vrednosti neodvisnih parametrov. Najbolj to pride do izraza pri računu mejnega stanja uporabnosti, kadar so odločilni diferenčni posedki.

3.4.1.2 Določena z uporabo statističnih metod (SIST EN 1997-1, 2.4.5.2.10-11)

Kadar pri izbiri karakteristične vrednosti lastnosti tal uporabimo statistične metode, morajo te metode razločevati med lokalnim in regionalnim vzorčenjem ter morajo omogočati uporabo predhodnega poznavanja lastnosti primerljivih tal. Statistične metode so uporabne le v primeru, da imamo na voljo zadostno število rezultatov preiskav (tu so lahko vključeni tudi rezultati predhodnih preiskav) (Frank et al., 2004). Če uporabimo statistične metode, se karakteristična vrednost določi tako, da je računska verjetnost, da je vrednost, ki bistveno vpliva na obravnavano mejno stanje, še slabša, manjša od 5%.

Pri določitvi karakterističnih vrednosti s pomočjo statistike smo izhajali iz dejstva, da so razpoložljivi podatki le podani rezultati presiometrskih preiskav. Predpostavili smo, da je

odstopanje (variacija) slučajno brez pomembnih lokalnih oslabitev ter brez značilnega trenda po globini. Vsi izračuni veljajo za homogene zemljine in predpostavljena je normalna oz. Gaussova porazdelitev vrednosti geotehničnih parametrov (Slika 6).

V nadaljevanju naloge smo za izračune z uporabo statistične metode določili spodaj predstavljene količine. Enačbe smo povzeli po literaturi (Turk, 2007, Frank et al., 2004).

Za določitev karakteristične vrednosti lastnosti tal (mejni tlak p_L , modul prve E_0 in ponovne obremenitve E_R) smo morali najprej izračunati povprečje \overline{X} posameznega parametra, ki ga izračunamo po enačbi:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \,. \tag{3.18}$$

Varianco S_X^{*2} izračunamo po enačbi:

$$S_X^{*2} = \frac{\sum_{i=1}^n (x_i - \overline{X})^2}{n-1}.$$
(3.19)

Standardno deviacijo S_x^* vzorca, ki jo merimo z istimi enotami kot vrednosti same, tako da je njen pomen lažje prikazati, izračunamo po enačbi:

$$S_X^* = \sqrt{S_X^{*2}} \ . \tag{3.20}$$

Vrednosti inverzne funkcije porazdelitvene funkcije standardizirane normalne porazdelitve F_U^{-1} lahko odčitamo iz preglednic (Turk, 2007) ali pa uporabimo ustrezen računalniški program (n.pr. EXCEL: ukaz NORMSINV).

Sledi izračun karakteristične vrednosti parametrov X_K po enačbi:

$$X_{K} = \overline{X} - S_{X}^{*} \cdot F_{U}^{-1}, \qquad (3.21)$$

ob predpostavki, da so ocenjene vrednosti parametrov \overline{X} , S_X^* pravi parametri porazdelitve.

3.5 Račun nosilnosti po Evrokodu 7-1 v primerjavi z dosedanjo prakso

3.5.1 Uvod

V tem delu naloge smo računali nosilnosti vertikalno obremenjenih pilotov na dejanskih primerih. Izbrali smo take lokacije, kjer je bilo število sondiranj večje ali vsaj enako 2. Tu sondiranje pomeni vrtino, v kateri so bile izvedene vsaj po ena presiometrska preiskava v vsakem karakterističnem sloju. Torej na lokacijah, kjer je bilo presiometrskih podatkov za projektiranje objektov (nadvozov, podvozov, viaduktov in mostov), temeljenih na pilotih, dovolj.

3.5.2 Lokacije

Za izračun nosilnosti vertikalno obremenjenih pilotov, z upoštevanjem globalnih varnostnih faktorjev in po Evrokodu 7-1, so bile izbrane naslednje lokacije objektov:

- A5 Pesnica Lendava meja H, Maribor Lenart, I. etapa, razcep Dragučova, viadukt 6-1 in 6-2,
- A5 Pesnica Lendava meja H, Lenart Beltinci, Cogetinci Vučja vas, viadukt 6-3,
- A5 Pesnica Lendava meja H, Maribor Lenart, II. etapa, Pernica, Nadvoz 4-2 in 4-3
- A5 Pesnica Lendava meja H, Maribor Lenart, I. etapa, nadvoz 4-1,
- AC2 Karavanke Obrežje, Novo mesto vzhod Kronovo, Lešnica Kronovo, Viadukt
 6-1 in nadvoz 4-2,
- A5 Pesnica Lendava meja H, Lenart Beltinci, Lenart spodnja Senarska, podvoz 3-20 in nadvoz 4-5,
- A5 Pesnica Lendava meja H, Lenart Beltinci, Spodnja Senarska Cogetinci, nadvoz 4-1, 4-3, 4-4, 4-6 in most 5-1.

Lokacije se med seboj razlikujejo po geološki sestavi in tipu objektov.

3.5.3 Predstavitev postopkov

V nadaljevanju sledi kratka predstavitev geološke sestave, povzetek rezultatov presiometrskih

preiskav ter določitev karakterističnih slojev in karakterističnih vrednosti parametrov na dani lokaciji. Nato sledi še prikaz izračuna nosilnosti po različnih projektnih pristopih Evrokoda 7-1 (PP1 in PP2) ter z upoštevanjem globalnih varnostnih faktorjev po dosedanji praksi. Med seboj primerjamo rezultate nosilnosti pilotov, dobljenih po štirih različnih postopkih:

- po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.3), mejna tlačna odpornost, določena iz rezultatov terenskih preiskav:
 - a) točka 7.6.2.3(5) osnovna metoda (Slika 7),
 - b) točka 7.6.2.3(7) alternativna metoda (Slika 8), s karakteristično vrednostjo, določeno po statistični definiciji (SIST EN 1997-1, 2.4.5.2(10 in 11)),
 - c) točka 7.6.2.3(7) alternativna metoda, s karakteristično vrednostjo, določeno kot previdno oceno (SIST EN 1997-1, 2.4.5.2(10 in 11)),
- 2) po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev.

Postopek 1c je sicer zelo podoben, včasih celo enak postopku 2, vpeljan pa je bil predvsem zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, kar je v statističnem računu karakterističnih vrednosti, pripeljalo do zelo nerealnih vrednosti parametrov. Zato smo tu upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno.

Podrobneje so ti izračuni predstavljeni pri prvi lokaciji (3.5.4), v nadaljevanju pa so podani le rezultati izračunov. Teoretično ozadje vseh teh izračunov je bilo predstavljeno v predhodnih poglavjih.

Na sliki 7 je predstavljena osnovna metoda z upoštevanjem korelacijskih faktorjev ξ in zaporedje postopkov:

1) določimo nosilnost $R_{c,cal}$ iz dobljenih vrednosti p_L , E_0 in E_R

2) z upoštevanjem korelacijskih faktorjev ξ izračunamo karakteristično vrednost nosilnosti $R_{c,k}$.

Slika 7: Prikaz postopka računa po Evrokodu 7-1 - osnovna metoda

Figure 7: Description of the calculation procedure according to EC 7-1 - basic method

Na sliki 8 je predstavljen alternativni postopek s karakteristično vrednostjo parametrov presiometrskih testov in zaporedje postopkov:

1) določimo karakteristične sloje tal,

- 2) določimo karakteristične vrednosti p_L , E_0 in E_R po statistiki (ali z varno oceno),
- 3) izračunamo karakteristične vrednosti nosilnosti $R_{c,k}$.

Slika 8: Prikaz postopka računa po Evrokodu 7-1 - alternativna metoda s karakteristično vrednostjo po statistični definiciji

Figure 8: Description of the calculation procedure according to EC 7-1 - alternative method with characteristic values according to the statistical method

3.5.4 A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep Dragučova, viadukt 6-1 in 6-2

Na lokaciji sta obravnavana dva viadukta, ki potekata zelo blizu eden drugemu. Temeljena sta globoko na uvrtanih pilotih.

3.5.4.1 Uvod k lokaciji

Obravnavani prostor razcepa Dragučova tangira predel severnega zaključka ozkega in strmega grebena Dragučova ter njegove zelo položne spuste v ravnino Pesnice. Sama geološka zgradba preiskanega prostora je v bistvu dokaj enostavna ter jo v glavnem lahko

podamo s polhribinsko izpolnitvijo gričevja ter podlage in različnimi oblikami od Pesnice ter pritokov odloženih sedimentov. Osnovo obravnavanega prostora gradijo spodnje, srednje in zgornje miocenski skladi, ki si starostno sledijo v smeri proti vzhodu. Kljub različni starosti so si sedimenti podobni in smo jih združili v enovito miocensko starost (*M*). Zanje je značilna nehomogena zgradba na večjih razsežnostih, ki se kaže bodisi v ritmični menjavi slojev poltrdih do trdih laporastih glin, laporovcev in slabo vezanega melja in peska, bodisi lokalno v večjih debelinah prevladuje ali laporovec ali pesek. Pojavljajo se tudi drobnozrnati kremenovi prodi in plošče peščenjaka, ki pa so v splošni sestavi podrejeni. Na več mestih se pojavi tudi tanka plast trdne premoške gline s prehodi v lignit. Sedimenti so na splošno nizko diagenezirani in predstavljajo vmesno stopnjo med zemljinami in hribinami. Za te polhribine je značilna jasna slojevitost in obilo sljude. Na redkih izdankih je vidna praktično horizontalna slojevitost in tudi navzkrižna v peskih. Površinsko miocenski skladi izdanjajo redko, saj so večinoma prekriti z debelim preperinskim ali mlajšim glinenim pokrovom.

Glede na opravljene geološke preiskave in glede na vse obstoječe podatke lahko zaključimo, da so strma pobočja v zaledju prekrita s tankim glineno-meljnim pokrovom, nižje pa se nahaja globoko preperela laporasta hribina z vložki peska in peščenjaka. Na pobočjih nastopajoče gline so v težko gnetnem do poltrdnem konsistenčnem stanju (debeline 2-3 m, Pl/Q), večkrat se pojavijo tudi plasti ter leče peska in proda. Ob približevanju prepereli podlagi nastopajo srednje do težko gnetne mastne in puste ter meljne gline, melji in rahli peski (Q_g).

Na vznožju pobočij in na prehodu v ravnine je zemljina slabo prepustna in nabrekljiva, površinsko je lokalno spralinskega, predvsem pa preplavnega značaja. Globlji nanosi so večinoma aluvijalnega zajezitvenega in barjanskega nastanka (Q_{al}). Debelina izpolnitev dolin znaša 5-15 m. Tako v površinskih slojih ravnin nastopajo srednje do težko gnetne mastne gline in mastni melji (debeline 1-4 m, Q_{alg}), globlje pa se pojavlja sloj rahlega peščenega melja v menjavi z navlaženimi in razmočenimi glinami, pooglenelim rastlinskim drobirjem, kosi lesa, naplavljenimi debli in kosi šote (Q_{alm}). Zemljina je na tem mestu lahko do srednje gnetna. Aluvijalni nanosi se v dnu potopljene doline zaključijo s peščeno prodnimi sloji (debeline 1-2 m, Q_{alp}).

3.5.4.2 Vrtine na lokaciji z rezultati presiometrskih meritev

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati presiometrskih meritev, so podani v spodnjih dveh preglednicah (Preglednica 1 in Preglednica 2). Preiskave smo izvajali v dveh etapah. Julija 2003 smo izvajali teste v vrtinah z oznako DO, februarja 2006 pa dodatne teste v vrtinah z oznako G in GV. Vse preiskave, razen dveh v laporju, ki smo jih izvedli s sondo AX v zaščitni cevi, smo izvajali s sondo BX. Vrtino za izvedbo testa smo povsod pripravili predhodno z vrtalno glavo premera 66 mm.

Preglednica 1: Presiometrske preiskave na lokaciji viadukta 6-1

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	1,9	Peščena do pusta glina, srednje do težko gnetna,	CS	340	2,2	6,8
GV-1	4,0	rjavo siva		250	1,8	5,3
	9,0	Preperel lapor, siv	ML	2300	32	105
	2,1	Peščena do pusta glina, srednje do težko gnetna,	CS	380	3	7,1
GV 2	4,1	rjava	Co	270	1,8	3,6
0 -2	7,5	Pusta glina, srednje gnetna, rjavo siva	CS	450	2,1	5,4
	10,7	Lapor, trd, siv	ML	7000	98	230
	2,9	Mastna do pusta glina, srednje gnetna, rjavo siva	CS	470	3,5	10,5
	5,9	Melj, srednje gneten, siv	CS	320	1,6	4,5
GV-3	9,7	Paččana glina/mali, sradnja do tažko gnatna siva		440	2,6	4,8
	11,7	rescena ginia/meij, srednje do tezko gnetna siva	CS	620	4,5	9
	20,0	Lapor, trd, siv		7000	160	540
	3,2	Peščena glina, srednje gnetna, siva	CS	250	1,8	5
	6,0	Peščena glina, srednje gnetna, rjava	CS	320	2	5,6
GV-4	9,3	Daččana glina, gradnja gnatna, giva	CS	340	2,2	4,6
	11,2	rescena ginia, srednje gnetna, srva	Co	380	2,5	4,2
	16,1	Lapor, trd, siv	ML	7000	164	550
	3,6	Pusta do mastna glina in glinast melj, malo organsko, redki sloji peska in drobnega proda, suho	CL	90	0,25	-
	4,3	do navlaženo, pretežno srednje gnetno, sivomodrikasto	СН	220	2,0	-
DO-3	7,6	Pusta do mastna glina, cm do dm vložki peska in melia, navlaženo, srednje do težko gnetno,	CL	210	2,06	-
	8,3	sivorjavo	СН	370	1,21	-
	10,8	Pretežno meljast laporovec redkimi vložki peska v debelini do 3 cm, tanke ploščice peščenjaka, vse mm do cm sloji, poltrdno do trdno, sivo	lapor	7000	73	270

Preglednica 2: Presiometrske preiskave na lokaciji viadukta 6-2

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	4,2	Puetro do mastro glina, tožko gratna, siva	CS	390	3,5	8,5
G-2	7,4	Fusula do masula gima, tezko glietila, siva		410	3	7,8
	12,7	Lapor, trd, siv	ML	7000	250	1300
	5,7	Deččena alina/mali gradnja da točka snatna		260	1,5	3,9
C^{2}	6,7	rescena gina/meij, srednje do težko gnetna,	CS	350	1,6	4,45
0-5	8,0	Siva		400	3	6,45
	14,7	Lapor, trd, siv	ML	7000	300	1200
	1,7	Dožžena glina, tožko gnotna, rieva	CS	520	2,8	7
G-4	2,5	rescena ginia, iezko gnetila, ijava	CS	700	4	12
	4,7	Lapor, poltrd, siv	ML	5500	84	245

Table 2: Pressuremeter tests at the location of viaduct 6-2

Slika 9: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-2 Figure 9: Schematic description of geological profile, p_L and E_0 at the location of viaduct 6-2

Na slikah 9 in 10 je shematsko prikazana geološka sestava tal na lokaciji razcepa Dragučova in vse izvedene preiskave v posameznih vrtinah, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 . Na lokaciji obeh viaduktov so bile vrtine izvedene na mestu podpor.

Geologija se vzdolž obeh objektov vidno spremeni, tako smo skupaj z geologom izbrali povprečne debeline posameznih karakterističnih slojev, ki so v nadaljevanju podane in upoštevane v izračunih.

Slika 10:Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-1 Figure 10:Schematic description of geological profile, p_L and E_0 at the location of viaduct 6-1

3.5.4.3 Določitev karakterističnih slojev

Podlago na področju viadukta 6-1 smo na osnovi vrtin in rezultatov PMT razdelili v štiri karakteristične sloje:

- prvi sloj (Q_g) debeline 3,5 m sestavlja ML/CL CL/CH, srednje do težko gnetno,
- drugi sloj (Q_{alm}) do globine 9,0 m sestavlja ML/CL, lahko/srednje/težko gnetno,
- tretji sloj (Q_{alp}) do globine 10,5 m sestavlja ML-SM, gost,
- in četrti sloj (*ML*) globlje od 10,5 m predstavlja lapornato podlago.

Na mestu viadukta 6-2 je razdelitev slojev zelo podobna, s to razliko, da se tretji sloj (Q_{alp}) ne pojavi v nobeni od vrtin. V zgornjem sloju nismo imeli nobene meritve.

3.5.4.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.4.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov določitev karakterističnih vrednosti posameznega sloja ni potrebna, saj v računu uporabljamo dobljene vrednosti meritev. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti.

3.5.4.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 3 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, na mestu viadukta 6-1, v preglednici 4, pa na mestu viadukta 6-2. Prav tako so karakteristične vrednosti prikazane tudi v preglednicah na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A1 in Priloga A4).

				Karakteristična vred.							
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_R / E_0			
$Q_g(1)$	342,0	88,7	5	196,1	1,2	2,3	6,2	1,9			
$Q_{alm}(2)$	356,4	118,4	11	161,6	0,8	2,9	3,4	1,5			
$Q_{alp}(3)$	2300,0	-	1	2300,0	32,0	105,0	-	-			
ML (4)	7000,0	0,0	4	7000,0	49,1	116,0	7,0	2,2			

Preglednica 3: Karakteristične vrednosti parametrov presiometrskih preiskav za viadukt 6-1 Table 3: Characteristic values of the pressuremeter tests parameters for viaduct 6-1

Vidimo lahko, da je bil izveden le en test v tretjem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je tenak sloj, debeline do 1,5 m, ki se v nekaterih vrtinah niti ni pojavil. V ostalih treh slojih, pa je bilo podatkov dovolj.

Pri velikih odporih zemljine, zaradi izkoriščenega razpoložljivega tlaka v presiometrski sondi, mejni tlak ocenimo na 7000 kPa

Preglednica 4: Karakteristične vrednosti parametrov presiometrskih preiskav za viadukt 6-2 Table 4: Characteristic values of the pressuremeter tests parameters for viaduct 6-2

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Q_{alm}(2)$	447,5	136,9	8	222,4	1,35	2,7	3,8	2,14		
ML(4)	7000,0	0,0	3	7000,0	101,5	275,5	14,5,0	2,6		

Na mestu viadukta 6-2 je bilo izvedeno manj testov. Na lokaciji vrtine G-4 se podlaga pojavi že na 5,5 m (lokalno) in se nato spet spusti na približno 10,5 m. Te rezultate smo v statistični analizi karakterističnih vrednosti parametrov upoštevali, vendar ne na izmerjeni globini, temveč glede na karakteristične sloje. Poleg tega smo upoštevali tudi rezultat testa izvedenega v vrtini DO-6 v bližini viadukta 6-2, na globini 6,3 m, kjer je izmerjeni p_L =550 kPa in E_0 =2,7 MPa. Ker v zgornjem sloju nismo imeli nobenega podatka, smo v izračunih, ki sledijo, prvi podatek upoštevali šele na globini 3,0 m. V nadaljevanju (Preglednica 5 in Preglednica 6) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način.

Preglednica 5: Karakteristične vrednosti mejnega tlaka p_L - za viadukt 6-1 Table 5: Characteristic values of the limit pressure p_L - for viaduct 6-1

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena Ic	Inženirska Ocena 2	p_L z globino, kot je upoštevan v izračunih pL (kPa)
	340							0 4000 8000
1	380							0 Inž. ocena
0-3.5 m	270	342	89	360	193	340	340	_ → Statistika
0 5,5 11	470							2 -
	250							
	250							4
	450		118					
	220							
	210							6
2	370	356		340	162	300	250* 440 380*	
2 3.5-9.0 m	320							8
- , ,-	440							
	620							10
	320							
	340							12
	380							
3 9,0-10,5 m	2300	2300	~	2300	2300	2300	2300	14
	>7000							Ê
4** 10,5 m→	>7000	7000	<i></i>	7000	7000	7000	7000	
	>7000	/000	~	/000	/000	/000	8000	
	>7000							

 * Upoštevali smo slabše vrednosti, ki se pojavijo v več meritvah, približno na meji med sloji (Priloga A3)

** Pri velikih odporih zemljine, zaradi izkoriščenega razpoložljivega tlaka v presiometrski sondi, mejni tlak ocenimo na 7000 kPa

3.5.4.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v

statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A2 in Priloga A5) in v preglednicah 5 in 6.

Preglednica 6: Karakteristične vrednosti mejnega tlaka p_L - za viadukt 6-2 Table 6: Characteristic values of the limit pressure p_L - for viaduct 6-2

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena 1c	Inženirska ocena 2		0
	390								2
	410		137				350* 400 520*		
	260	448							4
2	350			405	222	400			
0-12,0 m	400								6
	520								
	700								8
	550								
	>7000							1	0
4**	>7000	7000	~	7000	7000	7000	7000		
12,0 III→	>7000							1	2

** Pri velikih odporih zemljine, zaradi izkoriščenega razpoložljivega tlaka v presiometrski sondi, mejni tlak ocenimo na 7000 kPa

 p_L z globino, kot je upoštevan v izračunih-

3.5.4.4.4 Inženirski pristop (po dosedanji praksi)

Že pred uporabo Evrokoda 7-1 smo računali nosilnosti pilotov, kjer smo morali najprej določiti vhodne parametre. Te smo glede na vse rezultate presiometrskih meritev ocenili oziroma določili previdno oceno parametrov. Ponavadi smo upoštevali vse rezultate dobro

pl (kPa)

8000

4000

Inž. ocena Statistika

0

14

16 **(m) z** 18

izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo na mestih viaduktov 6-1 in 6-2 določili karakteristične vrednosti parametrov, ki so prikazani v preglednicah, na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A3 in Priloga A6) in v preglednicah 5 in 6.

3.5.4.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za oba viadukta je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v spodnjih preglednicah (Preglednica 7 in Preglednica 8).

Preglednica 7: Podatki o objektu, pilotih in številu presiometrskih testov za viadukt 6-1 Table 7: Structure and pile data with the number of pressuremeter tests for viaduct 6-1

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}) (m)	ф., (m)	Debelina
objekta (m)	podpor	vseh/PMT	PMT	slojev	(m) ^L	(111)	<i>Ppilota</i> (<i>M</i>)	mehkih tal (m)
174,0	6	8/5	20	4	14,5	1,0	1,25	10,5

Preglednica 8: Podatki o objektu, pilotih in številu presiometrskih testov za viadukt 6-2 Table 8: Structure and pile data with the number of pressuremeter tests for viaduct 6-2

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}	ער ע	d (m)	Debelina
objekta (m)	podpor	vseh/PMT	РМТ	slojev	(m)	<i>D</i> (<i>m</i>)	<i>♥pilota</i> (<i>M)</i>	mehkih tal (m)
165,0	7	7/3	11	3	16,0	1,0	1,25	12,0

Slika 11: Prikaz podanih vrednosti - dolžina pilota in globina odkopa oz. temeljenja Figure 11: Description of values - length of a pile and depth of foundations

Opisane dimenzije so prikazane na zgornji sliki (Slika 11). Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom *v*=0,175.

V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v nadaljevanju:

1a) Račun po Evrokodu 7-1 - osnovna metoda

Najprej za vsako posamezno vrtino izračunamo vrednost nosilnosti konice $R_{b,cal}$ (Q_p), vrednost trenjske nosilnosti plašča pilota $R_{s,cal}$ (Q_s) in vrednost celotne tlačne nosilnosti iz rezultatov terenskih meritev $R_{c,cal} = R_{b,cal} + R_{s,cal}$, po postopkih prikazanih v poglavjih od 3.3.7 do 3.3.9. Nato z upoštevanjem korelacijskih faktorjev ξ (preglednica: Korelacijski faktorji ξ za izračun karakteristične vrednosti na podlagi n rezultatov terenskih preiskav, poglavje 2.2.1.2.6), izračunamo karakteristično vrednost - $R_{c,k}$ (izračun $R_{c,k}$ je prikazan v prilogi B), ki jo v nadaljevanju uporabimo za izračun $R_{c,d}$ ($R_{c,d}$ - projektna vrednost tlačne nosilnosti pilota pri mejnem stanju nosilnosti) po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10, kot je prikazano na sliki 7.

1b) Račun po Evrokodu 7-1 - alternativna metoda s karakteristično vrednostjo, določeno po statistični definiciji

Po določitvi karakterističnih vrednosti parametrov presiometrskih testov statistično (Preglednici 3 in 4), sledi račun $R_{c,k}$ ($R_{b,k}$ in $R_{s,k}$) po postopkih, prikazanih v poglavjih od 3.3.7 do 3.3.9 ter na sliki 8. Vrednost $R_{c,k}$ je enaka vsoti karakteristične vrednosti nosilnosti konice pilota ($R_{b,k}$) in karakteristične vrednosti trenjske nosilnosti plašča pilota ($R_{s,k}$). Nato sledi izračun $R_{c,d}$ po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10).

1c) Račun po Evrokodu 7-1 - alternativna metoda s karakteristično vrednostjo, določeno kot previdno oceno

Po določitvi karakterističnih vrednosti parametrov presiometrskih testov statistično, z uporabo previdne ocene, t.j. upoštevamo še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti, določimo vrednosti $R_{c,d}$ po postopkih, opisanih in prikazanih v prejšnji točki (1b).

2) Račun z upoštevanjem globalnih varnostnih faktorjev - po dosedanji praksi

Po določitvi karakterističnih vrednosti parametrov presiometrskih testov - inženirski pristop, izračunamo dopustno nosilnost pilotov $R_{dop}=Q_{SAFE}$ (po enačbi 3.15, poglavje 3.3.11).

Da pa lahko med seboj primerjamo rezultate po Evrokodu 7-1 (projektne nosilnosti) z dopustnimi obtežbami po postopku 2, moramo dobljene vrednosti $R_{c,d}$ po postopku 1 (a, b in c), reducirati še z obtežbenim faktorjem F_{obt} , kjer smo predpostavili, da F_{obt} predstavlja 67% stalne (γ_G) in 33% spremenljive (γ_Q) obtežbe, torej je $F_{obt} = 0,67 \cdot 1,35 + 0,33 \cdot 1,5 \cong 1,4$ za projektni pristop 1;1 in projektni pristop 2 (*A1*) ter $F_{obt} = 0,67 \cdot 1,0 + 0,33 \cdot 1,35 \cong 1,11$ za projektni pristop 1;2 (*A2*). Tako dobimo po Evrokodu 7-1 vrednost tlačne nosilnosti pilotov $R_{dop} = R_{c,d}/F_{obt}$, primerljivo z dopustno obtežbo po principu globalne varnosti.

V računu po alternativnem postopku 1b in 1c podajamo še en rezultat in sicer za $R_{c,d,Frank}$, po avtorju R. Franku, ki glede na svoje izkušnje in analize priporoča, uporabo modelnega faktorja 1,3 na že obstoječa delna faktorja odpornosti γ_b in γ_s za uvrtane pilote (EC 7-1; A.7). Uporaba parcialnih faktorjev γ_b , γ_s in γ_l podanih v Evrokodu 7-1 za račun nosilnosti pilotov, je mišljena v povezavi s korelacijskimi faktorji ξ . Zato je pri alternativnem postopku potrebna vpeljava dodatnega faktorja varnosti, ki se lahko določi z Nacionalnim dodatkom in sicer je priporočena vrednost večja od 1,0 (Frank 1,3). Ta modelni faktor naj bi zajel variabilnost parametrov tal, obsežnost zemljine sodelujoče v obravnavanem mehanizmu porušitve, spremembe tekom vgradnje pilotov in togost konstrukcije. Končni rezultat $R_{c,d,Frank}$ in $R_{dop,Frank}$ izračunamo po enačbah $R_{c,d,Frank} = R_{c,d} / 1,3$ in $R_{dop,Frank} = R_{dop} / 1,3$. Sledi prikaz rezultatov vseh postopkov, za viadukt 6-1 (Preglednica 9) in viadukt 6-2 (Preglednica 10).

Preglednica 9: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-1 Table 9: Calculation results of bearing capacity (R_{dop}) for viaduct 6-1

	Postopek izračuna	Projekti	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		10051	9055
1a	korelacijskih faktorjev ξ	PP2		14089	10063
		PP1		11668	10512
1h	EC 7-1 z upoštevanjem	PP2		16343	11673
10	statistika	PP1	Fronk	8873	7993
		PP2	гтанк	12433	8880
		PP1		11956	10771
10	EC 7-1 z upoštevanjem	PP2		16682	11916
10	previdna ocena	PP1	Fronk	9094	8193
		PP2	гтанк	12694	9067
2	z upoštevanjem globalnih varnostnih faktorjev				7162

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

Preglednica 10: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-2
Table 10: Calculation results of bearing capacity (R_{dop}) for viaduct 6-2

	Postopek izračuna	Projektn	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		9473	8535
Ta	korelacijskih faktorjev ξ	PP2		13074	9338
		PP1		11645	10491
1h	EC 7-1 z upoštevanjem karakteristične vred statistika	PP2		16310	11650
10		PP1	Fronk	8845	7968
		PP2	TTAIK	12393	8852
		PP1		12192	10984
10	EC 7-1 z upoštevanjem	PP2		16957	12112
10	previdna ocena	PP1	Fronk	9265	8347
		PP2	гтанк	12891	9208
2	z upoštevanjem globalnih varnostnih faktorjev				6397

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.5.4.6 Primerjava rezultatov

Grafikon na sliki 12 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za viadukt 6-1, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali zelo konzervativne rezultate. Rezultati, kjer smo upoštevali še modelni faktor, ki ga predlaga R. Frank, ne odstopajo za več kot 27%. Maksimalno, 66% odstopanje dobimo pri računu z upoštevanjem parametrov, dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 50%.

Slika 12: Prikaz rezultatov izračunov R_{dop} za viadukt 6-1 Figure 12: Calculation results of R_{dop} for viaduct 6-1

Pri izračunu za viadukt 6-2 so odstopanja podobna, vendar še nekoliko višja (Slika 13). Glede na vse račune lahko zaključimo, da je projektni pristop 1 za izračun dopustne nosilnosti

vertikalno obremenjenih pilotov bolj konzervativen od projektnega pristopa 2.

Slika 13: Prikaz rezultatov izračunov R_{dop} za viadukt 6-2 Figure 13: Calculation results of R_{dop} for viaduct 6-2

Iz rezultatov, podanih v preglednici 11, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji viadukta 6-1 je dobljeni faktor praktično enak 1,3, na lokaciji viadukta 6-2, pa le nekoliko višji in je med 1,34 in 1,36. Podobno velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c).

Lokacija in objekt			Posta	pki rač	Fakto	Čt watin			
		РР	1 <i>a</i>	1b	1c	2	1a/1b	1a/1c	Si. Vriin
MB - Lenart, I. etapa, razcep Dragučova	viadult 6 1	PP1	2,302	1,773	1,765	2,8	1,298	1,304	5
	VIADUKI 0-1	PP2	2,071	1,597	1,595	2,8	1,297	1,298	3
	viadukt 6-2	PP1	2,385	1,782	1,764	2,8	1,338	1,351	- 3
		PP2	2,185	1,603	1,600	2,8	1,363	1,365	

Preglednica 11: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti Table 11: Factors of safety *F* for all of the bearing capacity calculation procedures

3.5.5 A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Cogetinci - Vučja vas, viadukt 6-3 - "Kupetinci"

Na lokaciji je obravnavan viadukt 6-3 (Kupetinski potok P1-km 8+774 do P10-km 9+118,017), temeljen globoko na uvrtanih pilotih.

3.5.5.1 Uvod k lokaciji

Prečno na traso je oblikovana dolina Kupetinskega potoka, ki je z ravnim dnom široka približno 80 do 100 m, proti vzhodu je zaprta s strmim pobočjem, proti zahodu pa se pobočje dviguje zelo položno. Geološko zgradbo okolice v glavnem lahko podamo s polhribinsko izpolnitvijo gričevja in z različnimi oblikami od rek in pritokov odloženih sedimentov. Polhribina je v jedru prevladujoče poltrdna, oziroma gosta do zelo gosta, večkrat pa se v različnih globinah pojavljajo različno debele plasti navlaženega in razrahljanega sedimenta. Pri takšni sestavi tal je vzdolžno in prečno povezovanje posameznih slojev praktično nemogoče. V območju nad polhribinsko podlago se pojavljajo pliokvartarni glineni sedimenti (*Pl/Q*) ter pliokvartarni peščeno-gruščnati sloji (*Pl/Q_p*), površine pa so prekrite s starokvartarnimi glinenimi izravnavami (Q_g) v debelinah nad 7 m.

V sestavi (Q_g) prevladujejo težko gnetne do poltrdne puste do mastne gline, ki so neznatno peščene in vsebujejo posamezne preperele prodnike. V sestavi plasti ($Pl/Q-Q_p$), pa prevladujejo težko gnetne do poltrdne puste do mastne gline in mastni melji, ki vsebujejo razpršena do redko skoncentrirana zrna preperelega ter oksidiranega peska, proda in grušča, vmes so tanke plasti čistih peskov in prodov ter nevarne cone z menjavanjem mm do cm debelih slojev navlaženih glin, meljev in peskov. Debelina nevarnih navlaženih meljev presega 7 m. Zaradi preperevanja in podobnosti sedimentov je določitev globinskega kontakta s podlago nejasna in večkrat nemogoča.

3.5.5.2 Vrtine na lokaciji z rezultati PMT

Preglednica 12: Presiometrske preiskave na lokaciji viadukta 6-3

Table 12: Pressuremeter tests at the location of viaduct 6-3

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	7,4	Slabo granulirana peščeno glinasta do prodno peščeno glinasta zemljina, sivo rjave barve	S	4200	74,0	240
K-1	10,3	Enakomerno granuliran drobni pesek do peščen melj, rjave barve	CS	1050	20,0	40
	15,3	Peščen melj do enakomerno granuliran drobni pesek, rjave barve	CS	6000	80,0	390
K-2	6,7	Enakomerno granuliran drobni pesek z vložki peščenega melja, rjave barve	S	1200	16,0	47
	9,7	Peščen melj do enakomerno granuliran drobni pesek, rjave barve s sivimi vložki	CS	2900	22,0	75
	15,4	Peščen melj do enakomerno granuliran drobni pesek, s kosi preperelega laporja, sive barve	CS	6500	50,0	205
	8,2	Slabo granulirana peščeno meljna do prodno peščeno meljna zemljina, svetlo rjave barve	S	3500	35,0	160
K-3	11,6	Enakomerno granuliran drobni pesek do peščen melj, rjave barve	S	950	8,0	33
	15,9	Peščen melj do enakomerno granuliran drobni	G	4500	54,0	105
	24,3	pesek, sivo rjave barve	5	4000	78,0	-
	28,9	Meljast lapor, sive barve	ML	5500	24,0	90
	7,4	Peščen melj z vložki enakomerno granuliranega drobnega peska, sive barve	CS	1600	25,0	88
V A	10,2	Enakomerno granuliran drobni pesek z vložki peščenega melja, sive barve	S	1600	18,0	65
N-4	15,8	Peščen melj z vložki enakomerno granuliranega drobnega peska, rjave barve	CS	4200	46,0	140
	18,0	Enakomerno granuliran drobni pesek s sljudo in vložki peščenega melja, rjave barve	S	1800	25,0	87
	8,1	Močno preperel lapor s plastmi enakomerno granuliran. drobnega peseka, rjavo sive barve	CS	2200	16,0	53
K-5	15,5	Preperel lapor z vložki enakomerno granuliranega drobnega peseka, sive barve	CS	5800	81,0	303
	20,7	Peščen melj do enakomerno granuliran drobni pesek, rjave barve	CS	2600	28,0	150

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 12. Preiskave smo izvajali marca 2005 v vrtinah z oznako K. Izvajali smo jih s sondo BX ter s sondo AX v zaščitni cevi. Vrtino za izvedbo testa smo pripravili predhodno z vrtalno glavo premera 66 mm, razen v redkih primerih, ko smo sondo AX zabili v meljaste peske (na večji globini), ki so bili pod velikim vodnim pritiskom. Tu je bilo predvrtanje nemogoče, saj je v zacevljeno vrtino zaradi vodnega pritiska nanosilo veliko količino drobnih peskov. To je tudi poglavitni razlog, za majhno število uspelih testov na globini večji od 20 m. Izdelali smo 6 vrtin, vendar zaradi slabe kvalitete sten vrtine (visoki vodni pritiski) in posledično slabih presiometrskih rezultatov v vrtini K-6 podajamo le rezultate prvih petih vrtin. Edini uspeli test v vrtini K-6 je bil na globini 11,2 m, kjer smo izmerili mejni tlak $p_L=1500$ kPa ter modula prve $E_0=18,0$ MPa in ponovne obremenitve $E_R=50,0$ MPa.

Slika 14: Shematski prikaz geološke sestave tal, p_L in E_0 za levi del viadukta 6-3 Figure 14: Schematic description of geological profile, p_L and E_0 for left side of viaduct 6-3

Slika 15: Shematski prikaz geološke sestave tal, p_L in E_0 za desni del viadukta 6-3 Figure 15: Schematic description of geological profile, p_L and E_0 for right side of viaduct 6-3

Na slikah 14 in 15 je shematsko prikazana geološka sestava tal na lokaciji viadukta Kupetinci (6-3) in vse izvedene preiskave na mestu posameznih vrtin, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 . Vrtine so bile izvedene na mestu podpor.

Geologija se vzdolž objekta spremeni, t.j. lapornata podlaga je z leve proti desni vse globlje. Tako smo za posamezni del objekta izbrali povprečno globino podlage in menjajoče se karakteristične sloje, kot je v nadaljevanju podano in upoštevano tudi v izračunih.

3.5.5.3 Določitev karakterističnih slojev

Razdelitev podlage v karakteristične sloje na osnovi vrtin in rezultatov PMT, je bila na področju viadukta 6-3 zelo težavna, saj so tla zelo slojevita in nehomogena. Izmenjavajo se tanki sloji drobnega peska in puste do peščene gline. Poleg tega se geologija na celotni dolžini viadukta 348,0 m, od začetne podpore viadukta (P-1, na mestu vrtine K-1) do končne podpore (P-10, na mestu vrtine K-5, (K-6)) zelo spreminja. Globina podlage - miocenski skladi (*ML*), se poglablja od prve do zadnje podpore in sicer od globine 15,0 m pod nivojem obstoječega terena, na globino večjo od 30,0 m. Zato smo temelje viadukta dimenzionirali ločeno za levi in desni del. Levi del viadukta zajema podpore P-1 do P-4, kjer smo upoštevali rezultate presiometrskih meritev v vrtinah K-1 in K-2. Desni del viadukta pa predstavlja podpore od P-5 do P-10, kjer smo upoštevali rezultate presiometrskih meritev v vrtinah K-3 do K-5 (K-6).

Podlago za levi del viadukta smo razdelili v tri karakteristične sloje:

- prvi sloj (Q_g) debeline 7,5 m sestavlja CL/ML težko gnetne do poltrdne konsistence,
- drugi sloj (*Pl/Q*) do globine 15,0 m sestavlja ML/SU,
- in tretji sloj (*ML*) globlje od 15,0 m predstavlja lapornato podlago.

Podlago za desni del viadukta pa smo razdelili v štiri karakteristične sloje:

- prvi sloj (Q_g) debeline 8,0 m sestavlja CL/ML težko gnetne do poltrdne konsistence,
- drugi sloj (*Pl/Q*) do globine 18,0 m sestavlja ML/SU,
- tretji sloj (Pl/Q_p) do globine 24,5 m sestavlja SU/ ML,
- in četrti sloj (*ML*) globlje od 24,5 m predstavlja lapornato podlago.

Zaradi že v uvodu omenjene slojevitosti in menjavanja slabo propustnih in vodonosnih dobro prepustnih slojev, smo v izračunih nosilnosti skušali to upoštevati tako, da smo na globini, kjer se pojavi n.pr. sloj gline (CL/ML) v sloju zameljenega peska (ML/SU), uporabili karakteristike prvega sloja. Podatke o oslabljenih conah znotraj posameznega sloja smo ocenili na podlagi spremljanja vrtanja, SPT meritev na različnih globinah, slabših presiometrskih rezultatov in izkušenj. Kako smo sloje razvrstili, je najbolje prikazano na slikah rezultatov izračunov nosilnosti za levi in desni del viadukta ločeno, v prilogi A (Priloga A12, Priloga A14, Priloga A15 in Priloga A17).

3.5.5.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.5.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov določitev karakterističnih vrednosti posameznega sloja ni potrebna, saj v računu uporabljamo dobljene vrednosti meritev. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti.

3.5.5.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 13 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja za levi del viadukta 6-3, v preglednici 14 pa za desni del viadukta 6-3. Prav tako so karakteristične vrednosti prikazane tudi v preglednicah, na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A12 in Priloga A15).

Ko smo obravnavali viadukt kot celoto, se je zdelo, da bo presiometrskih podatkov dovolj. Vendar smo po dolgotrajnem usklajevanju geologije prišli do zaključka, da je vendarle bolje viadukt razdeliti na dve ločeni enoti. Žal se je pri tem izkazalo, da je za levi del viadukta, podatkov odločno premalo in je tako statistična določitev karakterističnih parametrov slojev slaba.

Preglednica 13: Karakteristične vrednosti parametrov presiometrskih preiskav za levi del viadukta 6-3

				Karakteristična vred.					
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
$Q_{g}(1)$	1125,0	106,1	2	950,5	13,4	35,4	9,5	1,4	
Pl/Q(2)	3850,0	495,0	2	3035,8	9,1	107,0	4,9	2,4	
<i>ML</i> (3)	6250	353,6	2	5668,5	30,1	82,3	3,9	3,6	

Table 13: Characteristic values of the pressuremeter tests parameters for left side of viaduct 6-3

Preglednica 14: Karakteristične vrednosti parametrov presiometrskih preiskav za desni del viadukta 6-3

Table 14: Characteristic values of the pressuremeter tests parameters for right side of viaduct 6-3

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Q_g(1)$	1412,5	311,9	4	899,4	5,8	20,6	7,0	2,6		
Pl/Q(2)	4050,0	420,3	4	3358,6	23,2	89,2	6,0	1,0		
$Pl/Q_p(3)$	2200,0	400,0	3	1542,1	12,7	15,7	5,2	2,2		
<i>ML</i> (4)	5650,0	212,1	2*	5800,0	81,0	303,0	14	3,7		

* test na globini 28,9 m v vrtini K-3 nakazuje velik odpor tal, vendar pa vrednost modula prve obremenitve E_0 potrjuje sum, da so bile stene vrtine preveč poškodovane oz. izprane, zato podatka v nadaljnjih izračunih nismo upoštevali!

Za desni del viadukta je presiometrskih podatkov nekaj več. Pri določitvi karakterističnih vrednosti parametrov prvega sloja smo upoštevali tudi rezultat testa v vrtini K-6.

V nadaljevanju (Preglednica 15) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji, le za desni del viadukta 6-3 ter le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način, prav tako vrednosti za levi del viadukta.

Preglednica 15: Karakteristične vrednosti parametrov presiometrskih preiskav za desni del viadukta 6-3

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b*	Previdna ocena Ic	Inženirska Ocena 2*	0 4	0
1 0-8,0 m	950 1600 1600 1500	1413	312	1550	900	1500	1000 1600	5 -	
2 8,0-18,0 m	4500 3500 4000 4200	4050	420	4100	3360	4000	1600 2900 4200	10 -	•
3 18,0-24,5 m	2200 2600 1800	2200	400	2200	1542	2200	1800 2000 4800	20	
4 24,5 m→	5800	5800	~	5800	5800	5800	5800	20 -	

Table 15: Characteristic values of the pressuremeter tests parameters for right side of viaduct 6-3

^{*} Upoštevali smo tudi vrednosti oslabljenih con znotraj posameznega sloja (Priloga A17)

 p_L z globino, kot je upoštevan v izračunih \sim

3.5.5.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A13 in Priloga A16) in za desni del viadukta 6-3, v preglednici 15.

pL (kPa)

8000

4000

25

z (m)

30

■— Inž. ocena ♦— Statistika

3.5.5.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti pilotov smo najprej določili vhodne parametre. Te smo glede na vse rezultate presiometrskih meritev ocenili oziroma določili previdno oceno. Tu smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za viadukt 6-3 določili karakteristične vrednosti parametrov, ločeno za levi in desni del, ki so prikazani v preglednicah, na slikah rezultatov presiometrskih preiskav, podanih v prilogi A (Priloga A14 in Priloga A17) in dodatno za desni del viadukta, še v preglednici 15.

3.5.5.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za viadukt je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednicah 16 in 17.

Preglednica 16: Podatki o objektu, pilotih in številu presiometrskih testov za levi del viadukta 6-3 Table 16: Structure and pile data with the number of PMT for the left side of viaduct 6-3

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	φ _{pilota} (m)	Debelina mehkih tal (m)
134,0	4	5/2	6	3	22,0	0	1,2	15,0

Preglednica 17: Podatki o objektu, pilotih in številu presiometrskih testov za desni del viadukta 6-3

Table 17: Structure and pile data with the number of PMT for the right side of viaduct 6-3

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	ø pilota (m)	Debelina mehkih tal (m)
214,0	6	8/3	13	4	25,0	2,0	1,2	24,5

Opisane dimenzije so prikazane pri prvi lokaciji na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom $\nu=0,175$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov, z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5.

Sledi prikaz rezultatov vseh postopkov, za levi del viadukta 6-3 (Preglednica 18) in za desni del viadukta 6-3 (Preglednica 19).

Preglednica 18: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za levi del viadukta 6-3 Table 18: Calculation results of bearing capacity (R_{dop}) for the left side of viaduct 6-3

	Postopek izračuna	Projektni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1	10027	9034
Ta	korelacijskih faktorjev ξ	PP2	13396	9568
		PP1	14699	13242
1b	EC 7-1 z upoštevanjem karakteristične vred statistika	PP2	19325	13803
		PP1 Fronk	11164	10057
	5	PP2	14671	10480
		PP1	15312	13794
10	EC 7-1 z upoštevanjem	PP2	20133	14381
10	previdna ocena	PP1 Fronk	11635	10482
		PP2	15293	10924
2	z upoštevanjem globalnih varnostnih faktorjev			6094

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

Preglednica 19: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za desni del viadukta 6-3
Table 19: Calculation results of bearing capacity (R_{dop}) for the right side of viaduct 6-3

	Postopek izračuna	Projektni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1	7815	7041
Ta	korelacijskih faktorjev ξ	PP2	10363	7402
1b		PP1	10405	9374
	EC 7-1 z upoštevanjem karakteristične vred statistika	PP2	13814	9867
		PP1 Eroph	7841	7064
	5	PP2	10406	7433
		PP1	11173	10065
10	EC 7-1 z upoštevanjem	PP2	14816	10583
10	previdna ocena	PP1 Eroph	8431	7596
		PP2	11176	7983
2	z upoštevanjem globalnih varnostnih faktorjev			5241

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.5.5.6 Primerjava rezultatov

Že v uvodnem delu smo poudarili, da je iskanje lokacij z več kot eno izvedeno vrtino zelo težavno, saj je v večini primerov izbran najcenejši izvajalec geotehničnih preiskav in geološko geotehničnega elaborata. Posledično to pomeni čim manj stroškov s preiskavami, t.j. število preiskav se omeji na minimalno. Žal se je celoten izračun viadukta 6-3 v nalogi, kjer smo imeli veliko rezultatov, izkazal kot ne najbolj posrečena izbira. To gre pripisati predvsem zelo slojeviti podlagi, ki se vzdolž viadukta zelo spreminja.

Slika 16: Prikaz rezultatov izračunov R_{dop} za levi del viadukta 6-3 Figure 16: Calculation results of R_{dop} for the left side of viaduct 6-3

Grafikon na sliki 16 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za levi del viadukta 6-3, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali zelo konzervativne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, odstopajo za največ 79%, kar ni malo. Maksimalno, 136% odstopanje dobimo pri računu z upoštevanjem parametrov, dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1, 126%. Pri izračunu za desni del viadukta 6-3 so odstopanja podobna, vendar nekoliko nižja (Slika 17). Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Slika 17: Prikaz rezultatov izračunov R_{dop} za desni del viadukta 6-3 Figure 17: Calculation results of R_{dop} for the right side of viaduct 6-3

Iz rezultatov, podanih v preglednici 20, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji

viadukta 6-3 je za levi del dobljeni faktor praktično enak 1,3, za desni del pa le nekoliko višji in je enak 1,36. Podobno velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c).

Preglednica 20: Varnostni faktorji F vseh štirih postopkov računa nosilnosti Table 20: Factors of safety F for all of the bearing capacity calculation procedures

Lokacija in objekt			Posta	opki rač	Fakto	Čt watira			
		PP	1a	1b	1c	2	1a/1b	1a/1c	Si. Vilin
	larri dal	PP1	2,201	1,675	1,672	2,8	1,314	1,316	2
Cogetinci –	levi del	PP2	2,078	1,607	1,604	2,8	1,293	1,296	
vucja vas, viadukt 6-3	1 . 1 1	PP1	2,352	1,733	1,723	2,8	1,357	1,365	2
	desill del	PP2	2,237	1,646	1,639	2,8	1,359	1,365	3

3.5.6 A5 Pesnica - Lendava - meja H, Maribor - Lenart, II. etapa, Pernica, nadvoz 4-2 in 4-3

Na lokaciji sta obravnavana dva nadvoza 4-2 in 4-3, temeljena globoko, na uvrtanih pilotih.

3.5.6.1 Uvod k lokaciji

Geološko zgradbo prostora v glavnem lahko podamo s polhribinsko izpolnitvijo okoliškega gričevja in z različnimi oblikami od Pesnice in pritokov odloženih sedimentov. Kljub različni starosti so si sedimenti podobni in smo jih združili v enovito miocensko starost (M). Za te sedimente je značilna nehomogena zgradba na večjih razsežnostih, ki se kaže bodisi v ritmični menjavi slojev poltrdnih do trdnih laporastih glin, laporovcev in slabo vezanega melja in peska, bodisi lokalno v večjih debelinah prevladuje ali laporovec ali pesek. Območje nad polhribinsko podlago je prekrito s staro kvartarnimi glinenimi in glineno-peščenimi terasami, večkrat se pojavijo tudi plasti ter leče peska in proda (Pl/Q_p). Debelina prevladujočih težko gnetnih do poltrdnih glin na lokaciji nadvozov doseže od 3 - 6 m. Gline so pretežno mastne, podrejeno puste in meljne, še manj je mastnega in glinastega melja. Plastovitost je nakazana. Pretežno povsod okrog spodnjih delov grebenov in na terasastih izravnavah nad Pesnico se vzporedno s hribovjem vlečejo ozke in nizke mlajše glinene terase in deluvialni nanosi ter položno glinane izravnava (Q). Nastopaja ket sradnja do tažko gnetna in poltrdne mestno in
tvorijo mlado kvartarni aluvialni nanosi (Q_{al}) . Debelina izpolnitev dolin na lokaciji nadvozov znaša 5 - 8 m. V sestavi pa lahko ločimo glineno skorjo (Q_{alg}) , ki v debelini 4 - 5 m nastopa pod sedanjimi površinami. Tvorijo jo pretežno srednje do težko gnetne mastne gline ter mastni melji, podrejena sta pusta in meljna glina in melj. Pod glineno zaporo je različno debel sloj prevladujočega peska in peščenega melja s pogostimi prehodi v razmočene, lahko gnetne gline (Q_{alm}) . Povsod je prisoten poogleneli rastlinski drobir, pojavljajo se še kosi lesa in naplavljena debla.

3.5.6.2 Vrtine na lokaciji z rezultati PMT

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 21. Preiskave smo izvajali marca 2004 ter marca 2006, v vrtinah z oznako DO. Večinoma smo jih izvajali s sondo BX, le kadar je bila v vrtini prisotna večja količina grobih frakcij, smo uporabili sondo AX v zaščitni cevi, ki smo jo na globino testa zabili. V ostalih primerih smo vrtino za izvedbo testa pripravili predhodno z vrtalno glavo premera 66 mm.

Pri nadaljnjih izračunih nosilnosti nadvoza 4-2 smo upoštevali rezultate preiskav izvedenih v vrtinah DO-27, DO-30, DO-32 in DO-34, nadvoza 4-3, pa v vrtinah DO-23, DO24, DO-24E in DO-25.

Na slikah 18 in 19 je shematsko prikazana geološka sestava tal v Pernici in vse izvedene preiskave v posameznih vrtinah, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 . Vse vrtine izvedene na lokaciji obeh nadvozov niso bile locirane na mestu podpor, temveč v bližini objekta. Zaradi česar se geologija v vrtinah vzdolž objektov vidno spremeni, tako smo skupaj z geologom izbrali povprečne debeline posameznih karakterističnih slojev, ki so v nadaljevanju podane in upoštevane v izračunih.

Preglednica 21: Presiometrske preiskave na lokaciji nadvoza 4-2 in 4-3

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	5,1	Melj, lahko do srednje gost, sv. rjav, navlažen, peščen	CS	280	1,2	-
DO-23	9,7	Glina, t. gn., rdečkasto in sivorjavo, v sledovih	C	480	2,3	-
DO-25	10,6	organsko (mm sloji)	C	390	2,5	-
	13,6	Laporovec, tr., sv. siv, v plasteh tudi glinovec z mm/cm sloji	ML	>7000	320,0	-
	3,7	Srednje gnetna glina z vložki melja, peska in lesa	CS	300	2,0	4,4
DO 24A	10,7	Srednje gnetna organska glina z vložki šote	CS	510	4,0	7,5
DO-24A	18,3	Lapor	MI	8000	240	1000
	23,2	Сарог	IVIL	8000	330	1500
	3,5	Pusta do mastna glina, težko gnetna	CS	500	12	25
DO-24E	9,3	Lapor	ML	5500	100	380
	16,3	Zelo gost pesek, v sledovih vezan	S	7000	150	700
	4,0	Melj/glina, sivo, t. gn., mm sloji s peskom	CS	240	1,2	5,0
DO-25	10,5	Glina, s. gn., OH prehodi v nekaj dm, redki večji kosi lesa, sv. do t. sivo	С	340	1,4	-
	17,5	Laporovec, glinast, mm sloji, organski sledovi, sljudasto, tr., sv. sivo	ML	>7000	130,0	-
DO 27	4,5	Melj/glina s prehodi v CH, sv. do t. sivo, meljasto peščeno, v tankih conah navlaženo in s. gn., ostalo t. gn.	CS	280	1,4	6,0
DO-27	10,0	Glina, navlažena do namočena, l. gn. do s. gn., malo do močno org., t. sivo	С	500	2,2	6,5
	16,0	Glinovec/laporovec, tr., siv, peščenjak	ML	>7000	100,0	300,0
DO 30	4,5	Melj/glina, t. gn. do pt., svetlosiv, preperel pesek in grušč, oksidirano	CS	500	1,8	7,5
DO-30	8,5	Glina/melj, t. gn., sivorjavo, malo do močno peščeno in 10-20 cm GC/SC	CS	350	1,2	-
DO-32	3,5	Glina, s. gn. z vložki 10 do 20 cm melja in org., koščki lesa, sivo	С	200	0,7	-
	8,5	Melj, s. gn., malo do močno org., sivo	CS	280	0,7	-
	2,7			270	2,8	7,5
	3,6	Glina, razprsen organski drobir, t. gn., navlazeno,	С	300	1,2	-
	7,7	51701jav0		230	1,0	-
DO-34	8,6	Glina, v plasteh peščeno in prodnato, lesni drobir, OH, plastovito nekaj cm/dm, s. gn. do t. gn.	С	400	1,2	-
	14,5	Pesek v plasteh 5 do 20 cm vmes mm/cm laporovec, preperel, zelo gost/pt., sv. siv, močno sljudnat in org.	S	6500	20,0	100,0

Table 21: Pressuremeter tests at the location of the crossover 4-2 and 4-3

Slika 18: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 4-3 Figure 18: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-3

Slika 19: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-2 Figure 19: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-2

3.5.6.3 Določitev karakterističnih slojev

Podlago na področju nadvoza 4-2 smo razdelili v štiri karakteristične sloje:

- prvi sloj (Q_{alg}) debeline 5,0 m sestavlja CL-CH srednje do težko gnetna,
- drugi sloj (Q_g) do globine 10,0 m sestavlja CL/ML srednje do težko gnetno in SC rahlo,
- tretji sloj (*Pl/Q*) do globine 13,0 m sestavlja CL/SM, težko gnetno do poltrdno,
- in četrti sloj (*ML*) globlje od 13,0 m predstavlja lapornato podlago.

Na področju nadvoza 4-3 smo podlago prav tako razdelili v štiri karakteristične sloje. Razlika je le v drugem sloju in v debelini posameznih slojev:

• prvi sloj (Q_{alg}) debeline 4,0 m sestavlja CL-CH srednje do težko gnetna,

- drugi sloj (Q_{alm}) do globine 8,0 m sestavlja CL/ML, lahko gnetno, zelo organsko,
- tretji sloj (*Pl/Q*) do globine 14,0 m sestavlja CL/SM, težko gnetno do poltrdno,
- in četrti sloj (*ML*) globlje od 14,0 m predstavlja lapornato podlago.

3.5.6.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.6.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov je tudi tu določitev karakterističnih vrednosti posameznega sloja dokaj enostavna, saj imamo ponavadi na voljo samo en rezultat presiometrske meritve na sloj. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti.

3.5.6.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 22 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za nadvoz 4-2, v preglednici 23, pa za nadvoz 4-3. Prav tako so karakteristične vrednosti prikazane v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A18 in A21).

Preglednica 22: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-2 Table 22: Characteristic values of the pressuremeter tests parameters for crossover 4-2

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Q_{alg}(1)$	263,0	43,5	4	191,0	0,51	5,0	0,5	1,6		
$Q_{g}(2)$	500,0	0	2	500,0	1,53	5,84	3,1	2,2		
Pl/Q(3)	315	75,1	4	191,5	0,64	_	2,0	_		
ML(4)	6750	353,6	2	6169,0	100,0*	300,0*	16,2	3,0		

* modul prve in ponovne obremenitve je merodajen le pri eni od meritev (v vrtini DO-34 na

globini 14,5 m je izmerjeni mejni tlak korekten, vrednosti modula prve in ponovne obremenitve pa kažeta, da so bile stene vrtine zelo poškodovane in zato meritve niso merodajne).

Preglednica 23: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-3 Table 23: Characteristic values of the pressuremeter tests parameters for crossover 4-3

				Karakteristična vred.							
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_{0}/p_{L}	E_{R}/E_{0}			
$Q_{alg}(1)$	270,0	42,4	2	200,2	0,69	4,0	3,89	0,87			
$Q_{alm}(2)$	310,0	42,4	2	240,2	1,07	-	3,97	-			
Pl/Q(3)	470,0	54,8	4	379,9	1,41	7,5	3,84	5,3			
<i>ML</i> (4)	7083	917,4	6	5574,3	48,0	111,7	10,76	3,65			

V primeru, da podatka o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$.

V nadaljevanju (Preglednica 24) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji, le za nadvoz 4-3 ter le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način, prav tako vrednosti za nadvoz 4-2.

3.5.6.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A19 in A22) in za nadvoz 4-3, še v preglednici 24.

3.5.6.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo

sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za oba nadvoza določili karakteristične vrednosti parametrov (ocena oz. določitev previdne ocene), ki so prikazani v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A20 in Priloga A23) in za nadvoz 4-3, še v preglednici 24.

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena Ic	Inženirska Ocena 2	0	pL (k Pa) 4000 8000
1 0-4,0 m	300 240	270	42,4	270	200	240	240* 300		—— Statistika
2 4,0-8,0 m	280 340	310	42,4	310	240	300	480	4 -	
3 8,0-14,0 m	510 500	470	54.0	400	200	450	340*		
	480 390		54,8	490	380	430	510	8 -	
	8000 8000							12 -	
4 14,0 m→	5500 7000	7083	917,4	7000	4474	7000	5500* 7000		
	7000 7000							16 -	
* Upoš merit	tevali sm vah, pribl	io slabš ižno na	še vredi meji me	nosti, k ed sloji	ti se po (Priloga	ojavijo a A23)	v več	z (m)	

Preglednica 24: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-3 Table 24: Characteristic values of the limit pressure p_L for crossover 4-3

meritvah, približno na meji med sloji (Priloga A23)

 p_L z globino, kot je upoštevan v izračunih

3.5.6.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za oba nadvoza je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednicah 25 in 26).

20

Preglednica 25: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-2 Table 25: Structure and pile data with the number of pressuremeter tests for crossover 4-2

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	ø _{pilota} (m)	Debelina mehkih tal (m)
129,5	6	4/4	12	4	14,0	2,0	1,25	13,0

Preglednica 26: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-3 Table 26: Structure and pile data with the number of pressuremeter tests for crossover 4-3

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}	D (m)	d (m)	Debelina
objekta (m)	podpor	vseh/PMT	PMT	slojev	<i>(m)</i>	D (m)	P pilota (M)	mehkih tal (m)
164,0	10	5/4	14	4	17,0	2,0	1,25	14,0

Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$.

Preglednica 27: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-2 Table 27: Calculation results of bearing capacity (R_{dop}) for crossover 4-2

	Postopek izračuna	Projekti	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		8864	7985
Ta	korelacijskih faktorjev ξ	PP2		12399	8856
		PP1		9863	8885
11	EC 7-1 z upoštevanjem	PP2		13898	9927
10	statistika	PP1	Fronk	7487	6745
	5	PP2	гтанк	10557	7541
		PP1		10461	9424
10	EC 7-1 z upoštevanjem	PP2		14730	10521
10	previdna ocena	PP1	Eronle	7948	7160
	providina obolina	PP2	гтапк	11197	7998
2	z upoštevanjem globalnih varnostnih faktorjev				6192

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5.

V preglednici 27 in 28 prikazani rezultati vseh postopkov izračunov nosilnosti (R_{dop}), za nadvoz 4-2 (Preglednica 27) ter za nadvoz 4-3 (Preglednica 28).

	Postopek izračuna	Projekti	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		9761	8794
Ta	korelacijskih faktorjev ξ	PP2		13511	9651
		PP1		9984	8994
Ib k	EC 7-1 z upoštevanjem	PP2		13792	9852
	statistika	PP1	Eronly	7560	6810
	Statistina	PP2	гтапк	10447	7462
		PP1		12112	10911
1.0	EC 7-1 z upoštevanjem	PP2		16844	12031
IC	previdna ocena	PP1	Eronly	9196	8285
	Providence of the	PP2	FIANK	12794	9139
2	z upoštevanjem globalnih varnostnih faktorjev				6534

Preglednica 28: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-3 Table 28: Calculation results of bearing capacity (R_{dop}) for crossover 4-3

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.5.6.6 Primerjava rezultatov

Grafikon na sliki 20 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za nadvoz 4-2, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali zelo konzervativne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, odstopajo za največ 29% (previdna ocena). Maksimalno, 70% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1, 52%. Pri izračunu za nadvoz 4-3 so odstopanja podobna, vendar nekoliko višja (Slika 21). Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov bolj konzervativen od projektnega pristopa 2.

Slika 20: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-2 Figure 20: Calculation results of R_{dop} for crossover 4-2

Iz rezultatov, podanih v preglednici 29, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji nadvoza 4-2 je dobljeni faktor enak približno 1,31, na lokacij nadvoza 4-3 pa le nekoliko višji in je enak približno 1,33. Podobno velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c).

Lokacija in objekt			Posta	pki rač	Fakto	Čt matin			
		PP	1a	1b	1c	2	1a/1b	1a/1c	SI. Vrun
	nadvoz 4 2	PP1	2,342	1,792	1,787	2,8	1,307	1,311	4
MB - Lenart, II. etapa, Pernica	nadvoz 4-2	PP2	2,112	1,604	1,601	2,8	1,316	1,319	4
	nadvoz 4-3	PP1	2,365	1,773	1,769	2,8	1,334	1,337	4
1 0111104		PP2	2,155	1,619	1,604	2,8	1,331	1,343	4

Preglednica 29: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti Table 29: Factors of safety *F* for all of the bearing capacity calculation procedures

Slika 21: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-3 Figure 21: Calculation results of R_{dop} for crossover 4-3

3.5.7 A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, nadvoz 4-1

Na lokaciji je obravnavan nadvoz 4-1, temeljen globoko na uvrtanih pilotih.

3.5.7.1 Uvod k lokaciji

Za prostor gradnje nadvoza, se oceni povprečno geološko zgradbo tal, podano v nadaljevanju.

Pod površinami tlorisa nadvoza, desno od avtoceste, je teren izravnan z mlado kvartarnimi aluvialnimi glinami (Q_{alg}) , ki so odložene v debelinah do 1,5 m. Sediment je v glavnem srednje do težko gneten in ga predstavljajo meljne, puste in mastne gline s prehodi v glinast melj, v sledovih se pojavlja tudi organska glina. Zemljine so slabo prepustne in se zato na ravninah ter neznatnih depresijah pojavljajo plitva zamočvirjanja z značilnim rastlinjem. Globlje so povsod prisotni aluvialni nanosi preplavljanja in ojezeritev (Q_{alm}). V sestavi prevladuje lahko do srednje gnetna pusta in mastna glina s tankimi vložki organske gline ter peščenega melja in peska, lokalno se melj in pesek odebelita v občutne plasti. Povsod so prisotni različno debeli kosi naplavljenega lesa in predvsem pooglenel lesni drobir, kar je vse razpršeno med glino, meljem in peskom. Debelejši sloji lesa ali šote niso ugotovljeni. Glineni nanosi so, zaradi nizke horizontalne in vertikalne vodoprepustnosti v širšem prostoru, razmočeni in razmehčani v večjih debelinah. Skupen iznos razmehčanih in slabo nosilnih tal znaša od 1 m do 3,0 m. Na dnu doline je pod mladimi meljno-glineno-peščenimi sedimenti odložen približno 1 m debel sloj peščenih prodov in prodnatih peskov (Q_{alp}). Njegova debelina variira, načeloma pa se veča v smeri proti jugu in s tem izven tlorisa objekta. Pod sedimenti je na blagih pobočjih odložena debela cona pliokvartarnih (Pl/Q) zemljin, med katerimi prevladuje srednje do visoko plastična glina z razpršenimi in preperelimi zrni peska ter proda. Med glino se pojavljajo nezvezni in do nekaj dm debeli vložki peska, drobnega proda in pooglenelega lesnega drobirja. Zemljine so v glavnem težko gnetne do poltrdne, v večjih globinah pa je glineni sediment bolj peščen in navlažen ter v sledovih srednje gneten. Pliokvartarni nanosi se bodo v debelinah 3-6 m pojavljali v globinah prehoda glinenega pokrova v laporasto podlago. Pod globino 7 m se pojavi miocenska (M) osnova, ki jo predstavlja pretežno meljast laporovec s prehodi v glinovec ali meljevec. Med trdno podlago so vsajene do nekaj cm debele ploščice peščenjaka, redki pa so tanki vložki slabo do nevezanega peska in peščenega melja.

3.5.7.2 Vrtine na lokaciji z rezultati PMT

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 30. Preiskave smo izvajali od avgusta do oktobra 2003, v vrtinah z oznako DO. Vse teste smo izvajali s sondo BX. Mehkejše in tanjše membrane smo uporabili za mehke gline in melje, debelejše in bolj toge membrane pa za tršo podlago (v našem primeru

lapornato). Vrtino za izvedbo testa smo pripravili predhodno z vrtalno glavo premera 66 mm. Pri nadaljnjih izračunih nosilnosti nadvoza 4-1 smo upoštevali rezultate preiskav izvedenih v vrtinah DO-16 in DO-20A.

Preglednica 30: Presiometrske preiskave na lokaciji nadvoza 4-
Table 30: Pressuremeter tests at the location of crossover 4-1

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
DO-16	3,4	Visoko plastičen melj in glina, različno peščeno, razpadli kosi laporovca, težko gn. do poltrdno, rjavo	CS	450	1,9	-
	4,8	Mastna preperina laporovca, poltrdno, sv. rjavo	CS	2000	21	80
	8,9	Laporovec, glinast in meljast, prehodi v meljevec, več ploščic peščenjaka debeline do 3 cm, poltrden do trden, siv	ML	7000	346	730
	3,5	Pusta do mastna glina, peščena in gruščnata,	00	500	2,5	-
DO-20A	4,3	do temno rjavo	CS	930	6,3	-
	8,6	Laporovec, pretežno meljast in zelo trd, prehodi v glinovec s tankimi ploščicami peščenjaka, slojevit, vpadi do 20°, siv	ML	7000	323	-

Slika 22: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-1

Figure 22: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-1

Na sliki 22 je shematsko prikazana geološka sestava tal na lokaciji I. etape (AC MB - Lenart) in vse izvedene preiskave v obeh vrtinah, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 .

Geologija je vzdolž objekta zelo podobna, tako smo za debeline posameznih karakterističnih slojev izbrali povprečne vrednosti, ki so v nadaljevanju podane in upoštevane v izračunih.

3.5.7.3 Določitev karakterističnih slojev

Podlago na področju nadvoza 4-1 smo razdelili v tri karakteristične sloje:

- prvi sloj (Qg) debeline 4,0 m sestavlja CL/CH in ML srednje do težko gnetno, mestoma lahko gnetno,
- drugi sloj (*Pl/Q*) do globine 7,5 m sestavlja CL/CH, težko gnetno do poltrdno, ML/MH, poltrdno/gosto,
- in tretji sloj (*ML*) globlje od 7,5 m predstavlja lapornato podlago.

3.5.7.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.7.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov, je določitev karakterističnih vrednosti posameznega sloja dokaj enostavna, saj imamo na voljo samo en rezultat presiometrske meritve na sloj. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti.

3.5.7.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 31 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za nadvoz 4-1. Prav tako so karakteristične vrednosti prikazane v preglednici, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A24).

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Q_{g}(1)$	475	35,4	2	417	1,5	-	3,7	-		
Pl/Q(2)	-	-	1	2000	21,0	80,0	10,5	3,8		
<i>M</i> (3)	7000	0	2	7000	307,8	730	44,0	2,4		

Preglednica 31: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-1 Table 31: Characteristic values of the pressuremeter tests parameters for crossover 4-1

V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$. V drugem sloju smo sicer izvedli dva testa, vendar je bil test v vrtini DO-20A na globini 4,3 m, izveden ravno na meji med slojema, kar kažejo tudi nizke karakteristike v primerjavi s testom izvedenim v drugi vrtini 0,5 m globlje. V izračunih smo tako upoštevali oba rezultata (sloj 2^{zg} in 2^{sp}). V tretjem sloju pa smo pri velikih odporih zemljine, zaradi izkoriščenega razpoložljivega tlaka v presiometrski sondi, mejni tlak ocenili na 7000 kPa. Na lokaciji nadvoza 4-1 so tako dobljene karakteristike po statistični definiciji le za prvi sloj in še to le na podlagi dveh testov!

3.5.7.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednici, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A25). To skupaj s premajhnim številom podatkov privede do dejstva, da so karakteristične vrednosti določene kot previdna ocena, enake vrednostim določenim po dosedanji praksi (inženirski pristop)!

3.5.7.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za nadvoz 4-1 določili

karakteristične vrednosti parametrov (ocena oz. določitev previdne ocene), ki so prikazani v preglednici, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A25) in v preglednici 32.

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena 1c	Inženirska Ocena 2
1 0-4.0 m	450	475	35,4	475	417	450	450
2^{zg} 4,0-	930	930	_	_	930	930	930
2 ^{sp} 7,5 m	2000	2000	-	-	2000	2000	2000
$\begin{array}{c} 3 \\ 7.5 \text{ m} \rightarrow \end{array}$	7000	7083	7000	0	7000	7000	7000

Preglednica 32: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-1 Table 32: Characteristic values of the limit pressure p_L for crossover 4-1

3.5.7.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za nadvoz 4-1 je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednici 33.

Preglednica 33: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-1 Table 33: Structure and pile data with the number of pressuremeter tests for crossover 4-1

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}	D (m)	d (m)	Debelina
objekta (m)	podpor	vseh/PMT	РМТ	slojev	<i>(m)</i>	D (m)	 <i>\$\$</i> \$	mehkih tal (m)
192,0	9	7/2	5	3	8,0	2,0	1,25	7,5

Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav smo izračunali nosilnost vertikalno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5.

Sledi prikaz rezultatov vseh postopkov, za nadvoz 4-1 (Preglednica 34).

	Postopek izračuna	Projekt	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
1.0	EC 7-1 z upoštevanjem	PP1		8266	7447
Ta	korelacijskih faktorjev ξ	PP2		11671	8336
		PP1		11125	10023
1h	EC 7-1 z upoštevanjem 1b karakteristične vred statistika	PP2		15733	11238
10		PP1	Enouls	8487	7646
		PP2	гіанк	12007	8576
		PP1		11134	10031
10	EC 7-1 z upoštevanjem	PP2		15744	11246
10	previdna ocena	PP1	Eronle	8494	7652
	providina ocona	PP2	гтапк	12015	8582
2	z upoštevanjem globalnih varnostnih faktorjev				6041

Preglednica 34: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-1 Table 34: Calculation results of bearing capacity (R_{dop}) for crossover 4-1

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

3.5.7.6 Primerjava rezultatov

Grafikon na sliki 23 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za nadvoz 4-1, izračunanih po vseh postopkih z obema projektnima pristopoma. Vidimo lahko, da so rezultati izračunov pri upoštevanju karakterističnih vrednosti dobljenih kot previdna ocena, praktično identični. Razlog je predvsem v premajhnem številu podatkov!

Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali dokaj konzervativne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, odstopajo za največ 42% (previdna ocena). Maksimalno, 86% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu

2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 66%. Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Slika 23: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-1 Figure 23: Calculation results of R_{dop} for crossover 4-1

Iz rezultatov, podanih vpreglednici 35, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji nadvoza 4-1 je dobljeni faktor enak 1,36, kar velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c).

I akaaiia in ahiakt		Posta	pki rač	Fakto	Čt metin			
Lokucija in objeki	PP	1a	1b	1c	2	1a/1b	1a/1c	SI. Vrun
Maribor - Lenart, I. etapa,	PP1	2,140	1,772	1,772	2,8	1,360	1,360	2
nadvoz 4-1	PP2	2,153	1,581	1,581	2,8	1,362	1,362	Z

Preglednica 35: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti Table 35: Factors of safety *F* for all of the bearing capacity calculation procedures

3.5.8 AC2 Karavanke - Obrežje, Novo mesto vzhod - Kronovo, Lešnica - Kronovo, Viadukt 6-1 in nadvoz 4-2

Na lokaciji sta obravnavana dva objekta, viadukt 6-1 "Jelše" in nadvoz 4-2, oba temeljena globoko, na uvrtanih pilotih.

3.5.8.1 Uvod k lokaciji

Geološko zgradbo v vplivnem prostoru trase predstavljajo najstarejši sedimenti triadi (T_3) . Nastopa bel, zrnat in luknjičav ter temnejši plastovit in pasovit dolomit, ki je različno razpokan, pretežno drobljiv in krušljiv. Dolomitna masa predstavlja hribinsko podlago trasi vse od doline Lešnice do Dolenjega Kronovega. Kamnina je prekrita z debelim glinenim pokrovom, ki je naslednji in prevladujoči gradbeni elementi pobočij, to so pliokvartarni (*Pl/Q*) sedimenti. Odložene so težko gnetne gline do poltrdne puste do mastne gline ter mastni melji rjave, rdečerjave in rumenorjave barve. Med glino je razpršen preperel roženčev pesek, prod in grušč, ki oblikuje tudi posamezne različno debele samostojne plasti. Pri pliokvartarnih nanosih moramo ločiti površinsko različno debelo cono, kjer je glina večinoma peščena do gruščnata in meljasta, je pisane barve, suha do nizko navlažena. Globlje so zemljine bolj čiste, nepeščene in negruščnate, so pretežno mastne in bolj navlažene. Manjši obseg imajo ob trasi aluvialni (Q_{al}) nanosi Lešnice in Toplice ter manjših pritokov. Površinsko je v dolinah ter ravninah odložena od 2-4 m debela plast srednje do težko gnetne puste, meljne in mastne gline z organskimi sledovi (Q_{alg}). Pod to skorjo je odložena navlažena razrahljana aluvialna plast (Q_{alp}) , ki je v debelinah 1-4 m izpolnjena z glinastim gruščem, slabo zaobljenim prodom in peskom.

3.5.8.2 Vrtine na lokaciji z rezultati PMT

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 36. Preiskave smo izvajali januarja in februarja 2004, v vrtinah z oznako LKO in LKV ter januarja 2005, v vrtinah z oznako PO. Večinoma smo jih izvajali s sondo BX, le za preiskave v nekoherentnih zemljinah smo uporabili sondo AX, ki ima gumijasto sondo zaščiteno s prirezano kovinsko cevjo. Običajno se sondo AX na globino testa zabije, kar je bilo na tej lokaciji nemogoče zaradi velikega števila samic! Vrtino za izvedbo testa smo pripravili predhodno, z vrtalno glavo premera 66 mm.

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	2,5	Grob prod, malo peska, rahel, siv	G	1000	6.6	-
LKO-2	LKO-2 3,5	Pusta glina in glinast droben prod in pesek, srednje gosto in rahlo, vlažno, rjavo	CS	1300	8.3	-
12,8	12,8	Annono dolomitas brože in kristelest dolomit, siv	G	>7000	100	460
	13,8	Apheno-dolomitha breca in kristalast dolomit, siv	U	>7000	200	-
	3,0	Pusta glina in glinast melj, peščeno, drobni prodniki,	CS	800	5.5	-
	3,7	v sledovih organsko, sr. do težko gnetno, rjavo	CS	900	6.5	-
LKO-4 5,7	Slabo granuliran grušč dolomita, zaglinjen, preperel, manjše leče sr. gn. mastne gline, srednje gosto, sivorjavo in rdečerjavo	G	900	4.7	-	
	9,5	Dolomit in dolomitna breča, trden, sivo z rožnatimi prevlekami	G	>7000	200	800
	3,8	Visoko plastična mastna glina in melj močno peščena in gruščnata, t.gpoltrdna, rumenorjava in rdečerjava v plasteh	CS	1100	20	-
LKV-5 4,7	4,7	Visoko plastična mastna glina in melj močno peščena in gruščnata, t.gpoltrdna, rumenorjava in rdečerjava v plasteh	CS	1100	17.5	46
	7,3	Visoko plastična mastna glina, malo peščena in navlažena, težko gnetna, rdečerjava	CS	1100	17	-
	10,5	Dolomit, rahel in preperel, tanki vložki mastne s.g. gline, sivorjavo	G	>7000	97	420
DO 12	5,7	Glina/melj, t. gn., mm sloji, v sledovih peščeno,	CS	850	15	34
10-13	8,7	rjavo	CS	950	25	50

Preglednica 36: Presiometrske preiskave na lokaciji viadukta 6-1 in nadvoza 4-2 Table 36: Pressuremeter tests at the location of viaduct 6-1 and crossover 4-2

Slika 24: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji viadukta 6-1

Figure 24: Schematic description of geological profile, p_L and E_0 at the location of viaduct 6-1

Slika 25: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-2 Figure 25: Schematic survey of geological profile, p_L and E_0 at the location of crossover 4-2

Pri nadaljnjih izračunih nosilnosti viadukta 6-1 smo upoštevali rezultate preiskav izvedenih v vrtinah LKO-2 in LKO-4, nadvoza 4-2, pa v vrtinah LKV-5 in PO-13.

Na slikah 24 in 25 je shematsko prikazana geološka sestava tal na lokaciji viadukta Jelše in vse izvedene preiskave na mestu posameznih vrtin, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 . Vrtine so bile izvedene na mestu podpor.

Geologija se vzdolž objekta spremeni, t.j. na obeh lokacijah se podlaga z leve proti desni dviga. Tako smo za vsak objekt izbrali povprečno debelino karakterističnih slojev in globino podlage, kot je v nadaljevanju podano in upoštevano tudi v izračunih.

3.5.8.3 Določitev karakterističnih slojev

Podlago na področju viadukta 6-1 smo razdelili v tri karakteristične sloje:

- prvi sloj (Q_{alp}) do globine 8,0 m sestavlja CH težko gnetna, GC srednje gost do gost,
- drugi sloj $((T_3))$ do globine 10,0 m sestavlja dolomit srednje gost do gost,
- in tretji sloj (T_3) globlje od 10,0 m predstavlja podlago iz trdne dolomitne breče.

Na področju nadvoza 4-2 smo podlago razdelili v dva karakteristična sloja:

- prvi sloj (*Pl/Q*) do globine 9,0 m sestavlja CL/ML, težko gnetno do poltrdno,
- in drugi sloj (T_3) globlje od 9,0 m predstavlja podlago iz trdne dolomitne breče.

3.5.8.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.8.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov je določitev karakterističnih vrednosti posameznega sloja dokaj enostavna, saj se nosilnost izračuna iz rezultatov vsake posamezne vrtine (upoštevajo se vse meritve na dejanskih globinah) nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti. V primeru izračuna na lokaciji vrtine PO-13 (nadvoz 4-2), v podlagi ni bilo izvedenega presiometrskega testa. Glede na popis vrtine in

potek vrtanja, smo tako za podlago privzeli rezultat iz vrtine LKV-5.

3.5.8.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 37 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za viadukt 6-1, v preglednici 38, pa za nadvoz 4-2. Prav tako so karakteristične vrednosti prikazane v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A26 in Priloga A29).

Preglednica 37: Karakteristične vrednosti parametrov presiometrskih preiskav za viadukt 6-1 Table 37: Characteristic values of the pressuremeter tests parameters for viaduct 6-1

_				Karakteristična vred.							
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}			
$Q_{alp}\left(1 ight)$	1000	216,2	4	644,7	4,81	-	6,18	-			
$(T_3)(2)$	900	0	1	900	4,7	-	5,2	-			
$T_3(3)$	7000	0	3	7000	71,7	234,6	10,24	3,6			

Preglednica 38: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-2 Table 38: Characteristic values of the pressuremeter tests parameters for crossover 4-2

_				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
Pl/Q(1)	1020	115,1	5	830,7	12,6	29,6	11,5	1,8		
$T_{3}(2)$	7000	0	1	7000	97	420	13,9	4,3		

V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$. Na mestu viadukta 6-1 se zgoraj pojavi sloj (Q_{alg} - glineni pokrov), za katerega nismo imeli nobenega podatka. Tega sloja nismo niti upoštevali in smo v izračunih, ki sledijo, prvi podatek upoštevali šele na globini 3,0 m. Poleg tega bodo piloti izdelani 1,0 do 2,0 m pod sedanjim nivojem terena, kar pomeni, da bo vpliv tega sloja na nosilnost zanemarljiv. Vidimo lahko tudi, da je bil izveden le en test v drugem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je tenak sloj, debeline do 2,0 m. V ostalih dveh slojih pa je bilo podatkov dovolj.

Na mestu nadvoza 4-2 lahko tudi vidimo, da je bil izveden le en test v drugem sloju - podlagi, katerega karakteristike smo privzeli kot merodajne. Vzrok gre iskati pri zabijanju sonde AX na globino testa, kar je bilo na tej lokaciji nemogoče, zaradi velikega števila samic. Tako smo vrtino za izvedbo testa predvrtali, z vrtalno glavo premera 66 mm, vendar se je le ta po izvleku vrtalne glave zarušila in pri ponovnem zabijanju sonde nismo dosegli potrebne globine.

V nadaljevanju (Preglednica 39) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji, le za viadukt 6-1 ter le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način, prav tako vrednosti za nadvoz 4-2.

3.5.8.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A27 in Priloga A30) in za viadukt 6-1, še v preglednici 39.

3.5.8.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za oba objekta določili karakteristične vrednosti parametrov (ocena oz. določitev previdne ocene), ki so prikazani v preglednici, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A28 in Priloga A31) in za viadukt 6-1, še v preglednici 39.

Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika Ib	Previdna ocena Ic	Inženirska Ocena 2
1000 1300	1000	216,3	950	644,7	000	800
800 900					900	900
900	900	~	900	900	900	900
7000						
7000	7000	0	7000	7000	7000	7000
	and the second	a iii 1000 1000 1300 1000 800 900 900	a s s s 10000 10000 1000	a s	initial initial <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Preglednica 39: Karakteristične vrednosti mejnega tlaka p_L za viadukt 6-1 Table 39: Characteristic values of the limit pressure p_L for viaduct 6-1

preperino podlage, smo izvedli en sam test. * velikih odporih zemlj., Pri

ocenimo na 7000 kPa

 p_L z globino, kot je upoštevan v izračunih

3.5.8.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za oba objekta je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednicah 40 in 41.

Preglednica 40: Podatki o objektu, pilotih in številu presio. testov za levi del viadukta 6-1 Table 40: Structure and pile data with the number of PMT for the left side of viaduct 6-1

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	ø _{pilota} (m)	Debelina mehkih tal (m)
346,0	10	8/2	8	3	11,0	1,0	1,25	10,0

pL (kPa)

– Inž. ocena – Statistika

8000

4000

0

0

2

4

12

Preglednica 41: Podatki o objektu, pilotih in številu presiometrskih testov za desni del nadvoza 4-2

Table 41: Structure and pile data with number of PMT for the right side of crossover 4	4-2
--	-----

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	∮ _{pilota} (m)	Debelina mehkih tal (m)
38,0	2	7/2	6	2	13,0	2,0	1,25	9,0

Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov, z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5. V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$.

Sledi prikaz rezultatov vseh postopkov, za viadukt 6-1 (Preglednica 42) in nadvoz 4-2 (Preglednica 43).

Preglednica 42: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za viadukt 6-1	
Table 42: Calculation results of bearing capacity (R_{dop}) for viaduct 6-1	

	Postopek izračuna	Projektr	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		4375	3941
Ia	korelacijskih faktorjev ξ	PP2		6108	4363
		PP1		5498	4953
11	EC 7-1 z upoštevanjem	PP2		7703	5502
10	statistika	PP1	Fronk	4158	3746
		PP2	гтанк	5830	4164
		PP1		5655	5095
10	EC 7-1 z upoštevanjem	PP2		7889	5635
10	previdna ocena	PP1	Fronk	4279	3855
		PP2	гтанк	5973	4266
2	z upoštevanjem globalnih varnostnih faktorjev				2841

	Postopek izračuna	Projektr	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		6067	5466
1a	korelacijskih faktorjev ξ	PP2		8419	6014
		PP1		8158	7349
11	EC 7-1 z upoštevanjem b karakteristične vred statistika	PP2		11347	8105
ID .		PP1	Erople	6197	5583
	Statistina	PP2	гтанк	8623	6160
		PP1		8235	7419
1.0	EC 7-1 z upoštevanjem	PP2		11439	8170
IC	previdna ocena	PP1	Erople	6257	5637
	providina ocona	PP2	гтанк	8694	6210
2	z upoštevanjem globalnih varnostnih faktorjev				4271

Preglednica 43: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-2 Table 43: Calculation results of bearing capacity (R_{dop}) for crossover 4-2

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

3.5.8.6 Primerjava rezultatov

Grafikon na sliki 26 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za viadukt 6-1, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali zelo konzervativne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, odstopajo za največ 50% (previdna ocena). Maksimalno, 98% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 79%. Pri izračunu za nadvoz 4-2 so odstopanja podobna, vendar nekoliko nižja (Slika 27). Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Iz rezultatov, podanih v preglednici 44, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za

primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji viadukta 6-1 je dobljeni faktor enak približno 1,28, na lokaciji nadvoza 4-2 pa nekoliko višji in je enak 1,37. Podobno velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c).

Slika 26: Prikaz rezultatov izračunov R_{dop} za viadukt 6-1 Figure 26: Calculation results of R_{dop} for viaduct 6-1

Preglednica 44: Varnostni faktorji F vseh štirih postopkov računa nosilnosti

I akasiin in akisht			Posta	pki rač	Fakto	Čt untin			
Lokacija in ob	PP	1a	1b	1c	2	1a/1b	1a/1c	SI. Vrun	
	rrig dulat 6 1	PP1	2,312	1,803	1,793	2,8	1,283	1,290	2
Lešnica -	Viadukt 6-1	PP2	2,088	1,623	1,621	2,8	1,287	1,288	Z
Kronovo		PP1	2,411	1,767	1,764	2,8	1,365	1,367	2
	nauvoz 4-2	PP2	2,192	1,602	1,601	2,8	1,368	1,369	

Slika 27: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-2 Figure 27: Calculation results of R_{dop} for crossover 4-2

3.5.9 A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Lenart - spodnja Senarska, podvoz 3-20 in nadvoz 4-5

Na lokaciji sta obravnavana dva objekta, podvoz 3-20 in nadvoz 4-5, oba temeljena globoko, na uvrtanih pilotih.

3.5.9.1 Uvod k lokaciji

Območje podvoza 3-20 se nahaja v lokalno oblikovani dolini s približno 50 m širokim ravnim dnom in vlažnimi do zamočvirjenimi površinami znotraj planotastega in zaobljenega gričevja. Ozka dolina je na ravnem dnu in v prehodih v položna pobočja prekrita z aluvialnimi nanosi (Q_{al}) , ki so sestavljeni iz pretežno tanke glinene skorje (Q_{alg}) in tudi relativno tanke cone z menjavajočimi se glinami, melji in peski (Q_{alm}) . Glinena skorja, ki ne presega debeline 1 m, je pretežno težko gnetna in podrejeno srednje gnetna ter jo tvorita pusta glina in glinast melj. Pod njo je v sredini doline do 5 m debela cona srednje do težko gnetne in v tankih conah tudi lahko gnetne puste in mastne gline ter glinastega melja in rahlega do srednje gostega peščenega melja ter peska. Organske snovi in prod se pojavljajo v sledovih. Pod nanosi se pojavljajo pliokvartarne plasti težko gnetne do poltrdne, večinoma mastne gline (Pl/Q_g). Sediment je v tej globini močno peščen in gruščnat, primešana neglinena zrna so preperela in oksidirana. Podlaga, ki se pod dnom doline pojavi v globini približno 6-7 m, je prisotna z miocenskimi sedimenti (ML). V tem prostoru v sestavi podlage prevladuje poltrdna do trdna laporasta mastna glina s prehodi v glinovec in meljevec. Sloji so praktično horizontalni.

Nadvoz 4-5, s katerim bo deviacija regionalne ceste premostila avtocesto, poteka preko praktično ravnega do lokalno delno depresijskega prostora vzhodnega obrobja Pesniške doline. Na površini je odložena približno 1,5 do 3,5 m debela plast pretežno težko gnetne in podrejeno srednje gnetne puste gline in glinastega melja (Q_{alg}). Sledi 6-8 m debela cona s prevladujočo srednje do lahko gnetno glino in pogostimi vložki rahlega peska (Q_{alm}). Razmočene gline so visoko plastične in prehajajo v organske gline, te pa v močno organske melje in peske z večjimi kosi pooglenelega lesnega drobirja. V bazi zasipane doline je do 2 m debela plast srednje gostega peščenega in v glavnem dobro granuliranega proda (Q_{alp}). Pod globino približno 9,5-10,5 m se pojavi pliocenska (*Pl*) osnova, ki jo predstavlja pretežno gost do zelo gost meljast do enozrnat pesek in peščen melj kot staro aluvialni zasip tektonskega jarka.

3.5.9.2 Vrtine na lokaciji z rezultati PMT

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 45. Preiskave smo izvajali avgusta 2001, v vrtinah z oznako ALO ter februarja in junija 2005, v vrtinah z oznako LSO. Vse preiskave smo izvajali s sondo BX z membranami različnih togosti. Vrtino za izvedbo testa smo pripravili predhodno, z vrtalno glavo premera 66 mm.

Pri nadaljnjih izračunih nosilnosti podvoza 3-20 smo upoštevali rezultate preiskav izvedenih v vrtinah ALO-5 in LSO-4, nadvoza 4-5, pa v vrtinah ALO-20, LSO-34 in LSO-37.

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	3,8	Sivorjava težko gn. do poltrdna glina	С	560	5,97	-
AT 0-5	4,6	Sivorjava srednje do težko gnetna glina	С	370	2,64	-
ALO-5	6,5	Poltrdna do trdna glina (mehak meljast plavkast lapor)	CS	1970	11,29	-
	3,2	Size de questle rehel meli in recele	МТ	260	1,38	-
AT 0-20	4,2	Siv do svetio rener meij in pesek	NIL	560	2,86	-
71LO-20	13,1	Svetlo siv zelo gost melj s tankimi vložki peska ML-SM	ML	6000	65,0	-
	3,7	Drobljiv melj, navlažen, sr. do t. gn., svetlo rjav	CS	500	3,7	8,0
LSO-4	5,7	Glinast in peščen melj z organskimi ostanki, peščeno, cm sloji peska, sivorjavo			4,5	10,5
	10,9	Meljast laporovec, p.t. do t. siv, do cm vložki melja	МТ	5000	70,0	150,0
	11,7	in peska	WIL	3200	45,0	110,0
	2,7	Melj, sr. gn/t. gn., lesni drobir, sivo	CS	340	1,9	3,7
LSO-34	8,2	Melj, t. gn., z do 20 cm vložki sr. gn./t. gn. CH, prehodi v SM (nekaj cm), sivo	CS	400	1,5	3,6
	12,6	Melj, mm/cm sloji, prevladuje ML/SM z mm sloji MI, go./p. t., sv. sivo	S	7000	85,0	280
	2,1	Melj/glina, t. gn. in podrejeno sr. gn., peščeno, sivorjavo	CS	300	1,5	3,6
LSO-37	7,4	Glina, t. gn. in podrejeno sr. gn., prehodi v MI, tanki vložki ML, sivorjavo	CS	450	2,2	4,2
	12,3	Melj, mm/cm sloji, prevladuje ML/SM z mm sloji MI, go./p. t., močno sljudasto, sv. sivo	S	7000	82,0	250

Preglednica 45: Presiometrske preiskave na lokaciji podvoza 3-20 in nadvoza 4-5

Table 45: Pressuremeter tests at the location of underpass 3-20 and crossover 4-5

Na slikah 28 in 29 je shematsko prikazana geološka sestava tal na lokaciji trase AC Lenart – Sp. Senarska in vse izvedene preiskave na mestu posameznih vrtin, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 .

Slika 28: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji podvoza 3-20 Figure 28: Schematic description of geological profile, p_L and E_0 at the location of underpass 3-20

Slika 29: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-5 Figure 29: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-5

3.5.9.3 Določitev karakterističnih slojev

Podlago na področju podvoza 3-20 smo razdelili v dva karakteristična sloja:

- prvi sloj (*Pl/Q_g*) do globine 7,0 m sestavlja CI-CH srednje do težko gnetno, MH rahlo do srednje gosto,
- in drugi sloj (*ML*) globlje od 7,0 m predstavlja podlago iz meljastega laporovca.

Na področju nadvoza 4-5 smo podlago razdelili v tri karakteristične sloje:

- prvi sloj (*Q*_{alg}) do globine 3,4 m sestavlja ML-CL, težko gnetno,
- drugi sloj (Q_{alm}) do globine 10,5 m predstavlja CL/CH, ML srednje gnetno, lokalno lahko gnetno,
- in tretji sloj (*Pl*) globlje od 10,5 m predstavlja pliocensko osnovo, ML/SM gosto/zelo gosto/poltrdno.

3.5.9.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.9.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov, je določitev karakterističnih vrednosti posameznega sloja dokaj enostavna, saj imamo v večini primerov na voljo samo en rezultat presiometrske meritve na sloj. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti. V primeru izračuna na lokaciji vrtine ALO-5 (podvoz 3-20), v podlagi ni bilo izvedenega presiometrskega testa. Glede na popis vrtine in potek vrtanja, smo tako za podlago privzeli rezultat iz najbližje vrtine (LSO-4).

3.5.9.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 46 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za podvoz 3-20, v preglednici (Preglednica 47), pa za nadvoz 4-5. Prav tako so karakteristične

vrednosti prikazane tudi iz tabele rezultatov presiometrske preiskave, na sredini slik (Priloga A32 in Priloga A35).

Preglednica 46: Karakteristične vrednosti parametrov presio. preiskav za podvoz 3-20
Table 46: Characteristic values of the pressuremeter tests parameters for underpass 3-20

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Pl/Q_g(1)$	507,5	100,5	4	342,3	1,89	6,34	5,4	2,1		
prep. ML			1	1970	11,3	-	5,7	-		
ML (2)	4100	1272,8	2	1006,4	28,4	83,5	14,0	1,9		

Na mestu podvoza 3-20 v zgornjem sloju (Q_{alg} - glineni pokrov) nismo imeli nobenega podatka, zato tega sloja nismo niti upoštevali in smo v izračunih, ki sledijo, prvi podatek upoštevali šele od globine 3,5 m naprej. Poleg tega pa bodo piloti izdelani do 4,0 m pod sedanjim nivojem terena, kar pomeni, da ta sloj na nosilnost ne bo vplival. Vidimo lahko tudi, da je bil izveden le en test v razrahljani podlagi, (ALO-5 na globini 6,5 m - prep. *ML*) katerega karakteristike smo v izračunih nosilnosti upoštevali.

Preglednica 47: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-5 Table 47: Characteristic values of the pressuremeter tests parameters for crossover 4-5

				Karakteristična vred.					
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
$Q_{alg}(1)$	300	40	3	234,2	1,15	3,53	4,8	1,57	
$Q_{alm}(2)$	470	81,9	3	335,4	1,07	3,2	3,4	1,58	
<i>Pl</i> (3)	6666,7	577,4	3	5715	59,6	230,1	10,5	2,89	

Na mestu nadvoza 4-5 lahko vidimo, da v sloju nad pliocensko osnovo nismo izdelali nobenega testa. Vzrok je premajhna debeline sloja, ki je enaka približno 1 m. Tu se pojavljalo predvsem srednje gosti, tudi rahli, peščeni in v glavnem dobro granulirani prodi.

V preglednici 48 je prikazan način določevanja karakterističnih vrednosti po statistični

definiciji, le za nadvoz 4-5 ter le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način, prav tako vrednosti za podvoz 3-20.

3.5.9.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A33 in Priloga A36) in za nadvoz 4-5, še v preglednici 48.

p _L (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena 1c	Inženirska Ocena 2	0	р. (k 4000 —————————————————————————————————	xPa) 8000 ena
1 0-3,4 m	260 340 300	300	40	300	234	260	260* 340	2	Statist	
2 3,4-10,5 m	400 450 560	470	81,9	450	335	450	450 400*	6		
$\begin{array}{c} 3\\ 10,5 \text{ m} \rightarrow \end{array}$	7000 7000 6000	6666,7	577,4	7000	5715	7000	6000 7000	8		_
* Upoš merit	tevali sm vah, pribl	no slabš ližno na	e vredi meji m	nosti, k ed sloji	ti se po (Priloga	ojavijo a A37)	v več			

14 (**m**) **z**

16

Preglednica 48: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-5 Table 48: Characteristic values of the limit pressure p_L for crossover 4-5

 p_L z globino, kot je upoštevan v izračunih

3.5.9.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za oba objekta določili karakteristične vrednosti parametrov (ocena oz. določitev previdne ocene), ki so prikazani v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A34 in Priloga A37) in za nadvoz 4-5, še v preglednici 48.

3.5.9.5 Račun nosilnosti vertikalno obremenjenih pilotov

Za oba objekta je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednicah 49 in 50.

Preglednica 49: Podatki o objektu, pilotih in številu presiometrskih testov za podvoz 3-20 Table 49: Structure and pile data with the number of pressuremeter tests for underpass 3-20

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}	D (m)	d (m)	Debelina
objekta (m)	podpor	vseh/PMT	PMT	slojev	<i>(m)</i>	D (m)	P pilota (M)	mehkih tal (m)
27,0	2	3/2	7	2	6,0	4,0	1,0	7,0

Preglednica 50: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-5 Table 50: Structure and pile data with the number of pressuremeter tests for crossover 4-5

Dolžina	Število	Število vrtin	Število	Št. karakt.	L _{pilota}) h (m)	Debelina
objekta (m)	podpor	vseh/PMT	PMT	slojev	$(m)^{D}$) Ψpilota (m)	mehkih tal (m)
118,0	7	6/3	9	3	13,0 2,0	1,25	10,5

Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav smo izračunali nosilnost vertikalno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5. V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$.
Sledi prikaz rezultatov vseh postopkov za podvoz 3-20 (Preglednica 51) ter nadvoz 4-5 (Preglednica 52).

Preglednica 51: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za podvoz 3-20 Table 51: Calculation results of bearing capacity (R_{dop}) for underpass 3-20

	Postopek izračuna	Projektn	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		3340	3009
Ta	korelacijskih faktorjev ξ	PP2		4695	3353
		PP1		2375	2139
11	EC 7-1 z upoštevanjem	PP2		3267	2334
10	statistika	PP1	Fronk	1799	1621
	5	PP2	гтанк	2477	1769
		PP1		4197	3781
10	EC 7-1 z upoštevanjem	PP2		5902	4216
10	previdna ocena	PP1	Fronk	3201	2884
		PP2	гтанк	4503	3217
2	z upoštevanjem globalnih varnostnih faktorjev				2410

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

Preglednica 52: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-5
Table 52: Calculation results of bearing capacity (R_{dop}) for crossover 4-5

	Postopek izračuna	Projektr	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		6040	5442
Ta	korelacijskih faktorjev ξ	PP2		8379	5985
		PP1		6876	6196
1h	EC 7-1 z upoštevanjem	PP2		9522	6801
10	statistika	PP1	Fronk	5198	4683
	5	PP2	гтанк	7200	5143
		PP1		8209	7395
10	EC 7-1 z upoštevanjem	PP2		11417	8155
10	previdna ocena	PP1	Fronk	6222	5606
		PP2	гтанк	8658	6184
2	z upoštevanjem globalnih varnostnih faktorjev				3996

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.5.9.6 Primerjava rezultatov

Slika 30: Prikaz rezultatov izračunov R_{dop} za podvoz 3-20 Figure 30: Calculation results of R_{dop} for underpass 3-20

Grafikon na sliki 30 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev, za podvoz 3-20, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali dokaj realne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 1, 33% nižjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pa 33% višjo vrednost od tiste, izračunane po dosedanji praksi (2). Maksimalno, 75% odstopanje (nosilnost izračunana po EC 7-1 je višja od nosilnosti dobljene po dosedanji praksi) dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 57%. Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Pri izračunu za nadvoz 4-5 so vrednosti nosilnosti pilotov (R_{dop}) malo drugačne (Slika 31). Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali dokaj konzervativne rezultate. Rezultati, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, odstopajo za največ 55%. Maksimalno, 104% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 85%. Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Slika 31: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-5 Figure 31: Calculation results of R_{dop} for crossover 4-5

Iz rezultatov, podanih v preglednici 53, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji podvoza 3-20 je dobljeni faktor med 1,33 in 1,36, na lokaciji nadvoza 4-5, pa je enak 1,34. Podobno velja tudi, ko primerjamo varnostne faktorje izračunov po osnovni metodi in po altrnativni metodi kot previdna ocena (1a/1c).

Preglednica 53: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti Table 53: Factors of safety *F* for all of the bearing capacity calculation procedures

Lokacija in objekt			Post	opki rač	Faktor med		Č4 matin		
		РР	1a	<i>1b</i>	1c	2	1a/1b	1a/1c	Si. Vriin
	podvoz 3-20	PP1	2,395	1,762	1,763	2,8	1,360	1,359	2
Lenart – sp.		PP2	2,149	1,615	1,581	2,8	1,331	1,359	
Senarska	nadvoz 4-5	PP1	2,398	1,786	1,778	2,8	1,342	1,348	- 3
		PP2	2,180	1,627	1,613	2,8	1,340	1,352	

3.5.10 A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Spodnja Senarska - Cogetinci, nadvoz 4-1, 4-3, 4-4, 4-6 in most 5-1

Na lokaciji obravnavamo pet objektov, nadvoze 4-1, 4-3, 4-4 in 4-6 ter most 5-1, ki so temeljeni globoko, na uvrtanih pilotih.

3.5.10.1 Uvod k lokaciji

Sama geološka zgradba preiskanega prostora je v bistvu dokaj enostavna ter jo v glavnem lahko podamo z glineno in polhribinsko izpolnitvijo gričevja in različnimi oblikami od Pesnice ter večjih potokov odloženih sedimentov. Osnovo obravnavanega prostora in sploh celotne Slovenske gorice gradijo spodnje, srednje in zgornje miocenski skladi, ki si starostno sledijo od Maribora v smeri proti vzhodu. Kljub različni starosti (v predelu AC Sp. Senarska -Cogetinci so to v glavnem zgornji miocenski različki) so si sedimenti podobni in smo jih združili v enovito miocensko starost (*M*). Za te sedimente je značilna nehomogena zgradba na večjih razsežnostih, ki se kaže bodisi v ritmični menjavi slojev poltrdnih do trdnih laporastih glin in nevezanega melja in peska, bodisi lokalno v večjih debelinah prevladuje glina ali pesek. Pojavljajo se tudi drobnozrnati kremenovi prodi, grobi peski in plošče peščenjaka, ki pa so v splošni sestavi podrejeni. Zaradi laporastega izgleda, značilne zelo tanke in ritmične slojevitosti in istočasno ugotovljenih svojstev poltrdne do trdne zemljine, smo te polhribine poimenovali mehki lapor (*ML*). Polhribine miocena se v pobočjih pojavljajo pod 5-10 m debelo mlajšo glineno skorjo in preperino. Zaradi svoje izrazite raznolikosti je miocenskim sedimentom težko pripisati povprečne geomehanske vrednosti.

V predelu vzhodno od Sp. Senarske (na območju nadvoza 4-1 in 4-3 ter mostu 5-1) je teren na grebenih oblikovan izrazito planotasto. Tu je miocensko hribovje prekrito s staro kvartarnimi in predkvartarnimi glinenimi in glineno-peščenimi terasami, večkrat se pojavijo tudi plasti ter leče peska in proda (*Pl/Q*). Na zaobljenem gričevju in na pravih planotah v površinski sestavi absolutno prevladujejo glineni različki pliokvartarja (*Pl/Q_g*), pod njimi pa je cona mešanih ali tanko slojevitih navlaženih glin, glinastih in peščenih meljev, peskov in prodov (*Pl/Q_p*). Pretežno povsod okrog spodnjih delov grebenov, ob vznožjih pobočij in na terasastih izravnavah nad Pesnico se vzporedno z gričevjem vlečejo ozke in nizke glinene terase ter položne glinene izravnave (*Q_g*), na iztekih prečnih grap in zajed pa so oblikovani manjši pahljačasti vršaji. V obeh primerih nastopajo pliokvartarju podobne težko gnetne in poltrdne mastne in puste ter meljne gline, melji in rahli peski, v grapah je primešan še pooglenel in razpršen rastlinski drobir. Material je pretežno lokalnega nastanka in predstavlja krajši transport z bližnjih pobočij ter zajezitvene nanose, okarakterizirajo pa ga podobne materialne vrednosti kot so podane za pliokvartarne glinene terase (*Pl/Q_g*).

Doline v območju nadvozov 4-4 in 4-6, smo kartirali kot mlado kvartarne aluvialne nanose (Q_{al}) . Debelina izpolnitev dolin znaša 2,5–8,0 m. V sestavi aluvija moramo ločiti glineno skorjo (Q_{alg}) , ki v debelinah 2–5 m nastopa pod sedanjimi površinami. Tvorijo jo pretežno srednje do težko gnetne mastne gline ter mastni melji, podrejena sta pusta in meljna glina in melj. Pod glineno zaporo je različno debel sloj rahlega peska, peščenega in glinastega melja (Q_{alm}) , ki je pomešan s sledovi proda in predvsem z vložki razmočenih glin, pooglenelega rastlinskega drobirja ter kosi lesa. Celotna plast je prepojena z vodo, ki je ujeta med nepropustno površinsko skorjo in podlago ter je zato navadno lahko do največ srednje gnetna,

oziroma rahla. Debelina razmočene in razrahljane zemljine je 1-7 m. Na dnu dolin se lokalno pojavlja 1-3 m debela plast srednje gostega drobnega proda (Q_{alp}).

3.5.10.2 Vrtine na lokaciji z rezultati PMT

Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 54. Preiskave smo izvajali oktobra 2004 in od avgusta do decembra 2005, v vrtinah z oznako SCO. Večino preiskav smo izvajali s sondo BX. Mehkejše in tanjše membrane smo uporabili za mehke gline in melje, debelejše in bolj toge membrane, pa za tršo podlago (v našem primeru lapornato). Vrtino za izvedbo testa smo pripravili predhodno z vrtalno glavo premera 66 mm. Preiskave v nekoherentnih zemljinah pa smo izvajali s sondo AX, ki ima gumijasto membrano zaščiteno s prirezano kovinsko cevjo. Običajno smo sondo AX na globino testa zabili.

Pri nadaljnjih izračunih nosilnosti nadvoza 4-1 smo upoštevali rezultate preiskav izvedenih v vrtinah SCO-1 in SCO-1D, nadvoza 4-3 v vrtinah SCO-5A in SCO-5C, nadvoza 4-4 v vrtinah SCO-10 in SCO-10B, nadvoza 4-6 v vrtinah SCO-21 in SCO-22A ter mostu 5-1 v vrtinah SCO-6B in SCO-7A.

Preglednica 54: Presiometrske preiskave na trasi Sp. Senarska - Cogetinci Table 54: Pressuremeter tests on the motorway line Sp. Senarska - Cogetinci

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)	E _R (MPa)
	3,4	Zelo meljasta in peščena glina, t. gn. do pol trdna,	C	850	7,3	10
SCO-1	4,1	sivorjava, slojevito	C	900	8	13,5
	9,7	Laporovec, gost, organske prevleke, sljudast, siv	ML	>7000	71	300
SCO-1D	2,7	Pusta do mastna glina, rahlo do močno peščeno in gruščnato, t.gn., sivorjavo	CS	650	5,8	11
	5,7	Peščen melj in meljast pesek, mm/cm vložki p.t. lapornate gline in cm/dm plošče peščenjaka, go./z.go., sivo	CS	4000	49	280
	9,7	Glinast do peščen melj in meljast pesek v 20-50 cm debelih plasteh, laporast izgled, nevezan pesek mm/cm ploščice peščenjaka p.t./tr., z.go, sivo	ML	5300	82	470

»se nadaljuje ...«

»... nadaljevanje«.

					-	
	2,8	Glinast melj in pusta glina, različno peščeno in gruščnato, t.g./p.t., sivoriavo in rumenoriavo	CS	1600	16	36
SCO-5A	8,6	Laporast glinast in masten melj ter mastna glina v		4000	30	60
	9,8	mm/cm slojih, po 10-20 cm debeli vložki peska, p.t./tr., sv. do t. sivo	ML	4300	41	160
	2,2	Glinast melj in pusta glina, peščeno, preperel pesek in prod. p.t./tr., sivoriavo	CS	1850	15,5	80
SCO-5C	5,5	Laporast glinast in masten melj v mm/cm slojih, v sledovih peščeno, p.t./tr., sivo	ML	3500	33	65
	9,8	Laporast glinast in masten melj ter glina, cm/dm vložki zbitega peska, več ploščic peščenjaka v debelini do 2 cm, p.t./tr., sivo	ML	4800	32	135
	2,7	Mastna glina, malo peščeno, mm/cm vložki	CS	650	3,8	8,7
	3,5	peščenega melja, t.g. do s.g., sivorjavo	CS	600	3,3	6
SCO-6B	6,0	Glinast do masten laporast melj s tankimi sloji peska, p.t./tr. in z.go., sivo	ML	4200	39	130
	8,9	Laporast masten melj in glina, mm/cm sloji s tankimi vložki peščenega melja, tr., t. sivo	ML	2300	60	145
SCO 74	6,3	Laporast glinast in masten melj, mm/cm sloji,	М	3800	80	180
5C0-7A	8,7	p.t./tr., sivo	IVIL	3400	83	150
	1,8	Meljasto peščen zaglinjen melj, težko gneten, sivorjav	CS	410	3,3	12,5
0.00 10	4,7	Glina z lesenimi vložki, sr. do težko gnetna, kosi	CC	210	1,1	3
SCO-10	5,5	lesa	CS	310	1,8	3,2
	13,7	Zameljena glina, pol trdna do trdna, siva, z 10 cm vložki laporja in peska	ML	5900	45	170
	2,0	Peščen melj in meljast pesek, do 10 cm debeli vložki s.g. mastne gline, pooglenel lesni drobir, kosi lesa, rahlo, mokro, sivo	CS	200	1	3,3
SCO- 10B	7,6	Meljast in enozrnat pesek, v sledovih organsko, rahlo, mokro, sivo	S	260	1,3	2
	12,1	Laporast glinast in masten melj z 10-15 cm debelimi vložki peska, p.t./tr. in z.go., sivorjavo in rumenorjavo	ML	5000	78	370
	4,0	Glina z organskimi primesmi, navlažena, sr. gn., temno sivo, cm/dm plasti peska in laporja	CS	150	0,7	2,4
SCO 21	5,3	Melj cm/dm sloji, rahlo, srednje gnetno, do 5 cm vložki šote, temno sivo	CS	320	1,1	4,0
500-21	6,3	Meljasto peščeno, t. gn. do poltrdno, sv. sivo, razpršen poogleneli lesni drobir	М	520	2,5	9,7
	10,7	Melj in pesek, gost do zelo gost, sv. sivo, organski drobir, mm/cm plasti gline	CS	6000	47	180
	2,7	Mastna glina, manjši kosi lesa, vlažno, s.g., sivo	CS	210	1	2,8
SCO- 22A	5,8	Tanko slojevita menjava glinastega do peščenega melja, peska in mastne do organske gline, l.g./s.g. in ra., razmočeno, sivorjavo	CS	590	3,1	13

Na slikah 32, 33, 34, 35 in 36 je shematsko prikazana geološka sestava tal na lokaciji trase AC Sp. Senarska - Cogetinci in vse izvedene preiskave na mestu posameznih vrtin, z izmerjenimi mejnimi tlaki p_L in moduli prve obremenitve E_0 .

Slika 32: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-1 Figure 32: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-1

Slika 33: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-3 Figure 33: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-3

Slika 34: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-4 Figure 34: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-4

Slika 35: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji nadvoza 4-6 Figure 35: Schematic description of geological profile, p_L and E_0 at the location of crossover 4-6

Slika 36: Shematski prikaz geološke sestave tal, p_L in E_0 na lokaciji mostu 5-1 Figure 36: Schematic description of geological profile, p_L and E_0 at the location of bridge 5-1

Kjer se geologija vzdolž objekta močno spreminja, smo skupaj z geologom izbrali povprečne debeline posameznih karakterističnih slojev, ki so v nadaljevanju podane in upoštevane v izračunih.

3.5.10.3 Določitev karakterističnih slojev

Podlago na področju nadvoza 4-1 smo razdelili v tri karakteristične sloje:

- prvi sloj (Pl/Q_g) do globine 5,4 m sestavlja CL/CH težko gnetna do pol trdna,
- drugi sloj (Pl/Q_p) do globine 8,5 m ML in GM srednje gost,
- in tretji sloj (*ML*) globlje od 8,5 m predstavlja lapornato podlago, ML/MH/SM pol trdno/trdno/zelo gosto.

Na področju nadvoza 4-3 smo podlago razdelili v dva karakteristična sloja:

- prvi sloj (Pl/Q_g) do globine 5,0 m sestavlja ML/CL, težko gnetno do poltrdno,
- in drugi sloj (*ML*) globlje od 5,0 m predstavlja lapornato podlago, ML/MH pol trden/trden.

Na področju nadvoza 4-4 smo podlago razdelili v tri karakteristične sloje:

- prvi sloj (Q_s) do globine 2,5 m sestavlja ML težko gneten,
- drugi sloj (Q_{alm}) do globine 9,0 m ML srednje gost, OH/CH srednje do težko gnetna,
- in tretji sloj (*ML*) globlje od 10,5 m predstavlja lapornato podlago.

Na področju nadvoza 4-6 smo podlago razdelili v dva karakteristična sloja:

- prvi sloj (*Q_{alm}*) do globine 8,5 m sestavlja SM-GM rahel, ML srednje gost, SM/GP srednje gost,
- in drugi sloj (Q_{alp}) globlje od 8,5 m predstavlja plast srednje gostega drobnega proda.

Na področju mostu 5-1 smo podlago razdelili v dva karakteristična sloja:

- prvi sloj (*Pl/Q_g*) do globine 4,8 m sestavlja CL/ML težko gnetno/pol trdno, CH srednje do težko gnetna, ML/SM rahel/srednje gost, GM srednje gost,
- in drugi sloj (*ML*) globlje od 4,8 m predstavlja lapornato podlago, ML/MH pol trden do trden.

3.5.10.4 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev: mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve za posamezni sloj.

3.5.10.4.1 Karakteristične vrednosti v posamezni vrtini

Za prvega od postopkov računa nosilnosti pilotov, je določitev karakterističnih vrednosti posameznega sloja dokaj enostavna, saj imamo v večini primerov na voljo samo en rezultat presiometrske meritve na sloj. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine nato se s korelacijskimi faktorji določi karakteristična vrednost nosilnosti. Zaradi slabega testa v podlagi, na lokaciji vrtine SCO-22A (nadvoz 4-6), smo v izračunu glede na napredovanje vrtanja, popis vrtine in SPT rezultate, za podlago privzeli rezultat iz vrtine SCO-21.

3.5.10.4.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 55 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za

nadvoz 4-1, v preglednici 56 za nadvoz 4-3, v preglednici 57 za nadvoz 4-4, v preglednici 58 za nadvoz 4-6 ter v preglednici 59 za most 5-1. Prav tako so karakteristične vrednosti prikazane tudi v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A38, Priloga A41, Priloga A44, Priloga A47 in Priloga A50).

Preglednica 55: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-1 Table 55: Characteristic values of the pressuremeter tests parameters for crossover 4-1

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Pl/Q_g(1)$	875	35,4	2	816,9	6,84	7,7	8,4	1,2		
$Pl/Q_p(2)$	-	-	1	650	5,8	11,0	8,9	1,9		
ML(3)	5433,3	1504,4	3	2958,8	39,7	178,3	8,2	3,8		

Vidimo lahko, da je bil izveden le en test v drugem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je dokaj tenak sloj, debeline do 3,0 m in seveda premalo preiskav!

Preglednica 56: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-3 Table 56: Characteristic values of the pressuremeter tests parameters for crossover 4-3

				Karakteristična vred.					
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
$Pl/Q_g(1)$	1725	176,8	2	1434,2	15,2	6,82*	7,3	0,32	
ML (2)	4150	544,7	4	3254	26,1	22,48*	5,9	1,04	

* za nizke vrednosti modula ponovne obremenitve E_R je krivo preveliko odstopanje med vsemi izmerjenimi vrednostmi (glavni vzrok za to so ponavadi poškodovane stene vrtine).

Med obema slojema se pojavi do 1,5 m debel sloj gramoza, katerega karakteristik nismo uspeli izmeriti zaradi premajhne debeline. Nekoliko boljše karakteristike smo tako upoštevali le v računu z globalnimi varnostnimi faktorji (po dosedanji praksi (2)) glede na teste izvedene v bližini tega objekta.

				Karakteristična vred.						
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}		
$Q_g(1)$	-	-	1	410	3,3	12,5	8,05	3,8		
$Q_{alm}(2)$	245	50,7	4	161,7	0,71	1,89	4,64	0,98		
<i>ML</i> (3)	5450	636,4	2	4403,2	23,1	37,4	2,3	3,2		

Preglednica 57: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-4 Table 57: Characteristic values of the pressuremeter tests parameters for crossover 4-4

Vidimo lahko, da je bil izveden le en test v prvem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je majhna debelina sloja do 2,5 m in seveda premalo preiskav!

Preglednica 58: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-6 Table 58: Characteristic values of the pressuremeter tests parameters for crossover 4-6

				Karakteristična vred.					
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
$Q_{alm}(1^*)$	226,7	86,2	3	84,9	0,59	1,7	3,07	2,57	
$Q_{alm}\left(1 ight)$	555	49,5	2	473,6	2,1	7,51	4,5	3,67	
$Q_{alp}(2)$	-	-	1	6000	47,0	180,0	7,8	4,0	

* zgornji sloj smo razdelili na slabši zgornji in boljši spodnji del. Globina oziroma debelina posameznega dela je odvisna od geologije na lokaciji posamezne vrtine.

Vidimo lahko, da je bil izveden le en test v podlagi, katerega karakteristike smo privzeli kot merodajne. Vzrok je tehnične narave in sicer so nam samice onemogočile zabijanje sonde na potrebno globino. V primeru, da smo v podlago predvrtali vrtino, pa se je le-ta pri vstavitvi sonde zarušila.

Na mestu mostu 5-1 v zgornjem sloju (Q_g) debeline do 1,0 m, nismo imeli nobenega podatka. Tega sloja nismo niti upoštevali v izračunih, saj bodo piloti izdelani 4,0 m pod sedanjim nivojem terena.

				Karakteristična vred.					
Sloj	Srednja vrednost p _L (kPa)	Stand. deviacija p _L (kPa)	Število testov	PL (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
$Pl/Q_g(1)$	625	35,4	2	566,9	2,97	4,21	5,27	1,51	
ML(2)	3425	818	4	2079,5	31,9	116,8	7,75	1,4	

Preglednica 59: Karakteristične vrednosti parametrov presiometrskih preiskav za most 5-1 Table 59: Characteristic values of the pressuremeter tests parameters for bridge 5-1

V preglednici 60 je prikazan način določevanja karakterističnih vrednosti po statistični definiciji, le za nadvoz 4-6 ter le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način, prav tako vrednosti za ostale tri nadvoze in most.

3.5.10.4.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v preglednicah, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A39, Priloga A42, Priloga A45, Priloga A48 in Priloga A51) in za nadvoz 4-6, še v preglednici 60.

3.5.10.4.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za vseh pet objektov določili karakteristične vrednosti parametrov (ocena oz. določitev previdne ocene), ki so prikazani v preglednici, na sliki rezultatov presiometrske preiskave, podane v prilogi A (Priloga A40, Priloga A43, Priloga A46, Priloga A49 in Priloga A52 in za nadvoz 4-6, še v preglednici 60.

Preglednica 60: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-6 Table 60: Characteristic values of the limit pressure p_L for crossover 4-6

3.5.10.5 Račun nosilnosti vertikalno obremenjenih pilotov

 p_L z globino, kot je upoštevan v izračunih

Za vseh pet objektov je bilo predvideno globoko temeljenje na pilotih. Vsi podatki o objektu, pilotih, številu slojev in vrtin z izvedenimi testi (PMT), so zbrani v preglednicah 61, 62, 63, 64 in 65.

Preglednica 61: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-1 Table 61: Structure and pile data with the number of pressuremeter tests for crossover 4-1

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	ø _{pilota} (m)	Debelina mehkih tal (m)
105,0	7	5/2	6	3	9,0	4,5	1,5	8,5

8000

12

z (m) 14 Preglednica 62: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-3 Table 62: Structure and pile data with the number of pressuremeter tests for crossover 4-3

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	φ _{pilota} (m)	Debelina mehkih tal (m)
105,0	7	4/2	6	2	8,5	4,5	1,5	5,0

Preglednica 63: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-4 Table 63: Structure and pile data with the number of pressuremeter tests for crossover 4-4

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	∮ _{pilota} (m)	Debelina mehkih tal (m)
105,0	7	4/2	7	3	10,5	2,0	1,5	10,5

Preglednica 64: Podatki o objektu, pilotih in številu presiometrskih testov za nadvoz 4-6 Table 64: Structure and pile data with the number of pressuremeter tests for crossover 4-6

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	$\left \begin{array}{c} L_{pilota} \\ (m) \end{array} \right D(m)$)	Debelina mehkih tal (m)
36,0	3	4/2	6	2	10,5 2,0	1,5	8,5

Preglednica 65: Podatki o objektu, pilotih in številu presiometrskih testov za most 5-1 Table 65: Structure and pile data with the number of pressuremeter tests for bridge 5-1

Dolžina objekta (m)	Število podpor	Število vrtin vseh/PMT	Število PMT	Št. karakt. slojev	L _{pilota} (m)	D (m)	∮ _{pilota} (m)	Debelina mehkih tal (m)
15	2	3/2	6	2	6,0	2,0	1,25	4,8

Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v poglavju 3.5.4.5. V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$.

Sledi tabelaričen prikaz rezultatov vseh postopkov za vseh pet objektov. Rezultati izračunov nadvoza 4-1 so prikazani v preglednici 66, za nadvoz 4-3 v preglednici 67, za nadvoz 4-4 v

preglednici 68, za nadvoz 4-6 v preglednici 69 in za most 5-1 v preglednici 70.

	Postopek izračuna	Projektr	ii pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		8833	7957
Ta	korelacijskih faktorjev ξ	PP2		12460	8900
EC 7-1 z upoštevan 1b karakteristične vred statistika		PP1		7443	6706
	EC 7-1 z upoštevanjem karakteristične vred statistika	PP2	_	10326	7375
		PP1	Eronly	5634	5076
	Statistina	PP2	гтапк	7819	5585
		PP1		11523	10381
1.0	EC 7-1 z upoštevanjem	PP2		16215	11582
IC	previdna ocena	PP1	Fronk	8772	7903
		PP2	гтанк	12349	8821
2	z upoštevanjem globalnih varnostnih faktorjev				6095

Preglednica 66: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-1 Table 66: Calculation results of bearing capacity (R_{dop}) for crossover 4-1

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

Preglednica 67: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-3
Table 67: Calculation results of bearing capacity (R_{dop}) for crossover 4-3

	Postopek izračuna	Projektr	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		8421	7587
Ta	korelacijskih faktorjev ξ	PP2		11725	8375
1b		PP1		9138	8232
	EC 7-1 z upoštevanjem	PP2		12500	8928
	statistika	PP1	Fronk	6942	6254
		PP2	гтанк	9498	6784
		PP1		10621	9568
10	EC 7-1 z upoštevanjem	PP2		14657	10469
10	previdna ocena	PP1	Fronk	8083	7282
		PP2	гтапк	1158	7970
2	z upoštevanjem globalnih varnostnih faktorjev				6105

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

	Postopek izračuna	Projektr	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		10213	9201
Ta	korelacijskih faktorjev ξ	PP2		14113	10081
		PP1		10873	9795
1b	EC 7-1 z upoštevanjem	PP2		15142	10816
	statistika	PP1	Eronly	8257	7439
		PP2	гтанк	11503	8217
		PP1		13043	11750
1.0	EC 7-1 z upoštevanjem	PP2		18030	12879
IC	previdna ocena	PP1	Eronly	9926	8942
	providina ocona	PP2	гтапк	13725	9803
2	z upoštevanjem globalnih varnostnih faktorjev				7703

Preglednica 68: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-4 Table 68: Calculation results of bearing capacity (R_{dop}) for crossover 4-4

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

Preglednica 69: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-6

Table 69: Calculation results of bearing capacity (R_{dop}) for crossover 4-6

	Postopek izračuna	Projekti	ni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		7092	6389
Ta	korelacijskih faktorjev ξ	PP2		9932	7094
1b		PP1		9134	8229
	EC 7-1 z upoštevanjem	PP2		12924	9231
	statistika	PP1	Eronly	6919	6234
	Statistina	PP2	гтапк	9797	6998
		PP1		9139	8234
10	EC 7-1 z upoštevanjem	PP2		12913	9223
IC	previdna ocena	PP1	Fronk	6923	6237
		PP2	гтанк	9788	6992
2	z upoštevanjem globalnih varnostnih faktorjev				4819

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

	Postopek izračuna	Projektr	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		4475	4032
Ia	korelacijskih faktorjev ξ	PP2		6132	4380
		PP1		4825	4347
1b	EC 7-1 z upoštevanjem karakteristične vred statistika	PP2		6453	4610
		PP1	Fronk	3669	3306
		PP2	TTAIK	4907	3505
		PP1		6721	6055
10	EC 7-1 z upoštevanjem	PP2		9191	6565
10	previdna ocena	PP1	Fronk	5128	4619
		PP2	гтанк	7013	5009
2	z upoštevanjem globalnih varnostnih faktorjev				2923

Preglednica 70: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za most 5-1 Table 70: Calculation results of bearing capacity (R_{dop}) for bridge 5-1

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.5.10.6 Primerjava rezultatov

Grafikon na sliki 37 kaže vrednosti nosilnosti pilotov (R_{dop}) za nadvoz 4-1, izračunanih po vseh postopkih z obema projektnima pristopoma. Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali dobre rezultate. Če primerjamo rezultate, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 1, 17% nižjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pa 45% višjo vrednost, od tiste, izračunane po dosedanji praksi (2). Maksimalno, 90% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1, 70%.

Pri izračunu za nadvoz 4-3 so odstopanja podobna (Slika 38). Če primerjamo rezultate, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti dobljenih kot previdna ocena, dobimo po projektnem pristopu 1, 19%, po projektnem pristopu 2, pa 31%, višjo vrednost od tiste, izračunane po dosedanji praksi (2). Maksimalno, 71% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot

previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 57%.

Slika 37: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-1 Figure 37: Calculation results of R_{dop} for crossover 4-1

Podobne rezultate dobimo pri izračunu za nadvoz 4-4 (Slika 39). Če primerjamo rezultate, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 1, 3% nižjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pa 27% višjo vrednost od tiste, izračunane po dosedanji praksi (2). Maksimalno, 67% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 53%.

Slika 38:Prikaz rezultatov izračunov R_{dop} za nadvoz 4-3 Figure 38: Calculation results of R_{dop} for crossover 4-3

Slika 39: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-4

Figure 39: Calculation results of R_{dop} for crossover 4-4

Pri izračunu za nadvoz 4-6 so odstopanja podana na grafikonu 40 in so sledeča. Iz primerjave rezultatov, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti po statistični metodi in dobljenih kot previdna ocena vidimo, da dobimo po projektnem pristopu 1, 29%, po projektnem pristopu 2, pa 45%, višjo vrednost od tiste, izračunane po dosedanji praksi (2). Maksimalno, 92% odstopanje dobimo pri računu z upoštevanjem parametrov dobljenih s statističnim računom, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 71%.

Slika 40: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-6 Figure 40: Calculation results of R_{dop} for crossover 4-6

In kot zadnje sledi še pregled izračunov za most 5-1, čigar odstopanja so podana na grafikonu 41 in so sledeča. Iz primerjave rezultatov, kjer smo upoštavali še modelni faktor, ki ga predlaga R. Frank, pri izračunu karakterističnih vrednosti dobljenih kot previdna ocena, vidimo, da dobimo po projektnem pristopu 1, 58%, po projektnem pristopu 2, pa 71%, višjo vrednost od tiste, izračunane po dosedanji praksi (2). Maksimalno, 125% odstopanje dobimo

pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pri enakih vhodnih podatkih je odstopanje po projektnem pristopu 1 enako 107%.

Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2.

Slika 41: Prikaz rezultatov izračunov R_{dop} za most 5-1 Figure 41: Calculation results of R_{dop} for bridge 5-1

Iz rezultatov, podanih v preglednici 71, lahko utemeljimo konzervativnost rezultatov nosilnosti izračunane po dosedanji praksi (2), saj je varnostni faktor upoštevan pri tem postopku računa daleč najvišji (2,8). Prav tako lahko z izračuni po Evrokodu 7-1 ugotovimo, da je najvišji faktor varnosti upoštevan pri postopku računa po osnovni metodi (1a). Za primerljivost teh rezultatov z rezultati izračunov alternativne metode po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Na lokaciji vseh petih objektov je dobljeni faktor med 1,26 in 1,37. Iz primerjave varnostnih faktorjev

izračunov po osnovni metodi in po alternativni metodi kot previdna ocena (1a/1c), pa so vrednosti faktorja med 1,28 in 1,37.

I aka aita in ak			Posta	pki rač	una		Faktor med		Če metin
Lokacija in ob	уекі	PP	1a	1b	1c	2	1a/1b	1a/1c	Si. vrun
	nadvoz 4 1	PP1	2,282	1,782	1,775	2,8	1,280	1,285	2
	nadvoz 4-1	PP2	2,040	1,620	1,591	2,8	1,259	1,282	Z
	nadvoz 4-3	PP1	2,252	1,738	1,743	2,8	1,296	1,292	2
		PP2	2,040	1,602	1,593	2,8	1,273	1,281	2
Sp. Senarska	1 4 4	PP1	2,238	1,771	1,747	2,8	1,264	1,281	2
- Cogetinci,	nauvoz 4-4	PP2	2,043	1,604	1,593	2,8	1,274	1,282	Z
	noduoz 1 6	PP1	2,454	1,811	1,809	2,8	1,355	1,357	2
	nauvoz 4-0	PP2	2,201	1,615	1,615	2,8	1,369	1,369	Z
	most 5-1	PP1	2,350	1,696	1,715	2,8	1,353	1,370	2
		PP2	2,163	1,599	1,582	2,8	1,264	1,368	2

Preglednica 71: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti Table 71: Factors of safety *F* for all of the bearing capacity calculation procedures

3.5.11 Zaključek

Obravnavali smo 15 različnih objektov, ki bodo ali pa so že izgrajeni v različnih geoloških pogojih, na različnih lokacijah in z različnimi dimenzijami temeljev. Vsi ti objekti so locirani na trasah AC v republiki Sloveniji. Kot je bilo v nalogi že večkrat poudarjeno, je največji problem predstavljalo iskanje lokacij, kjer je število izvedenih presiometrskih testov zadostno. V vseh tukaj predstavljenih primerih smo izvedli vsaj dve vrtini s po tremi ali več testi, kar nam je omogočilo dokaj eksakten izračun. Vendar pri določevanju karakterističnih vrednosti statistično, v večini primerov to ni zadostovalo, tako da s stališča statistike rezultati niso najboljši. Poleg tega so bile statistično določene karakteristične vrednosti parametrov v veliko primerih dosti nižje od pričakovanih vrednosti glede na izkušnje in smo zato določili še vrednosti parametrov s previdno oceno.

V preglednici 72 so za vse obravnavane objekte zbrane in prikazane vrednosti varnostnih faktorjev, upoštevanih pri izračunu nosilnosti po osnovni metodi (1a), alternativni metodi po statistični definiciji (1b), alternativni metodi kot previdna ocena (1c) in po dosedanji praksi

(2). Prve tri metode predstavljajo izračune po Evrokodu 7-1, četrta pa izračune po do sedaj veljavnih francoskih predpisih. Pri izračunu nosilnosti po osnovni metodi (1a) je povprečna vrednost varnostnega faktorja enaka **2,23**, od tega po projektnem pristopu PP1 2,34 (min=2,14, max=2,45), po PP2 pa 2,13 (min=2,04, max=2,24). V povprečju je razlika med vrednostjo varnostnega faktorja določenega po PP1 in PP2 enaka dobrih 9%. Zelo podobno situacijo imamo pri izračunu z alternativno metodo po statistični definiciji (1b), kjer je povprečna vrednost varnostnega faktorja enaka **1,69**, od tega po projektnem pristopu PP1 1,76 (min=1,68, max=1,81), po PP2 pa 1,61 (min=1,58, max=1,65). V povprečju je razlika med vrednostjo varnostnega faktorja določenega po PP1 in PP2 enaka 9,5%. Praktično enake so tudi vrednosti varnostnih faktorjev izračunanih po alternativni metodi kot previdna ocena (1c). Za izračune po sedanji praksi (2), pa je vrednost varnostnega faktorja enaka **2,8**.

Tako lahko sklepamo, da bodo rezultati izračunov nosilnosti po dosedanji praksi (2) najbolj konzervativni, saj je varnostni faktor upoštevan pri tem postopku računa, daleč najvišji (2,8). To smo tekom izračunov na lokacijah vseh obravnavanih objektov tudi ugotovili. Glede na vrednosti varnostnih faktorjev potem sledijo nosilnosti izračunane po osnovni metodi (1a), določene z alternativno metodo po statistični definiciji (1b) in nazadnje še po alternativni metodi kot previdna ocena (1c). Zadnje tri metode zajemajo izračune po Evrokodu 7-1 in bi morale podati podobne vrednosti. Za primerljivost varnostnih faktorjev upoštevanih v izračunu nosilnosti po osnovni metodi (1a), s faktorji upoštevanimi po alternativni metodi po statistični definiciji (1b), je tako nujno potreben modelni faktor, ki ga je predlagal že Frank (1,3). Pri vseh predhodno predstavljenih izračunih je bila določena vrednost tega faktorja med 1,26 in 1,37, njegova povprečna vrednost pa znaša 1,32. Torej lahko zaključimo, da smo, ne glede na včasih zelo pomanjkljive podatke zaradi premajhnega števila podatkov (presiometrskih testov), tudi mi dobili praktično enak modelni faktor kot prof. Frank.

I okacija ju ol	hiald.		Posta	opki rač	una		Fakto	Č4 matin	
Lokacija in ol	уекі	PP	1a	1b	1c	2	1a/1b	1a/1c	Si. vrun
MB - Lenart	viadult 6 1	PP1	2,302	1,773	1,765	2,8	1,298	1,304	5
I. etapa,	VIAUUKI O-I	PP2	2,071	1,597	1,595	2,8	1,297	1,298	5
razcep	windult 6.2	PP1	2,385	1,782	1,764	2,8	1,338	1,351	2
Dragučova	VIAUUKI 0-2	PP2	2,185	1,603	1,600	2,8	1,363	1,365	3
	lavi dal	PP1	2,201	1,675	1,672	2,8	1,314	1,316	2
Cogetinci -	levi dei	PP2	2,078	1,607	1,604	2,8	1,293	1,296	Δ
vucja vas, viadukt 6-3	dooni dol	PP1	2,352	1,733	1,723	2,8	1,357	1,365	2
viudukt o 5	desni dei	PP2	2,237	1,646	1,639	2,8	1,359	1,365	5
		PP1	2,342	1,792	1,787	2,8	1,307	1,311	4
MB - Lenart,	11auvoz 4-2	PP2	2,112	1,604	1,601	2,8	1,316	1,319	4
Pernica	nadvoz 4-3	PP1	2,365	1,773	1,769	2,8	1,334	1,337	4
1 onnou		PP2	2,155	1,619	1,604	2,8	1,331	1,343	4
Maribor - Lenart, I. etapa, nadvoz 4-1		PP1	2,140	1,772	1,772	2,8	1,360	1,360	2
		PP2	2,153	1,581	1,581	2,8	1,362	1,362	Δ
	viadukt 6-1	PP1	2,312	1,803	1,793	2,8	1,283	1,290	2
Lešnica -		PP2	2,088	1,623	1,621	2,8	1,287	1,288	2
Kronovo		PP1	2,411	1,767	1,764	2,8	1,365	1,367	2
	nauvoz 4-2	PP2	2,192	1,602	1,601	2,8	1,368	1,369	
	madwar 2 20	PP1	2,395	1,762	1,763	2,8	1,360	1,359	2
Lenart – sp.	podvoz 3-20	PP2	2,149	1,615	1,581	2,8	1,331	1,359	2
Senarska		PP1	2,398	1,786	1,778	2,8	1,342	1,348	2
	nadvoz 4-5	PP2	2,180	1,627	1,613	2,8	1,340	1,352	5
	naduaz 4 1	PP1	2,282	1,782	1,775	2,8	1,280	1,285	2
	nauvoz 4-1	PP2	2,040	1,620	1,591	2,8	1,259	1,282	Δ
	naduar 1 2	PP1	2,252	1,738	1,743	2,8	1,296	1,292	2
	nauvoz 4-3	PP2	2,040	1,602	1,593	2,8	1,273	1,281	Δ
Sp. Senarska	naduar 4 4	PP1	2,238	1,771	1,747	2,8	1,264	1,281	2
- Cogetinci,	nauvoz 4-4	PP2	2,043	1,604	1,593	2,8	1,274	1,282	Δ
	nadwaz 4 6	PP1	2,454	1,811	1,809	2,8	1,355	1,357	2
	nauvoz 4-0	PP2	2,201	1,615	1,615	2,8	1,369	1,369	2
	most 5 1	PP1	2,350	1,696	1,715	2,8	1,353	1,370	2
	most 3-1	PP2	2,163	1,599	1,582	2,8	1,264	1,368	

Preglednica 72: Varnostni faktorji *F* vseh štirih postopkov računa nosilnosti ($R_{c,k}/R_{c,dop}$) Table 72: Factors of safety *F* for all of the bearing capacity calculation procedures

Zavedamo se, da je račun nosilnosti v veliki meri odvisen od števila testov v posameznem sloju oziroma od števila sondiranj. To pa je bil do sedaj in še vedno je velik problem, saj je število preiskav zaradi omejenih sredstev vedno mnogo premajhno za optimalno dimenzioniranje temeljev. V nadaljevanju naloge smo zato preverili vpliv števila sondiranj z izvedenimi presiometrskimi testi, na izračun dopustne nosilnosti in seveda posledično optimiziranje temeljenja na pilotih.

Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 2, kar smo pokazali tudi v številkah in sicer je to razmerje v povprečju enako dobrih 9%. Ti zaključki veljajo le za skupino vseh zgoraj predstavljenih lokacij/objektov.

3.6 Vpliv števila sondiranj na izračun nosilnosti

3.6.1 Uvod

Pri nastajanju naloge smo naleteli tudi na vprašanje kako na rezultate izračuna nosilnosti pilotov vpliva število sondiranj. Tu sondiranje predstavlja vrtino, v kateri so bili izvedeni vsaj trije presiometrski testi. Da bi dobili odgovor na to vprašanje, smo izbrali dve lokaciji z večjim številom vrtin. Za vsako od lokacij so podatki o podlagi in njeni globini praktično enaki v vseh vrtinah. Tako so tudi izračuni pokazali, da so nosilnosti po konici praktično enake. Zato smo med seboj primerjali le nosilnosti po plašču. Obe lokaciji z dobljenimi rezultati in ugotovitvami sta podani v nadaljevanju.

3.6.2 A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep Dragučova, viadukt 6-1

Na tej lokaciji smo obravnavali viadukt 6-1, kjer je bilo izvedeno večje število vrtin. Natančna geološka zgradba prostora je podana v prvem delu tega poglavja (3.5.4.1). Upoštevali smo vse rezultate presiometrskih testov izvedenih v vrtinah z oznako; DO-3, GV-1, GV-2, GV-3 in GV-4. Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati presiometrskih meritev, so podani tabelarično v predhodnem poglavju (Preglednica 1). Podlago smo na področju viadukta 6-1 razdelili v štiri karakteristične sloje:

- prvi sloj (Q_g) debeline 3,5 m, sestavlja ML/CL CL/CH, srednje do težko gnetno,
- drugi sloj (*Q*_{alm}) do globine 9,0 m, sestavlja ML/CL, lahko/srednje/težko gnetno,
- tretji sloj (Q_{alp}) do globine 10,5 m, sestavlja ML-SM, gost,
- in četrti sloj (*ML*) globlje od 10,5 m, predstavlja lapornato podlago.

Za viadukt je bilo predvideno globoko temeljenje na pilotih premera 1,25 m (ϕ), z dolžino (*L*) 14,5 m in globino odkopa od nivoja temeljenja (*D*) 1,0 m. Opisane dimenzije so prikazane na sliki (Slika 11). Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom $\nu=0,175$.

Nosilnosti plašča vertikalno obremenjenih pilotov smo računali po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.3) - osnovna metoda (Slika 7). Po tej metodi je določitev karakterističnih vrednosti posameznega sloja (p_L , E_0 in E_R) dokaj enostavna, saj imamo v večini primerov na voljo samo en rezultat presiometrske meritve na sloj. Tako se nosilnost ($R_{c,cal}$) izračuna iz rezultatov vsake posamezne vrtine (Preglednica 73). V prilogi A (Priloga A7) je prikazan izračun nosilnosti konice R_b (Q_p) in trenjske nosilnosti plašča pilota R_s (Q_s), za vrtino DO-3. V nadaljevanju pa so tabelarično prikazani vsi rezultati.

Preglednica 73: Izračun nosilnosti plašča pilota v posamezni vrtini na lokaciji viadukta 6-1 Table 73: Calculation of the shaft bearing capacity of the pile in the individual borehole at the location of the viaduct 6-1

Vrtina	$R_{s,cal}(Q_s)$ (kN)
DO-3	3861
GV-1	4260
GV-2	4519
GV-3	4138
GV-4	4289

Nato s korelacijskim faktorjem ξ (ξ_3 ali ξ_4) določimo karakteristično vrednost trenjske nosilnosti plašča pilota $R_{s,k}$. Sledi še izračun dopustne trenjske nosilnosti plašča pilota $R_{s,dop}$. Iz izkušenj vemo, da dobimo bolj zanesljiv izračun nosilnosti, kadar imamo na razpolago veliko količino presiometrskih rezultatov, pri predpostavki, da se geologija vzdolž objekta ne spreminja bistveno. V tem primeru je bilo dejansko izvedenih 5 vrtin, kar je razmeroma veliko. Da bi dobili podatek o vplivu števila sondiranj na rezultate izračuna dopustne nosilnosti plašča pilotov, smo izdelali serijo izračunov. In sicer smo izračunali dopustno trenjsko nosilnost plašča pilota ($R_{s,dop}$) iz rezultatov trenjske nosilnosti plašča pilota ($R_{s,cal}$) za vseh 5 vrtin, za 4 vrtine v katerih smo dobili najvišje vrednosti (4 MAX), za 3 vrtine z najvišjimi vrednostmi (3 MAX), za 2 vrtini z najvišjima vrednostima (2 MAX) ter za vrtino v kateri smo dobili najvišjo vrednost (1 MAX). Enako smo ponovili tudi za najnižje vrednosti (4 MIN, 3 MIN, 2 MIN in 1 MIN). Vse vrednosti so za oba projektna pristopa prikazane v preglednici 74 ter na grafikonu (Slika 42).

Slika 42: Prikaz izračuna $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2 Figure 42: Calculation results of $R_{s,dop}$ for the different number and value of the borehole with PP1 and PP2 design approaches

Preglednica 74: Izračun $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2
Table 74: Calculation of $R_{s,dop}$ for the different number and value of boreholes according to
PP1 and PP2

Število/vrednost	$R_{s,dop}$ (kN)		Odstopanja	Odstopanja (%)
sondiranj	PP1	PP2	PP1/PP2 (%)	PPI $R_{s,dop}(5)/R_{s,dop}(i)$
5	1863	1692	10,0	0
4 MAX	1875	1703	10,0	≈ 0
4 MIN	1788	1622	10,2	4
3 MAX	1869	1698	10,0	≈ 0
3 MIN	1729	1566	10,4	8
2 MAX	1860	1690	10,0	≈ 0
2 MIN	1653	1495	10,5	13
1 MAX	1836	1667	10,1	≈0
1 MIN	1511	1362	10,9	23

Vidimo lahko, da je $R_{s,dop}$ za izračun po PP1, pri upoštevanju vseh najvišjih vrednosti (MAX) praktično identičen, medtem, ko pri upoštevanju najnižjih vrednosti (MIN), pada z manjšanjem števila sondiranj. Podobno se zgodi pri računu po PP2. Ugotovimo lahko, da je izračun po PP2 konzervativnejši (Preglednica 74). V vseh predhodnih izračunih, smo v zaključkih navajali ravno obratno. Razlog tiči v varnostnih faktorjih upoštevanih pri izračunu celotne nosilnosti pilota. Namreč v povprečju je nosilnost po konici pilota nekajkrat večja od nosilnosti po plašču, varnostni faktor s katerim obremenimo nosilnost po konici pri PP1;2, pa je tudi večji (glej poglavje 2.2.1.1.4.2).

Torej, če imamo srečo in kot prvo vrtino testiramo tisto, ki nam da najvišjo nosilnost pilota, dobimo optimalne dimenzije temelja. Žal tega podatka nimamo dokler nismo izvedli vsaj dveh ali več vrtin. V našem konkretnem primeru je bila testirana vrtina, ki nam je dala najvišjo nosilnost pilota, tretja!

Za primerjavo z vrednostmi ξ (Slika 43), smo vrednosti dobljene pri največjem številu sondiranj ($R_{s,dop}(5)$ - saj je ta najbolj zanesljiva) delili z vrednostmi dobljenimi pri manjšem številu sondiranj $R_{s,dop}(i)$. Odstopanja glede na število sondiranj so podana tudi v preglednici 74. Za izračun po pristopu PP1 in PP2, pri enakem številu in vrednosti sondiranj, odstopanj praktično ni. Vidimo, da nosilnost narašča pri večjem številu vrtin, kar pomeni, da bi bilo na predstavljenem objektu smiselno izdelati več vrtin s presiometrskimi meritvami, v primeru, da želimo cenejše temeljenje na pilotih. Hkrati se moramo pri tem zavedati, da zagotavljamo nižji nivo globalne varnosti.

Slika 43: Primerjava $R_{s,dop}(5)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število in vrednost sondiranj po PP1 in PP2

Figure 43: Comparison of $R_{s,dop}(5)/R_{s,dop}(i)$ with correlation factor ξ for the different number and value of boreholes according to PP1 and PP2 design approaches

3.6.3 AC Koper - Lendava, odsek Klanec - Srmin

Na tej lokaciji je bila predvidena izgradnja več kot 11 m visokega nasipa. Prvotni teren na lokaciji predstavljajo aluvijalne naplavine reke Rižane, ki so podane kot dva sloja na grušču (2 do 4 m) in laporni podlagi: vrhnji 5 do 5,5 m debel sloj težko gnetne rjavosive gline ter spodnji 4 do 5,5 m debel sloj organske sive do črne gline, lahko do srednje gnetne konsistence

(ta sloj zelo spreminja karakteristike vzdolž nasipa). Zaradi zelo stisljivih koherentnih tal je bila predvidena izvedba gruščnatih kolov, katerih kakovost smo preverili s presiometrom.

Vrtina	Globina (m)	Zemljina	ozn.	p _L (kPa)	E ₀ (MPa)
V-1	3,25		S	2700	17,3
	4,2			2610	12,1
	8,4	Gruse		2310	16,2
	9,4			1810	10,6
	3,35			1680	20,3
V A	4,3	Gručă	S	1850	25,2
V -4	8,4	Gluse	3	2100	14,5
	9,4			2970	22,4
	3,2			1810	11,0
V-5	4,2	Gruča	S	2140	9,7
	8,4	Gluse	3	2660	15,2
	9,4			2140	9,0
	3,2			1900	11,5
\mathbf{V} 7	4,2	Gruča	S	2240	13,9
V - /	5,7	Gruse		1880	12,4
	6,7			1760	13,8
	2,9	Grušč	S	2235	34,9
V 11	3,9			2220	31,9
v-11	5,9			1530	13,7
	6,9			1320	14,7
	3,1	Grušč	S	1620	18,3
V 12	4,0			2200	34,5
V-13	6,4			1670	36,9
	7,3			2180	43,9
V-15	3,2	Grušč	S	1500	14,2
	4,1			1870	15,9
	6,1			1340	23,3
	7,0			2520	29,0

Table 75: Pressuremeter tests at the location of the embankment Srmin

Preglednica 75: Presiometrske preiskave na lokaciji nasipa Srmin

Vrtalci so vrtine izvedli v oseh gruščnatih kolov, po dva testa v območju zgornjega težko gnetnega sloja ter dva v območju spodnjega mehkejšega sloja. Za preiskave smo uporabili sondo AX, ki je primerna za nekoherentne zemljine in ima gumijasto sondo zaščiteno s

prirezano kovinsko cevjo. Ta je na konici zaključena s konusom in omogoča vstavitev v zemljino z zabijanjem. Upoštevali smo vse rezultate presiometrskih testov izvedenih v vrtinah z oznako; V-1, V-4, V-5, V-7, V-11, V-13 in V-15. Oznake vrtin, opisi zemljin na globini testov, tako kot tudi rezultati presiometrskih meritev, so podani v preglednici 75. V danem primeru nas je zanimala le kakovost izvedenih gruščnatih kolov, zato meritev presiometrskega modula ponovne obremenitve E_R nismo izvajali. Pri računu nosilnosti pa ta modul potrebujemo, zato smo ga izbrali glede na tip zemljine.

Podlago smo na področju nasipa razdelili v tri karakteristične sloje:

- prvi sloj debeline 5,5 m, sestavlja težko gnetna rjavosiva glina,
- drugi sloj do globine 11,0 m, sestavlja organska siva do črna glina,
- in tretji sloj globlje od 11,0 m, predstavlja sloj grušča nad podlago, katerega karakteristike smo privzeli glede na izkušnje, saj v podlagi nismo imeli nobene preiskave.

Čeprav je bila na tej lokaciji predvidena izgradnja visokega nasipa, smo za potrebe te naloge dobljene rezultate presiometrskih meritev uporabili za analizo nosilnosti globoko temeljenega objekta na pilotih premera 1,25 m (ϕ), z dolžino (*L*) 15,5 m in globino odkopa do nivoja temeljenja (*D*) 1,0 m. Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo γ_B =25 kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom *v*=0,175.

Preglednica 76: Izračun nosilnosti plašča pilota v posamezni vrtini na lokaciji nasipa Srmin Table 76: Calculation of the shaft bearing capacity of individual borehole at the location of the embankment Srmin

Sonda / Vrtina	$R_s(Q_s)$ (kN)
V-1	5351
V-4	4735
V-5	4916
V-7	4496
V-11	4389
V-13	4470
V-15	4852

Nosilnosti plašča vertikalno obremenjenih pilotov smo računali po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.3) - osnovna metoda (Slika 7). Po tej metodi določitev karakterističnih vrednosti posameznega sloja ni potrebna, saj v računu uporabljamo dobljene vrednosti meritev. Tako se nosilnost izračuna iz rezultatov vsake posamezne vrtine (Preglednica 76). V prilogi A (Priloga A53) je prikazan izračun nosilnosti konice R_b (Q_p) in trenjske nosilnosti plašča pilota R_s (Q_s), za vrtino V-1.

Slika 44: Prikaz izračuna $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2 Figure 44: Calculation results of $R_{s,dop}$ for the different number and value of boreholes according to PP1 and PP2 design approaches

Nato s korelacijskim faktorjem ξ (ξ_3 ali ξ_4) določimo karakteristično vrednost trenjske nosilnosti plašča pilota $R_{s,k}$ (vrednost nosilnosti konice je zaradi izbranih enakih karakteristik podlage, enaka v vseh vrtinah). Sledi še izračun dopustne trenjske nosilnosti plašča pilota $R_{s,dop}$. Iz izkušenj vemo, da dobimo bolj zanesljiv izračun nosilnosti, kadar imamo na razpolago veliko količino presiometrskih rezultatov, pri predpostavki, da se geologija vzdolž objekta ne spreminja bistveno. V tem primeru je bilo dejansko izvedenih 7 vrtin, kar je razmeroma veliko. Da bi dobili podatek o vplivu števila sondiranj na rezultate izračuna dopustne nosilnosti plašča pilotov, smo izdelali serijo izračunov. In sicer smo izračunali dopustno trenjsko nosilnost plašča pilota ($R_{s,dop}$) iz rezultatov trenjske nosilnosti plašča pilota (R_s) za vseh 7 vrtin, za 6 vrtin v katerih smo dobili najvišje vrednosti (6 MAX), za 5 vrtin z najvišjimi vrednostmi (5 MAX), za 4 vrtine z najvišjimi vrednostmi (4 MAX), za 3 vrtine z najvišjimi vrednostmi (3 MAX), za 2 vrtini z najvišjima vrednostima (2 MAX) ter za vrtino z najvišjo vrednostjo (1 MAX). Enako smo ponovili tudi za najnižje vrednosti (6 MIN, 5 MIN, 4 MIN, 3 MIN, 2 MIN in 1 MIN). Vse te vrednosti so za oba projektna pristopa prikazane v preglednici 77 ter na sliki 44.

Preglednica 77: Izračun $R_{s,dop}$ za različno število in vrednost sondiranj po PP1 in PP2 Table 77: Calculations of $R_{s,dop}$ for the different number and value of boreholes according to PP1 and PP2

Število/vrednost sondiranj	$R_{s,dop}$ (kN)		Odstonania	Odstopanja (%)
	PP1	PP2	<i>PP1/PP2 (%)</i>	$\begin{array}{c} PP1 \\ R_{s,dop}(7)/R_{s,dop}(i) \end{array}$
7	2188	1997	9,6	0
6 MAX	2200	2008	9,6	1
6 MIN	2113	1926	9,7	4
5 MAX	2215	2022	9,5	1
5 MIN	2064	1881	9,8	6
4 MAX	2225	2031	9,5	2
4 MIN	1992	1813	9,9	10
3 MAX	2225	2031	9,5	2
3 MIN	1919	1744	10	14
2 MAX	2234	2040	9,5	2
2 MIN	1873	1702	10,1	17
1 MAX	2248	2053	9,5	3
1 MIN	1772	1607	10,3	23

Vidimo lahko, da je $R_{s,dop}$ za izračun po PP1, pri upoštevanju vseh najvišjih vrednosti (MAX) praktično identičen, medtem ko pri upoštevanju najnižjih vrednosti (MIN), pada z manjšanjem števila sondiranj. Podobno se zgodi pri računu po PP2. Ugotovimo lahko, da je izračun po PP2 konzervativnejši (Preglednica 77). Razlog za takšno odstopanje tiči v

varnostnih faktorjih upoštevanih pri izračunu trenjske nosilnosti plašča pilota.

Slika 45: Primerjava $R_{s,dop}(7)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število in vrednost sondiranj po PP1 in PP2

Figure 45: Comparison of $R_{s,dop}(5)/R_{s,dop}(i)$ with correlation factor ξ for the different number and value of boreholes according to PP1 and PP2 design approaches

Za primerjavo z vrednostmi ξ (Slika 45), smo vrednosti dobljene pri največjem številu sondiranj ($R_{s,dop}(7)$ - saj je ta najbolj zanesljiva) delili z vrednostmi dobljenimi pri manjšem številu sondiranj $R_{s,dop}(i)$. Odstopanja glede na število sondiranj so podana tudi v preglednici 77. Za izračun po pristopu PP1 in PP2, pri enakem številu in vrednosti sondiranj, odstopanj praktično ni. Le pri pri upoštevanju vseh najvišjih vrednosti $R_{s,dop}$ (MAX) imajo le-te rahlo tendenco padanja glede na $R_{s,dop}(7)$. Odstopanja so minimalna in znašajo do 3%. Vidimo, da nosilnost narašča pri večjem številu vrtin, kar pomeni, da bi bilo na predstavljenem objektu smiselno izdelati več vrtin s presiometrskimi meritvami v primeru, da želimo cenejše temeljenje na pilotih. Hkrati se moramo pri tem zavedati, da zagotavljamo nižji nivo globalne varnosti.
3.6.4 AC Koper - Lendava, odsek Klanec - Srmin, izmišljene vrednosti R_s

Zaradi izjemnega ujemanja vpliva števila sondiranj na izračun dopustne nosilnosti plašča pilota pri obeh zgoraj predstavljenih lokacijah (3.6.2 in 3.6.3), smo sklenili preveriti še vpliv korelacijskega faktorja ξ na rezultate. V ta namen smo si za lokacijo Srmin pri zadnjem primeru (3.6.3) izmislili identičen rezultat trenjske nosilnosti plašča pilota v vseh vrtinah. Tako smo vrednost trenjske nosilnosti plašča pilota R_s (Q_s) izbrali in je enaka R_s =4000 kN.

Slika 46: Prikaz izračuna $R_{s,dop}$ za različno število sondiranj po PP1 in PP2 pri privzetih enakih nosilnostih $R_{s,cal}$

Figure 46: Calculation results of $R_{s,dop}$ for the different number and value of boreholes according to PP1 and PP2 design approaches at the same assumed bearing capacities $R_{s,cal}$

Nato je sledila določitev karakteristične vrednosti trenjske nosilnosti plašča pilota $R_{s,k}$, ki ji je sledil še izračun dopustne vrednosti trenjske nosilnosti plašča pilota $R_{s,dop}$. Da bi dobili podatek o vplivu korelacijskega faktorja ξ na rezultate ter posredno vpliv števila sondiranj na

rezultate izračuna dopustne nosilnosti pilotov, smo izdelali serijo izračunov. Izračunali smo dopustne vrednosti trenjske nosilnosti plašča pilota ($R_{s,dop}$) iz rezultatov trenjske nosilnosti plašča pilota (R_s) za 8 sondiranj (korelacijski faktor ξ je za 8 ali več sond enak), 7 vrtin, 6 vrtin, 5 vrtin, 4 vrtine, 3 vrtine, 2 vrtini in za eno samo vrtino. Vse te vrednosti so za oba projektna pristopa prikazane v preglednici 78 ter na sliki 46.

Nosilnost plašča pilota $R_{s,dop}$, pada z manjšanjem števila sondiranj (saj je faktor ξ največji pri eni sami vrtini), za izračun po PP1, kot tudi po PP2. Ugotovimo lahko, da je izračun po PP2 konzervativnejši (Preglednica 78). Razlog za takšno odstopanje tiči v varnostnih faktorjih upoštevanih pri izračunu trenjske nosilnosti plašča pilota.

Preglednica 78: Prikaz izračuna $R_{s,dop}$ za različno število sondiranj po PP1 in PP2 pri privzetih enakih nosilnostih $R_{s,cal}$

Število/vrednost	R _{s,dop}	(kN)	Odstopania	Odstopanja (%)	
sondiranj	PP1	PP2	<i>PP1/PP2 (%)</i>	$\begin{array}{c} PP1 \\ R_{s,dop}(8)/R_{s,dop}(i) \end{array}$	
8 ali več	1817	1649	10,2	0	
7	1782	1616	10,3	2	
6	1765	1600	10,3	3	
5	1748	1584	10,3	4	
4	1715	1554	10,4	6	
3	1683	1524	10,5	8	
2	1653	1495	10,5	10	
1	1579	1426	10,7	16	

Table 78: Calculation results of $R_{s,dop}$ for the different number of boreholes according to PP1 and PP2 design approaches at the same assumed bearing capacitys $R_{s,cal}$

Za primerjavo z vrednostmi ξ (Slika 47), smo vrednosti dobljene pri največjem številu sondiranj ($R_{s,dop}(8)$ - saj je ta najbolj zanesljiva) delili z vrednostmi dobljenimi pri manjšem številu sondiranj $R_{s,dop}(i)$. Za izračun po pristopu PP1 in PP2, pri enakem številu in vrednosti sondiranj, odstopanj praktično ni. Odstopanja glede na število sondiranj pa so podana v preglednici 78 in od tod lahko zaključimo, da je vpliv korelacijskega faktorja ξ na rezultate, razmeroma majhen.

Slika 47: Primerjava $R_{s,dop}(8)/R_{s,dop}(i)$ s korelacijskim faktorjem ξ za različno število in vrednost sondiranj po PP1 in PP2 pri privzetih enakih nosilnostih $R_{s,cal}$

Figure 47: Comparison of $R_{s,dop}(8)/R_{s,dop}(i)$ with correlation factor ξ for the different number and value of boreholes according to PP1 and PP2 design approaches at the same assumed bearing capacities $R_{s,cal}$

3.6.5 Zaključek

Za vsako od lokacij so podatki o podlagi in njeni globini praktično enaki v vseh vrtinah (nosilnost po konici pilota je tako enaka), zato smo pri določitvi vpliva upoštevali le trenjsko nosilnost plašča pilota (R_s). Vsi izračuni tega poglavja so izvedeni po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.3), po osnovni metodi. Ugotovimo lahko, da število sondiranj vpliva na izračun dopustne nosilnosti. V prvi vrsti zaradi heterogenosti tal in mnogih slučajnih vplivov, po drugi strani pa se glede na večanje števila sondiranj, zmanjšuje korelacijski faktor ξ . Do razlik pri presiometrskih meritvah prihaja lahko zaradi lokalnih geoloških oslabitev, spremembe vodoprepustnosti in s tem povezane spremembe režima talnih voda, različnega načina

priprave vrtine (različni vrtalci in vrtalne garniture), problemov pri vstavljanju sonde na globino testa,...

Iz zgoraj predstavljenih primerov lahko zaključimo, da je račun nosilnosti plašča pilota po projektnem pristopu PP2 bolj konzervativen od PP1. V vseh predhodnih izračunih, kjer smo primerjali izračune celotne nosilnosti pilota na dejanskih primerih, smo v zaključkih navajali ravno obratno. Razlog tiči v varnostnih faktorjih upoštevanih pri izračunu celotne nosilnosti pilota. Namreč v povprečju je nosilnost po konici pilota nekajkrat večja od nosilnosti po plašču, varnostni faktor s katerim obremenimo nosilnost po konici pri PP1;2, pa je tudi večji (glej poglavje 2.2.1.1.4.2).

Nadalje smo ugotovili izjemno ujemanje vpliva števila sondiranj na izračun dopustne nosilnosti pri obeh predstavljenih lokacijah (3.6.2 in 3.6.3), kjer smo računali z dejansko izmerjenimi karakteristikami. Najbolje so te primerjave prikazane na sliki 48, kjer imamo za vsako lokacijo zrisani dve liniji (zelene in rdeče barve). Debelejša predstavlja rezultate dobljene po projektnem pristopu PP2, tanjša pa po PP1. Do največjega odstopanja glede na $R_{s,dop}$ (N=Nmax), izračunanega pri upoštevanju vseh sondiranj na posamezni lokaciji, pride pri upoštevanju najnižjih vrednostih $R_{s,dop}$ (N=Nmin) in sicer v primeru, ko imamo eno samo vrtino, torej en sam rezultat izračuna nosilnosti (plašča) vertikalno obremenjenega pilota. To odstopanje je 23%. Pri tem nas je zanimalo tudi začetno odstopanje med vrednostmi trenjske nosilnosti plašča pilota (R_s), izračunane iz dejanskih rezultatov presiometrskih testov na izmerjenih globinah, na lokaciji vsake posamezne vrtine. Tako smo dobili, na lokaciji razcepa Dragučova, kjer smo imeli na voljo 5 vrtin, 17% odstopanje med najnižjo in najvišjo vrednostjo R_s . Na lokaciji nasipa Srmin, kjer smo imeli na razpolago podatke iz 7 vrtin, pa je odstopanje enako 22%.

Na sliki 48 je podana še ena linija (modre barve), ki nekoliko odstopa od predhodno omenjenih linij. Le-ta predstavlja izračune za izmišljene vrednosti (R_s =4000 kPa), kjer odstopanj med najnižjo in najvišjo vrednostjo R_s ni. Ta linija tako predstavlja direkten vpliv korelacijskega faktorja ξ na dopustno nosilnost plašča pilota v odvisnosti od števila izvedenih sondiranj.

Glede na vse ugotovitve lahko zaključimo, da bo izračunana vrednost dopustne nosilnosti plašča pilota ($R_{s,dop}$), višja pri večjem številu izvedenih sondiranj. Poleg tega bo pri večjem številu sondiranj tudi zanesljivost rezultatov večja, saj bomo lažje in točneje določili posamezne sloje ter izločili ali ponovili teste s sumljivimi rezultati. Torej je smotrno izdelati več vrtin s presiometrskimi meritvami, saj bomo tako prihranili pri temeljenju.

Slika 48: Vpliv števila sondiranj na vrednost $R_{s,dop}$ po PP1 in PP2 projektnem pristopu Figure 48: Influence of the number of boreholes on the value of $R_{s,dop}$ according to PP1 and PP2

3.7 Primerjave izračuna nosilnosti na osnovi presiometrskih meritev z dinamičnimi in statičnimi obremenilnimi preizkusi

3.7.1 Uvod

V nadaljevanju bodo predstavljene preiskave na lokacijah, kjer smo lahko rezultate presiometrskih preiskav primerjali z rezultati obremenilnih testov. Na tem mestu bomo

skušali določiti globalni varnostni faktor med mejno nosilnostjo pilotov, dobljeno iz obremenilnih preizkusov, in nosilnostjo izračunano po vseh predhodno predstavljenih postopkih, na osnovi presiometrskih meritev (1a, 1b, 1c in 2). Žal je v Sloveniji malo izvedenih dinamičnih in statičnih obremenilnih preizkusov, še manj pa je lokacij, kjer so bili vzporedno izvedeni tudi presiometrski testi. V nadaljevanju si bomo podrobneje ogledali te lokacije.

3.7.2 Lokacije

Presiometrske preiskave ter dinamični in/ali statični obremenilni preizkusi so bili opravljeni na naslednjih lokacijah:

- AC Koper Lendava, odsek Šentjakob Blagovica, nadvoza 4-6 in 4-7,
- AC Lenart Beltinci, odsek Cogetinci Vučja vas, viadukt 6-3 Kupetinci,
- AC Koper Lendava, odsek Slivnica Pesnica, most čez Kanal in Dravo 10-3, 6-1.

3.7.3 Predstavitev postopkov

Sledi kratka predstavitev geološke sestave na lokacijah ter karakteristik pilota/ov, pripravljenega/ih za obremenilni test. Nato sledi izračun karakterističnih vrednosti in nadalje tudi izračun dopustne nosilnosti R_{dop} na podlagi statičnih (SOP) in dinamičnih obremenilnih preizkusov (DOP) pilotov. Enačbe za ta izračun in korelacijski faktorji ξ za izračun karakteristične vrednosti na podlagi n-statičnih (ξ_1 in ξ_2) in n-dinamičnih (ξ_5 in ξ_6) obremenilnih preizkusov pilotov, so podane v postopkih projektiranja temeljenja na osnovi terenskih meritev po EC 7 (str 17 in 21). Pri tem moramo poudariti, da so korelacijskih faktorji ξ , pri izračunu karakterističnih vrednosti na podlagi n-dinamičnih obremenilnih preizkusov, podani le za 2 ali več testov, medtem ko imamo mi, na vseh obravnavanih lokacijah, na razpolago en sam dinamični obremenilni preizkus! Tu velja omeniti še dejstvo, da je vrednotenje same dinamične obremenilne preiskave posredno, preko numeričnega modela. Tako bo merodajna predvsem primerjava s statičnim obremenilnim preizkusom.

V nadaljevanju je nato podan povzetek rezultatov presiometrskih preiskav ter določitev karakterističnih slojev in karakterističnih vrednosti parametrov na dani lokaciji. Podan je tudi prikaz izračuna nosilnosti po različnih predhodno predstavljenih projektnih pristopih

Evrokoda 7-1 (1a, 1b in 1c) ter z upoštevanjem globalnih varnostnih faktorjev (2) po dosedanji praksi (glej poglavji 3.5.3 in 3.5.4.5).

Najprej pa sledi kratek opis izvedbe statičnega in dinamičnega obremenilnega preizkusa pilota, kot so bili izvedeni na zgoraj opisanih lokacijah. Obremenilno konstrukcijo za **statični obremenilni test** je potrebno predhodno sprojektirati. Ponavadi je obremenjevanje pilota izvedeno preko hidravličnih tlačilk, ki so postavljene na glavo pilota ter z balastom (betonski kvadri), centrično naloženim na I jeklene nosilce. Teža celotnega balasta mora zagotoviti obremenjevanje pilota do porušitve. Sledi obremenjevanje v več bremenskih stopnjah z enakimi prirastki (8) obtežbe. Ti se določijo iz izračuna pričakovane nosilnosti (po Stollu $\Delta Q=Q/8$), glede na vrsto tal, dimenzije pilota in načina vgradnje pilota. Pri tem se meri vertikalne pomike glave kola v vnaprej določenem časovnem zaporedju do preteka ene ure, s pomočjo mikrometerskih uric ali digitalnih čitalcev pomikov. Glede na izredno hitro obremenjevanje kola (8 ur), se takšna nosilnost smatra za nosilnost v nedreniranih pogojih. Na koncu sledi še razbremenitev v enem ali več korakih. Rezultati tega testa so časovni potek obremenjevanja (razbremenjevanja) pilota ter razvoj pomikov. Nato se iz diagrama obremenitev Q - pomik w, oceni odpor kola po plašču ter odpor pod konico kola.

Pri dinamičnem obremenilnem testu, se uporabi prostopadno utež, montirano na nasadno vodilo, ponavadi dieselskega zabijala. Spust uteži se izvaja s posebnim sprožilom, ki loči dvižni kavelj avtodvigala in samo utež tako, da ta popolnoma prosto pade na glavo pilota. Ponavadi je glava pilota na vrhu dobetonirana (2 m) za lažjo namestitev nasadnega vodila oz. uteži za udarjanje po pilotu. Za preprečitev prevelikih poškodb glave pilota, se med betonsko glavo pilota in kapo uteži uporabi dušilni material (več plastna vezana plošča). Na kol, ki se zabija, se pritrdi senzorje za merjenje deformacij in pospeškov. Ti senzorji se pritrdijo osno simetrično na vsaki strani, ca. 2 premera pod glavo kola (dva para merilcev deformacij in en par merilcev pospeškov). Z zabijalom povzročeni tlačni napetostni val potuje po kolu navzdol ter se po odboju na konici vrača nazaj gor. S senzorji zaznani napetostni valovi se obdelajo (Pile Driving Analyser), tako da dobimo ob vsakem udarcu zabijala na zaslonu takojšen prikaz poteka sile in hitrosti pomika merskega mesta v odvisnosti od časa. Vsi ti analogni podatki (sile in pospeška za izbran udarec na izbrani globini) se po koncu testa digitalizirajo in analizirajo z računalniškim programom, katerega osnova je valovna enačba. Modeliran kol

in zemljino vzbujamo z eno izmed merjenih krivulj ter z iteracijami iščemo najboljši približek dejanski oziroma drugi merjeni krivulji. S postopnim obremenjevanjem tako določenega modela in zemljine (računalniška simulacija statičnega obremenilnega testa) dobimo graf obtežba Q - pomik w testiranega kola.

3.7.4 AC Koper - Lendava, odsek Šentjakob - Blagovica, nadvoza 4-6 in 4-7

3.7.4.1 Uvod

Na lokaciji sta obravnavana dva viadukta, temeljena globoko na uvrtanih pilotih. Potekata blizu eden drugega, kljub temu je njuna geološka sestava povsem različna, zato ju bomo obravnavali ločeno.

3.7.4.2 Nadvoz 4-6

3.7.4.2.1 Uvod k lokaciji

Nadvoz 4-6 je temeljen globoko na uvrtanih pilotih. Približno 60 m od projektiranega nadvoza je bil pred izgradnjo izveden poizkusni pilot s statično in dinamično obremenitvijo. Sestava tal je podobna sestavi na lokaciji presiometrske vrtine, opisani v nadaljevanju le, da se tu pod konico pilota pojavi sloj proda. Poizkusni pilot je bil uvrtan AB pilot tipa Benoto s premerom (ϕ) 0,8 m in dolžino (*L*) 20,0 m in je bil obremenjen v letu 1999; julija (statično) in avgusta (dinamično).

Vrtina za presiometrske preiskave je bila izdelana blizu lokacije začetne podpore nadvoza 4-6. Tla pod površjem do globine 15 m gradijo glinasto-meljne zemljine v lahko gnetnem konsistenčnem stanju, razen v globini okrog 11 m, kjer najdemo tenak sloj proda (debeline 1,5 m), nato se do globine 20 m menjavajo sloji glin, meljev in peskov. Globlje pa se pojavljajo glinasto meljne zemljine, pretežno v težko gnetnem konsistenčnem stanju, z vložki šote. Nivo podtalnice se je v času meritev nahajal tik pod površjem.

3.7.4.2.2 Dinamični in statični obremenilni preizkus pilota

3.7.4.2.2.1 Rezultati obeh izvedenih obremenilnih preizkusov

Že v uvodu tega poglavja (3.7.3) smo na kratko opisali potek obeh obremenilnih preizkusov, zato tu podajamo le rezultate (Preglednica 79). Ugotovljena osna vertikalna statična mejna nosilnost testnega pilota, določena na osnovi izvedenih dinamičnih meritev in analize, je enaka 2030 kN. Iz rezultatov statične obremenilne preizkušnje (iz diagrama obremenitev Q - pomik w) pa smo po EN 1997-1 ocenili vrednost mejne nosilnosti pilota, ki znaša 2020 kN.

Preglednica 79: Rezultati dinamičnega in statičnega obremenilnega preizkusa za nadvoz 4-6 Table 79: The results from dynamic and static pile load test for crossover 4-6

Obremenilni preizkus	Mejna nosilnost pilota (kN)
Dinamični	2030
Statični	2020

Slika 49: Prikaz mejne nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-6 Figure 49: Results of bearing capacity from pile load tests for crossover 4-6

Kot lahko vidimo sta rezultata dinamičnega in statičnega obremenilnega preizkusa praktično enaka. Rezultat dinamičnega obremenilnega preizkusa bomo upoštevali z rezervo, saj, kot smo povedali že v uvodu, podani korelacijski faktorji ξ , pri izračunu karakterističnih vrednosti na podlagi n-dinamičnih obremenilnih preizkusov, veljajo le za 2 ali več testov, medtem ko imamo mi na razpolago en sam dinamični obremenilni preizkus. Velja omeniti tudi dejstvo, da je vrednotenje same dinamične obremenilne preiskave posredno, preko numeričnega modela. Tako pričakujemo, da bo merodajna predvsem primerjava s statičnim obremenilnim preizkusom.

3.7.4.2.2.2 Določitev karakterističnih vrednosti nosilnosti na podlagi obremenilnih preizkusov

Iz izmerjenih odporov izvedenih obremenilnih preizkusov smo dobili vrednost mejne tlačne nosilnosti pilota ($R_m = R_{b,m} + R_{s,m}$). Nato s korelacijskima faktorjema ξ izračunamo karakteristično vrednost nosilnosti - $R_{c,k}$.

Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov statične obremenilne preizkušnje (I - po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.2), mejna tlačna odpornost iz statičnih obremenilnih preizkusov), večjih problemov nismo imeli, saj sta za en sam preizkus korelacijska faktorja ξ podana. Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov dinamične obremenilne preizkušnje pa smo že na začetku naleteli na problem. Izveden je bil namreč en sam preizkusni pilot, vrednost korelacijskih faktorjev ξ , pa je podana le za dva ali več. Poleg tega je potrebno ta dva korelacijska faktorja še dodatno "obremeniti" z modelnim faktorjem glede na izvedbo meritev. Pri dinamičnih obremenilnih preizkusih, analiziranih z ujemanjem merjenih signalov, se vrednosti ξ lahko množijo z modelnim faktorjem 0,85. Zaradi tega dodatnega faktorja in ker podatek o vrednosti ξ v primeru enega samega preizkusnega pilota ni podan, smo račun izvedli za dva različna primera in sicer (II - po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.4), mejna tlačna odpornost, ugotovljena z dinamičnimi obremenilnimi preizkusi):

- IIa) za primer podanih korelacijskih faktorjev ξ ($\xi_5 = 1,6$, $\xi_6 = 1,5$), kot da imamo dve dinamični obremenilni preizkušnji,
- IIb) ko predvidimo, da se test analizira z ujemanjem merjenih signalov, kjer vrednosti

korelacijskih faktorjev ξ ($\xi_5 = 1,6$, $\xi_6 = 1,5$) pomnožimo z modelnim faktorjem 0,85.

3.7.4.2.2.3 Račun dopustne nosilnosti pilotov na podlagi obremenilnih preizkusov

Po zgornjih alinejah izračunane karakteristične vrednosti tlačne nosilnosti - $R_{c,k}$, smo v nadaljevanju uporabili za izračun projektne nosilnosti pilota $R_{c,d}$ po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10). Da pa lahko med seboj primerjamo rezultate projektne nosilnosti na osnovi presiometrskih meritev (po Evrokodu, z dopustnimi obtežbami po postopku 2), s tistimi na osnovi obremenilnih preizkusov, smo dobljene vrednosti $R_{c,d}$ za vse postopke, razen pri računu z upoštevanjem globalnih varnostnih faktorjev (postopek 2, na osnovi presiometrskih meritev), reducirali še z obtežbenim faktorjem F_{obt} . Pri tem predpostavimo, da F_{obt} predstavlja 67% stalne (γ_G) in 33% spremenljive (γ_Q) obtežbe, torej je $F_{obt} = 0.67 \cdot 1.35 + 0.33 \cdot 1.5 \cong 1.4$ za projektni pristop PP1;1 in projektni pristop PP2 (A1) ter $F_{obt} = 0.67 \cdot 1.0 + 0.33 \cdot 1.35 \cong 1.11$ za projektni pristop PP1;2 (A2). Tako dobimo po Evrokodu 7-1 vrednost tlačne nosilnosti pilotov $R_{dop} = R_{c,d}/F_{obt}$, določene na osnovi presiometrskih meritev po postopkih 1a do 1c primerljivo z dopustno obtežbo po principu globalne varnosti (2) in s tisto določeno na osnovi obr. preizkusov (I in II).

Rezultati vseh izračunov nosilnosti ($R_{c,d}$ in R_{dop}) na podlagi obremenilnih preizkusov so prikazani tabelarično (Preglednica 80) in grafično (Slika 50) v nadaljevanju.

/	Projektni pristop		P1	P	P2	Odstopanja	
Pa	ostopek izračuna	R _{c,d} (kN)	R _{dop} (kN)	R _{c,d} (kN)	R _{dop} (kN)	računa po postopku I od II(%)	
Ι	na osnovi statične obremenilne preizkušnje	962	867	1312	937	0	
IIa	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1, 6, \xi_6 = 1, 5)$	846	762	1153	824	12	
IIb	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1,6, \xi_6 = 1,5) \xi$ pomnožimo z modelnim faktorjem 0,85	995	897	1357	969	3	

Preglednica 80: Rezultati izračunov nosilnosti na podlagi obremen. preizkusov za nadvoz 4-6 Table 80: Results of bearing capacity calculations from pile load tests for crossover 4-6

Slika 50: Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za nadvoz 4-6 Figure 50: Calculation results of R_{dop} from pile load tests for crossover 4-6

Z zgornjega slike 50 lahko razberemo, da je razlika računov po enem ali drugem projektnem pristopu enaka 8%. Odstopanja dopustne nosilnosti, izračunana na osnovi statične in dinamične obremenilne preizkušnje, so podana v preglednici 80. Sledi izračun nosilnosti pilotov na podlagi presiometrskih meritev.

3.7.4.2.3 Presiometerske meritve

3.7.4.2.3.1 Vrtina na lokaciji z rezultati PMT

Vrtina z oznako zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 81. Preiskave smo izvajali meseca avgusta 2000, v vrtini z oznako V4-6. Preiskave v koherentnih tleh smo izvajali s sondo BX, v sloju proda pa s sondo AX, ki ima gumijasto membrano zaščiteno s prirezano kovinsko cevjo. Vrtino za izvedbo testa smo pripravili predhodno, z vrtalno glavo premera 66 mm. Sondo AX smo na globino testa zabili.

Vrtina	Globina (m)	Zemljina ozn.	p _L (kPa)	E ₀ (MPa)
	3,2	CS	230	2,3
	8,3	CS	320	3,0
	11,2	G	1600	5,3
V4-6	12,7		310	4,3
	15,7	CS	350	4,4
	18,5	CS	740	7,0
	22,4		610	6,2

Preglednica 81: Presiometrske preiskave na lokaciji nadvoza 4-6 Table 81: Pressuremeter tests at the location of crossover 4-6

3.7.4.2.3.2 Določitev karakterističnih slojev

Podlago na področju nadvoza 4-6 smo razdelili v štiri karakteristične sloje:

- prvi sloj do globine 10,2 m, sestavlja CH/MH lahko gnetno, CL/ML srednje do težko gnetno,
- drugi sloj do globine 11,7 m, sestavlja GC/GM,
- tretji sloj do globine 18,0 m, sestavlja CI/CL lahko do težko gnetna, ML/MI lahko do srednje gneten,
- in četrti sloj globlje od 18,0 m, predstavlja MI/ML težko gneten CI/CH lahko do srednje gnetno do poltrdno.

3.7.4.2.3.3 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev; mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve, za posamezni sloj. Vse meritve so bile narejene med uvajanjem presiometra v Sloveniji, tako da podatkov o modulih ponovne obremenitve E_R žal nimamo, saj razbremenilnega koraka nismo izvajali. Module E_R smo tako izbrali glede na tip zemljine iz obstoječe literature; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$.

3.7.4.2.3.3.1 Karakteristične vrednosti v vrtini

Za prvega od postopkov računa nosilnosti pilotov je določitev karakterističnih vrednosti

slojev v vrtini dokaj enostavna, saj smo v izračunu podali vse rezultate presiometrskih meritev v obravnavani vrtini. Tako smo izračunali nosilnost pilotov in nato s korelacijskimi faktorji določili karakteristično vrednost nosilnosti.

3.7.4.2.3.3.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 82 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za nadvoz 4-6. Prav tako so karakteristične vrednosti prikazane tudi iz tabele rezultatov presiometrske preiskave, podane v prilogi A (Priloga A54).

Preglednica 82: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-6 Table 82: Characteristic values of the pressuremeter tests parameters for crossover 4-6

				Karakteristična vred.				
Sloj	Srednja vrednost	Stand. deviacija	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}
<i>CS</i> (1)	275	63,6	2	170	1,84	1,68	9,0	1,34
<i>G</i> (2)	-	-	1	1600	5,30	21,20	3,3	4,0
<i>CS</i> (3)	330	28,3	2	283	4,23	8,63	11,7	2,00
<i>CS</i> (4)	675	91,9	2	524	5,67	18,35	9,04	2,34

Vidimo lahko, da je bil izveden le en test v drugem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je dokaj tenak sloj, debeline do 1,5 m.

V preglednici 83 je prikazan način določevanja karakterističnih vrednosti po statistični definiciji le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način.

3.7.4.2.3.3.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili tudi zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v tabeli

rezultatov presiometrske preiskave, podane v prilogi A (Priloga A55) in v preglednici 83.

p ₁ (kPa) Sloj	Dobljene vrednosti	Srednja	Standardna deviacija	Mediana	Statistika 1b	Previdna ocena 1c	Inženirska Ocena 2	0	pL (kPa) 0 1000 2000
1 0-10,2 m	230 320	275	63,6	275	170	250	230 320	4	
2 10,2-11,7 m	1600				1600	1600	1600		
3 11,7-18,0 m	310 350	330	28,3	330	284	330	310 350	8	
$\begin{array}{c} 4\\ 18,0 \text{ m} \rightarrow \end{array}$	740 610	675	91,9	675	524	680	740 615	12	

16

20

(**u**) **z** 24

Preglednica 83: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-6 Table 83: Characteristic values of the limit pressure p_L for crossover 4-6

 p_L z globino, kot je upoštevan v izračunih -

3.7.4.2.3.3.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za nadvoz 4-6 določili karakteristične vrednosti parametrov, ki so kar enake izmerjenim vrednostim in so prikazane v tabeli rezultatov presiometrske preiskave, podane v prilogi A (Priloga A56) in v preglednici 83.

3.7.4.2.3.4 Račun nosilnosti vertikalno obremenjenih pilotov

Izračun nosilnosti obravnavanega objekta smo izvedli za enake dimenzije pilotov, kot jih je imel testni pilot in sicer premera (ϕ) 0,8 m in dolžine (L) 20,0 m. Opisane dimenzije so

prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti E=21 GPa in Poissonovim količnikom $\nu=0,175$.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost tlačno obremenjenih pilotov z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v predhodnih poglavjih (3.5.3 in 3.5.4.5). V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za glino je razmerje $E_0/E_R=2$, za melj $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$.

Glede na ugotovitev, da se na lokaciji obremenilnih testov pod konico pilota pojavi sloj proda, ki se na lokaciji presiometrske vrtine pojavi višje (na globini 11 m), smo vse izračune na osnovi presiometrskih meritev ponovili še za primer sloja proda pod konico pilota. Torej sloj proda se pojavi šele na globini 19,5 m.

Sledi tabelaričen prikaz rezultatov vseh postopkov, za obravnavani objekt (Preglednica 66).

	Postopek izračuna	Projek	ktni pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
10	EC 7-1 z upoštevanjem	PP1		547	493
1a	korelacijskih faktorjev ξ	PP2		658	470
1a	EC 7-1 z upoštevanjem	PP1		569	513
	proda v območju konice pilota)	PP2		745	532
11.	EC 7-1 z upoštevanjem	PP1		281	250
10	karakteristične vred statistika	PP2	Ггапк	335	240
1h	EC 7-1 z upoštevanjem karakteristične vred. – statistika	PP1	Fronk	461	412
10	(sloj proda v območju konice pilota)	PP2	TTAIK	623	445

Preglednica 84: Prikaz rezultatov izračunov nosilnosti za nadvoz 4-6 Table 84: Results of bearing capacity calculations for crossover 4-6

»se nadaljuje ...«

...nadaljevanje«

1c	EC 7-1 z upoštevanjem	PP1	Eronla	467	421
	previdna ocena	PP2 Frank		567	405
10	EC 7-1 z upoštevanjem karakteristične vred. kot	PP1	Fronk	618	557
1C	previdna ocena (sloj proda v območju konice pilota)	revidna ocena (sloj proda v omočju konice pilota) PP2		812	580
2	z upoštevanjem globalnih varnostnih faktorjev				297
2	z upoštevanjem globalnih varnostnih faktorjev (sloj proda v območju konice p.)				345

* $R_{dop} = R_{c,d} / F_{obt}$ (str. 62)

3.7.4.2.3.5 Primerjava rezultatov nosilnosti

Grafikon na sliki 51 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev (2) za nadvoz 4-6, izračunanih po vseh postopkih z obema projektnima pristopoma (z upoštevanjem modelnega faktorja – Frank). Na grafikonu modro obarvani stolpiči predstavljajo izračune na osnovi dejanskih presiometrskih meritev (prod na g=11,0 m), rdeče obarvani stolpiči,pa primer, ko se sloj proda pojavi pod konico pilota (prod na g=19,5 m).

Izračuni na osnovi dejanskih presiometrskih meritev (modro obarvani stolpiči; prod na g=11,0 m), kažejo, da smo z izračuni po dosedanji praksi (2), dobivali dobre rezultate. Če primerjamo rezultate pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 2 19% nižjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena po projektnem pristopu 1, pa 42% višjo vrednost, od tiste, izračunane po dosedanji praksi (2). Maksimalno, 66% odstopanje dobimo pri računu po osnovni metodi (PP1). Glede na vse račune lahko zaključimo, da je projektni pristop 2, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa 1. Vzrok temu je večja nosilnost po plašču pilota kot po konici, saj pod konico ni dobro nosilnega sloja.

Slika 51: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-6 Figure 51: Calculation results of R_{dop} for crossover 4-6

V splošnem so izračunane nosilnosti pilotov zelo nizke in pri primerjavi teh nosilnosti z nosilnostmi dobljenimi iz obremenilnih testov, moramo upoštevati, da sloj proda na območju preizkusnega pilota, ki se na lokaciji presiometrske vrtine ni pojavil, oz. je dosti višje (na globini 11 m), vpliva na nosilnost. Tako izračuni, kjer smo upoštevali sloj proda pod konico pilota (rdeče obarvani stolpiči; prod na g=19,5 m), kažejo nekoliko drugačno sliko. Tu je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, bolj konzervativen od projektnega pristopa, saj v tem primeru izračuna, več nosi konica pilota.

3.7.4.2.4 Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov in PMT

Primerjava rezultatov nosilnosti na osnovi presiometrskih meritev in obremenilnih preizkusov pilotov, nas pripelje do ugotovitve, da je odstopanje med projektnima pristopoma minimalno. Zaradi preglednosti slike 52 smo v nadaljevanju poleg izmerjenih mejnih nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-6, prikazali le konzervativnejše od vrednosti

dopustnih nosilnosti izračunanih na osnovi presiometrskih meritev in obremenilnih preizkusov.

Slika 52: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za nadvoz 4-6

Figure 52: Results of bearing capacity from the PMT and the pile load tests for crossover 4-6

Primerjava pokaže boljše ujemanje med izmerjenimi in izračunanimi nosilnostmi na osnovi presiometrskih meritev, kjer smo privzeli globino prodnega sloja na nivoju konice pilota (prod; g=19,5 m). Vendar je odstopanje med mejno nosilnostjo izmerjeno iz obremenilnih testov in izračunanimi vrednostmi dopustne nosilnosti veliko, enako približno 4. Žal je to edini primerek lokacije z izvedenimi obremenilnimi testi in presiometrskimi meritvami v mehkejših glinenih tleh, tako da prave primerjave nimamo.

3.7.4.3 Nadvoz 4-7

3.7.4.3.1 Uvod k lokaciji

Na lokaciji je obravnavan nadvoz 4-7, ki je temeljen globoko, na uvrtanih pilotih. Med podporama 2 in 3 tega nadvoza, je bil pred izgradnjo izveden poizkusni pilot s statično in dinamično obremenitvijo. Uvrtan AB pilot tipa Benoto s premerom (ϕ) 0,8 m in dolžino (*L*) 23,0 m, je bil obremenjen v letu 1999; januarja (statično) in marca (dinamično).

Vrtina za presiometrske preiskave je bila izdelana blizu lokacije testnega pilota. Tla pod površjem gradijo zameljeni in zameljeni do peščeni prodi GM, GM-GP, katerih gostota je do globine 15 m srednje gosta, globlje pa srednje gosta do gosta. Mestoma se nahajajo do 2 m debeli sloji zameljenega peska SM, peščenega do zaglinjenega melja ML-MI ter puste do peščene gline CI-CL. Na lokaciji presiometrske vrtine, se je v globini ca. 16 m pojavil sloj gline, debeline 2 m. Nivo podtalnice se je v času meritev nahajal na globini 5 m pod površjem.

3.7.4.3.2 Dinamični in statični obremenilni preizkus pilota

3.7.4.3.2.1 Rezultati obeh izvedenih obremenilnih preizkusov

Že v uvodu tega poglavja (3.7.3) smo na kratko opisali potek obeh obremenilnih preizkusov, zato tu podajamo le rezultate (Preglednica 85). Ugotovljena osna vertikalna statična mejna nosilnost testnega pilota, določena na osnovi izvedenih dinamičnih meritev in analize, je enaka 7830 kN. Pri statični obremenilni preizkušnji, z maksimalno razpoložljivo obremenitvijo, ni prišlo do porušitve pilota. Tako ocena vrednosti mejne nosilnosti pilota iz diagrama obremenitev Q - pomik w, ni mogoča. Določili smo jo na osnovi napotkov Mastrontuoma in znaša 6530 kN.

Preglednica 85: Rezultati dinamičnega in statičnega obremenilnega preizkusa za nadvoz 4-7 Table 85: Results from dynamic and static pile load tests for crossover 4-7

Obremenilni preizkus	Mejna nosilnost pilota (kN)
Dinamični	7830
Statični	6530

Slika 53: Prikaz mejne nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-7 Figure 53: Results of bearing capacity from pile load tests for crossover 4-7

Kot lahko vidimo, se rezultata dinamičnega in statičnega obremenilnega preizkusa razlikujeta za petino, vendar moramo upoštevati dejstvo, da pri statični obremenilni preizkušnji ni prišlo do porušitve. Rezultat dinamičnega obremenilnega preizkusa pa bomo upoštevali z rezervo, saj kot smo povedali že v uvodu, podani korelacijski faktorji ξ , pri izračunu karakterističnih vrednosti na podlagi n-dinamičnih obremenilnih preizkusov, veljajo le za 2 ali več testov, medtem, ko imamo mi na razpolago en sam dinamični obremenilni preizkus. Velja omeniti tudi dejstvo, da je vrednotenje same dinamične obremenilne preiskave posredno, preko numeričnega modela.

3.7.4.3.2.2 Določitev karakterističnih vrednosti nosilnosti na podlagi obremenilnih preizkusov

Iz izmerjenih odporov izvedenih obremenilnih preizkusov smo dobili vrednost mejne tlačne

nosilnosti pilota ($R_m = R_{b,m} + R_{s,m}$). Nato s korelacijskima faktorjema ξ , izračunamo karakteristično vrednost nosilnosti - $R_{c,k}$.

Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov statične obremenilne preizkušnje (I - po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.2), mejna tlačna odpornost iz statičnih obremenilnih preizkusov), večjih problemov nismo imeli, saj sta za en sam preizkus korelacijska faktorja ξ podana. Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov dinamične obremenilne preizkušnje, pa smo račun izvedli za dva različna primera, kot je natančno opisano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.2).

3.7.4.3.2.3 Račun dopustne nosilnosti pilotov na podlagi obremenilnih preizkusov

Vse izračunane karakteristične vrednosti tlačne nosilnosti - $R_{c,k}$, smo v nadaljevanju uporabili za izračun projektne nosilnosti pilota $R_{c,d}$ po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10). Za primerjavo vseh rezultatov izračunov (na osnovi presiometrskih meritev in na osnovi obremenilnih preizkusov, po Evrokodu 7-1) smo dobljene vrednosti $R_{c,d}$ za vse postopke reducirali še z obtežnim faktorjem, kot je prikazano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.3).

Rezultati vseh izračunov nosilnosti ($R_{c,d}$ in R_{dop}) na podlagi obremenilnih preizkusov so prikazani tabelarično (Preglednica 86) in grafično (Slika 54) v nadaljevanju.

S slike 54 lahko razberemo, da je razlika računov po enem ali drugem projektnem pristopu enaka 8%. Odstopanja dopustne nosilnosti, izračunana na osnovi statične in dinamične obremenilne preizkušnje so podana v zgornji preglednici 86. Sledi izračun nosilnosti pilotov na podlagi presiometrskih meritev.

Preglednica 86: Rezultati izračunov nosilnosti na podlagi obremen. preizkusov za nadvoz 4-7 Table 86: Results of bearing capacity calculations from pile load tests for crossover 4-7

/	Projektni pristop	P	P1	P	P2	Odstopanja	
Pa	ostopek računa	R _{c,d} (kN)	R _{dop} (kN)	R _{c,d} (kN)	R _{dop} (kN)	računa po postopku I od II (%)	
Ι	na osnovi statične obremenilne preizkušnje	3110	2801	4240	3029	0	
IIa	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1, 6, \xi_6 = 1, 5)$	3263	2939	4449	3178	5	
IIb	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1,6, \xi_6 = 1,5)$, z modelnim faktorjem 0,85	3838	3458	5234	3739	23	

Slika 54: Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za nadvoz 4-7 Figure 54: Calculation results of R_{dop} from pile load tests for crossover 4-7

3.7.4.3.3 Presiometrske meritve

3.7.4.3.3.1 Vrtina na lokaciji z rezultati PMT

Vrtina z oznako zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 87. Preiskave smo izvajali v mesecu avgustu, leta 2000, v vrtini z oznako V4-7. V sloju proda smo jih izvajali s sondo AX, ki ima gumijasto membrano zaščiteno s prirezano kovinsko cevjo, v koherentnem sloju pa s sondo BX. Sondo AX smo na globino testa zabili, za izvedbo testa s sondo BX, pa smo vrtino pripravili predhodno, z vrtalno glavo premera 66 mm.

Preglednica 87: Presiometrske preiskave na lokaciji nadvoza 4-7

Vrtina	Globina (m)	Zemljina ozn.	p _L (kPa)	E ₀ (MPa)
	6,5		2500	12,6
	8,5	CM	2490	9,4
	10,1	GM	1550	6,8
V4-7	12,1		5340	21,0
	16,3	С	1740	32,6
	22,3	CM	5500	36,5
	24,6	UM	6000	40,3

Table 87: Pressuremeter tests at the location of crossover 4-7

Rezultate testa izvedenega na globini 12,1 m (gost zameljen peščen prod) smo upoštevali pri karakteristikah tretjega sloja. Vzrok za to je tenak gost sloj, ki se pojavi (najbrž lokalno - debeline le 1 m), ravno v območju te meritve, globlje v tretjem sloju pa nadaljuje. Od tod tudi veliko odstopanje te meritve glede na predhodne tri. Takoj za globino izvedenega testa smo z vrtanjem spet prišli v srednje gost peščen nekoliko zaglinjen prod. Na globini 14,1 m smo izvedli še en test, ki pa žal ni uspel. Smo pa glede na izvrtano zemljino, čas potreben za zabijanje sonde ter podatke ostalih preiskav (SPT) v okolnih vrtinah, ocenili, da gre za podoben sestav, kot je upoštevan na globinah prvih treh testov.

3.7.4.3.3.2 Določitev karakterističnih slojev

Podlago na področju nadvoza 4-7 smo razdelili v tri karakteristične sloje:

- prvi sloj do globine 15,8 m, sestavlja GM, GM-GP, srednje gost
- drugi sloj do globine 18,0 m, sestavlja CI, težko gnetna in
- tretji sloj globlje od 18,0 m, predstavlja GM v srednje gostem do gostem stanju.

3.7.4.3.3.3 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev; mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve, za posamezni sloj. Vse meritve so bile narejene med uvajanjem presiometra v Sloveniji, tako da podatkov o modulih ponovne obremenitve E_R žal nimamo, saj razbremenilnega koraka nismo izvajali. Module E_R smo tako izbrali glede na tip zemljine iz obstoječe literature; za melj je razmerje $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$.

3.7.4.3.3.3.1 Karakteristične vrednosti v vrtini

Za prvega od postopkov računa nosilnosti pilotov, je določitev karakterističnih vrednosti slojev v vrtini dokaj enostavna, saj smo v izračunu podali vse rezultate presiometrskih meritev v obravnavani vrtini. Tako smo izračunali nosilnost pilotov in nato s korelacijskimi faktorji določi karakteristično vrednost nosilnosti.

3.7.4.3.3.3.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 88 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5 % kvantili za mejni tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za nadvoz 4-7. Prav tako so karakteristične vrednosti prikazane tudi iz tabele rezultatov presiometrske preiskave, podane v prilogi A (Priloga A60).

Preglednica 88: Karakteristične vrednosti parametrov presiometrskih preiskav za nadvoz 4-7 Table 88: Characteristic values of the pressuremeter tests parameters for crossover 4-7

				Karakteristična vred.					
Sloj	Srednja vrednost	Stand. deviacija	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}	
GM(1)	2180	545,6	3	1282,5	4,8	19,0	3,4	3,9	
C(2)			1	1740	32,6	80,0	18,7	2,5	
GM(3)	5613	344,3	3	5047	15,8	63,4	3,2	3,9	

Vidimo lahko, da je bil izveden le en test v drugem sloju, katerega karakteristike smo privzeli kot merodajne. Vzrok je tenak sloj, debeline 2,0 m.

V nadaljevanju (Preglednica 89) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način.

Preglednica 89: Karakteristične vrednosti mejnega tlaka p_L za nadvoz 4-7 Table 89: Characteristic values of the limit pressure p_L for crossover 4-7

3.7.4.3.3.3.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili tudi zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih

24

lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v tabeli rezultatov presiometrske preiskave, v prilogi A (Priloga A61) in v preglednici 89.

3.7.4.3.3.3.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za nadvoz 4-7 določili karakteristične vrednosti parametrov, ki so kar enake izmerjenim vrednostim in so prikazane v tabeli rezultatov presiometrske preiskave, podane v prilogi A (Priloga A62) in v preglednici 89.

3.7.4.3.3.4 Račun nosilnosti vertikalno obremenjenih pilotov

Izračun nosilnosti obravnavanega objekta smo izvedli za enake dimenzije pilotov, kot jih je imel testni pilot in sicer premera (ϕ) 0,8 m in dolžine (*L*) 23,0 m. Opisane dimenzije so prikazane na sliki 11. Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo $\gamma_B=25$ kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom $\nu=0,175$.

Preglednica 90: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za nadvoz 4-7
Table 90: Results of bearing capacity calculations (R_{dop}) for crossover 4-7

Postopek izračuna		Projektn	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
1a	EC 7-1 z upoštevanjem korelacijskih faktorjev ξ	PP1		3998	3602
		PP2		5104	3646
1b	EC 7-1 z upoštevanjem karakteristične vred statistika	PP1	Fronk	3683	3318
		PP2	TTAIK	4715	3368
1c	EC 7-1 z upoštevanjem karakteristične vred. kot previdna ocena	PP1	Eroph	4003	3606
		PP2	гтанк	5128	3663
2	z upoštevanjem globalnih varnostnih faktorjev				2714

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih

preiskav, smo izračunali nosilnost tlačno obremenjenih pilotov, z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v predhodnih poglavjih (3.5.3 in 3.5.4.5). V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za melj je razmerje $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$.

V preglednici 90 so prikazani rezultati vseh postopkov, za obravnavani objekt.

3.7.4.3.3.5 Primerjava rezultatov nosilnosti

Slika 55: Prikaz rezultatov izračunov R_{dop} za nadvoz 4-7 Figure 55: Calculation results of R_{dop} for crossover 4-7

Grafikon na sliki 55 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi, z upoštevanjem globalnih varnostnih faktorjev (2), za nadvoz 4-7, izračunanih po vseh postopkih z obema projektnima pristopoma (ter z upoštevanjem modelnega faktorja – Frank). Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2), dobivali dokaj konzervativne rezultate. Če primerjamo rezultate pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 2, 24% višjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, po projektnem pristopu 2, pa 35% višjo vrednost (kar je približno enako vrednostim dobljenim po osnovni metodi - 1a), od tiste, izračunane po dosedanji praksi (2). Glede na vse račune lahko zaključimo, da je projektni pristop PP1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, malenkost bolj konzervativen od projektnega pristopa PP2.

3.7.4.3.4 Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov in PMT

Slika 56: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za nadvoz 4-7

Figure 56: Results of bearing capacity from the PMT and the pile load tests for crossover 4-7

Primerjava rezultatov nosilnosti na osnovi presiometrskih meritev in obremenilnih preizkusov pilotov, nas pripelje do ugotovitve, da je odstopanje med projektnima pristopoma minimalno. Zaradi preglednosti spodnjega grafikona (Slika 56) smo v nadaljevanju poleg izmerjenih

mejnih nosilnosti pilota obeh obremenilnih preizkusov za nadvoz 4-7, prikazali le vrednosti dopustnih nosilnosti izračunanih na osnovi presiometrskih meritev in obremenilnih preizkusov po projektnem pristopu PP1.

Primerjava rezultatov v grobem kaže zelo dobro ujemanje med dopustnimi nosilnostmi dobljenimi z obremenilnima preizkusoma (I in II) in po starem (2) ter med nosilnostmi izračunanimi na osnovi presiometrskih meritev po EC-7 (od 1a do 1c), kjer seveda upoštevamo tudi predlagani dodatni faktor po Franku. Odstopanje med mejno nosilnostjo izmerjeno iz obremenilnih testov in izračunanimi vrednostmi dopustne nosilnosti, t.j. globalni varnostni faktor, je tu večji oz. enak 2.

3.7.4.4 Zaključek

Za lokaciji AC Koper - Lendava, odsek Šentjakob - Blagovica, nadvoz 4-6 in 4-7 lahko zaključimo, da sta nadvoza temeljena v povsem različni geološki sestavi tal. V glinenih tleh (nadvoz 4-6) smo tako dobili z upoštevanjem globalnih varnostnih faktorjev (po starem), bolj konzervativno nosilnost, za kar je lahko krivo tudi vrtanje v koherentnih zemljinah brez izplake. Nedvomno pa je razlog za odstopanje tudi velika razdalja med presiometrsko vrtino in testnim pilotom, kjer so na dnu pilota naleteli na peščen sloj, ki se na lokaciji vrtine sploh ni pojavil. V primeru, ko smo peščeni sloj upoštevali na lokaciji dna vrtine so odstopanja manjša. Na lokaciji nadvoza 4-7, pa so vrednosti izračunanih dopustnih nosilnosti na osnovi presiometrskih meritev in z obremenilnima preizkusoma (po EC 7-1), primerljive.

3.7.5 AC Lenart - Beltinci, odsek Cogetinci - Vučja vas, viadukt 6-3 Kupetinci

3.7.5.1 Uvod k lokaciji

Na lokaciji je obravnavan viadukt 6-3 Kupetinci (levi del), ki je temeljen globoko, na uvrtanih pilotih. Na podpori 4 L tega nadvoza, je bil po izvedenih presiometrskih meritvah, testiran pilot št. 3, z dinamično obremenitvijo. Uvrtan AB pilot tipa Benoto s premerom (ϕ) 1,2 m in dolžino (*L*) 23,0 m, je bil obremenjen junija 2005.

Vrtine za presiometrske preiskave so bile izdelane blizu lokacije testnega pilota. Tla pod površjem so sestavljena iz meljnih glin v zgornjem delu do globine 15 m, nato pa sledi preperel lapor in meljevec, v katerem je tudi konica pilota. Natančnejši opis sestave tal je podan v prvem delu tega poglavja (3.5.5), kot tudi rezultati presiometrskih meritev v vrtinah, ki so bile izdelane v marcu 2005, določeni so bili karakteristični sloji, karakteristične vrednosti parametrov, račun nosilnosti vertikalno obremenjenih pilotov in narejena je bila primerjava rezultatov nosilnosti. V nadaljevanju bomo tako podali le rezultat dinamičnega obremenilnega preizkusa in primerjave le-tega z vsemi obravnavanimi računskimi postopki.

3.7.5.2 Dinamični obremenilni preizkus pilota

3.7.5.2.1 Rezultat obremenilnega preizkusa

Slika 57: Prikaz mejne nosilnosti pilota dinamičnega obremenilnega preizkusa za viadukt 6-3 Figure 57: Results of bearing capacity from dynamic pile load test for viaduct 6-3

Že v uvodu tega poglavja (3.7.3) smo na kratko opisali potek dinamičnega obremenilnega preizkusa, zato tu podajamo le rezultate. Ugotovljena osna vertikalna statična mejna nosilnost

testnega pilota, določena na osnovi izvedenih dinamičnih meritev in analize, je večja od 14953 kN, saj pri izvedbi testa ni bil aktiviran celoten odpor konice pilota. Rezultat dinamičnega obremenilnega preizkusa bomo upoštevali z rezervo, saj kot smo povedali že v uvodu, podani korelacijski faktorji ξ , pri izračunu karakterističnih vrednosti na podlagi ndinamičnih obremenilnih preizkusov, veljajo le za 2 ali več testov medtem, ko imamo mi na razpolago en sam dinamični obremenilni preizkus. Velja omeniti tudi dejstvo, da je vrednotenje same dinamične obremenilne preiskave posredno, preko numeričnega modela.

3.7.5.2.2 Določitev karakterističnih vrednosti nosilnosti pilota na podlagi dinamičnega obremenilnega preizkusa

Iz izmerjenih odporov izvedenih obremenilnih preizkusov smo dobili vrednost mejne tlačne nosilnosti pilota ($R_m = R_{b,m} + R_{s,m}$). Nato s korelacijskima faktorjema ξ , izračunamo karakteristično vrednost nosilnosti - $R_{c,k}$.

Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov dinamične obremenilne preizkušnje, smo račun izvedli za dva različna primera, kot je natančno opisano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.2).

3.7.5.2.3 Račun dopustne nosilnosti pilotov na podlagi dinamičnega obremenilnega preizkusa

Vse izračunane karakteristične vrednosti tlačne nosilnosti - $R_{c,k}$, smo v nadaljevanju uporabili za izračun projektne nosilnosti pilota $R_{c,d}$ po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10). Za primerjavo vseh rezultatov izračunov (na osnovi presiometrskih meritev in na osnovi obremenilnih preizkusov, po Evrokodu 7-1) smo dobljene vrednosti $R_{c,d}$ za vse postopke reducirali še z obtežnim faktorjem, kot je prikazano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.3).

Rezultati izračunov nosilnosti ($R_{c,d}$ in $R_{c,dop}$) na podlagi obremenilnega preizkusa so prikazani tabelarično (Preglednica 91) in grafično (Slika 58) v nadaljavanju.

Preglednica 91: Rezultatov izračunov nosilnosti na podlagi din. obr. preizkusa za viadukt 6-3 Table 91: Results of bearing capacity calculations from dynamic pile load test for viaduct 6-3

/	Projektni pristop	PP1		PP2		Odstopanja
Pa	ostopek izračuna	R _{c,d} (kN)	R _{dop} (kN)	R _{c,d} (kN)	R _{dop} (kN)	računa po postopku IIa. od IIb.(%)
IIa.	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1, 6, \xi_6 = 1, 5)$	6230	5613	8496	6069	
IIb.	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. : ($\xi_5 = 1,6, \xi_6 = 1,5$) ξ pomnožimo z modelnim faktorjem 0,85	7330	6604	9995	7140	17,6

Figure 58: Calculation results of R_{dop} from dynamic pile load test for viaduct 6-3

S slike 58 lahko razberemo, da je razlika računov po enem ali drugem projektnem pristopu enaka 8%. Pristop PP1 je bolj konzervativen. Še enkrat velja poudariti, da je osna vertikalna statična mejna nosilnost testnega pilota, določena na osnovi izvedenih dinamičnih meritev in

analize, večja od izmerjene, saj pri izvedbi testa ni bil aktiviran celoten odpor konice pilota. Ter, da je bil dejanski dinamičen preizkus pilota en sam in izveden tako, da se analizira z ujemanjem merjenih signalov.

3.7.5.3 Primerjava rezultatov nosilnosti na osnovi dinamičnega obremenilnega preizkusa in PMT

Primerjava rezultatov nosilnosti na osnovi presiometrskih meritev in obremenilnih preizkusov pilotov, nas pripelje do ugotovitve, da je odstopanje med projektnima pristopoma minimalno. Zaradi preglednosti slike 59 smo v nadaljevanju poleg izmerjene mejne nosilnosti pilota iz dinamičnega obremenilnega preizkusa, prikazali le konzervativnejše (PP1) od vrednosti dopustnih nosilnosti izračunanih na osnovi presiometrskih meritev in obremenilnega preizkusa.

Slika 59: Prikaz nosilnosti pilotov, določen na osnovi PMT in dinamičnega obremenilnega preizkusa za viadukt 6-3

Figure 59: Results of bearing capacity from the PMT and the dynamic pile load test for viaduct 6-3

Primerjava rezultatov v grobem kaže zelo dobro ujemanje med dopustnima nosilnostima dobljenima z dinamičnim obremenilnim preizkusom (II) in po starem (2) Ostale vrednosti izračunane na osnovi presiometrskih testov (po EC-7; 1a, 1b in 1c) pa so dosti višje. Kar je tudi prav, saj smo že na začetku omenili, da je dejanska osna vertikalna statična mejna nosilnost testnega pilota, določena na osnovi izvedenih dinamičnih meritev in analize, večja od izmerjene, saj pri izvedbi testa ni bil aktiviran celoten odpor konice pilota. Glede na trend obtežbe in pomika pilota, lahko ocenimo mejno nosilnost pilota na približno 20 MN. Tako je odstopanje med mejno nosilnosti izračunane na osnovi presiometrskih testov (po EC-7; 1a, 1b in 1c), t.j. globalni varnostni faktor, tudi tu enak približno 2.

3.7.6 AC Koper - Lendava odsek Slivnica Pesnica, most čez Kanal in Dravo

3.7.6.1 Uvod k lokaciji

Na lokaciji je obravnavan most čez Kanal in Dravo (10-3, 6-1), ki je temeljen globoko, na uvrtanih pilotih. V bližini podpore 3D tega mostu, sta bila pred izgradnjo izvedena poizkusna pilota s statično in dinamično obremenitvijo. Uvrtana AB pilot tipa Benoto s premerom (ϕ) 0,8 m in dolžino (L) 17,6 m, sta bila oba obremenjena v decembru, leta 2000, eden statično in drugi dinamično. V bližini podpore 5L, istega mostu, je bil pred izgradnjo izveden še en poizkusni pilot z dinamično obremenitvijo. Tip pilota je bil enak predhodnima dvema s premerom (ϕ) 1,5 m in dolžino (L) 19,7 m. Le-ta je bil obremenjen v aprilu 2005, z namenom racionalizacije temeljenja mostu.

Vrtini za presiometrske preiskave sta bili izdelani blizu lokacij testnih pilotov. Na širšem obravnavanem območju bregove Drave v celoti tvorijo rečne terase kvartarne starosti. Terasni material sestavlja prod, peščen prod, pesek, melj in peščena glina. Prodniki so v glavnem iz metamorfnih in magmatskih kamenin, v manjši meri pa tudi karbonatnih sedimentov. Sortiranost je slaba, velikost posameznih prodnikov pa je spremenljiva od nekaj centimetrov pa do par decimetrov. Osnovno hribino tvorijo miocenski sedimenti. Plasti so sestavljene iz peščenega laporja, peščenjaka, peska in konglomerata. Na lokaciji testnih pilotov se lapornata podlaga pojavi na globini 15,5 m pod koto terena. Nad laporno podlago je sloj prodno

peščenih zemljin pretežno gostega gostotnega sestava. Gostota z globino narašča.

3.7.6.2 Dinamični in statični obremenilni preizkus pilota

3.7.6.2.1 Rezultati izvedenih obremenilnih preizkusov

Že v uvodu tega poglavja (3.7.3) smo na kratko opisali potek obeh obremenilnih preizkusov, zato tu podajamo le rezultate. V bližini podpore 3D obravnavanega mostu, sta bila pred izgradnjo izdelana dva poizkusna pilota. Na prvem je bil izveden dinamični obremenilni test. Na osnovi meritev in analize je bila ugotovljena osna vertikalna statična mejna nosilnost enaka 6990 kN. S statično obremenilno preizkušnjo, izvedeno na drugem testnem pilotu, pa je bila ugotovljena mejna nosilnost 11530 kN.

Preglednica 92: Rezultati dinamičnega in statičnega obremenilnega preizkusa za most 10-3, 6-1 Table 92: Results from dynamic and static pile load tests for bridge 10-3, 6-1

Obremenilni preizkus	Mejna nosilnost pilota (kN)
Dinamični	6990
Statični	11530

Kot lahko vidimo, se rezultata dinamičnega in statičnega obremenilnega preizkusa zelo razlikujeta, vzrok nam žal ni poznan. Zaradi te razlike in zaradi dejstva, da kot smo povedali že v uvodu, podani korelacijski faktorji ξ , pri izračunu karakterističnih vrednosti na podlagi ndinamičnih obremenilnih preizkusov, veljajo le za 2 ali več testov, medtem, ko imamo mi na razpolago en sam dinamični obremenilni preizkus, bomo rezultat dinamičnega obremenilnega preizkusa upoštevali z rezervo. Velja omeniti tudi dejstvo, da je vrednotenje same dinamične obremenilne preiskave posredno, preko numeričnega modela. Tako pričakujemo, da bo merodajna predvsem primerjava s statičnim obremenilnim preizkusom.

V bližini podpore 5L, istega mostu, je bil pred izgradnjo izveden še en poizkusni pilot (premera 150 cm) z dinamično obremenitvijo. Že v naprej je bilo jasno, da celotnega odpora tako masivnega pilota ne bo mogoče aktivirati. Na osnovi meritev in analize je bila ugotovljena osna vertikalna statična mejna nosilnost večja od 11680 kN. Ker pri izvedbi preizkusnega pilota ni bil aktiviran celoten odpor konice pilota, primerjava rezultatov
nosilnosti na osnovi PMT in na osnovi dinamičnega obremenilnega preizkusa, kaže veliko odstopanje. Zaradi podobnosti s testnim pilotom na lokaciji Cogetinci – Vučja vas (poglavje 3.7.5) rezultatov tu ne navajamo.

Slika 60: Prikaz mejne nosilnosti pilota obremenilnih preizkusov za most 10-3, 6-1 Figure 60: Results of bearing capacity from pile load tests for bridge 10-3, 6-1

3.7.6.2.2 Določitev karakterističnih vrednosti nosilnosti na podlagi obremenilnih preizkusov

Iz izmerjenih odporov izvedenih obremenilnih preizkusov smo dobili vrednost mejne tlačne nosilnosti pilota ($R_m = R_{b,m} + R_{s,m}$). Nato s korelacijskima faktorjema ξ , izračunamo karakteristično vrednost nosilnosti - $R_{c,k}$.

Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov statične obremenilne preizkušnje (I - po Evrokodu 7-1 (SIST EN 1997-1, 7.6.2.2), mejna tlačna odpornost iz statičnih obremenilnih preizkusov), večjih problemov nismo imeli, saj sta za en

sam preizkus korelacijska faktorja ξ podana. Pri določevanju karakteristične vrednosti nosilnosti pilota na osnovi rezultatov dinamične obremenilne preizkušnje, pa smo račun izvedli za dva različna primera, kot je natančno opisano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.2).

3.7.6.2.3 Račun dopustne nosilnosti pilotov na podlagi obremenilnih preizkusov

Vse izračunane karakteristične vrednosti tlačne nosilnosti - $R_{c,k}$, smo v nadaljevanju uporabili za izračun projektne nosilnosti pilota $R_{c,d}$ po postopkih projektnega pristopa 1 in 2 (postopki so predstavljeni na straneh 9 in 10). Za primerjavo vseh rezultatov izračunov (na osnovi presiometrskih meritev in na osnovi obremenilnih preizkusov, po Evrokodu 7-1) smo dobljene vrednosti $R_{c,d}$ za vse postopke reducirali še z obtežnim faktorjem, kot je prikazano pri predhodno izvrednotenem nadvozu 4-6 (3.7.4.2.2.3).

V nadaljevanju so tabelarično (Preglednica 93) in grafično (Slika 61) podani vsi rezultati izračunov nosilnosti ($R_{c,d}$ in R_{dop}) na podlagi obremenilnih preizkusov, za lokacijo podpore 3.

Preglednica 93: Rezultati izračunov nosilnosti na podlagi obremenilnih preizkusov za most 10-3, 6-1

/	Projektni pristop	P	P1	P	P2	Odstopanja
Pa	ostopek izračuna	R _{c,d} (kN)	R _{dop} (kN)	R _{c,d} (kN)	R _{dop} (kN)	računa po postopku I od II(%)
Ι	na osnovi statične obremenilne preizkušnje	5491	4946	7487	5348	0
IIa	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1,6, \xi_6 = 1,5)$	2913	2624	3972	2837	88,5
IIb	na osnovi dinamične obremenilne preiz., kot da imamo dve preiz. $(\xi_5 = 1,6, \xi_6 = 1,5), z \text{ modelnim}$ faktorjem 0,85	3427	3087	4673	3338	60

Table 93:	Results of	bearing	capacity	calculations	from pile	load tests fo	or bridge 10)-3, 6-1
			· · · · · · · · · · · · · · · · · · ·		· · ·			

Slika 61: Prikaz rezultatov izračunov R_{dop} na podlagi obremenilnih preizkusov za most 10-3, 6-1 Figure 61: Calculation results of R_{dop} from pile load tests for bridge 10-3, 6-1

S slike 61 lahko razberemo, da je razlika računov po enem ali drugem projektnem pristopu enaka 8%. Odstopanja dopustne nosilnosti, izračunana na osnovi dinamične in na osnovi statične obremenilne preizkušnje pilota, so velika, kar je glede na veliko razliko med izmerjenimi mejnimi nosilnostmi, pričakovano. Dejanske vrednosti odstopanj pa so podane v preglednici 93. Sledi izračun nosilnosti pilotov na podlagi presiometrskih meritev.

3.7.6.3 Presiometrske meritve

3.7.6.3.1 Vrtini na lokaciji z rezultati PMT

Vrtini z opisom zemljin na globini testov, tako kot tudi rezultati PMT, so podani v preglednici 94. Preiskave smo izvajali oktobra 2001 v vrtini z oznako MB-1 in aprila 2005 v vrtini z oznako MB7-5L. V produ smo jih izvajali s sondo AX, ki ima gumijasto membrano zaščiteno s prirezano kovinsko cevjo, v podlagi pa s sondo BX. Sondo AX smo na globino testa zabili, za izvedbo testa s sondo BX, pa smo vrtino pripravili predhodno, z vrtalno glavo premera 66 mm.

Preglednica 94: Presiometrske preiskave na lokaciji mostu 10-3, 6-1

Vrtina	Globina (m)	Opis zemljin	Zemljina ozn.	P _L (kPa)	E ₀ (MPa)
	6,0	Enozrnat prod z zrni do 5 cm, gost, sivorjav, moker		1000	6,3
MB-1	7,2	Meljasto peščen dobro granuliran droben prod, gost, siv, moker		3200	14,4
	9,0	Meljasto peščen droben slabo granuliran prod, rahel do sr. gost, siv, moker	G	3600	16,1
	11,6	Meljasto peščen dobro granuliran prod, rahel, siv in svetlo sivorjav, moker		1900	7,2
	14,4	Meljasto peščen prod, rahel do sr. gost, siv do sv. sivorjav		3000	19,2
	17,7	Meljast mehki laporovec z vložki grobega peska, slojevit, trden, siv	MI	6500	65,3
	19,4	Meljast mehki laporovec z vložki grobega peska, trden, siv	IVIL	7000	82,1
	6,5	Prod	G	1600	11,0
MB7-	10,8	1104	U	3300	20,0
5L	19,7	Lapor	MI	7000	84,0
	23,7	Lapor	IVIL	7000	120,0

Table 94: Pressuremeter tests at the location of bridge 10-3, 6-1

3.7.6.3.2 Določitev karakterističnih slojev

Podlago na področju obravnavanega mostu smo razdelili v tri karakteristične sloje:

- prvi sloj do globine 6,5 m, sestavlja GM, rahel do srednje gost,
- drugi sloj do globine 15,5 m, sestavlja GM, srednje gost do gost,
- tretji sloj globlje od 15,5 m, predstavlja podlaga iz peščenega laporja.

3.7.6.3.3 Določitev karakterističnih vrednosti parametrov

Sledi določitev vrednosti parametrov presiometrskih meritev; mejnega tlaka p_L ter modula prve E_0 in modula ponovne E_R obremenitve, za posamezni sloj. Vseh modulov ponovne obremenitve E_R žal nimamo, saj razbremenilnega koraka vedno nismo izvajali. Tako smo ga izbrali glede na tip zemljine iz obstoječe literature; za melj $E_0/E_R=3$ ter za pesek in gramoz E_0/E_R =4, oz. glede na razmerje E_0/E_R izmerjenih vrednosti v dejanskem sloju.

3.7.6.3.3.1 Karakteristične vrednosti v vrtini

Za prvega od postopkov računa nosilnosti pilotov, je določitev karakterističnih vrednosti slojev v vrtini dokaj enostavna, saj smo v izračunu podali vse rezultate presiometrskih meritev v obravnavani vrtini. Tako smo izračunali nosilnost pilotov in nato s korelacijskimi faktorji določi karakteristično vrednost nosilnosti.

3.7.6.3.3.2 Karakteristične vrednosti po statistični definiciji (poglavje 3.4.1)

V preglednici 95 so podani rezultati statističnega izračuna karakterističnih vrednosti pri 5% kvantili za mejn tlak p_L ter modula prve E_0 in ponovne obremenitve E_R posameznega sloja, za most 10-3, 6-1. Prav tako so karakteristične vrednosti prikazane tudi iz tabele rezultatov presiometrske preiskave, podane v prilogi A (Priloga A63).

Preglednica 95: Karakteristične vrednosti parametrov presio. preiskav za most 10-3, 6-1 Table 95: Characteristic values of the pressuremeter tests parameters for bridge 10-3, 6-1

					Karak	teristični	a vred.	
Sloj	Srednja vrednost	Stand. deviacija	Število testov	p _L (kPa)	E ₀ (MPa)	E _R (MPa)	E_0/p_L	E_{R}/E_{0}
G(1)	1300	424,3	2	602	3,2	20,6	5,3	6,4
G(2)	3000	651,9	5	1928	5,3	40,6	2,8	7,7
<i>ML</i> (3)	6875	250	4	6464	50,0	226,0	7,7	4,5

V nadaljevanju (Preglednica 96) je prikazan način določevanja karakterističnih vrednosti po statistični definiciji le za mejni tlak p_L . Modula prve E_0 in ponovne obremenitve E_R smo določili na enak način.

3.7.6.3.3.3 Karakteristične vrednosti kot previdne ocene

Zaradi majhnega števila podatkov in včasih tudi relativno velikega odstopanja le-teh, smo v statističnem računu karakterističnih vrednosti parametrov dobili tudi zelo nerealne vrednosti parametrov. Zato smo v karakterističnih slojih pri izbiri karakteristične vrednosti materialnih lastnosti upoštevali še dodatni kriterij, da karakteristična vrednost ne more biti manjša od

najmanjše izmerjene vrednosti in smo jo nato izbrali kot previdno oceno, kar je prikazano v tabeli rezultatov presiometrske preiskave, podane v prilogi A (Priloga A64) in v preglednici 96.

3.7.6.3.3.4 Inženirski pristop (po dosedanji praksi)

Za račun nosilnosti smo upoštevali vse rezultate dobro izvedenih testov, pri čemer je bilo sodelovanje med geologom in geotehnikom zelo koristno. Tako smo za most 10-3, 6-1 določili karakteristične vrednosti parametrov, ki so kar enake izmerjenim vrednostim in so prikazane v tabeli rezultatov presiometrske preiskave, podane v prilogi A (Priloga A65) in v preglednici 96.

p _L (kPa)	re sti	a	dna ija	ıa	ka	1a lc	ska 2			р	l (kPa)
Sloj	Dobljen vrednos	Srednj	Standaro deviaci	Mediar	Statisti) 1b	Previdi ocena	Inženirs Ocena			3500	7000 ocena
1	1000	1300	424 3	1300	600	1300	1200			→ Stat	istika
0-6,5 m	1600	1200		1200	000	1200	1200				
	3200								4		
2	3600						3000				
2 6 5-15 5 m	1900	3000	651,9	3200	1930	3000	1900				
0,5 15,5 11	3000						3000		8 —	T	
	3300										
	6500										
3	7000	6875	250	7000	0 6460	6800	7000				
15,5 m→	7000	0875	230	/000	0400	0800	/000		12 -	- \	
	7000										
								_	16		-
	$p_L z$	globino	, kot je 1	upoštev	an v izr	ačunih		ѫ	(iii) x 20		•

Preglednica 96: Karakteristične vrednosti mejnega tlaka p_L za most 10-3, 6-1 Table 96: Characteristic values of the limit pressure p_L for bridge 10-3, 6-1

3.7.6.3.4 Račun nosilnosti vertikalno obremenjenih pilotov

Izračun nosilnosti obravnavanega objekta smo izvedli za enake dimenzije pilotov, kot jih imajo testni piloti. Na lokaciji podpore 3 sta oba pilota s premerom (ϕ) 0,8 m in dolžino (*L*) 17,6 m (D=3 m). Opisane dimenzije so prikazane na sliki (Slika 11). Predvideni so betonski piloti, uvrtani z opažem, ki se izvleče (Benoto tehnologija), s prostorninsko težo γ_B =25 kN/m³, modulom elastičnosti *E*=21 GPa in Poissonovim količnikom *v*=0,175.

Po določitvi karakterističnih slojev in karakterističnih vrednostih parametrov presiometrskih preiskav, smo izračunali nosilnost vertikalno obremenjenih pilotov, z različnimi vrednostmi vhodnih parametrov in po različnih postopkih, opisanih v predhodnih poglavjih (3.5.3 in 3.5.4.5). V primeru, da podatkov o modulu ponovne obremenitve E_R ni bilo, smo ga izbrali glede na tip zemljine; za melj $E_0/E_R=3$ ter za pesek in gramoz $E_0/E_R=4$, oz. glede na razmerje E_0/E_R izmerjenih vrednosti.

Sledi tabelaričen prikaz rezultatov vseh postopkov, za obravnavani objekt (Preglednica 97).

Preglednica 97: Prikaz rezultatov izračunov nosilnosti (R_{dop}) za most 10-3, 6-1Table 97: Results of bearing capacity calculations (R_{dop}) for bridge 10-3, 6-1Postopek izračunaProjektni pristop R_{cd} (kN) R_{dop}^{*} (kN)

	Postopek izračuna	Projektn	i pristop	$R_{c,d}$ (kN)	R_{dop}^{*} (kN)
1.0	EC 7-1 z upoštevanjem	PP1		4568	4116
Ta	korelacijskih faktorjev ξ	PP2		6071	4337
1h	EC 7-1 z upoštevanjem	PP1	Frank	4255	3833
10	statistika	PP2	TTalik	5755	4111
1.	EC 7-1 z upoštevanjem	PP1	Energia	5297	4772
IC	previdna ocena	PP2	Frank	7028	5020
2	z upoštevanjem globalnih varnostnih faktorjev				3473

* $R_{dop} = R_{c,d}/F_{obt}$ (str. 62)

3.7.6.3.5 Primerjava rezultatov nosilnosti na lokaciji podpore 3

Grafikon na sliki 62 kaže vrednosti nosilnosti pilotov (R_{dop}), normiranih na vrednost nosilnosti izračunano po dosedanji praksi (2), z upoštevanjem globalnih varnostnih faktorjev,

za most 10-3, 6-1, izračunanih po vseh postopkih z obema projektnima pristopoma (z upoštevanjem modelnega faktorja – Frank). Ob pregledu rezultatov lahko zaključimo, da smo z izračuni po dosedanji praksi (2.), dobivali dokaj konzervativne rezultate. Če primerjamo rezultate, pri izračunu karakterističnih vrednosti po statistični metodi, dobimo po projektnem pristopu 2, 18% višjo vrednost, pri računu z upoštevanjem parametrov dobljenih kot previdna ocena, pa 45% višjo vrednost od tiste, izračunane po dosedanji praksi (2). Glede na vse račune lahko zaključimo, da je projektni pristop 1, za izračun dopustne nosilnosti vertikalno obremenjenih pilotov, malenkost bolj konzervativen (5 do 7%) od projektnega pristopa 2.

Slika 62: Prikaz rezultatov izračunov R_{dop} za most 10-3, 6-1 Figure 62: Calculation results of R_{dop} for bridge 10-3, 6-1

3.7.6.4 Primerjava rezultatov nosilnosti na osnovi obremenilnih preizkusov in PMT

Primerjava rezultatov nosilnosti na osnovi presiometrskih meritev in obremenilnih preizkusov pilotov, nas pripelje do ugotovitve, da je odstopanje med projektnima pristopoma minimalno. Zaradi preglednosti slike 63 smo v nadaljevanju poleg izmerjenih mejnih nosilnosti pilota

obeh obremenilnih preizkusov za most 10-3, 6-1 prikazali le konzervativnejše od vrednosti nosilnosti izračunane na osnovi presiometrskih meritev in obremenilnih preizkusov (PP1).

Slika 63: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za most 10-3, 6-1,

Figure 63: Results of bearing capacity from the PMT and the pile load tests for bridge 10-3, 6-1

Primerjava rezultatov v grobem kaže zelo dobro ujemanje med dopustno nosilnostjo dobljeno s statičnim obremenilnim preizkusom (I) in vrednostmi izračunanimi na osnovi presiometrskih testov (po EC-7; 1a, 1b in 1c). Že na začetku smo omenili, da je dejanska osna vertikalna statična mejna nosilnost testnega pilota, določena na osnovi izvedenih dinamičnih meritev in analize, prenizka (glede na statični obremenilni preizkus). Ponavadi je vzrok za to neaktiviran celoten odpor konice pilota. Odstopanje med mejno nosilnostjo izmerjeno iz statičnega obremenilnega testa in izračunanimi vrednostmi dopustne nosilnosti izračunane na osnovi presiometrskih testov (po EC-7; 1a, 1b in 1c), t.j. globalni varnostni faktor, je tudi tu večji oz. enak 2.

3.7.7 Zaključek

V tem delu naloge smo predstavili primerjave izračuna nosilnosti na osnovi presiometrskih meritev z dinamičnimi in statičnimi obremenilnimi testi. Skušali smo določiti globalni varnostni faktor med mejno nosilnostjo pilotov, dobljeno iz obremenilnih preizkusov, in nosilnostjo izračunano po vseh predhodno predstavljenih postopkih, na osnovi presiometrskih meritev (1a, 1b, 1c in 2).

Na slikah 64, 65, 66 in 67 lahko vidimo, da so bili statični obremenilni testi izvedeni na treh lokacijah, dinamični pa na štirih. Od tega v enem od statičnih testov z maksimalno razpoložljivo obremenitvijo, ni prišlo do porušitve pilota. Podobno se zgodi pri dveh od dinamičnih obremenilnih preizkusov, kjer ni bil v celoti aktiviran odpor konice pilota. V primeru, ko je trend obtežbe in pomika pilota viden, smo mejno nosilnost pilota ocenili pri deformaciji (posedku pod pilotom), ki je enaka 10% premera konice pilota.

Dopustna nosilnost določena na osnovi presiometrskih meritev (po postopkih 1a, 1b in 1c), je v spodnjih grafikonih prikazana z dvema linijama, ki predstavljata zgornjo in spodnjo vrednost R_{dop} . Vidimo lahko, da sta ti dve liniji v vseh primerih približno na sredini grafikona med vrednostjo 0 in R_m (pri 10% premera konice pilota), kar pomeni, da je iskani globalni varnostni faktor med mejno nosilnostjo pilotov, dobljeno iz obremenilnih preizkusov, in nosilnostjo izračunano po vseh predhodno predstavljenih postopkih, na osnovi presiometrskih meritev (1a, 1b, in 1c) večji oziroma enak **2**. Izjema, kot smo napisali že predhodno, je le lokacija, kjer imamo mehkejše zemljine, kjer je ta faktor še večji. Žal je to edini primerek lokacije z izveđenimi obremenilnimi testi in presiometrskimi meritvami v mehkejših glinenih tleh, tako da prave primerjave nimamo.

Slika 64: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za nadvoz 4-6 Figure 64: Results of bearing capacity from the PMT and the pile load tests for crossover 4-6

Slika 65: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za nadvoz 4-7 Figure 65: Results of bearing capacity from the PMT and the pile load tests for crossover 4-7

Slika 66: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za viadukt 6-3 Figure 66: Results of bearing capacity from the PMT and the pile load tests for viaduct 6-3

Slika 67: Prikaz nosilnosti pilotov, določen na osnovi PMT in obremenilnih preizkusov za most 10-3 Figure 67: Results of bearing capacity from the PMT and the pile load tests for bridge 10-3

4 ZAKLJUČEK

V nalogi so prikazani rezultati presiometrskih meritev na 7 različnih lokacijah, kjer je bila predvidena izgradnja 15 objektov. Na osnovi teh meritev smo po različnih postopkih določili nosilnost tlačno obremenjenih pilotov.

Od leta 1999 smo uspešno izvedli preko 900 presiometrskih meritev po vsej Sloveniji (Slika 1), ki smo jih izvajali v zemljinah in mehkih kamninah: od židkih zemljin v Luki Koper, permokarbonskih skrilavcev v Blagovici, štajerskih laporjev, pa vse do pomurskih prodov v okolici Lendave. Na osnovi vseh teh testov smo dimenzionirali temeljenje 96 globoko in 33 plitvo temeljenih objektov.

V Evropskem gradbeništvu stopajo v veljavo novi standardi Evrokod in tako se nam je porodila ideja na realnih podatkih preveriti:

- razliko med nosilnostjo vertikalno obremenjenih pilotov po sedanji praksi in po Evrokodu 7,
- modelni faktor za alternativno metodo računa nosilnosti pilotov, ki ga je predlagal Frank,
- nosilnost pilotov, izračunano po različnih projektnih pristopih (PP),
- vpliv števila izvedenih sondiranj na izračun nosilnosti ter
- globalni faktor varnosti na osnovi primerjave med nosilnostjo določeno z obremenilnimi testi in z izračuni po Evrokodu na osnovi presiometrskih testov.

Ugotovili smo:

- da z izračuni nosilnosti po dosedanji praksi, z globalnim varnostnim faktorjem 2,8 (AFNOR, 1992), dobimo v primerjavi z Evrokodi 7 bolj konzervativne rezultate, kar pomeni, da s predlaganimi delnimi, korelacijskimi in modelnimi faktorji iz Evrokoda 7 dobimo cenejše temeljenje na pilotih, a s tem tudi zagotavljamo nižji nivo globalne varnosti kot do sedaj,
- da bi modelni faktor, potreben pri alternativnem postopku (1b in 1c), po naših

ugotovitvah v Sloveniji moral biti enak 1,32, kar se dobro ujema z vrednostjo (1,30), določeno v Nacionalnem dodatku k Evrokodu 7 in je povzeta po predlogu Franka (Frank, 2004), a je smiseln le, če je izvedenih več vrtin. Pri eni vrtini mora biti ta faktor 1,4 ali pa se alternativna metoda ne sme uporabljati,

- da je projektni pristop 1 za izračun nosilnosti bolj konzervativen od projektnega pristopa 2. Računi kažejo, da je razlika med vrednostjo varnostnega faktorja določenega po PP1 in PP2 enaka dobrih 9%. Razmere so drugačne v primeru trenjskih pilotov (nosilnost konice ≈ 0), kjer je bolj konzervativen izračun nosilnosti po PP2 in sicer za 10%.
- da vrednosti nosilnosti, izračunane po alternativni metodi, pri kateri smo karakteristične vrednosti mejnih tlakov za posamezne sloje izbrali (previdno ocenili SIST EN 1997-1, 7.6.2.3 računi 1c), dajejo v večini primerov nosilnosti višje od računa po dosedanji praksi (2) in po alternativni metodi (s statistično določenimi karakterističnimi vrednostmi 1b) ter nižje oziroma podobne izračunom po osnovni metodi (1a). Predvsem v primerih, kjer izračunana nosilnost po metodi 1a in 1b izkazuje veliko odstopanje, se metoda 1c izkaže za dobro (razlog je predvsem statistično določanje karakterističnih vrednosti, kadar imamo premalo presiometrskih razultatov, ki se poleg tega tudi preveč razlikujejo).
- da je ocena nosilnost pri večjem številu vrtin višja in je tudi zanesljivost rezultatov večja. Tako je smotrno izdelati več vrtin s presiometrskimi meritvami, ker s tem prihranimo pri stroških temeljenja ter
- da je globalni faktor med mejno nosilnostjo, dobljeno iz obremenilnih preizkusov pilotov, in dopustno nosilnostjo, izračunano po vseh postopkih na osnovi presiometrskih meritev po Evrokodu 7, za vse obravnavane primere večji oziroma vsaj enak 2.

Glede na izračune nosilnosti po dosedanji praksi, izračuni po Evrokodu 7 izkazujejo nižje varnostne faktorje. Ti imajo v povprečju vrednost enako 2,23, minimalna vrednost pa je 2,04.

V prihodnje bo potrebno vse ugotovitve na osnovi obremenilnih preizkusov pilotov podpreti še z dodatnimi obremenilnimi testi, saj so rezultati vzpodbudni. Če se vrnemo v preteklost, dobrih 8 let nazaj, smo takrat o Ménardovem presiometru v Sloveniji napisali prve besede in razvili prva programa za račun nosilnosti in posedkov globoko in plitvo temeljenih objektov. Takrat smo lahko samo upali na takšen odziv stroke do priznanja in uporabe presiometrske opreme pri nas, kot smo ga ustvarili do sedaj. Upamo, da bodo vse predstavljene ugotovitve te naloge doprinesle k tehtnejši pripravi programov (presiometrskih) preiskav ter da bo projektiranje temeljenja po novih predpisih lažje.

5 VIRI

Baguelin, F., Jézéquel, J. F., Shields, D. H. 1978. The pressuremeter and foundation engineering. First edition. Clausthal, Trans Tech Publications: 617 str.

Briaud, J. L. 1992. The pressuremeter. Rotterdam, A.A. Balkema: 322 str.

Briaud, J. L., Tucker, L. M. 1988. Measured and Predicted Axial Responses of 98 Piles. ASCE, Journal of Geotechnical Engineering, Vol. 114, No. 9: str. 984-1001.

Clarke, B. G. 1995. Pressuremeter in geotechnical design. First edition. Glasgow, Chapman & Hall: 364 str.

Evrokod 7: Geotehnično projektiranje - Del 1: Splošna pravila (2004). SIST EN 1997-1: 167 str.

Eurocode 7: Ground investigation and testing - part 2 (2005). CEN/TC 250 4th draft pr ENV 1997-2: 158 str.

Eurocode 7: Geotechnical design - part 3: design assisted by field testing, (1997). CEN/TC 250 final draft pr ENV 1997-3: 152 str.

Frank R., Zhao S. R. 1982. Estimation par les Parametres Pressiometriques de l'Enforcement Sous Charge Axiale de Pieux Forés dans les Sols Fins. Bull. Liaison Labo. P. et Ch. 119.

Frank R., Baudiuin C., Driscoll R., Kavvadas M., Krebs Ovesen N., Orr T., and SchuppenerB. 2004. Designers Guide to EN 1997-1 Eurocode 7: Geotechnical design - General rules.First edition. London, Tomas Telford Ltd: 216 str.

Gambin M. P. 1995. Reasons for the success of Menard pressuremeter. Symp.on

Pressuremeters (ISP5). Sherbrooke, Canada.

Gambin M. P., Rousseau J. 1988. The Ménard pressuremeter: interpretation and application of pressuremeter test results to foundation design. Apegeo, France.

Hughes, J. M. O., Wroth, G. P., Windle, D. 1977. Pressuremeter Tests in Sand. Géotechnique, Vol. 27, No. 4: str. 455-477.

Kuder, S. 2000. Razvoj in uporaba programskega orodja za obdelavo rezultatov presiometrskih meritev. Diplomsko delo. Ljubljana. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 80 str.

Logar, J., Kuder, S., Robas, A., Majes, B. 2002. Uvajanje presiometrskih raziskav v projektiranje in kontrolo kvalitete pri cestogradnji. Raziskovalna naloga. Ljubljana. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 171 str.

Menard pressuremeter (G type). 1998. Apageo Segelm - Operating instructions: 35 str.

Norme Française P 11-212, 8.5 Essais de contrôle. 1992. AFNOR : 72 str.

pr EN ISO 22476-3:2002. Geotechnical Engineering - Field testing - Part 3: Standard Penetration Test.

pr EN ISO 22476-8:2002. Geotechnical Engineering - Field testing - Part 8: Field vane test.

pr EN ISO 22476-5:2005. Geotechnical investigation and testing - Field testing - Part 5: Self boring pressuremeter test.

pr EN ISO 22476-5:2005. Geotechnical investigation and testing - Field testing - Part 6: Flexible dilatometer test.

pr EN ISO 22476-8:2005. Geotechnical investigation and testing - Field testing - Part 8: Full

displacement pressuremeter test.

prEN 22476-15:2005.7. Ground investigation and testing - Field testing - Part 15: Mechanical cone penetration test (CPT).

Robas, A. 1999. Geotehnično projektiranje na osnovi presiometrskih meritev. Ljubljana. Diplomsko delo, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 122 str.

Robas, A., Gaberc, A. M., Kuder, S. 2005. Report on the use of pressuremeter tests in Slovenia. Pariz. Symposium International ISP5/PRESSIO 2005, Francija

Training on the pressuremeter test principle. Version 2/97.1997. Apageo Segelm - Electronic Department: 12 str.

Turk, G 2007. Verjetnostni račun in statistika. Ljubljana. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 226 str.

http://www.km.fgg.uni-lj.si/predmeti/sei/vrs1.pdf

Zupan, D., Turk, G. 2001. Nepristranska točkovna ocena karakterističnih vrednosti, Ljubljana. Gradbeni vestnik, let. 50: str. 206-214.

PRILOGE

- PRILOGA A: REZULTATI IZRAČUNOV NOSILNOSTI ZA RAZLIČNE POSTOPKE
- **PRILOGA B:** DOLOČITEV KARAKTERISTIČNE VREDNOSTI *R*_{*c,k*} PO OSNOVNI METODI (EVROKOD 7-1)

PRILOGA A: REZULTATI IZRAČUNOV NOSILNOSTI ZA RAZLIČNE POSTOPKE

Podatki o pilotu -	dimenzi		Karak	teristik	e temelinin ta				Izračun Nariši DK
šīrina pilota	1.25	m			Globina od	sloja (m) do	Tip zemljine	Prostominska teža (kN/m3)	✓ trilinearni diagram t-z
dolžina	1.25	m		1.sloj 2.sloj	0 10.5	10.5	CS ML	19 22	Račun vrednosti ob konici IZ zg. meritev C konstantno ⊙ interpolacija
lebelina stene če je pilot votel)		m			_	_	-		Rezultati Prerez kola
lolžina pilota	15.5	m	gl	obina p	odtalnice	20 m		zračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
lobina vpetja	4	m	26	meljski	nirnega ega pritiska	0.55		Priračunu pomikov sanemari del nad L. preiskavo	Vert.tlak_ob_nogi204.5kPa a0.025m
lobina odkopa a vrhu pilota	1	m	vrsta	pilota	Uvrtan z opa	žem, ki se izv	/leče	•	ple7002.734kPa De0m k1.8 qL12563.02kPa
odatki o pilotu -	vrsta, ol	olika	Tabe	la rezul	tatov presiom	etrske preisk	ave		Qp
omik pilota	uvrtar	-	1	z [m] 1.5	Tip zemljine CS	pL [kPa] 193	E0 [kP	a) Er [kPa] 2320	QL
onica nilota	polna	•	2	3	CS	193	2120	2320	Posedek(Q=Qsafe)=13.86626mm
	-		2	0.0	CS	102	040	2020]
blika pilota	krog	-	10	95	CS	2200	22000	105000	10
			G	10.5	CS CS	2300	22000	105000	80004
prostomnska	25	kN/m3	7	11	M	2000	49410	116000	
teza pilota			6	16	ML	7000	49410	116000	5333
modul elastičnosti	2100	kN/cm2	0	10	ML	7000	43410	110000	2666
Poissonov količnik	0.175			lcena r	nosilnosti [kN]	19000	Ocena n	omika (mm) 20	I K

Lokacija: A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep Dragučova

Priloga A1: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za viadukt 6-1

Appendix A1: Calculation results according to EC-7-1 with parameters from statistical analyses for viaduct 6-1

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.25 m	Globina sloja [m] Tip Prostorninska od do zemliine teža [kN/m3]	v trilinearni diagram t-z
dolžina	1.25 m	1.sloj 0 10.5 CS 19 2.sloj 10.5 20 ML 22	Račun vrednosti ob konici IV zg. meritev C konstantno ⓒ interpolacija
debelina stene (če je pilot votel)	m m		Rezultati Prerez kola 1.227185m2
dolžina pilota	15.5 m	globina podtalnice 20 m V Izračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4 m	Rolichik mimega zemeljskega pritiska 0.55 Pri računu pomikov zanemari del nad 1 prejskavo	Vert.tlak_ob_nogi264.5kPa a0.825m
globina odkopa na vrhu pilota	1 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗨	ple7002.734kPa DeOm k1.8 qL12563.02kPa Qp15417.14kN
Podatki o pilotu -	vrsta, oblika —	Tabela rezultatov presiometrske preiskave	Qs3593.825kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 1.5 CS 340 2500 6600	QL18535.43kN Qsafe6314.097kN
konica pilota	polna 💌	1 1.5 2.5 340 2.50 5000 2 3 CS 340 2500 6600 3 3.5 CS 300 2000 5500	Qoreep10104.45kN Posedek(Q=Qsafe)=6.783275mm
oblika pilota	krog	4 9 CS 300 2000 5500 5 9.5 CS 2300 32000 105000	12000
prostorninska teža pilota	25 kN/m3	6 10.5 CS 2300 32000 105000 7 11 ML 7000 100000 300000	
modul elastičnosti	2100 kN/cm	2 8 16 ML 7000 100000 300000	4000
Poissonov količnik	0.175	Ocena nosilnosti [kN] 1200 Ocena pomika [mm] 30	

Priloga A2: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena, za viadukt 6-1

Appendix A2: Calculation results according to EC-7-1 with parameters as cautious estimate for viaduct 6-1

- Podatki o pilotu -	dimenzije		Karaki	teristik	e temeljnih tal	l			Izračun Nariši OK
širina pilota	1.25	m			Globina	sloja [m]	Tip	Prostorninska	trilinearni diagram t-z
sinna pilota				1	00	d0 10 E	zemljine	teza [KN/m3]	j∳ uninearni ulagrani tiz
d = 125	1.25	_		2 sloi	10.5	20	MI	22	ob konici 🔽 zg. meritev
doizina	,	m			10.0				C konstantno 💽 interpolacija
debelina stene									Rezultati
(če je pilot votel)		m							Prerez_kola 1.227185m2
dolžina pilota	15.5	m	glo	bina p	odtalnice	20 m		zračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola3.926991m Teza_kola475.5341kN
globina vpetja	4	m	kol zer	ičnik r neljski	nirnega ega pritiska	0.55		Pri računu pomikov anemari del nad . preiskavo	Horiz.tlak_ob_nogi170.225kPa Vert.tlak_ob_nogi264.5kPa a0.625m
globina odkopa	1	_		,					ple
na vrhu pilota			vrsta p	oilota	Uvrtan z opa	żem, ki se izvi	ece	-	qL14191.79kPa
- Podatki o pilotu -	vrsta, obli	ika — — —	Tabela	a rezul	tatov presiom	etrske preiska	ave		Qs
nomik pilota	uvrtan	-		z [m]	Tip zemliine	pL [kPa]	E0 (kPa	al EríkPal	QL20910.08kN
pomik pilota		_	1	2	CS	340	2200	6800	Qsafe7162.185kN Ocreen 11354.42kN
Leville - Tete	polna	-	2	4	CS	250	1800	5300	Posedek(Q=Qsafe)=9.304599mm
konica pilota	poind .		3	7.5	CS	440	2600	4800	
oblika pilota	krog	-	4	9	CS	380	2500	4200	10
	_	_	6	9.5 10.7	MI	2300	32000	270000	12000
prostorninska teža pilota	25	kN/m3	7	16	ML	8000	85000	300000	8000
modul elastičnosti	2100	kN/cm2							4000
Poissonov količnik	0.175		0	cena r	nosilnosti [kN]	1200	Ocena po	omika (mm) 30	

Priloga A3: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za viadukt 6-1 Appendix A3: Calculation results for global safety factors for viaduct 6-1

- Podatki o pilotu - širina pilota dolžina	dimenzije 1.25 _m 1.25 _m	Karakteristike temeljnih tal Globina sloja [m] Tip Prostorninska od do zemljine teža [kN/m3] 1.sloj 0 12 CS 19 2.sloj 12 20 ML 22	Izračun Nariši OK Iv trilinearni diagram t-z Račun vrednosti Iv gr trilinearni diagram t-z
debelina stene (če je pilot votel)	m m		Rezultati Prerez_kola
dolžina pilota	17 m	globina podtalnice 20 m Izračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4 m	zemeljskega pritiska 0.55 Pri računu pomikov zanemari del nad 1. preiskavo	Vert.tlak_ob_nogi308kPa a0.625m ple
globina odkopa na vrhu pilota	1 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗨 💌	De0m k
- Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs3240.427kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 3 CS 222 1350 2700	QL
konica pilota	polna 💌	2 7 CS 222 1350 2700 3 11.5 CS 222 1350 2700 4 10.5 CS 222 1350 2700	Posedek(Q=Qsafe)=6.887419mm
oblika pilota	krog 💌	5 18 ML 7000 101540 257490	10040
prostorninska teža pilota	25 _{kN/m3}		8000
modul elastičnosti	2100 kN/cm2		4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30	

Priloga A4: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za viadukt 6-2

Appendix A4: Calculation results according to EC-7-1 with parameters from statistical analyses for viaduct 6-2

– Podatki o pilotu -	dimenzije -		Karakt	eristike	temeljnih ta	əl			Izračun Nariši OK
r oddin o pilota				G	ilobina	sloja [m]	Tip	Prostorninska	
širina pilota	1.25 r	n		0	d	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			· ·	1.sloj	0		12 CS	19	Bačun vrednosti
dolžina	1.25			2.sloj	12		20 ML	22	ob konici 🔽 zg. meritev
uuizina		"							C konstantna (internalacija
debeline stone									Posultati
(če je pilot votel)	l r	n	_		_	_	_		nezultati
foo to pliot rotoit									Prerez_kola 1.227185m2
4-122	17							zračun po EC 7	Obseq kola 3 928991m
doizina pilota		n	glol	bina po	dtalnice	20	m 💌	21dcurrpo EC 1	Teza kola
			kol	ičnik mi	imega			Pri račupu pomikov	Horiz.tlak_ob_nogi185.9kPa
globina vpetja	4	n	zen	neljskeg	ga pritiska	0.55		anemari del nad	Vert.tlak_ob_nogi308kPa
								I. preiskavo	a0.625m
globina odkopa	1			_					De 0m k 18
na vrhu pilota	I' I	n	vrsta p	oilota 📙	Jvrtan z opa	ažem, ki se	izvleče	-	gL
									Qp15429.86kN
Podatki o pilotu ·	vrsta, oblik	a	Tabela	a rezulta	atov presior	netrske pre	iskave		Qs
nomik nilota	uvrtan	-		z [m]	Tip zemljine	e pL (kPa] E0 [kP	a] Er[kPa]	QL
P	-		1	3	CS	400	3000	6000	Ocreen 10349 1kN
	a shi s		2	7	CS	400	3000	6000	Posedek(Q=Qsafe)=2.964509mm
konica pilota	poina _	•	3	11.5	CS	400	3000	6000	
	I		4	12.5	ML	7000	250000	1200000	
oblika pilota	King	_	5	18	ML	7000	250000	1200000	12000
prostorninsk a	05								12000
teža pilota	20 k	<n m3<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n>							
									8000 /
modul	2100	Al Jon 2							
elastičnosti		CHI GHZ							4000/
Paincanau	0.475								
količnik	10.175		0.		oiloooti [kh]	1 4000	Ocena n	omika [mm]	
			00	sena riu	osimosti (KN	11200	ocena p	ouncational 130	10 20 30

Priloga A5: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena, za viadukt 6-2

Appendix A5: Calculation results according to EC-7-1 with parameters as cautious estimate for viaduct 6-2

- Podatki o pilotu - širina pilota	dimenzij 1.25	e	ĸ	arakt	eristika I	e temelinih tal Globina od Ol	sloja [m] do 12	Tip Pro zemljine tež	ostorninska ža [kN/m3] 19	Izračun Nariši OK I✓ trilinearni diagram t-z
dolžina	1.25	m		;	2.sloj	12	20	ML	22	Bacun vrednosti ob konici
debelina stene (če je pilot votel)		m								Rezultati Prerez_kola 1.227185m2 Recer. kolećente D. 4.227485m2
dolžina pilota	17	m		glo kal	bina p	odtalnice	20 m	🔽 İzrač	ćun po EC 7	Phelez_kola(vote)1.227 135112 Obseg_kola521.5535kN Teza_kola521.5535kN
globina vpetja	4	m		zer	neljske	iga pritiska	0.55	Pri ra Zane 1. pr	ačunu pomikov emari del nad reiskavo	Vert.tlak_ob_nogi308kPa a
globina odkopa na vrhu pilota	1	m	vr	ista p	ilota	Uvrtan z opai	žem, ki se izv	eče	•	pe0m k1.8 qL12573.38kPa Qp
- Podatki o pilotu -	vrsta, of	olika	ι T _e	abela	a rezult	atov presiom	etrske preiska	ave		Qs
pomik pilota	uvrtan	•	Γ.		z [m]	Tip zemljine	pL [kPa]	E0 [kPa]	Er [kPa]	QL18849.55kN Qsafe6396.7kN
konica pilota	polna	•		2	3 6 7 5	CS CS	260 350 400	1600	4450	Qoreep10342.43kN Posedek(Q=Qsafe)=2.906505mm
					7.5	CS	400	3000	7000	
oblika pilota	krog	-		4 5	3 11 5	LS CS	520	2000	245000	0
				5	12.5	MI	7000	250000	1200000	12000
prostorninska teža pilota	25	kN/m3		7	18	ML	7000	250000	1200000	8000
modul elastičnosti	2100	kN/cm2								4000
Poissonov količnik	0.175			00	cena n	osilnosti (kN)	1200	Ocena pomił	<a 30<="" [mm]="" td=""><td></td>	

Priloga A6: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za viadukt 6-2 Appendix A6: Calculation results for global safety factors for viaduct 6-2

- Podatki o pilotu - širina pilota	dimenzije 1.25 m	Karakteristike temelijnih tal Globina sloja [m] Tip Prostominska od do zemlijne teža [kN/m3] 1.sloj 0 10.5 CS 19	Izračun Nariši OK ✓ trilinearni diagram t-z Bačun vrednosti
dolžina	1.25 m	2.stoj 10.5 20 ML 22	ob konici 🔽 zg. meritev C konstantno 🤆 interpolacija
debelina stene (če je pilot votel)	m m		Rezultati Prerez_kola 1.227185m2 Prerez_kola(votel) 1.227185m2
dolžina pilota	15.5 m	globina podtalnice 20 m Vizračun po EC 7	Obseg_kola
globina vpetja	4.0 m	zemeljskega pritiska 0.55 Pri računu pomikov zanemari del nad 1. preiskavo	Vert.tlak_ob_nogi264.5kPa a0.625m ple 7905.77kPa
globina odkopa na vrhu pilota	1 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🔹 💌	De0m k1.8 qL14188.48kPa Op 17411994N
- Podatki o pilotu -	vrsta, oblika —	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z (m) Tip zemljine pL (kPa) E0 (kPa) Er (kPa) 1 3.6 CS 100 250 500	QL20797.48kN Qsafe7121.972kN Qcreep11280.03kN
konica pilota	polna 🔻	2 4.3 CS 220 2000 4000 3 7.6 CS 210 1800 5400 4 0.2 CC 270 1800 5400	Posedek(Q=Qsafe)=9.394672mm
oblika pilota	krog	5 10.8 MI 7000 73000 22000	10040
prostorninska teža pilota	25 kN/m	6 16 ML 8000 85000 300000	800
modul elastičnosti	2100 kN/cn	2	4000
Poissonov količnik	0.175	Ocena nosilnosti [kN] 1200 Ocena pomika [mm] 30	

Priloga A7: Rezultati izračuna z upoštevanjem PMT meritev v vrtini DO-3 za viadukt 6-1 Appendix A7: Calculation results according to PMT measurements in the borehole DO-3 for viaduct 6-1

- Podatki o pilotu ·	dimenzije	Karakteristike temeljnih tal [Izračun] Nariši OK
širina pilota	1.25 m	Globina sloja [m] Tip Prostorninska od do zemliine teža [kN/m3]
dolžina	1.25 m	1.sloj 0 10.5 CS 19 2.sloj 10.5 20 ML 22 Račun vrednosti ob konici Image: Constantno Image: Constantno
(če je pilot votel)	m	Hezultati Prerez kola 1 227186m2
dolžina pilota	15.5 m	globina podtalnice 20 m ✓ Izračun po EC 7 Obseg_kola
globina vpetja	4.0 m	zemeljskega pritiska 0.55 Pi računu pomikov Vert.tlak_ob_nogi 764.5kP a 1. prejkava a
globina odkopa na vrhu pilota	1 m	Pie
- Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 0L
konica pilota	polna 💌	2 4 CS 250 1800 5300 Posedek(Q=Qsafe)=7.889123mm
	lun a	4 10.7 ML 7000 98000 230000
oblika pilota	Krog 💽	5 16 ML 8000 85000 300000 12000
prostorninska teža pilota	25 kN/m3	8000
modul elastičnosti	2100 kN/cm2	4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30 10 20 30

Priloga A8: Rezultati izračuna z upoštevanjem PMT meritev v vrtini GV-1 za viadukt 6-1 Appendix A8: Calculation results according to PMT measurements in the borehole GV-1 for viaduct 6-1

– Podatki o pilotu - širina pilota dolžina	dimenzije 1.25 _m 1.25 _m	Karakteristike temeljnih tal Globina sloja [m] Tip Prostorninska od do zemljine teža [kN/m3] 1.sloj 0 10.5 CS 19 2.sloj 10.5 20 ML 22	Izračum Nariši OK ✓ trilinearni diagram t-z Račun vrednosti ob konici ✓ zg. meritev
debelina stene (če je pilot votel)	m		C konstantno (* interpolacija Rezultati Prerez_kola 1.227185m2 Prerez_kola/(otel) 1.227185m2
dolžina pilota	15.5 m	globina podtalnice 20 m ✓ Izračun po EC 7 količnik mirnega 00.55 Pri računu pomikov	Obseg_kola
globina vpetja globina odkopa	1 m	zemeljskega pritiska 10.35 zanemari del nad 1. preiskavo	vert.ttak_ob_nogi204.5kPa a0.825m ple7907.606kPa De1.8
- Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	qL14191.79kPa Qp17415.94kN Qs4518.856kN
pomik pilota	uvrtan 👻	z (m) Tip zemljine pL (kPa) E0 (kPa) Er (kPa) 1 2.1 CS 380 3000 7100	QL21459.26kN Qsafe7358.322kN Qoreep11720.54kN
konica pilota	polna 💌	2 4.1 CS 270 1800 3600 3 7.5 CS 450 2100 5400 4 10.7 ML 7000 99000 220000	Posedek(Q=Qsafe)=7.800367mm
oblika pilota	krog 💌	4 10.7 ML 7000 30000 230000 5 16 ML 8000 85000 300000	12000
prostorninska teža pilota	25 kN/m3		8000
modul elastičnosti	2100 kN/cm2		4000
Poissonov količnik	0.175	Ocena nosilnosti [kN] 1200 Ocena pomika [mm] 30	10 20 30

Priloga A9: Rezultati izračuna z upoštevanjem PMT meritev v vrtini GV-2 za viadukt 6-1 Appendix A9: Calculation results according to PMT measurements in the borehole GV-2 for viaduct 6-1

– Podatki o pilotu - širina pilota	dimenzije 1.25 m	Karakteristike temeljnih tal Globina sloja (m.) Tip Prostorninska od do zemljine teža (kN/m.3) 1.sloj 0 13 CS 19	Izračun Nariši OK ✓ trilinearni diagram t-z
dolžina	1.25 m	2.sloj 13 20 ML 22	ob konici
debelina stene (če je pilot votel)	m		Rezultati Prerez_kola 1.227185m2
dolžina pilota	15.5 m	globina podtalnice 20 m ✓ Izračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4.0 m	zemeljskega pritiska 0.55 Pri računu pomikov zanemari del nad 1. preiskavo	Honz.ttak_ob_nogi100.1kPa Vert.tlak_ob_nogi267kPa a0.625kPa
globina odkopa na vrhu pilota	1 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗨	pre
- Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 2.9 CS 470 3500 10500	QL19434.06kN Qsafe
konica pilota	polna 💌	2 5.9 CS 320 1600 4500 3 9.7 CS 440 2600 4800	Posedek(Q=Qsafe)=9.001408mm
oblika pilota	krog 💌	4 11.7 LS 620 4500 9000	10
prostorninska teža pilota	25 kN/m3	6 16 ML 8000 85000 300000	12000°
modul elastičnosti	2100 kN/cm2		4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30	10 20 ^w 30

Priloga A10: Rezultati izračuna z upoštevanjem PMT meritev v vrtini GV-3 za viadukt 6-1 Appendix A10: Calculation results according to PMT measurements in the borehole GV-3 for viaduct 6-1

- Podatki o pilotu -	dimenzije	Karakteristike temelijnih tal	
širina pilota	1.25 m	od do zemliine teža [kN/m3] 🔽 trilinearni diagram t-z	
dolžina	1.25 m	1.sloj 0 13.5 CS 19 Bačun vrednosti ob konici Z zg. meritev 2.sloj 13.5 20 ML 22 C konstantno © interpolaciji	ia
debelina stene		Rezultati	
(če je pilot votel)	m	Prerez_kola 1.227185m2	
dolžina pilota	15.5 m	globina podtalnice 20 m F Izračun po EC 7 Prerez_kola(votel)1.227185m2 globina podtalnice 120 m Teza_kola	
alahina unatia	4.0	kolicnik mirnega zemeliskena pritiska 0.55 Pri računu pomikov Vert.tlak ob nogi255.5kPa	
giobina vpega		1. preiskavo	
globina odkopa	1	ple	18
na vrhu pilota	n m	vrsta pilota Uvrtan z opažem, ki se izvleče 🚽 qL	
- Podatki o pilotu -	vreta oblika	Tabela rezultatov presignatrska prejektive	
1 odatki o pilota -	vista, oblika	rabela rezultatov presionetrske preskave	
pomik pilota		z [m] Tip zemiline pL [KPa] EU [KPa] Ef [KPa] Qsafe	
		1 3.2 C5 230 1000 3000 Qoreep	
konica pilota	polna 🔻	2 0 C3 320 2000 3000 Posedex(u=usare)=8.830922mm	1
		4 11 2 CS 380 2500 4200	
oblika pilota	krog 💌	5 14 ML 7000 164000 550000 100Å	_
prostorninsk a	05	6 16 ML 8000 85000 300000	
teža pilota	25 kN/m3	8000	
modul elastičnosti	2100 kN/cm2	4000	
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30 10 20 w	30

Priloga A11: Rezultati izračuna z upoštevanjem PMT meritev v vrtini GV-4 za viadukt 6-1 Appendix A11: Calculation results according to PMT measurements in the borehole GV-4 for viaduct 6-1

Lokacija: A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Cogetinci - Vučja vas, viadukt 6-3 - "Kupetinci"

Priloga A12: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za levi del viadukta 6-3

Appendix A12: Calculation results according to EC-7-1 with parameters from statistical analyses for the left side of viaduct 6-3

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.2 m	Globina sloja [m] Tip Prostorninska 🔺 od do zemlijne teža [kN/m3]	↓ trilinearni diagram t-z
dolžina	1.2 m	1.sloj 0 7.2 CS 1{ 2.sloj 7.2 8.5 5 15 3.sloj 8.5 10.2 CS 15	Račun vrednosti ob konici ☑ zg. meritev ⊂ konstantno ⓒ interpolacija
(če je pilot votel)	l m		Prerez kola 1.130973m2
dolžina pilota	22 m	globina podtalnice 6.2 m Izračun po EC 7	Prerez_kola(votel)1.130973m2 Obseg_kola3.769912m Teza_kola622.0354kN Horiztisk ob. posi. 269.064Pa
globina vpetja	3 m	zemeljskega pritiska 0.4 Pri računu pomikov zemeljskega pritiska	Vert.tlak_ob_nogi435.4kPa a0.6m
globina odkopa na vrhu pilota	m	vrsta pilota Uvrtan z opažem, ki se izvleče	ple6200kPa De0m k1.8 qL11111.27kPa
– Podatki o pilotu -	vrsta, oblika —	Tabela rezultatov presiometrske preiskave	Qp12566.55kN Qs10503.44kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa]	QL22447.96kN Qsafe7617.249kN
konica pilota	polna 💌	2 10.3 S 1100 18000 44000 3 15.3 ML 6200 60000 240000 4 23 ML 6200 60000 240000	Qoreep13285.67kN Posedek(Q=Qsafe)=7.648229mm J
oblika pilota	krog		12000
prostorninska teža pilota	25 kN/m	3	8000
modul elastičnosti	2100 kN/c	n2	4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30	

Priloga A13: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za levi del viadukta 6-3

Appendix A13: Calculation results according to EC-7-1 with parameters as cautious estimate for the left side of viaduct 6-3

– Podatki o pilotu -	dimenzii	e	Karał	kteristik	e temeljnih ta	1			Izračun Nariši OK
r oddaa o pilota	12	Ĭ			Globina	sloja [m]	Tip	Prostorninska 🔺	
širina pilota	1.2	m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
				5.sloj	11	14	CS	19-	Bačun vrednosti
dolžina	1.2	m		6.sloj	14	15.9	ML	2	ob konici 🔽 zg. meritev
doizind	-			7.sloj	15.9	18.5	S	2(-	🗋 konstantno 🔎 interpolacija
debelina stene	_		- I I						Bezultati
(če je pilot votel)	J	m							
									Prerez_kola 1.1309/3m2 Prerez_kola(votel) _1_130973m2
dolžina pilota	22	-				0.0	- IV I	zračun po EC 7	Obseg kola
doizina pilota	-		gl	obina p	odtalnice	16.2 m			Teza_kola622.0354kN
			ko	oličnik r	nimega	0.1	1	^p ri računu pomikov	Horiz.tlak_ob_nogi269.76kPa
globina vpetja	3	m	Ze	emeljske	ega pritiska	0.4	- E :	zanemari del nad	Vert.tlak_ob_nogi437.4kPa
								1. preiskavo	ple
globina odkopa	0	m		r		X	1 - 2 -		De1.8
na vrhu pilota	-		vrsta	pilota	Uvrtan z opa	zem, ki se izv	lece	•	qL10661.83kPa
– Podatki o pilotu -	vreta of	olik a	Taba	la rozul	tatov presion	atreka projek	ava		Qp12058.25kN
1 oddiki o pilota -	vista, or			101020	The second second		50 0 0	1 5 4 5 1	DL
pomik pilota	stoleci	_		z [m]	l ip zemljine	pL [kPa]	EU [KP	aj Er [kPa]	Qsafe
			1	3.5	CS	900	8000	20000	Qcreep10526.58kN
konica pilota	polna	-	2	6.8	CS	1000	10000	25000	Posedek(Q=Qsafe)=7.682502mm
Konica pilota		_	3	8	5	3500	35000	160000	
oblika pilota	krog	-	4	10.3	S	1050	20000	40000	40
oblika pilota			5	14	CS	1100	20000	40000	12000
prostorninska	25	kNL/m2	6	15.3	ML	4500	54000	105000	
teža pilota	,	NAZINJ	14	18	S	4800	65000	150000	8000
madul	-		8	19	ML	5800	70000	200000	
elastičnosti	2100	kN/cm2	9	23	ML	6000	80000	240000	
									4000
Poissonov	0.175								
kolićnik			C)cena r	nosilnosti [kN]	1200	Ocena p	omika [mm] 30	10 20 30
KOIGHIK			L	Jcena r	iosiinosti [kiv	1200	ucena p	omika [mm] 30	10 20 30

Priloga A14: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za levi del viadukta 6-3

Appendix A14: Calculation results for global safety factors for the left side of viaduct 6-3

– Podatki o pilotu -	dimenzije	Karakteristi	ke temeljnih ta	I			Izračun Nariši OK
1 oddiki o pilota	dimonaje		Globina	sloja [m]	Tip	Prostorninska 🔺	ii
širina pilota	1.2 m		od	do	zemliine	teža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.2 m	1.sloj 2.sloj 3.sloj	0 5.5 6.3	5.5 6.3 9.4	CS S CS	1: 2(1:	Račun vrednosti ob konici ⊽ zg. meritev ⊂ konstantno ⊙ interpolacija
debelina stene		•				•	Rezultati
(če je pilot votel)	m						Preserve local di 420072m2
dolžina pilota	27 m	globina	podtalnice	5,5 m	V Iz	račun po EC 7	Prerez_kola
globina vpetja	3 m	zemeljsk	mirnega ega pritiska	0.4	Pr za 1.	ri računu pomikov anemari del nad preiskavo	Horrz.ttak_ob_nogl591.2kPa Vert.tlak_ob_nogl548kPa a0.6m Dle
globina odkopa	2		lu.				De0m k1.8
na vrhu pilota		vrsta pilota	Uvrtan z opa	żem, ki se izv	leće	•	qL
B 1.411 3.4							Qp9597.597kN
Podatki o pilotu -	Vista, oblika	i abela rezu	litatov presiom	etrske preisk	ave		Qs6647.329kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine	pL [kPa]	EO [kPa]	Er [kPa]	Qcafe 5038 352kN
		1 7.4	CS	900	5750	20610	Qcreep
	polpa =	2 8.1	CS	3359	23240	89210	Posedek(Q=Qsafe)=8.289087mm
konica pilota		3 11.6	i S	900	5750	20610	
	lune -	4 14	CS	3359	23240	89210	
oblika pilota	King 💌	5 18	S	3359	23240	89210	12000
prostorninsk a	05	6 18.5	i S	1542	12730	15710	12000
teža pilota	20 kN/m3	7 24.3	S S	3359	23240	89210	
		8 29	ML	5800	81000	303000	8000
modul elastičnosti	2100 kN/cm2						4000
Poissonov količnik	0.175	Ocena	nosilnosti [kN]	1200	Ocena po	mika (mm) 30	10 20 30

Priloga A15: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za desni del viadukta 6-3

Appendix A15: Calculation results according to EC-7-1 with parameters from statistical analyses for the right side of viaduct 6-3

– Podatki o pilotu -	dimenzije	Karakte	ristike tem	eljnih tal				Izračun Nariši OK
r oddaa o pilota			Globir	na	sloja [m]	Tip	Prostorninska 🔺	
širina pilota	11.2 m		od		do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
		1.	sloj	0	5.5	5 CS	1	Bačun vrednosti
delžina	1.2	2	sloi	5.5	6.3	3 S	2(ob konici 🔽 zg. meritev
uuizina	· · · · ·	3	sloi	6.3	9.	4 CS	15 -	C handantan G internaliseite
deb allos a starra	_							 Konstantno (* interpolacija Resultati
(če je pilot votel)	l m							Hezuitati
The le billor votert								Prerez_kola 1.130973m2
	27						wažum na EC 7	Prerez_kola(votel)1.130973m2 Obseg_kola 2.780012m
dolžina pilota	n m	alobi	ina podtalr	ice	5,5 m		ziacun poleici /	Teza kola 763.4071kN
		količ	nik mimer	a)	Horiz.tlak ob nogi351.2kPa
globina vpetia	3 m	zeme	eliskega pr	itiska	0.4		n racunu pomikov Iapemari del nad	Vert.tlak_ob_nogi548kPa
giobina vpoda						1	nreiskavo	a0.6m
alabina adkana							. protottaro	ple5034.043kPa
na vrhu pilota	2 m		June Uvrta	n z opaż	éem, ki se iz	vleče	_	De0m k1.8
na vina piota		vista pii	ota (= ·····					Qp 10152 88kN
– Podatki o pilotu -	vrsta, oblika	Tabela	rezultatov j	oresiome	etrske preisl	kave		Qs
	uvrtan 💌		a [m] Tin a	emliine	n (kPa)	ED IVP		QL16583.34kN
pomik pilota			z (nij nip z z vi lice	emprie		10000		Qsafe
			7.4 CS		4000	40000	120000	Qcreep
konica pilota	polna 🔻		8.1 LS		4000	46000	120000	Posedek(Q=Qsafe)=6.807518mm
Konica pilota	,	3	11.6 5		1500	18000	50000	
oblika pilota	krog 🗸	4	14 LS		4000	46000	120000	40
uulika piluta		5	18 S		4000	46000	120000	12000
prostorninska	25	6	18.5 S		2200	20000	65000	
teža pilota	KN/m3	7	24.3 S		4000	46000	120000	0000
		8 3	29 ML		5800	81000	303000	·····
modul	2100 kN/cm2							
elastichosti								4000
Poissonov	0.175							
količnik	10.175	Oce	ena nosilno	sti [kN]	1200	Ocena p	omika (mm) 30	¥ 10 20 20

Priloga A16: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za desni del viadukta 6-3

Appendix A16: Calculation results according to EC-7-1 with parameters as cautious estimate for the right side of viaduct 6-3

– Podatki o pilotu -	dimenzije	Karak	teristike	e temeljnih ta	I			Izračun Nariši OK
r oddikro pilota			1	Globina	sloja [m]	Tip	Prostorninska 🔺	i
širina pilota	1.2 m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			5. sloj	13.3	17.3	CS	2(Bačun vrednosti
dolžina	1.2 m		6.sloj	17.3	26	S	2.	ob konici 🔽 zg. meritev
GOILING			7.sloj	26	35	ML	21 🔻	🔿 konstantno 💿 interpolacija
debelina stene		•					•	Rezultati
(če je pilot votel)	l m							Prerez kela 1 120072m2
						-		Prerez_kola(votel)1.130973m2
dolžina pilota	27 m				5.5		zračun po EC 7	Obseg_kola3.769912m
		glo	bina p	odtalnice	1 <u>0.0</u> m			Teza_kola763.4071kN
	3	ko	ličnik ri podiala	nimega Nan pritisko	0.4	F	^o ri računu pomikov	Horiz.tiak_ob_nogi348.2kPa
globina vpetja	i m	201	neilsve	зуа рнизка	1 0.1		anemari del nad	a0.6m
							. preiskavu	ple4971.062kPa
globina odkopa na vrhu pilota	2 m			Uvrtan z opa	žem, ki se izvl	eče	-	De1.8
nd vind pilotd		Vista p	Dilota j					Qp 10030 77kN
🗆 Podatki o pilotu -	vrsta, oblika-	Tabel	a rezult	tatov presiom	etrske preiska	ave		Qs6782.207kN
nomik nilota	stoječi 👻		z (m)	Tip zemliine	pL [kPa]	E0 (kPa	al Er [kPa]	QL16049.57kN
pornik pilota		1	3	CS	1000	8000	20000	Qsafe
		2	7.4	CS	1600	25000	65000	Posedek/Q=Qsafe`=6.969601mm
konica pilota	poina 💌	3	12	S	1600	25000	65000	· · · · · · · · · · · · · · · · · · ·
	1	4	14	CS	2900	22000	75000	,
oblika pilota	Krog	⊥ 5	16	CS	4200	46000	140000	12000
prostorninska	25	6	18.5	S	1800	25000	87000	
teža pilota	120 kN/	'm3 7	20	S	2000	30000	90000	
	_	8	26.5	ML	4800	50000	150000	8000
modul	2100 kN/	'cm2 9	30	ML	6000	80000	240000	
elastichosti		10	33	ML	6000	80000	240000	4000
Poissonov	0.175							
količnik	10.110	0	cena n	iosilnosti [kN]	1200	Ocena p	omika (mm) 30	10 20 20
							100	, 10 20 30

Priloga A17: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za desni del viadukta 6-3

Appendix A17: Calculation results for global safety factors for the right side of viaduct 6-3

Lokacija: A5 Pesnica - Lendava - meja H, Maribor - Lenart, II. etapa, Pernica, nadvoz 4-2 in 4-3

Priloga A18: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-2

Appendix A18: The results of computation by EC-7-1 with parameters from statistical analyses for the crossover 4-2

– Podatki o pilotu -	dimenzije		Karakt	eristike	e temeljnih tal				Izračun Nariši OK
širina pilota	1.25	m		(Globina	sloja [m]	Tip	Prostorninska	trilinearni diagram ba
onnia pilota				(1.sloj	0 0	do 5	zemijine CS	teza (KN/m3) 17.5	Bačun vrednosti
dolžina	1.25	m		2. sloj	5	10	CS	17	ob konici 🔽 zg. meritev
debelina stene				3. sioj 4. sloj	13	25	ML	22	Konstantno (*) interpolacija Rezultati
(če je pilot votel)		m							Prerez_kola 1.227185m2
dolžina pilota	16	m				5	V 1:	zračun po EC 7	Obseg_kola
	-		gio kol	oina po ičnik m	nimega	m Internet	F	Pri računu pomikov	Teza_kola490.8739kN Horiz.tlak_ob_nogi182.4kPa
globina vpetja	4	m	zer	neljske	ga pritiska	0.4		anemari del nad preiskavo	Vert.tlak_ob_nogi291kPa a0.625m
globina odkopa	2	m		Б	luter a cost	iom ki oo in	المقم		ple6500kPa De0m k1.8
na vrnu pilota			vrsta p	ilota	ovitari z upa	2011, KI 30 124	lece	<u> </u>	qL11662.68kPa Qp14312.26kN
Podatki o pilotu -	vrsta, obl	lika	Tabela	a rezult	atov presiom	etrske preisk	ave		Qs2528.619kN
pomik pilota	uvrtan	-		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	a] Er [kPa]	Qsafe
			1	2	CS CS	250	1200	5000	Qcreep
konica pilota	polna	•	2	4.8	LS CC	250	1200	5000	Posedek(Q=Qsafe)=7.341156mm
Kornod pilota			3	5.2	CC CC	500	1800	6500	
oblika pilota	krog	-	5	3.0	LS CS	200	1000	2000	10
			a	12.8	CS CS	300	1000	2000	12000
prostorninska teža pilota	25	kN/m3	7	13.2	MI	6500	10000	30000	
toza pilota			8	17	ML	6500	100000	300000	8000
modul elastičnosti	2100	kN/cm2							4000
Poissonov	0.175								
KOIICHIK			00	cena n	osilnosti [kN]	1200	Ocena po	omika (mm) 30	10 20 30

Priloga A19: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-2

Appendix A19: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-2

– Podatki o pilotu -	dimenziie —		Karakteristik	e temeljnih ta	I			Izračun Nariši OK
n oddara o pilota	1.25			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	11.25 m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			1.sloj	0	5	CS	17.5	Račun vrednosti 🔔 💦
dolžina	1.25 m		2.sloj	5	10	CS	17	ob konici 🔽 zg. meritev
			3. sloj	10	13	CS	17.5	🔿 konstantno interpolacija
debelina stene			4.sloj	13	25	ML	22	Rezultati
(če je pilot votel)	, m							Prerez_kola 1.227185m2
	40							Prerez_kola(votel)1.227185m2
dolžina pilota	116 m		alobina r	odtalnice	5		zračun po EC 7	Obseg_kola
			količnik r	nimena				Horiztlak ob nogi182.4kPa
olobina voetia	4 m		zemeljsk	ega pritiska	0.4		'ri racunu pomikov Janemari del nad	Vert.tlak_ob_nogi291kPa
giobina (pola						1	. preiskavo	a0.625m
olobina odkopa	2						·	ple7000kPa
na vrhu pilota	14 m		vrsta pilota	Uvrtan z opa	žem, ki se izv	leče	•	gL12562.68kPa
B 1411 14								Qp15416.73kN
– Podatki o pilotu -	vrsta, oblika		I abela rezul	tatov presiom	etrske preisk	ave		Qs
pomik pilota	uvrtan 💌		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	a] Er [kPa]	Qsafe
			1 2.7	CS	270	2800	7500	Qcreep
konies silets	polna 🔻		2 3.5	CS	200	700	1400	Posedek(Q=Qsafe)=7.198585mm
kunica piluta			3 4.5	CS	280	1400	6000	
oblika pilota	krog	-	4 8.5	CS	400	1200	2400	40
oblika pilota	, -	_	5 10	US	500	2200	6500	12000
prostorninska	25 kN	/m3	6 13.Z	ML	7000	100000	300000	
teza pilota			17	ML	7000	100000	300000	8000
modul	2100							
elastičnosti	12100 kN/	/cm2						4000
								1000
Poissonov	0.175		0			0		¥
KOIGHIK			Ucenar	nosiinosti (KN)	1200	ucena po	omika (mm) 30	10 20 30

Priloga A20: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-2

Appendix A20: Calculation results for global safety factors for crossover 4-2

Podatki o pilotu u dimenzije Karakteristike temeljnih tal Izračun Nariši OK							
r odditt o pilota	1.25		Globina	sloja (m)	Tip	Prostorninska	<u></u>
širina pilota	11.25 m		od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
		1.sl	oj O	4	CS	17.5	Račun vrednosti
dolžina	1.25 m	2.slo	oj 4	8	CS	16.5	ob konici 🛛 🗹 zg. meritev
		3.sl	<u>i 8</u>	14	CS	17.5	🔿 konstantno 💿 interpolacija
debelina stene	m	4.sl	pi 14	25	ML	22	Rezultati
(če je pilot votel)							Prerez_kola 1.227185m2
	10						Prerez_kola(votel)1.227185m2
dolžina pilota	113 m	alobina	nodtalnice	2 m		zračun po EC 7	Obseg_kola
		količni	mirnega).; X	Horiz.tlak_ob_nogi242.4kPa
olobina vpetia	4 m	zemelja	kega pritiska	0.4		anemari del nad	Vert.tlak_ob_nogi351kPa
					ī	. preiskavo	a0.625m
globina odkopa	2						De
na vrhu pilota	- m	vrsta pilota	Uvrtan z opa	žem, ki se izv	leče	-	qL9947.88kPa
- Padatki a pilatu	urata ablika	Tabela rea	ultatou proviom	atralia projak			Qp12207.89kN
Fouaiki o pilotu -	VISIA, UDIIKA	Tabela lea	cuitatov presion	ieuske preisk	ave		Us
pomik pilota	uvrtan 💌	z [n] Tip zemljine	pL [kPa]	EO [kPa	a] Er[kPa]	Qsafe
		1 2	CS	200	670	4000	Qcreep
kopica pilota	polna 🔻	2 3.8	I LS	200	670	4000	Posedek(Q=Qsafe)=10.20864mm
Konica pilota		3 4.2	2 LS	240	1070	2200	
oblika pilota	krog ·	4 7.8		240	1070	2200	10
obiita pilota		- 5 8.2	: LS	380	1410	7500	12000
prostorninska	25 kN/m	5 13	1 MI	380	1410	/500	
teza pilota		0 20	.i ML MI	5574	40000	111720	8000
modul	2100	0 20	ML	0074	40000	111720	
elastičnosti	kN/cr	2					4000
Deiterseen							
količnik	0.175	0	a nosilnosti (LM)	1 1000	Ocena co	mika [mm]	W
		Ocen	a nosinosu [kiv]	1200	oceria pu	nurva funuti 130	1 10 20 30

Priloga A21: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-3

Appendix A21: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-3

Podatki o pilotu - dimenzije Karakteristike temeljnih tal							Izračun Nariši OK		
	1.05	-			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	1.25	m			od	do	zemliine	teža (kN/m3)	🔽 trilinearni diagram t-z
				1 sloi	0		4 CS	17.5	D - Xum und das all
	1.25			2 eloi	1		8 05	16.5	sh kapisi
dolzina	11.00	m		2.00		1	1 00	17.5	
				0. SIU[4. stati	14			22	🗢 konstantno 💌 interpolacija
debelina stene		m		4.510	14		SIML	22	Rezultati
(ce je pilot votel)									Prerez_kola 1.227185m2
									Prerez_kola(votel)1.227185m2
dolžina pilota	19	m			- di - lo lo -	2		zračun po EC 7	Obseg_kola3.926991m
				Dina p	odtainice	,- m			Teza_kola582.9127kN
	4		kol	ičnik r	nimega	0.4	F	Pri računu pomikov	Horiz.tiak_ob_nogi242.4kPa
globina vpetja	17	m	281	neijska	ega priuska	10.4		zanemari del nad	a 0.625m
								I. preiskavo	ple7000kPa
globina odkopa	2	-		r		× 11 1	1.7		De1.8
na vrhu pilota			vrsta p	pilota	Uvrtan z opa	zem, ki se iz	viece	–	qL12514.68kPa
Dedativity and an		-10	Tabal						Qp15357.82kN
- Fodatki o pilotu -	vista, or		Tabela	a rezui	tatov presion	euske preis	Kave		Qs
pomik pilota	uvrtan	–		z [m]	Tip zemljine	pL [kPa]	E0 [kP	a] Er [kPa]	0cate 6310.005kN
			1	2	CS	240	1200	4400	Ocreep
	a alua		2	3.8	CS	240	1200	4400	Posedek(Q=Qsafe)=4.586146mm
konica pilota	poina	_	3	4.2	CS	300	1300	4200	
			4	7.8	CS	300	1300	4200	,
oblika pilota	Krog	_	5	8.2	CS	450	3000	6000	12000
			6	13.5	CS	450	3000	6000	12000
prostorninska teža pilota	25	kN/m3	7	14.1	MI	7000	150000	400000	
toza pilota			. .	20	ML	7000	150000	400000	8000 /
modul	2100		0	20	ME	7000	130000	400000	
elastičnosti	12100	kN/cm2							4000 /
									4000
Poissonov	0.175								¥
kolicnik			0	cena r	nosilnosti [kN]	1200	Ocena p	omika (mm) 30	10 20 30

Priloga A22: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-3

Appendix A22: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-3

- Podatki o pilotu - širina pilota dolžina debelina stene	dimenzije 1.25 m 1.25 m	Karakteristike temelipih tal Globina sloja [m] Tip Prostorninska od do zemljine teža [kN/m3] 1.sloj 0 4 CS 17.5 2.sloj 4 8 CS 16.5 3.sloj 8 14 CS 17.5 4.sloj 14 25 ML 22	Izračun Nariši OK Image: Trilineami diagram t-z Račun vrednosti ob konici Image: Trilineami diagram t-z Račun vrednosti ob konici Image: Trilineami diagram t-z Image: Trilineami diagram t-z Razultati Image: Trilineami diagram t-z Image: Trilineami diagram t-z
(če je pilot votel) dolžina pilota	19 m		Prerez_kola 1.227185m2 Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4 m	globina podtalnice)* m količnik mirnega zemeljskega pitiska 0.4 zamemari del nad 1. preiskavo	Teza_kola582.9127kN Horiz.tlak_ob_nogi242.4kPa Vert.tlak_ob_nogi351kPa a0.825m
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗨	ple7000kPa De0m k1.8 qL12514.68kPa Op. 16367.82kN
- Podatki o pilotu -	vrsta, oblika —	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z (m) Tip zemljine pL (kPa) E0 (kPa) Er (kPa) 1 2.5 CS 240 1200 4000	QL
konica pilota	polna 💌	2 4 CS 300 2000 4400 3 9.7 CS 480 2300 4600	Posedek(Q=Qsafe)=5.004944mm
oblika pilota	krog	5 11 5 CS 510 4000 7500	μ
prostorninska teža pilota	25 kN/m	6 14.1 ML 5500 100000 380000 7 15 ML 7000 130000 390000 8 20 ML 7000 130000 390000	8000
modul elastičnosti Paissensu	2100 kN/cr	2	4000
količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30	10 20 30

Priloga A23: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-3

Appendix A23: Calculation results for global safety factors for crossover 4-3

Lokacija: A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, nadvoz 4-1

Priloga A24: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-1

Appendix A24: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-1

- Podatki o pilotu -	Izračun Nariši OK						
širina pilota	1.25 m	Globina sloja [m] Tip F od do zemljine ta	Prostorninska v trilinearni diagram t-z				
dolžina	1.25 m	1.sloj 0 4 CS 2.sloj 4 7.5 CS 3.sloj 7.5 20 ML	19 Račun vrednosti 19.5 ob konici 22 C konstantno € interpolacija				
debelina stene (če je pilot votel)	m		Rezultati Prerez_kola 1.227185m2				
dolžina pilota	10 m	globina podtalnice 5.4 m	Prerez_kola(votel)1.227185m2 ačun po EC 7 Obseg_kola				
globina vpetja	3 m	zemeljskega pritiska 0.4 Pri zameljskega pritiska 1.4	računu pomikov Vert.tlak_ob_nogi107.3kPa nemari del nad Vert.tlak_ob_nogi199.25kPa a0.625m				
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opažem, ki se izvleče	ple7000kPa De0m k1.8 qL12606.11kPa				
Podatki o pilotu - vrsta, oblika Tabela rezultatov presiometrske preiskave Qs. 2304.151kN							
pomik pilota	uvrtan 💌	z (m) Tip zemljine pL (kPa) E0 (kPa) 1 3.4 CS 450 1900	Er [kPa] QL17467.38kN Qsafe6041.124kN 3800 Qcrean 9271.113kN				
konica pilota	polna 💌	2 4.3 CS 930 6300 3 6.3 CS 2000 21000	12600 Posedek(Q=Qsafe)=2.759733mm 80000				
oblika pilota	krog 💌	4 8.6 ML 7000 323000 5 12 ML 7000 346000	730000				
prostorninska teža pilota	25 _{kN/m3}		8000				
modul elastičnosti	2100 kN/cm2		4000				
Poissonov količnik	0.175	Ocena nosilnosti [kN] 1200 Ocena por	ika (mm) 30 10 20 30				

Priloga A25: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena/enako kot z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-1

Appendix A25: Calculation results according to EC-7-1 with parameters as cautious estimate /same as with global safety factors for crossover 4-1

Lokacija: AC2 Karavanke - Obrežje, Novo mesto vzhod - Kronovo, Lešnica - Kronovo, Viadukt 6-1 in nadvoz 4-2

Priloga A26: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za viadukt 6-1

Appendix A26: Calculation results according to EC-7-1 with parameters from statistical analyses for viaduct 6-1
– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.25 m	Globina sloja [m] Tip Prostorninska od do zemljine teža [kN/m3]	↓ trilinearni diagram t-z
dolžina	1.25 m	1.sloj 0 2.4 CS 18 2.sloj 2.4 8 CS 18 3.sloj 8 10.2 G 19	Račun vrednosti ob konici ☑ zg. meritev ◯ konstantno ⓒ interpolacija
debelina stene (če je pilot votel)	m	4.sloj 10.2 17 G 22	Rezultati Prerez_kola 1.227185m2
dolžina pilota	11 m	globina podtalnice 14 m	Prerez_kola(votel)1.227185m2 Obseg_kola3.926991m Teza_kola
globina vpetja	3 m	količnik mirnega zemeljskega pritiska 0.5 Pri računu pomikov zanemari del nad 1. preiskavo	Horiz.tlak_ob_nogi101.7kPa Vert.tlak_ob_nogi173.4kPa a0.825m
globina odkopa na vrhu pilota	1 m	vrsta pilota Uvrtan z opažem, ki se izvleče 💽 💌	pre
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qp7377.048kN Qs1756.785kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 3 CS 900 6500 13000	QL8796.357kN Qsafe
konica pilota	polna 💌	2 7.5 CS 900 6500 13000 3 9 G 900 4700 14100 4 12 C 7000 150000 400000	Posedek(Q=Qsafe)=4.502225mm
oblika pilota	krog 💌	4 12 U 7000 130000 400000	8000
prostorninska teža pilota	25 kN/m3		5333
modul elastičnosti	2100 kN/cm2		2666
Poissonov količnik	0.175	Ocena nosilnosti (kN) 8000 Ocena pomika (mm) 30	10 20 30

Priloga A27: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za viadukt 6-1

Appendix A27: Calculation results according to EC-7-1 with parameters as cautious estimate for viaduct 6-1

– Podatki o pilotu -	dimenzii	e	Kara	kteristik	e temeljnih ta	I			Izračun Nariši OK
	1.25	·			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	1.23	m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
				1.sloj	0	2.4	CS	18	Račun vrednosti 💷
dolžina	1.25	m		2.sloj	2.4	8	CS	18	ob konici 🔽 zg. meritev
				3.sloj	8	10.2	G	19	🔿 konstantno 🕥 interpolacija
debelina stene				4.sloj	10.2	17	G	22	Rezultati
(če je pilot votel)	1	m							Prerez kola 1 227185m2
			_				_		Prerez_kola(votel)1.227185m2
dolžina pilota	11	m				14	V I	zračun po EC 7	Obseg_kola3.926991m
			9	llobina p	odtainice	m m			Teza_kola
-lable	3		K	olicnik i omoliski	nirnega ega pritiska	0.5	F	^p ri računu pomikov	Vertilak ob pogi 173 4kPa
giodina vpetja	1-	m	1	emeijaro	oga pritisika	1		zanemarı del nad	a0.625m
alabian adhrana								г. рісізкачо	ple4712.5kPa
giobina odkopa na vrhu pilota	1	m		منعاني	Uvrtan z opa	žem, ki se izv	leče	-	De0m k
			visio	i piiota j				_	Qp
Podatki o pilotu -	vrsta, ob	olika	Tabe	ela rezul	ltatov presiom	ietrske preisk	ave		Qs1897.678kN
pomik pilota	uvrtan	-		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	a] Er [kPa]	QL8562.96kN
pomit pilota		_	1	3	CS	800	5500	1100	Usate
	a she s		2	4	CS	900	6500	13000	Posedek(Q=Qsafe)=6.252911mm
konica pilota	poina	_	3	8	CS	900	4700	14100	
	krea		4	12.8) G	7000	100000	460000	
oblika pilota	INIOG	<u> </u>							8000 Q
prostorninska	25								
teža pilota	125	kN/m3							533
									5333
modul	12100	LNL/am2							
elastičnosti	12100	KNZCHIZ	_						
elastičnosti	12100	KN7CHZ							2666
elastičnosti Poissonov	0.175	KN7CIIIZ							2666
elastičnosti Poissonov količnik	0.175	KNYCHZ		0			0		2666

Priloga A28: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za viadukt 6-1

Appendix A28: Calculation results for global safety factors for viaduct 6-1

– Podatki o pilotu -	dimenzije	Karakteristike tem	eljnih tal			Izračun Nariši OK
Fouaiki o pilotu -		Globir	na sloia [m]	Tip Pros	storninska	
širina pilota	1.25 m	od	do	zemljine teža	[kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.25 m	1.sloj 2.sloj 3.sloj	0 8.8 8.8 10 10 15	3 CS) G 5 G	18 19 21	Račun vrednosti ob konici 🔽 zg. meritev ⊂ konstantno ⊙ interpolacija
debelina stene						Rezultati
(če je pilot votel)	m					Prerez kola 1.227185m2
dolžina pilota	13 m	globina podtalr	ice 20 m	🔽 Izraču	in po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	3 m	kolicnik mirneg zemeljskega pr	a itiska 0.5	Prirač Zanem 1. prei	ćunu pomikov nari del nad iskavo	Honz.tuak_ob_nogl122.1kPa Vert.tlak_ob_nogl174.2kPa a0.625m ple 7000kPa
globina odkopa	2 m		× 11 1	1. 2		De1.2
na vrhu pilota		vrsta pilota Uvrta	n z opazem, ki se iz	viece	<u> </u>	qL8427.681kPa
– Podatki o pilotu -	urata oblika	Tabela regultatovu	presiometroke preisk	200		Qp10342.32kN
r odatki o pilota -	visia, oblika		presioneuske preise		<u></u>	DI 12584 22kN
pomik pilota		z [m] Tip z	emijine pL [kPa]	EU [KPa]	Er [kPa]	Qsafe
		1 <u>3.8</u> US	831	12570	29640	Qcreep6931.65kN
konica pilota	polna 🔻	2 8.7 LS	831	12570	29640	Posedek(Q=Qsafe)=4.443107mm
Konica pilota		3 10.5 G	7000	97000	420000	
oblika pilota	krog 💌	4 15 G	7000	97000	420000	120 0 0
prostorninska teža pilota	25 kN/m3					8000
modul elastičnosti	2100 kN/cm2					4000
Poissonov količnik	0.175	Ocena nosilno	sti [kN] 1200	Ocena pomika	a [mm] 30	10 20 30

Priloga A29: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-2

Appendix A29: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-2

Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.25 m	Globina sloja [m] Tip Prostominska od do zemljine teža [kN/m3]	▼ trilinearni diagram t-z
dolžina	1.25 m	1.sloj 0 8.8 CS 18 2.sloj 8.8 10 G 19 3.sloj 10 15 G 21	Račun vrednosti ob konici , I I zg. meritev C konstantno ⊙ internolacija
debelina stene (če je pilot votel)	m m		Rezultati Prerez kola 1.227185m2
dolžina pilota	13 m	globina podtalnice 20 m Izračun po EC 7 količnik mirnega	Prerez_kola(votel)1.227186m2 Obseg_kola
globina vpetja	4 m	zemeljskega pritiska 0.5 ranemari del nad 1. preiskavo	Vert.tlak_ob_nogi174.2kPa a0.625m
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opažem, ki se izvleče 💽 💌	pie
Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 3.8 CS 1000 19000 40000	QL12684.93kN Qsafe
konica pilota	polna 💌	2 8.7 CS 1000 19000 40000 3 10.5 G 7000 97000 420000 4 15 G 7000 97000 420000	©oreep
oblika pilota prostorninska teža pilota	krog ▼ 25 kN/m3		12000
modul elastičnosti	2100 kN/cm2		4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 1200 Ocena pomika (mm) 30	

Priloga A30: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-2

Appendix A30: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-2

– Podatki o pilotu -	dimenzije	Karakter	ristike temeljni	h tal			Izračun Nariši OK
1 odditt o pilota			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	1.20 m		od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
		1.	sloj	0 8.	8 CS	18	Bačun vrednosti
dolžina	1.25 m	2.	sloj	8.8 1	0 G	19	ob konici 🔽 zg. meritev
		3.	sloj	10 1	5 G	21	🔘 konstantno 🔘 interpolacija
debelina stene							Rezultati
(če je pilot votel)	, m						Prerez kola 1.227185m2
							Prerez_kola(votel)1.227185m2
dolžina pilota	13 m	alahi	ina podtalnice	20	🔽 İz	račun po EC 7	Obseg_kola
		giobi količ	nik mimera				Horiz.tlak ob nogi122.1kPa
globina vnetia	3 m	zeme	eljskega pritisk	a 0.5		ri racunu pomikov anemari del nad	Vert.tlak_ob_nogi174.2kPa
giobina (poqu					1	. preiskavo	a0.625m
dobina odkona	2					·	ple
na vrhu pilota	j≤ m	vrsta pilo	ota Uvrtan z	opažem, ki se iz	vleče	-	gL
D 1 411 - 314							Qp10342.32kN
Podatki o pilotu	- vrsta, oblika	l abela r	rezultatov pre:	siometrske preis	kave		Qs
pomik pilota	uvrtan 💌	2	z [m] Tip zem	ijine pL [kPa]	E0 [kPa] Er [kPa]	Qsafe
		1 3	3.8 CS	1100	17500	46000	Qcreep
konice pilote	polna 🔻	2 5	5.5 CS	1100	17500	46000	Posedek(Q=Qsafe)=4.207832mm
Konica pilota		3 5	5.7 CS	850	15000	34000	
oblika pilota	krog 👻	4 8	3.7 CS	950	25000	50000	10
obiiita piiota		5	10.5 G	7000	97000	420000	120000
prostorninska	25 kN/m3	6	15 16	7000	97000	420000	
teza pilota	Number 1						8000
modul	2100						
elastičnosti	kN/cm2						4000
D :							
roissonov količnik	0.175	0			0	wike from Land	W
real of the		UCE	ena nosilhosti	ואא 1200	ocena po	unica funu) 30	L 10 20 30

Priloga A31: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-2

Appendix A31: Calculation results for global safety factors for crossover 4-2

Lokacija: A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Lenart - spodnja Senarska, podvoz 3-20 in nadvoz 4-5

pouvoz 5-20 m na	1U V UZ 7-3	
– Podatki o pilotu - dimenzije – – – – – – – – – – – – – – – – – – –	Karakteristike temeljnih tal	
	Globina sloia [m]	

– Podatki o pilotu -	dimenzije	Karakteristike ter	neljnih tal			Izračun Nariši OK
r oddaa o pilota	10	Glob	iina sloja [m]	Tip Pro	ostorninska	
širina pilota	11.0 m	od	do	zemljine tež	ia [kN/m3]	🔽 trilinearni diagram t-z
		1.sloj	0	7 CS	19	Bačun vrednosti
dolžina	1.0 m	2.sloj	7	20 ML	22	ob konici 🔽 zg. meritev
						🔿 konstantno 🔎 interpolacija
debelina stene						Rezultati
(če je pilot votel)	m					Prerez kola
						Prerez_kol <i>a</i> (votel)0.7853982m2
dolžina pilota	10 m	at the second second	57	🔽 Izrač	un po EC 7	Obseg_kola3.141593m
		giodina podta	inice (m		Teza_kola196.3495kN
alabian anatia	3	zemeliskena r	ga mitiska 0.5	Pri ra	ičunu pomikov	Vert.tlak_ob_nogi12 kPa
giopina vpeqa	, m	zomolokoga j	Januarda jana	j zane	eiskavo	a0.5m
مريد مرادمه		-			CISKOVO	ple2006kPa
na vrhu pilota	4 m	Uvrt	an z opažem, ki se	izvleče	•	De1.8
		vista pilota i			_	Qp
Podatki o pilotu -	vrsta, oblika	Tabela rezultatov	/ presiometrske pre	iskave		Qs
pomik pilota	uvrtan 👻	z [m] Tip	zemljine pL [kPa] E0 [kPa]	Er [kPa]	QL3572.475kN
ponnik piloka	,	1 4 CS	342	1890	6340	Usate
	nahan -	2 5.8 CS	342	1890	6340	Posedek(Q=Qsafe)=5.511286mm
konica pilota		3 6.2 CS	1970	11300	33900	
	krog –	4 7 CS	2006	28420	83480	
oblika pilota		5 11 ML	2006	28420	83480	6000
prostorninska	25					
teža pilota	125 kN/m3					4000
						4000
modul	2100 kN/cm2					
elasueriosu						2000
Poissonov	0.175					
količnik		Ocena nosilr	nosti [kN] 6000	Ocena pomik	a [mm] 30	10 20 30
Kolicnik		Ocena nosilr	nosti [kN] 6000	Ocena pomik	(a [mm] 30	10 20 30

Priloga A32: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za podvoz 3-20

Appendix A32: Calculation results according to EC-7-1 with parameters from statistical analyses for undrepass 3-20

– Podatki o pilotu -	dimenzije	Karakteristi	ke temeljnih tal				Izračun Nariši OK
r odditti o pilota			Globina	sloja [m]	Tip Pr	ostorninska	······································
širina pilota	11.0 m		od	do	zemljine tež	ža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.0 m	1.slo 2.slo	0 7	7 20	CS ML	19 22	Račun vrednosti ob konici 🔽 zg. meritev ◯ konstantno ⓒ interpolacija
debelina stene							Rezultati
(če je pilot votel)	m						Prerez kola 0.7853982m2
dolžina pilota	10 m	globina	podtalnice	5.7 m	🔽 Izrač	čun po EC 7	Prerez_kola(votel)0.7853982m2 Obseg_kola3.141593m Teza_kola196.3495kN
globina vpetja	3 m	zemeljsł	mirnega :ega pritiska	0.5	Prin Zane 1. pr	ačunu pomikov emari del nad reiskavo	Horiz:ttak_oo_nogi121kPa Vert.tlak_ob_nogi199kPa a0.5m ple 4000kPa
globina odkopa	4 m		11.1	· · · · ·	- × -		De0m k
na vrhu pilota	· · · · ·	vrsta pilota	Uvrtan z opa:	zem, ki se izv	lece	–	qL7181.2kPa
– Podatki o pilotu -	vrsta oblika	Tabela rezi	ltatov presiom	etrske preiska	ave		Qp5640.101kN
r odditi o pilota	uurtan -		1 Tis section			E. 0.D.1	QL
pomik pilota		1 4	1 Tip zemijine	pu (kraj	LU [KFa]		Qsafe2184.689kN
		2 50	re	500	4000	7200	Qoreep
konica pilota	polna 🔻	2 5.0	CS	1970	11200	2200	Posedek(Q=Qsate)=7.330910mm
		4 7	CS CS	4000	57000	150000	J
oblika pilota	krog 🔽	5 11	MI	4000	57000	150000	010
prostorninska teža pilota	25 kN/m3			1000			4000
modul elastičnosti	2100 kN/cm2						2000
Poissonov količnik	0.175	Ocena	nosilnosti [kN]	6000	Ocena pomil	ka (mm) 30	

Priloga A33: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za podvoz 3-20

Appendix A33: Calculation results according to EC-7-1 with parameters as cautious estimate for underpass 3-20

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
	10	Globina sloja [m] Tip Prostorninska	
ŝirina pilota	1.0 m	od do zemljine teža [kN/m3]	🔽 trilinearni diagram t-z
		1.sloj 0 7 CS 19	Račun vrednosti 👝 🔬
dolžina	1.0 m	2.sloj 7 20 ML 22	ob konici 🛛 🗹 zg. meritev
			🔘 konstantno 🤄 interpolacija
debelina stene	m		Rezultati
(ce je pilot votel)			Prerez_kola 0.7853982m2
	10		Prerez_kola(votel)0.7853982m2
dolžina pilota	m	globina podtalnice 5.7 m	Teza kola
		količnik mirnega Pri računu pomikov	Horiz.tlak_ob_nogi121kPa
globina vpetja	3 m	zemeljskega pritiska 0.5	Vert.tlak_ob_nogi199kPa
		1. preiskavo	a0.5m nle 4386.364kPa
globina odkopa	4 m	HustonX Li in J-X	De
na vrhu pilota		vrsta pilota UVrtan z opazem, ki se izviece	qL7876.655kPa
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
	uvrtan 💌	z [m] Tip zemlijne pl. [kPa] E0. [kPa] Er. [kPa]	QL7102.021kN
pomik pilota		1 35 CS 500 3700 8000	Qsafe
		2 4.6 CS 370 2640 5300	Qoreep
konica pilota	polna 💌	3 5.7 CS 600 4500 10500	
	king	4 6.5 CS 2000 11300 34000	
oblika pilota	King _	5 10.9 ML 5000 70000 150000	600 ¹⁰
prostorninska	25	6 11.7 ML 3200 45000 110000	11
teža pilota	KN/m3		4000
madul	lavas.		4000
elastičnosti	[2100 kN/cm		
			2000
Poissonov	0.175		
Kolicnik		Ocena nosilnosti [kN] 6000 Ocena pomika [mm] 30	10 20 30

Priloga A34: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za podvoz 3-20

Appendix A34: Calculation results for global safety factors for underpass 3-20

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih ta	al		Izračun Nariši OK
širina pilota	1.25 m	Globina	sloja [m] Tip	Prostorninska	trilinearni diagram t-7
dolžina	1.25 m	1.sloj 0 2.sloj 9.4 3.sloj 10.5	do zemijne 9.4 CS 10.5 G 20 S	18 21 22	Račun vrednosti ob konici 🔽 zg. meritev
debelina stene (če je pilot votel)	m				Rezultati
dolžina pilota	14.5 m	globina podtalnice količnik mirnega	9.4 m	zračun po EC 7	Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4 m	zemeljskega pritiska	0.35	rri racunu pomikov zanemari del nad 1. preiskavo	Vert.tlak_ob_nogi280.3kPa a0525m
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opa	ažem, ki se izvleče	-	ple
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presion	netrske preiskave		Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine	pL [kPa] E0 [kPa] 234 1150	a] Er [kPa] 3530	QL10620.47kN Qsafe
konica pilota	polna 💌	2 3.4 CS 3 3.8 CS 4 9 CS	234 1150 335 1070 335 1070	3530 3200 3200	ucreep0948.000kN Posedek(Q=Qsafe)=6.049324mm
oblika pilota	Krog 💌	5 11 S	5717 59600	230100	8000 ^Q
prostorninska teža pilota	25 kN/m3	6 16 S	5717 59600	230100	5333
modul elastičnosti	2100 kN/cm2				2665
Poissonov količnik	0.175	Ocena nosilnosti (kN] 8000 Ocena p	omika (mm) 30	<u>10 20 30</u>

Priloga A35: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-5

Appendix A35: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-5

– Podatki o pilotu -	dimenzii	e	Karak	teristik	e temeljnih ta	I			Izračun Nariši OK
	1.05	-			Globina	sloja [m]	Tip F	Prostorninska	
širina pilota	1.25	m			od	do	zemliine t	teža (kN/m31	🔽 trilinearni diagram t-z
				1 eloi	0	9.4	CS .	18	B X 1 X
	1.25			2. doi	94	10.5	C	21	Hacun vrednosti
dolžina	11.20	m		2.30	10.5		c u	21	ob Konici i u us.
				3.510	10.5	20	3	22	😳 konstantno 💽 interpolacija
debelina stene									Rezultati
(če je pilot votel)									Prerez kola 1.227185m2
									Prerez_kola(votel)1.227185m2
dolžina pilota	14.5	m				9.4	🔽 İzr	račun po EC 7	Obseg_kola3.926991m
doizana priora			glo	bina p	odtalnice	13.4 m			Teza_kola444.8545kN
			ko	ličnik r	nirnega	0.05	Pri	i računu pomikov	Horiz.tlak_ob_nogi131.255kPa
globina vpetja	4	m	zer	neljske	ega pritiska	0.35	Za	nemari del nad	Vert.tlak_ob_nogi280.3kPa
							1.	preiskavo	a0.625m
olobina odkopa	2								De Om k 12
na vrhu pilota	14	m	vreta r	vilota	Uvrtan z opa	žem, ki se izv	leče	•	al 8522 794kP a
			moto p	nota j					Qp10459.04kN
– Podatki o pilotu ·	vrsta, ot	olika	Tabela	a rezul	tatov presiom	etrske preisk	ave		Qs2691.453kN
a and a data	uvrtan	•		z [m]	Tin zemliine	nl [kPa]	E0_[kPa]	Er (kPa)	QL12705.64kN
pomik pilota	1	_	1	2	LCS	260	1400	3000	Qsafe
			5	24	CC CC	200	1400	2000	Qcreep7023.823kN
konica pilota	polna	-	2	0.4	C3	200	2200	2000	Posedek(u=usate)=0.709009mm
Normod pilota	·	_	3	3.8	LS .	450	2200	3800	J
ablika pilata	krog	-	4	9	US	450	2200	3800	10
oblika pilota	1		5	11	S	7000	82000	250000	8000
prostorninska	25		6	16	S	7000	82000	250000	
teža pilota	120	kN/m3							
									5333
modul	3000	hhl/am2							
elastičnosti		KN07CH12							2668
	_								
Poissonov	0.175						_		V
KUIICAIK			0	cena r	nosilnosti [kN]	8000	Ucena por	mika (mm) 30	10 20 30

Priloga A36: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-5

Appendix A36: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-5

Globina sloja (m) Tip Prostorninska od IZ Image: State of the state	
širina pilota 1.25 m dolžina 1.25 m dolžina 1.25 m (če je pilot votel) m m	
dolžina 1.25 m 1.sloj 0 9.4 CS 18 okonici Račun vrednosti ob konici ✓ zg. meritev debelina stene (če je pilot votel) m 10.5 20 S 22 C konstantno (* interpolacija Rezultati Prerez, kola,votel)1.227185m2	apilota 1.25 m
dotžina 1.25 m 2.stoj 9.4 10.5 G 21 ob konici ✓ zg. meritev debelina stene (če je pilot votel) m 2.stoj 9.4 10.5 G 21 ob konici ✓ zg. meritev Prerez, kola m Prerez, kola	
debelina stene (če je pilot votel) m m m m m m m m m m m m m m m m m m m	na 1.25 m
debelina stene Rezultati (če je pilot votel) m Prerez_kola	
[če je pilot votel] Prerez_kola	elina stene
Prerez_kola(votel)1.227185m2	e pilot votel) m
dolžina pilota 14.5 m 9.4. ▼ Izračun po EC 7 Obseg_kola	na pilota 14.5 m
globina podtainice m Teza_kola444.8545kN	
Kolicnik mirnega Pri računu pomikov Vozt tak ob. nogi 280 3/2	. 4
globina vpetja i m zemenjakega pritiska poto j zanemari del nad a	na vpetja 🖓 m
r. preskavu pie	
globina odkopa 2 m De	na odkopa 2 m
Vista pilota) Vista pilota) Qp. 9862.034N	
Podatki o pilotu - vrsta, oblika Tabela rezultatov presiometrske preiskave Qs	atki o pilotu - vrsta, oblika —
pomik pilota uvrtan ▼ z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 0L	k pilota uvrtan 👻
1 2.2 CS 260 1380 2760 Usafe	
2 2.7 CS 340 1900 3700 Posedek/Q=Qsate)=5.96329mm	
konica pilota poina 3 7.4 CS 450 2200 4200	ca pilota 🛛 💌
4 8.2 CS 400 1500 3600	lune
oblika pilota Nog 5 12.3 S 6000 65000 195000 8000 Q	a pilota 🕅 🦉
prostorninska 25	storninska 25
teža pilota kN/m3	a pilota KN/m3
5333	
nodul 2100 kN/cm2	dul 2100 kN/cm
	sucrosd
Poissonov 0.175	issonov 0.175
količnik Ocena nosilnosti (kN) 8000 Ocena pomika (mm) 30	ičnik

Priloga A37: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-5

Appendix A37: Calculation results for global safety factors for crossover 4-5

Lokacija: A5 Pesnica - Lendava - meja H, Lenart - Beltinci, Spodnja Senarska - Cogetinci, nadvoz 4-1, 4-3, 4-4, 4-6 in most 5-1

Priloga A38: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-1

Appendix A38: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-1

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal		Izračun Nariši OK
širina pilota	1.5 m	Globina sloja	m] Tip Prostorninska	trilinearni diagram b.z
dolžina	1.5 m	od do 1.sloj 0 2.sloj 5.4 3.sloj 8.5	zemljine teza [KN/m3] 5.4 CS 19 8.5 S 20 20 ML 22	Račun vrednosti ob konici
debelina stene (če je pilot votel)	m			Rezultati Prerez_kola 1.767146m2
dolžina pilota	11 m	globina podtalnice	w Izračun po EC 7	Prerez_kola(votel)1.767146m2 Obseg_kola4.712389m Teza_kola485.9651kN
globina vpetja	4.5 m	kolicnik mirnega zemeljskega pritiska 0.4	Pri računu pomiko zanemari del nad 1. preiskavo	V Horiz.ttak_ob_nogi97.84kPa Vert.tlak_ob_nogi129.6kPa a0.75m
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opažem, k	ii se izvleče 📃 💌	De0m k
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrska	preiskave	Qs3032.661kN
pomik pilota	uvrtan 👻	z (m) Tip zemljine pL	kPa] E0 (kPa] Er (kPa]	QL19354.88kN Qsafe6600.051kN
konica pilota	polna 💌	2 5.2 CS 850 3 5.6 S 650 4 7.8 S 650	7300 10000 7300 10000 5800 11000 5800 11000	Qoreep10425.87kN Posedek(Q=Qsafe)=11.89528mm
oblika pilota	King 💽	5 8.7 ML 530	60000 270000	12000
prostorninska teža pilota	25 kN/m3	6 12 ML 530	0 60000 270000	8000
modul elastičnosti	2100 kN/cm2			4000
Poissonov količnik	0.175	Ocena nosilnosti [kN] 120	0 Ocena pomika (mm) 30	10 20 3ñ

Priloga A39: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-1

Appendix A39: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-1

– Podatki o pilotu -	dimenzije –	Izračun Nariši OK							
n oddara o pilota	15				Globina	sloja (m)	Tip	Prostorninska	
ŝirina pilota	11.5 m	ו ו			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			·	1.sloj	0	5.4	CS	19	Račun vrednosti
dolžina	1.5 m	1	:	2. sloj	5.4	8.5	S	20	ob konici 🔽 zg. meritev
				3. sloj	8.5	20	ML	22	🔿 konstantno interpolacija
debelina stene									Rezultati
(če je pilot votel)	, m	וו							Prerez kola 1.767146m2
							_		Prerez_kola(votel)1.767146m2
dolžina pilota	11 m	n			- de la tra	20	🛛 🔽 l:	zračun po EC 7	Obseg_kola4.712389m
			gio	oina p	odtainice) m			Teza_kola
alabian canatia	4.5		KOI Zen	icnik r oeliske	nimega aga pritiska	0.4	- F	ri računu pomikov	Vert.tlak_ob_nogi129.6kPa
giobina vpeqa	1	1	201	ioijoitt	iga piniona	1		anemari dei nad	a0.75m
alobina odkona								. protottarto	ple
na vrhu pilota	2 m	ו ו	vreta n	ilota [Uvrtan z opa:	žem, ki se izv	leče	•	De1.8 al 8842.916kPa
			vista p	nota j				_	Qp15626.72kN
Podatki o pilotu -	vrsta, oblik	a	Tabela	a rezul	atov presiom	etrske preisk	ave		Qs2799.987kN
pomik pilota	uvrtan 🗨	-		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	a] Er[kPa]	QL17940.74kN
ponnic pilota		_	1	2	CS	850	7300	10000	Ocreen 9680.02kN
	poles -	л I	2	3.9	CS	850	7300	10000	Posedek(Q=Qsafe)=9.882175mm
konica pilota		-	3	4.1	CS	900	8000	13500	
	krog	_	4	5.3	CS	900	8000	13500	
oblika pilota	Inde		5	5.5	S	650	5800	11000	12000
prostorninska	25		6	7.8	S	650	5800	11000	
teža pilota	K K	N/m3	7	8.5	S	4000	49000	280000	0000
			8	12	ML	5300	82000	470000	8000
modul	2100 k	N/cm2							
0120101000									4000
Poissonov	0.175								
količnik	,		00	cena r	iosilnosti [kN]	1200	Ocena po	omika (mm) 30	<u>* in 20 30</u>

Priloga A40: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-1

Appendix A40: Calculation results for global safety factors for crossover 4-1

– Podatki o pilotu -	- dimenziie	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.5 m	Globina sloja [m] Tip Prostorninska	Trilinearni diagram t-z
dolžina	1.5 m	1.sloj 0 3.5 CS 19 2.sloj 3.5 5 6 21 3.sloj 5 15 ML 22	Račun vrednosti ob konici ☑ zg. meritev ◯ konstantno ⓒ interpolacija
debelina stene (če je pilot votel)	m		Rezultati Prerez_kola 1.767146m2
dolžina pilota	10.5 m	globina podtalnice 3.5 m	Prerez_kola(votel)1.767146m2 Obseg_kola4.712389m Teza_kola463.8758kN
globina vpetja	4.5 m	količnik mirnega zemeljskega pritiska 0.35 Pri računu pomikov zanemari del nad 1. prejskavo	Horiz.tlak_ob_nogi122.15kPa Vert.tlak_ob_nogi219kPa a0.75m
globina odkopa na vrhu pilota	2 m	vrsta pilota Uvrtan z opažem, ki se izvleče 💽	pie3254kPa De0m k1.8 qL5856.33kPa
– Podatki o pilotu -	- vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qp10348.99kN Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 2 CS 1434 15170 7300	QL13843.52kN Qsafe
konica pilota	polna 💌	2 3.3 CS 1434 15170 7300 3 5.2 ML 3254 26050 22480 4 11.5 ML 3254 26050 22480	Posedek(Q=Qsafe)=12.34804mm
oblika pilota			8000 ⁰
prostorninska teža pilota	25 kN/m3		5333
modul elastičnosti	2100 kN/cm2		2666
Poissonov količnik	0.175	Ocena nosilnosti (kN) 8000 Ocena pomika (mm) 30	10 20 3ñ

Priloga A41: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-3

Appendix A41: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-3

– Podatki o pilotu -	dimenzije	Karaki	teristike temeljnih ta	al			Izračun Nariši OK
i oddaa o pilota	15		Globina	sloja [m]	Tip F	Prostorninska	
ŝirina pilota	1 1.0 m		od	do	zemljine t	eža [kN/m3]	🔽 trilinearni diagram t-z
	4.5		1.sloj O	3.5	CS	19	Račun vrednosti 🗖 na maritari
dolžina	1.5 m		2.sloj 3.5	5	Li Li	21	ob konici 🛛 🖓 2g. mentev
			3.510 0	15	ML		🔿 konstantno 💿 interpolacija
debelina stene	m						Rezultati
Ice le pilor voreit							Prerez_kola 1.767146m2
dolžina pilota	10.5			0.5	V Izra	ačun po EC 7	Obseg kola
doizina pilota	· …	glo	bina podtalnice	3.5 m			Teza_kola463.8758kN
	4.5	kol	ičnik mirnega	0.25	Pri	i računu pomikov	Horiz.tlak_ob_nogi122.15kPa
globina vpetja	14.3 m	zer	neijskega pritiska	10.55	Zar	nemari del nad	a0.75m
alabian adleann						preiskavu	ple4000kPa
na vrhu pilota	2 m	vreta r	ulota Uvrtan z opa	ažem, ki se izv	eče	-	De0m k
		visita p	, indea i				Qp12721.91kN
Podatki o pilotu -	vrsta, oblika-	Tabela	a rezultatov presion	netrske preiska	ave		Qs
pomik pilota	uvrtan 💌		z [m] Tip zemljine	pL [kPa]	EO [kPa]	Er [kPa]	Osafe
		1	2 CS	1600	16000	36000	Qcreep
konica pilota	polna 🔻	2	3.3 CS	1600	16000	36000	Posedek(Q=Qsafe)=13.96529mm
Konica pilota			5.2 ML	4000	30000	60000	J
oblika pilota	krog	▼ 4	TT.5 ML	4000	30000	80000	0
							8000
teža pilota	25 kN/	/m3					
							5333
modul	2100 kN/	/cm2					
elastichost							2666
Poissonov	0.175						
količnik		0	cena nosilnosti (kN	1 8000	Ocena por	nika (mm) 30	10 20 30

Priloga A42: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-3

Appendix A42: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-3

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
- rodakti o pilotu -	15	Globina sloja [m] Tip Prostorninska	
ŝirina pilota	m	od do zemljine teža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.5 m	1.sloj 0 3.5 CS 19 2.sloj 3.5 5 G 21 3.sloj 5 15 ML 22	Račun vrednosti ob konici ☑ zg. meritev ◯ konstantno ⓒ interpolacija
debelina stene			Rezultati
(če je pilot votel)	, m		Prerez_kola 1.767146m2
dolžina pilota	10.5 m	globina podtalnice 3.5 m ✓ Izračun po EC 7	Prerez_kola(votel)1.767146m2 Obseg_kola4.712389m Teza_kola463.8758kN
globina vpetja	4.5 m	kolicnik mirnega zemeljskega pritiska 0.35 I. preiskavo	Vert.tlak_ob_nogi222.10kPa a0.75m nle 4505.019kPa
globina odkopa	2 m	Ulutan a se ažen ki se indeže	De1.8
na vrhu pilota		vrsta pilota juvitari z upazeni, ki se izviece	qL8109.785kPa
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
	uvitan 💌	z [m] Tip zemlijne pl. [kPa] E0. [kPa] Er. [kPa]	QL17929.38kN
pomik pilota	1	1 2.2 CS 1850 15500 80000	Qsafe6105.143kN
		2 2.8 CS 1600 16000 36000	Posedek/Q=Qsafe)=13.53092mm
konica pilota	Ipoina 💌	3 5.5 ML 3500 33000 65000	
	krog -	4 8.6 ML 4000 30000 60000	
oblika pilota		5 9.8 ML 4300 41000 160000	8000 ⁰
prostorninska teža pilota	25 kN/m3	6 11.5 ML 4800 32000 135000	
modul elastičnosti	2100 kN/cm2		2666
Poissonov količnik	0.175	Ocena nosilnosti [kN] 8000 Ocena pomika (mm) 30	10 20 30

Priloga A43: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-3

Appendix A43: Calculation results for global safety factors for crossover 4-3

– Podatki o pilotu -	dimenzii	e	Karakterist	ike temeljnih ta	h			Izračun Nariši OK
				Globina	sloja [m]	Tip	Prostorninska	
širina pilota	1.5	m		od	do	zemliine	teža (kN/m3)	🔽 trilinearni diagram t-z
			1 ste	i 0	25	CS.	19	B X 1 <i>C</i>
	1.5		2.40	25	2.0	CC CC	10	Hacun vrednosti
dolžina	11.5	m	2.80	2.3	3	0	10	OD KONICI IV Eg. Monto
			3.80	9	11	u	21	🔘 konstantno interpolacija
debelina stene			4.slc	4 11	18	ML	23	Rezultati
(če je pilot votel)		m						Prerez kola 1.767146m2
						_		Prerez kola(votel)1.767146m2
dolžina pilota	16				0.5		zračun po EC 7	Obseg kola
doizina pilota			globina	podtalnice	2.5 m			Teza_kola706.8583kN
			količnik	mirnega			Pri računu nomikov	Horiz.tlak_ob_nogi209.6kPa
globina vpetia	4.5	m	zemeljs	kega pritiska	0.4		anemari del nad	Vert.tlak_ob_nogi321.5kPa
3						1	nreiskavo	a0.75m
alabina adkana								ple
giobina oukopa	2	m		Uvrtan z ona	žem kise izv	leče	-	De1.8
na vina piota			vista pilota					qL
– Podatki o pilotu -	vrsta of	olika	Tabela rez	ultatov presion	netrske nreisk	ave		Oc 3438.6kN
	Lucation .			1 T' F	1 0 0 1	50 0 0	1 5 8 5 1	QL
pomik pilota	uvitan	_	z [r	nj Tip zemljine	pL [KPa]	EU [KPa	aj ErikPaj	Qsafe
			1 2	CS	410	3300	12500	Qcreep
	polpa	-	2 3	CS	162	710	1900	Posedek(Q=Qsafe)=20.57863mm
konica pilota	poind	<u> </u>	3 8.8	CS	162	710	1900	
			4 11.	2 ML	4403	23120	37400	· ·
oblika pilota	Krog	_	5 17	ML	4403	23120	37400	1000
and the standards at								12000
prostorninska	25	kN/m3						
teza pilota								8000
modul	01.00							
elastičnosti	2100	kN/cm2						
0.00000000								4000
Poissonov	0.175							la la constante de
količnik	10.113		Ocena	nosilnosti [kN	1 1200	Ocena pr	omika (mm) 🗔	₩ <u>10 00 ₩ 00</u>
L			000110		11200	e conta pr		1 11 21 31

Priloga A44: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-4

Appendix A44: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-4

– Podatki o pilotu -	dimenzije	Karakteristi	ke temeljnih tal	l .			Izračun Nariši OK
a block o pilota	15		Globina	sloja [m]	Tip P	Prostorninska	
širina pilota	11.5 m		od	do	zemljine te	eža [kN/m3]	✓ trilinearni diagram t-z
dolžina	1.5 m	1.slo 2.slo 3.slo	0 2.5 9	2.5 9 11	CS CS G	19 18 21	Račun vrednosti ob konici ☑ zg. meritev ◯ konstantno ⓒ interpolacija
debelina stene	m	4.slo	11	18	ML	23	Rezultati
(če je pilot votel) dolžina pilota	16 m	globina	podtalnice	2.5 m	🔽 Izra	ačun po EC 7	Prerez_kola 1.767146m2 Prerez_kola(votel)1.767146m2 Obseg_kola4.712389m Teza_kola706.8583kN
globina vpetja	4.5 m	količnik zemeljsl	mirnega kega pritiska	0.4	Prin T zan 1. p	računu pomikov nemari del nad preiskavo	Horiz.tlak_ob_nogi209.6kPa Vert.tlak_ob_nogi321.5kPa a0.75m ple
globina odkopa	2 m		Uvrtan z opa	žem, ki se izv	leče	-	De0m k
na vinu pilota		vrsta pilota	jo mane opa		.000		qL
Podatki o pilotu -	vrsta, oblika	Tabela rez	ultatov presiom	etrske preisk	ave		Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine	pL [kPa] 410	E0 [kPa] 3300	Er [kPa] 12500	QL19815.13kN Qsafe
		2 3	CS	240	1300	5300	Qoreep11047.04kN Posedek/D=Dsafe)=9.136712mm
konica pilota	poina 💌	3 8.8	CS	240	1300	5300	
	kron 💌	4 11.3	2 ML	5000	60000	270000	
oblika pilota		5 17	ML	5000	60000	270000	12000
prostorninska teža pilota	25 kN/m3						8000
modul elastičnosti	2100 kN/cm2						4000
Poissonov količnik	0.175	Ocena	nosilnosti [kN]	1200	Ocena pom	iika (mm) 30	

Priloga A45: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-4

Appendix A45: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-4

– Podatki o pilotu -	dimenzii		Izračun Nariši OK						
1 oddaa o pilota	1.5	Ĭ			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	11.0	m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			1	L.sloj	0	2.5	CS	19	Bačun vrednosti
dolžina	1.5	m	2	2. sloj	2.5	9	CS	18	ob konici 🔽 zg. meritev
			3	3. sloj	9	11	G	21	🔿 konstantno 💿 interpolacija
debelina stene			4	1. sloj	11	18	ML	23	Rezultati
(če je pilot votel)	1	m							Prerez kola 1 767146m2
									Prerez kola(votel)1.767146m2
dolžina pilota	16	m				25	🛛 🔽 I	zračun po EC 7	Obseg_kola4.712389m
			glot	bina p	odtalnice	m			Teza_kola706.8583kN
	4.5		KOli	onik n	nimega aga pritiska	0.4	F	^o ri računu pomikov	Vertilak_ob_pogi209.0KPa
globina vpetja	1.0	m	201	licilario	зуа рнизка	Jos 1		anemarı del nad	a0.75m
								i, preiskavu	ple5900kPa
globina odkopa na vrhu pilota	2	m		a [Uvrtan z opa	žem, ki se izv	eče	•	De1.8
na vina pilota			vrsta p	llota j					Qp 18668 52kN
– Podatki o pilotu -	vrsta, ot	olika	Tabela	rezul	tatov presiom	etrske preiska	ave		Qs
pomik pilota	uvrtan	-		z [m]	Tip zemliine	pL [kPa]	E0 (kPa	al EríkPal	QL22840.1kN
pornik pilota	,	_	1	2	CS	410	3300	12500	Qsafe
		_	2	2.5	CS	200	1100	3000	Posedek/Q=Qsafe)=13.34293mm
konica pilota	poina	<u> </u>	3	4.7	CS	210	1100	3000	
	lune		4	5.5	CS	310	1800	3200	
oblika pilota	Kiug		5	7.6	CS	260	1300	2000	12000
prostorninska	25		6	12	ML	5000	78000	370000	12000
teža pilota	123	kN/m3	7	13.7	ML	5900	45000	170000	
			8	17	ML	5900	45000	170000	8000
modul	2100	kN/cm2							
elasuchosti									4000
Poissonov	0.175								
količnik	10.110		00	ena r	nosilnosti [kN]	1200	Ocena p	omika [mm] 30	10 20 30
						1			, ,

Priloga A46: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-4

Appendix A46: Calculation results for global safety factors for crossover 4-4

– Podatki o pilotu -	dimenzije	Karakteristike	temeljnih tal			Izračun Nariši OK
r odditi o pilota		GI	lobina sloja	m] Tip	Prostorninska	
širina pilota	1.5 m	00	do t	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.5 m	1.sloj 2.sloj 3.sloj	0 2 7	2 CS 7 CS 8.5 S	19 17 20	Račun vrednosti ob konici ⊽ zg. meritev ⊂ konstantno ⊙ interpolacija
debelina stene (če je pilot votel)	m	4.sloj	8.5	20 S	23	Rezultati
dolžina pilota	12.5 m	globina pod	dtalnice 3.2	m 🔽 I	zračun po EC 7	Prerez_kola(
globina vpetja	4.5 m	količnik mir zemeljskeg	nega a pritiska 0.3		^p ri računu pomikov zanemari del nad 1. preiskavo	Horiz.tlak_ob_nogi146.2kPa Vert.tlak_ob_nogi245kPa a0.75m ple6000kPa
globina odkopa na vrhu pilota	2.0 m	vrsta pilota U	vrtan z opažem, ł	i se izvleče	•	De0m k1.2 qL7269.56kPa
– Podatki o pilotu -	vrsta, oblika	Tabela rezultal	tov presiometrske	preiskave		Qp12846.37kN Qs1958.948kN
pomik pilota	uvrtan 💌	z [m] T 1 2.5 0	ip zemljine pL S 85	kPa] E0 (kPa 600	a] Er [kPa] 1700	QL14253.09kN Qsafe
konica pilota	polna 💌	2 6.8 0 3 7.2 9	CS 85 6 474	600 2100	1700 7510	Posedek(Q=Qsafe)=11.79503mm
oblika pilota	krog 💌	4 8.3 9	6 474 C 00	2100	7510	10
prostorninska teža pilota	25 kN/m3	6 13.5 5	600) 47000) 47000	180000	8000
modul elastičnosti	2100 kN/cm2					2666
Poissonov količnik	0.175	Ocena no:	silnosti [kN] 800	0 Ocena p	omika (mm) 30	10 20 30

Priloga A47: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-6

Appendix A47: Calculation results according to EC-7-1 with parameters from statistical analyses for crossover 4-6

– Podatki o pilotu -	dimenzije	ĸ	Carakteristik	te temeljnih ta	l .			Izračun Nariši OK
	1 5			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	11.0 m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			1.sloi	0	2	CS	19	D = žum u sedo seti
1.122	15		2 sloi	2	7	CS.	17	ob konici
doizina	m		3 eloi	7		c .	20	
			0. sioj 4. sloj	0.5	20	c	20	🕓 konstantno 🤄 interpolacija
debelina stene	m	L	4.510	0.0	20	3	23	Rezultati
Ice le bilot voteil								Prerez_kola 1.767146m2
	105					7		Prerez_kola(votel)1.767146m2
dolžina pilota	112.5 m		alahina a		3.2	V Iz	račun po EC 7	Obseg_kola4.712389m
			yiuuna p	Jouranice	· · · ·			Teza_kola
	4.5		Kolicnik	mirnega oga pritiska	0.35	_ P	ri računu pomikov	Vertilak ob pogi 245kPa
globina vpetja	14.0 m		zemeijsk	eya phuska	10.00		anemari del nad	a0.75m
							. preiskavo	ple6000kPa
globina odkopa	2 m				× 11 1	L Y		De
na vrhu pilota	· · · · ·	V	rista pilota	juvrtan z opa	zem, ki se izv	lece	•	qL7269.56kPa
- Destablishe silety	under eletiter	т			- teal a manial d			Qp12846.37kN
- Fouarki o pilotu -	VISIA, UDIIKA		abela lezu	itatov presion	euske preiska	ave		Us
pomik pilota	uvrtan 💌		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	i] Er [kPa]	Ocate 4766 617kN
			1 2.5	CS	220	900	2600	Qcreep
			2 6.8	CS	220	900	2600	Posedek(Q=Qsafe)=11.66755mm
konica pilota			3 7.2	S	550	2800	11000	
			4 8.3	S	550	2800	11000	,
oblika pilota	Krog	-	5 10.7	S	6000	47000	180000	
			6 135	S	6000	47000	180000	8000
prostorninska toža pilota	25 kN/	/m3	0 10.0	0	0000	41000	100000	
teza pilota								5333
modul	2100							
elastičnosti	12100 kN/	/cm2						200
								2000
Poissonov	0.175							
količnik	,		Ocena	nosilnosti [kN]	8000	Ocena po	omika (mm) 30	* 10 20 30
					1		1	, ,

Priloga A48: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-6

Appendix A48: Calculation results according to EC-7-1 with parameters as cautious estimate for crossover 4-6

– Podatki o pilotu -	dimenzii	a	Karakte	ristik	e temeljnih tal				Izračun Nariši OK
1 odditt o pilota -		°			Globina	sloja (m)	Tip	Prostorninska	
širina pilota	1.5	m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	1.5	m	1. 2. 3.	sloj sloj sloj	0 2 7	2 7 8.5 20	CS CS S	19 17 20	Račun vrednosti ob konici
debelina stene		m	4.	sioj	0.5	20	3	23	Rezultati
dolžina pilota	12.5	m	glob	nap	odtalnice	3.2 m		zračun po EC 7	Prerez_kola 1.767146m2 Prerez_kola(votel)1.767146m2 Obseg_kola4.712389m Teza_kola
globina vpetja	4.5	m	količ zem	nik n eljske	hirnega ega pritiska	0.35		^p ri računu pomikov anemari del nad I. preiskavo	Horiz.tlak_ob_nogi146.2kPa Vert.tlak_ob_nogi245kPa a0.75m nle 6000kPa
globina odkopa	2.0			E.					De0m k1.2
na vrhu pilota			vrsta pil	ota	Uvrtan z opa:	zem, ki se izv	lece	-	qL7269.56kPa
– Podatki o pilotu	urata at	-lik -	Tabala		atou provioro	otroko projek			Qp12846.37kN
Foularki o pilota -	VISIA, UL			62UI	atov presioni	euske pielski	ave		QS
pomik pilota	Juvrtan	_		: [m]	l ip zemljine	pL [kPa]	EU [kPa	aj Er[kPa]	Qsafe
			1 2	2.5	CS	150	700	2400	Qcreep7884.323kN
konica pilota	polna	-	2 4	1	CS	150	700	2400	Posedek(Q=Qsafe)=11.55082mm
Konica pilota		_	3 4	1.5	CS	320	1100	4000	
ablika pilata	krog	-	4	; 	CS	320	1100	4000	40
oblika pilota	-	_	5	5.3	CS .	520	2500	9700	8000
prostorninska	25	kN/m2	6	3.3	5	520	2500	9700	
teža pilota		NINZING		10.7	5	6000	47000	180000	5333
modul elastičnosti	2100	kN/cm2	8	13.5	5	5000	47000	180000	2666
Poissonov količnik	0.175		Oce	ena n	iosilnosti (kN)	8000	Ocena p	omika (mm) 30	10 20 30

Priloga A49: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-6

Appendix A49: Calculation results for global safety factors for crossover 4-6

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal	Izračun Nariši OK
širina pilota	1.25 m	Globina sloja[m] Tip Prostorninska	✓ trilinearni diagram t-z
dolžina	1.25 m	od do zemijine teza [KN/m3] 1.stoj 0 4.2 CS 19 2.stoj 4.2 4.8 G 20 3.stoj 4.8 20 MI 23	Račun vrednosti ob konici
debelina stene (če je pilot votel)	m m		Rezultati Prerez_kola 1.227185m2
dolžina pilota	10 m	globina podtalnice 4 m	Prerez_kola(votel)1.227185m2 Obseg_kola3.926991m Teza_kola306.7962kN
globina vpetja	4 m	količnik mirnega zemeljskega pritiska 0.4 V zanemari del nad 1. preiskavo	Horiz.tlak_ob_nogi120.55kPa Vert.tlak_ob_nogi211.4kPa a
globina odkopa na vrhu pilota	4 m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗨	De0m k1.8 qL3738.392kPa
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 2 CS 567 2970 4210	QL7065.284kN Qsafe
konica pilota	polna 💌	2 4 CS 567 2970 4210 3 4.9 ML 2080 31900 116800 4 11 ML 2080 31900 116800	Posedek(Q=Qsafe)=4.943043mm
oblika pilota	krog 💌		8000 ⁰ Q
prostorninska teža pilota	25 kN/m3		5333
modul elastičnosti	2100 kN/cm2		2666
Poissonov količnik	0.175	Ocena nosilnosti [kN] [8000 Ocena pomika (mm) [30	10 20 30

Priloga A50: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za most 5-1

Appendix A50: Calculation results according to EC-7-1 with parameters from statistical analyses for bridge 5-1

– Podatki o pilotu -	dimenzije	Karakteristike temeljnih tal		Izračun Nariši OK
širina pilota	1.25 m	Globina sloja (m) Tip od do zer	Prostorninska	▼ trilinearni diagram t-z
dolžina	1.25 m	1.sloj 0 4.2 CS 2.sloj 4.2 4.8 G 3.sloj 4.8 20 ML	19 20 23	Račun vrednosti ob konici ⊽ zg. meritev ⊂ konstantno ⊙ interpolacija
debelina stene (če je pilot votel)	m			Rezultati
dolžina pilota	10 m	4	🔽 Izračun po EC 7	Prerez_kola 1.227185m2 Prerez_kola(votel)1.227185m2 Obseg_kola
globina vpetja	4 m	globina podtalnice 14 m količnik mirnega zemeljskega pritiska 0.4	Priračunu pomikov ┌── zanemari del nad 1. preiskavo	Teza_kola
globina odkopa na vrhu pilota	4 m	vrsta pilota Uvrtan z opažem, ki se izvleča	•	pre De0m k1.8 qL6114.392kPa
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave		Qp7503.487kN Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] El 1 2 CS 600 33) [kPa] Er [kPa] 800 6000	QL10076.87kN Qsafe
konica pilota	polna 💌	2 4 CS 600 33 3 4.9 ML 3400 60	800 6000 6000 150000	Posedek(Q=Qsafe)=4.801147 mm
oblika pilota	krog 💌	4 11 ML 3400 0	130000	800 0
prostorninska teža pilota	25 kN/m3			5333
modul elastičnosti	2100 kN/cm2			2666
Poissonov količnik	0.175	Ocena nosilnosti [kN] 8000 Oc	ena pomika (mm) 30	10 20 30

Priloga A51: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za most 5-1

Appendix A51: Calculation results according to EC-7-1 with parameters as cautious estimate for bridge 5-1

– Podatki o pilotu -	dimenzije		Karakteri:	stike temeljnih I	al			Izračun Nariši OK
	1.25			Globina	sloja (m)	Tip	Prostorninska 👘	
širina pilota	11.20	m		od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			1.s	oj l	0 4.2	CS	19	Račun vrednosti
dolžina	1.25	m	2.s	oj 4.3	2 4.8	G	20	ob konici 🛛 🗹 zg. meritev
			3.s	oj 4.1	3 20	ML	23	🔿 konstantno 💿 interpolacija
debelina stene								Rezultati
(če je pilot votel)	,							Prerez_kola 1.227185m2
	10							Prerez_kola(votel)1.227185m2
dolžina pilota	110	m	alobin	a podtalnice	4 m	IV IZ	racun po EU 7	Ubseg_kola
			količn	ik mirnega		P	ri računu nomikov	Horiz.tlak_ob_nogi120.56kPa
globina vpetja	4	m	zemel	skega pritiska	0.4	I Za	anemari del nad	Vert.tlak_ob_nogi211.4kPa
						1.	preiskavo	a0.625m
globina odkopa	4							De
na vrhu pilota	,		vrsta pilot	a Uvrtan z op	iażem, ki se izv	leće	_	qL5171.535kPa
– Podatki o pilotu -	vrsta obli	ika	Tabela re	zultatov presio	metrske preisk	ave		Qp6346.428kN
1 odditi o pilota	Luurton			al Tis section	L ILD-1		L C. (LD-1	QL
pomik pilota	Juvitari	<u> </u>	1 2	mji i pizemijin z lice	e pr (kraj	200 [KF4]	9700	Qsafe2922.743kN
		_	2 2	7 L3 5 CS	600	2200	6700	Qcreep
konica pilota	polna	•	3 6	MI	4200	39000	130000	Posedek(Q=Qsate)=3.033429mm
			4 6	3 MI	3800	80000	180000	
oblika pilota	krog	-	5 8.	7 ML	3400	83000	150000	ooo t Q
prostorningk a	Lor.		6 8.	9 ML	2300	60000	145000	8000
teža pilota	25	kN/m3	7 11	ML	3400	83000	150000	
								5333
modul	2100	kN/cm2						
elastichust								2666
Poissonov	0.175							
količnik	,		Ocer	ia nosilnosti (kl	1 8000	Ocena po	mika (mm) 30	10 20 30
					10000			

Priloga A52: Rezultati izračuna po EC 7-1 z upoštevanjem globalnih varnostnih faktorjev za most 5-1

Appendix A52: Calculation results for global safety factors for bridge 5-1

Priloga A53: Rezultati izračuna Q_p in Q_s na osnovi presiometrskih meritev v sondi V-1 Appendix A53: Calculation results of Q_p and Q_s from the PMT results in V-1 borehole

– Podatki o pilotu -	dimenzije	Karakteristike temelinih tal	Izračun Nariši OK
n odditi o pilota		Globina sloja [m] Tip Prostorninska	
ŝirina pilota	10.0 m	od do zemljine teža [kN/m3]	🔽 trilinearni diagram t-z
		1.sloj 0 10.2 CS 20	Račun vrednosti
dolžina	10.8 m	2.stoj 10.2 11.7 G 21	ob konici 🛛 🖓 29. mentev
		3.80 11.7 23 5 19	🔿 konstantno 💿 interpolacija
debelina stene (če je pilot votel)	m		Hezultati
Tee le pliot voteit			Prerez_kola
dolžina pilota	20 m	Izračun po EC 7	Obseg_kola
doining proto		globina podtalnice 14 m	Teza_kola251.3274kN
-lable - co-sta	3	kolićnik mirnega Pri računu pomikov	Vertitlak_ob_nogi203.28kPa Vertitlak_ob_nogi393.2kPa
giodina vpetja	, m	zonicijskoga pilaska povelj zanemari del nad 1. preiskavo	a0.5m
globina odkona			ple524kPa
na vrhu pilota	m	vrsta pilota Uvrtan z opažem, ki se izvleče 🗾 🚽	qL
Dedativity and an	under alefilier	Tabala san distances interferences	Qp347.3305kN
Foularki o pilotu -	vista, oblika		QI 713.3743kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] EU [kPa] Er [kPa]	Qsafe
		1 3 LS 170 1840 1680	Qcreep585.2461kN
konica pilota	polna 🔻	2 10 C5 170 1040 1660 3 10.4 G 1600 5300 21200	Posedek(Q=Qsafe)=0.3072622mm
		4 11.5 G 1600 5300 21200	1
oblika pilota	krog _	5 11.8 CS 284 4230 8630	150 ⁴ Q
prostorninska	25	6 16 CS 284 4230 8630	1.505
teža pilota	125 kN/m3	7 16.2 CS 524 5670 18350	1000
modul	lot oo	8 22.4 CS 524 5670 18350	1000
elastičnosti	2100 kN/cm	2	Qlim
			500
Poissonov	0.175		
KOIIGHIK		Ucena nosilnosti [KNJ 1500 Ucena pomika [mm] 30	10 20 30

Lokacija: AC Koper - Lendava, odsek Šentjakob - Blagovica, nadvoz 4-6

Priloga A54: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-6

Appendix A54: Calculation results according to EC7-1 with parameters from statistical analyses for crossover 4-6

– Podatki o pilotu -	dimenzije	Karak	teristik	e temeljnih tal				Izračun Nariši OK
r oddiki o pilota -				Globina	sloja [m]	Tip	Prostorninska	<u></u>
širina pilota	10.8 m			od	do	zemljine	teža [kN/m3]	🔽 trilinearni diagram t-z
			1.sloj	0	10.2	CS	20	Bačun vrednosti
dolžina	0.8 m		2.sloj	10.2	11.7	G	21	ob konici 🔽 zg. meritev
Golding			3.sloj	11.7	23	CS	19	C konstantno 🤄 interpolacija
debelina stene								Bezultati
(če je pilot votel)	m							
								Prerez_kola(
dolžina pilota	20					I Iz	račun po EC 7	Obseg kola
doizina pilota		glo	obina p	odtalnice	4 m			Teza_kola251.3274kN
		ko	ličnik r	nimega	0.4	P	ri računu pomikov	Horiz.tlak_ob_nogi253.28kPa
globina vpetja	3 m	ze	meljske	ega pritiska	0.4	🗌 🗌 za	anemari del nad	Vert.tlak_ob_nogi393.2kPa
						1.	. preiskavo	ple
globina odkopa			r		× 1			De0m k1.1
na vrhu pilota		vrsta j	pilota	Uvrtan z opa:	zem, ki se izv	lece	_	qL862.592kPa
– Padatki a pilatu	urata ablika	Tabal	a raaul		atrali a proiali			Qp433.5861kN
r odatki o pilota -	VISIO, UDIIKO	Taber	aiezui	atov presioni	euske pielsk	ave		01 1044 325kN
pomik pilota	uvrtan 💌		z [m]	Tip zemljine	pL [kPa]	EO [kPa	i] Er [kPa]	Qsafe
		1	3	CS	250	2500	5000	Qcreep791.504kN
lumine silete	polna 🔻	2	10	CS	250	2500	5000	Posedek(Q=Qsafe)=0.4368643mm
Konica pilota		3	10.4	G	1600	5300	21200	
-603-1-	krog 🗸	4	11.5	G	1600	5300	21200	40
oblika pilota		5	11.8	CS	330	4400	8700	1500 ⁰
prostorninska	25 1414-2	6	16	CS	330	4400	8700	
teža pilota	KN/m3	7	16.2	CS	680	6600	22000	1000
		8	22.4	CS	680	6600	22000	
elastičnosti	2100 kN/cm2							
Clastichiost								5001/
Poissonov	0.175							Y
količnik		0	cena r	nosilnosti [kN]	1500	Ocena po	omika (mm) 30	10 20 30
							1	, ,

Priloga A55: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena, za nadvoz 4-6

Appendix A55: Calculation results according to EC 7-1 with parameters as cautious estimate for crossover 4-6

– Podatki o pilotu -	dimenzije	Karakteristi	ke temeljnih ta	al			Izračun Nariši OK
r odditi o pilota			Globina	sloja [m]	Tip P	Prostorninska	·
širina pilota	10.8 m		od	do	zemljine te	eža [kN/m3]	🔽 trilinearni diagram t-z
		1.sloj	0	10.2	CS	20	Bačun vrednosti
dolžina	0.8	2.slo	10.2	11.7	G	21	ob konici 🔽 zg. meritev
doizina	,	3.slo	11.7	23	CS	19	🔿 konstantno. 💽 interpolacija
debalina atoma							Pozultati
(če je pilot votel)	m						
fee to pliet reteil							Prerez_kola0.5026549m2 Prerez_kola(votel)0.5026540m2
delžine eilete	20				🔽 İzra	ačun no EC 7	Obseg_kola
uuizina piiuta	· · · · ·	globina	podtalnice	4 m	,		Teza_kola
		količnik	mirnega		Pri	računu nomikov	Horiz.tlak_ob_nogi253.28kPa
globina vpetja	3 m	zemeljsł	ega pritiska.	JU.4	🗌 zar	nemari del nad	Vert.tlak_ob_nogi393.2kPa
					1. p	preiskavo	aU.OM 601.0231kPa
globina odkopa							De
na vrhu pilota	· m	vrsta pilota	Uvrtan z opa	ažem, ki se izv	leće	-	qL875.7075kPa
Deded. in allow.	and the second						Qp440.1786kN
Podatki o pilotu -	Vista, oblika	i abela rezu	litatov presion	netrske preisk	ave		Qs1095.058kN
pomik pilota	uvrtan 💌	z [m] Tip zemljine	pL [kPa]	EO [kPa]	Er [kPa]	Qsafe
		1 3.2	CS	230	2300	4600	Qcreep
la sulla su sila ka	polna 💌	2 8.3	CS	320	3000	9000	Posedek(Q=Qsafe)=0.6906733mm
konica pilota		3 10.4	G	1600	5300	21200	
1.02 . 0.1	kron 💌	4 11.9	i G	1600	5300	21200	
oblika pilota	1	5 12.	'CS	310	4320	8700	1500 ^Q
prostorninska	25	6 15.3	'CS	350	4400	8800	Olim
teža pilota	KN/m3	7 18.5	5 CS	740	7000	21000	1000
		8 22.4	CS	615	6200	25000	1000
modul	2100 kN/cm2						
ciasucriosu							5001
Poissonov	0.175						V
količnik	10.110	Ocena	nosilnosti [kN	1 1500	Ocena pom	nika (mm) 30	10 20 30
			-				

Priloga A56: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-6 Appendix A56: Calculation results for global safety factors for crossover 4-6

– Podatki o pilotu -	dimenzije		Karak	teristike	e temeljnih tal				Izračun Nariši OK
				1	Globina	sloja [m]	Tip	Prostorninska	
sirina pilota	10.0	m			bd	do	zemljine	teža [kN/m3]	I✓ trilinearni diagram t-z
	0.0			1.sloj	0	10.2	CS	20	Račun vrednosti 🗖 za moritov
dolžina	10.8	m		2.sloj 2.eloj	10.2	19	CS G	19	ob konici 🛛 🗸 29. mentev
debelina stene				5. SIO[15	23	u	21	 konstantno (* interpolacija Rezultati
(če je pilot votel)	JU	m		_					Prorez kolo 0.5028549m2
									Prerez_kola(votel)0,5026549m2
dolžina pilota	[20	m	ala	hina n	ndtalnice	4 m		zračun po EC 7	Obseg_kola2,513274m
			ko	ličnik m	nimega		F	ri računu nomikov	Horiz.tlak_ob_nogi252,88kPa
globina vpetja	3	m	zei	meljske	ga pritiska	0.4	∏ z	anemari del nad	Vert.tlak_ob_nogi392,2kPa
							1	. preiskavo	ple1600kPa
globina odkopa na vrhu pilota		m	ureta r	oilota 🛛	Jvrtan z opaź	žem, ki se izv	leče	•	De
			vista p	bilota j					Qp941,9913kN
Podatki o pilotu -	vrsta, obl	ika	Tabel	a rezult	atov presiom	etrske preiska	ave		Qs452,7375kN
pomik pilota	uvrtan	-		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	a] Er [kPa]	QL1143,401kN Osefe 248,79kN
			1	3	CS	170	1840	1680	Qoreep
	nolpa	-	2	10	CS	170	1840	1680	Posedek(Q=Qsafe)=1,657583mm
konica pilota	poind	<u> </u>	3	11.8	CS	284	4230	8630	
	krog	-	4	16	CS	284	4230	8630	
oblika pilota	Inde		5	16.2	CS	524	5670	18350	1500 ^{1Q}
prostorninska	25		6	19	CS	524	5670	18350	
teža pilota	123	kN/m3	7	19.5	G	1600	5300	21200	1004
			8	23	G	1600	5300	21200	1000
modul	21000	kN/cm2							
Clastic 10st									500
Poissonov količnik	0.175		0	cono n	osilnosti [kN]	1500	Ocena pr	mika [mm]	
			0	certa ri	osimosti [KIN]	1500	ocena pu	nue fund 30	I 10 20 30

Priloga A57: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-6 (peščen sloj upoštevan pod konico pilota!)

Appendix A57: Calculation results according to EC7-1 with parameters from statistical analyses for crossover 4-6

– Podatki o pilotu -	dimenzii	e	Karak	teristik	e temeljnih tal				Izračun Nariši OK
		-			Globina	sloja [m]	Tip	Prostorninska	
širina pilota	0.8	m			od	do	zemliine	teža (kN/m3)	🔽 trilinearni diagram t-z
				1 aloi	0	10.2	CC.	20	
	0.0			2.4-1	10.0	10.2	CC	10	Hacun vrednosti
dolžina	10.0	m		2.510	10.2	19	0	19	ob konici 🔰 2g. mentev
				3.sloj	19	23	ե	21	🔘 konstantno 📧 interpolacija
debelina stene	0								Rezultati
(če je pilot votel)	10	m							Proton kolo 0.5028549m2
									Prerez_kola/votel) 0.5026549m2
della e ellete	20							zračun no EC 7	Obseq kola 2 513274m
uuizina piiuta			gla	bina p	odtalnice	4 m			Teza kola
			ko	ličnik r	nimena)	Horiz.tlak ob nogi252,88kPa
globina vpetia	3	m	zei	meljski	ega pritiska	0.4		anemari del nad	Vert.tlak_ob_nogi392,2kPa
giobina (poda							1	nreiskavo	a0,5m
-1-1-2								. prototero	ple1600kPa
giobina odkopa		m			l lyrtan z ona:	žem kise izvl	eče	-	De1,1
na vinu pilota			vrsta p	pilota J	o vitari z opa.	CONT, NI 30 1241	000	<u> </u>	qL1874,032kPa
– Podatki o pilotu -	vieta of	lik a	Tabel	a rozul	tatov presiom	atreka prajek:	ve		Qp
1 odditi o pilota	visita, or			uriczui	tatov presioni	cuarce presare	140		OI 1295.082M
pomik pilota	uvrtan	-		z [m]	Tip zemljine	pL [kPa]	EO [kPa	a] Er [kPa]	Osefe 338 6693kN
			1	3	CS	250	2500	5000	Qcreep. 940.5953kN
	a alu a		2	10	CS	250	2500	5000	Posedek(Q=Qsafe)=1,016768mm
konica pilota	poina		3	11.8	CS	330	4400	8700	
			4	16	CS	330	4400	8700	,
oblika pilota	krog	-	5	16.2	CS.	680	0033	22000	
· · · · ·		_		10.2	CC CC	600	0000	22000	1500
prostorninska	25	kN/m3		10 5	C3	1000	5000	22000	
teza pilota			14	19.5	u .	1600	5300	21200	1000
an a shal		- 1	8	23	li .	1600	5300	21200	
electičnosti	21000	kN/cm2							
ciasticitost									5001
Poissonov	0.175	-							V
količnik	10.179		0	cons :	ooiloooti [kN]	1500	Ocena pr	mika [mm]	
			0	certar	iosinosti [KN]	11500	oceria pu	nuka fund 130	I 10 20 30

Priloga A58: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena za nadvoz 4-6 (peščen sloj upoštevan pod konico pilota!)

Appendix A58: Calculation results according to EC 7-1 with parameters as cautious estimate for crossover 4-6

– Podatki o pilotu -	dimenzije	_	Karak	.teristike	e temeljnih tal				Izračun Nariši OK
1 odditt o pilota		-		1	Globina	sloia [m]	Tip	Prostorninska	ii
širina pilota	0.8	m			od	do	zemliine	teža (kN/m31	🔽 trilinearni diagram t-z
dolžina	0.8	m		1.sloj 2.sloj 3.sloj	0 10.2 19	10.2 19 23	CS CS G	20 19 21	Račun vrednosti ob konici
debelina stene (če je pilot votel)	0	m							Rezultati Prerez_kola
dolžina pilota	20	m	glo	bina p	odtalnice	4 m		račun po EC 7	Prerez_kols(votel)0,5026549m2 Obseg_kola2,513274m Teza_kola251,3274kN Harii tak, ph. pagi _252,92kPa
globina vpetja	3	m	ze	meljske	iga pritiska	0.4		'ri računu pomikov anemari del nad . preiskavo	Vert.tlak_ob_nogi392,2kPa a0,5m
globina odkopa na vrhu pilota		m	vrsta j	pilota [Uvrtan z opa	žem, ki se izv	leče	•	De0m k1,1 qL1874,032kPa
– Podatki o pilotu -	vrsta, ob	lika	Tabel	a rezult	atov presiom	etrske preiska	ave		Qs
pomik pilota	uvrtan	•		z [m]	Tip zemljine	pL [kPa]	E0 [kPa	i] Er [kPa]	QL1418,717kN Qsafe
konica pilota	polna	•	2	3.2 8.3	CS CS	230 320 210	3000	9000	Qcreep956,3646kN Posedek(Q=Qsafe)=1,008261mm
·			Å.	15.7	re re	250	4320	9900	
oblika pilota	krog	-	5	18.5	CS	740	7000	21000	Qf
prostorninska	25	-	6	19	CS	615	6200	25000	1500
teža pilota	1	KN7IIIS	17	19.5	G	1600	5300	21200	1000
modul elastičnosti	21000	kN/cm2	8	23	li .	1600	5300	21200	500
Poissonov količnik	0.175		0	cena n	osilnosti [kN]	1500	Ocena po	omika (mm) 30	10 20 30

Priloga A59: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-6 (peščen sloj upoštevan pod konico pilota!)

Appendix A59: Calculation results for global safety factors for crossover 4-6

Lokacija: AC Koper - Lendava, odsek Šentjakob - Blagovica, nadvoz 4-7

Priloga A60: Rezultati izračuna po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za nadvoz 4-7

Appendix A60: Calculation results according to EC7-1 with parameters from statistical analyses for crossover 4-7

- Podatki o pilotu -	dimenzie	Karakteris	tike temelinih ta	I			Izračun Nariši DK
širina pilota	0.8 m		Globina od	sloja (m) do	Tip F zemljine b	Prostorninska eža (kN/m3)	v triinearni diagram t-z
dolžina	0.8 m	1.sk 2.sk 3.sk	oj 0 oj 15.8 oj 18	15.8 18 28	G CS G	20 20 21	Račun vrednosti ob konici ⊽ zg. meritev ⊂ konstantno ∢ interpolacija
debelina stene (če je pilot votel)	0 m						Rezultati Prerez kola 0.5026549m2
dolžina pilota	23 m	globina	a podtalnice	5 m	V Izr	ačun po EC 7	Prerez_kola(votel)0.5026549m2 Obseg_kola
globina vpetja	3 m	zemelj	skega pritiska	0.4	Pri Zar 1. 1	računu pomikov nemari del nad preiskavo	Vert.tlak_ob_nogi485kPa a0.5m
globina odkopa na vrhu pilota	2 m	vista pilot	a Uvrtan z opa	žem, ki se izv	leče	×	ple
- Podatki o pilotu -	vrsta, oblika	Tabela re	zultatov presiom	etrske preisk	ave		Qs
pomik pilota	uvitan 💌	2 [1 3	m] Tip zemljine G	pl. [kPa] 2450	E0 [kPa] 9000	Er [kPa] 36000	QL
konica pilota	poina 💌	2 8.9 3 15	5 G .6 G	2450 2450	9000 9000	36000 36000	Posedek(0=0safe)=3.540314mm
oblika pilota	krog 💌	4 16 5 17	CS .8 CS	1740 1740	32600 32600	80000 80000	800 ² Q
prostominska teža pilota	25 kN/m3	6 18 7 24	.2 G G	5500 5500	36500 36500	144000 144000	5323
modul elastičnosti	2100 kN/cm2						2665
Poissonov količnik	0.175	Ocen	a nosilnosti [kN]	8000	Ocena por	nika (mm) 🛐	10 20 30

Priloga A61: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena, za nadvoz 4-7

Appendix A61: Calculation results according to EC 7-1 with parameters as cautious estimate for crossover 4-7

– Pedatki o pilotu -	dmenzie	Karakte	ristike	e temelinih tal				Izračun Nariši OK
r cours o proto			(Slobina	sloja [m]	Tip	Prostorninska	[
širina pilota	10.8 m			d	do	zemline	teža (kN/m3)	🔽 trilinearni diagram t-z
		1	sloi	0	15.8	G	20	D sžup uzdensti
dell'in e	0.8	2	sloi	15.8	18	CS	20	ab konici Zg. mentev
coizna	, m	3	slai	18	28	G	21	Charles Citada
			0101	10				Konstantno 💌 interpolacija
debelina stene (če je pilot votel)	0 m		-	_	_	_		Hezukati
Ice le bilor voreit								Prerez_kola 0.5020549m2
	23					E III	unžum na EC 7	Prerez_kola(votel)0.5020549m2
dolžina pilota	m m	alob	ina po	dtainice	5 m	191	adount policio 7	Teza kola
		količ	nik m	imega			N	Horiz tlak_ob_nogi294kPa
olobina voetia	3 m	zem	eliske	ga pritiska	0.4		anemari del nad	Vert.tlak_ob_nogi485kPa
2						ī	preiskavo	aD.6m
dobina odkopa	2		_					ple
na vrhu pilota	14 m	vista ni	ota I	Jvrtan z opa	žem, ki se izv	leče	-	ol 6922 2kP a
		p					_	Qp
Podatki o pilotu	vista, oblika	Tabela	rezult	atov presiom	etrske preiska	ave		Qs
nomik nilota	uvitan 👻		z [m]	Tip zemljine	pL [kPa]	EO (kPa	a) Er[kPa]	QL
politik piloto	, _	1 1	6.5	G	2500	12600	50000	Qsate
		2	8.5	G	2490	9400	37600	Posedek/0=Osafe's=2.905989mm
konica pilota	poina 💌	3	10.1	G	1550	6800	26800	
		4	16	CS	1740	32600	80000	
oblika pilota	krog 💌	5	17.8	CS	1740	32600	80000	01019
manhamingha		6	18.3	G	5500	36450	14400	8000
prostomnska Ježa pilota	25 kN/m3	7	22.3	G	5500	36450	144000	
1020 51010		8	24.3	G	6000	40250	160000	5333
modul	2100					102.00	100000	
elastičnosti	kN/cm2							2668
								/
Poissonov	0.175					-		1
KOICHIK		00	ena n	osilnosti [kN]	8000	Ocena po	omika (mm) 30	10 20 30

Priloga A62: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za nadvoz 4-7 Appendix A62: The results of computation for global safety factors for crossover 4-7

– Podatki o pilotu - širina pilota dolžina	dimenzije 0.8	m m	Karak	teristike (1.sloj 2.sloj	e temeljnih tal Globina od 0 15.6	sloja [m] do 15.6 25	Tip Pro zemljine tež G ML	ostorninska ia [kN/m3] 21 23	Izračun Nariši OK ↓ trilinearni diagram t-z Račun vrednosti ↓ zg. meritev ob konici ↓ zg. meritev C konstantno © internolacija
debelina stene (če je pilot votel)	0	m							Rezultati Prerez_kola
dolžina pilota	17.6	m	glo	bina po	odtalnice	5 m	🔽 Izrač	un po EC 7	Obseg_kola
globina vpetja	3	m	ko ze	ličnik m meljske	nimega Iga pritiska	0.4	Prira E zane 1. pr	ačunu pomikov mari del nad eiskavo	Horiz.tiak_ob_nogi220,04KPa Vert.tlak_ob_nogi373,6kPa a0,5m
globina odkopa na vrhu pilota	3	m	vrsta	pilota [Uvrtan z opaź	iem, ki se izvl	eče	•	pie0400kPa De0m k
– Podatki o pilotu -	vrsta, obl	lika	Tabel	a rezult	atov presiom	etrske preiska	ave		Qs
pomik pilota	uvrtan	•	1	z [m] 3	Tip zemljine G	pL (kPa) 600	E0 [kPa]] 3200	Er [kPa] 20600	QL
konica pilota	polna	•	2	6 7	G G	600 1930	3200 5300	20600 40600	Posedek(Q=Qsafe)=11,38116mm
oblika pilota	krog	•	4	15.5	ы MI	F460	5300	226000	1
prostorninska teža pilota	25	kN/m3	6	19	ML	6460	50000	226000	8000
modul elastičnosti	2100	kN/cm2							4000
Poissonov količnik	0.175		0	cena n	osilnosti [kN]	12000	Ocena pomik	a [mm] 30	10 20 30

AC Koper - Lendava odsek Slivnica Pesnica, most čez Kanal in Dravo

Priloga A63: Rezultati izrač. po EC 7-1 z upošt. parametrov dobljenih s statističnim računom za most 10-3, 6-1

Appendix A63: Calculation results according to EC7-1 with parameters from statistical analyses for bridge 10-3, 6-1

– Podatki o pilotu - širina pilota	dimenzije		Karakti	eristike ((e temeljnih tal Globina od O	sloja [m] do 15.6	Tip Pr zemljine te G	rostorninska ža [kN/m3] 21	Izračun Nariši OK I⊽ trilinearni diagram t-z Bačus vredeceti
dolžina	0.8 m		2	2.sloj	15.6	25	ML	23	ob konici 🔽 zg. meritev
debelina stene (če je pilot votel)	0 m							_	Rezultati Prerez_kola0,5026549m2 Prerez_kola(votel)0,5026549m2
dolžina pilota	17.6 m		glot koli	oina po čnik m	odtalnice iirnega	5 m	Izra Pri r	čun po EC 7 ačunu pomikov	Obseg_kola2,513274m Teza_kola221,1681kN Horiz.tlak_ob_nogi225,04kPa
globina vpetja	3 m		zem	neljske	ga pritiska	0.4	Zan 	emari del nad reiskavo	Vert.tlak_ob_nogi373,6kPa a0,5m ple6800kPa
na vrhu pilota – Podatki o pilotu -	vrsta, oblika	,	vrsta p Tabela	ilota (l rezult	Jvrtan z opa: atov presiom	žem, ki se izv etrske preisk	leče ave	•	De0m k
pomik pilota	uvrtan	•	1	z [m] 3	Tip zemljine G	pL [kPa] 1300	E0 [kPa] 8000	Er [kPa] 50000	QL
konica pilota	polna	•	3	6 7 15.5	G G	1300 3000 3000	15000 15000	90000 90000	Posedek(Q=Qsafe)=8,334206mm
oblika pilota prostorninska teža pilota	25 k		5 6	16 19	ML ML	6800 6800	85000 85000	300000 300000	120 0
modul elastičnosti	2100 kN	V/cm2							4000
Poissonov količnik	0.175		Oc	ena n	osilnosti (kN)	12000	Ocena pomi	ka (mm) 30	10 20 30

Priloga A64: Rezultati izračuna po EC 7-1 z upoštevanjem parametrov dobljenih kot previdna ocena, za most 10-3, 6-1

Appendix A64: Calculation results according to EC 7-1 with parameters as cautious estimate for bridge 10-3, 6-1

– Podatki o pilotu -	dimenzije	Karakteristike temelinih tal Blohina sloja [m] Tin Prostorninska	Izračun Nariši OK
širina pilota	0.8 m	od do zemliine teža [kN/m3]	🔽 trilinearni diagram t-z
dolžina	0.8 m	1.sloj 0 15.6 G 21 2.sloj 15.6 25 ML 23	Račun vrednosti ob konici ✓ zg. meritev
debelina stene (če je pilot votel)	0 m		Rezultati Prerez_kola
dolžina pilota	17.6 m	globina podtalnice 5 m	Prerez_kola(votel)0,5026549m2 Obseg_kola2,513274m Teza_kola221,1681kN
globina vpetja	3 m	količnik mirnega zemeljskega pritiska 0.4 Pri računu pomikov zanemari del nad 1. preiskavo	Horiz.tlak_ob_nogi225,04kPa Vert.tlak_ob_nogi373,6kPa a0,5m
globina odkopa na vrhu pilota	3 m	vrsta pilota Uvrtan z opažem, ki se izvleče 💌 💌	pie
– Podatki o pilotu -	vrsta, oblika	Tabela rezultatov presiometrske preiskave	Qs
pomik pilota	uvrtan 💌	z [m] Tip zemljine pL [kPa] E0 [kPa] Er [kPa] 1 6 G 1200 8000 40000	QL10121,66kN Qsafe
konica pilota	polna 💌	2 7.2 G 3000 19000 76000 3 10.8 G 3000 19000 76000	Posedek(Q=Qsafe)=8,487925mm
oblika pilota	krog 💌	4 11.6 G 1900 7200 28000 5 12.5 G 3000 19000 76000	Q. Constant
prostorninska teža pilota	25 kN/m3	6 15.5 G 3000 19000 76000 7 16 ML 7000 82000 300000	800
modul elastičnosti	2100 kN/cm2	8 19.7 ML 7000 82000 300000	4000
Poissonov količnik	0.175	Ocena nosilnosti (kN) 12000 Ocena pomika (mm) 30	

Priloga A65: Rezultati izračuna z upoštevanjem globalnih varnostnih faktorjev za most 10-3, 6-1

Appendix A65: Calculation results for global safety factors for bridge 10-3, 6-1

PRILOGA B: DOLOČITEV KARAKTERISTIČNE VREDNOSTI $R_{c,k}$ PO OSNOVNI METODI (EVROKOD 7-1)

Objekt: A5 Pesnica - Lendava - meja H, Maribor - Lenart, I. etapa, razcep Dragučova, viadukt 6-1

Podatki o p	oilotu
φ=	1,25 m
L=	15,5 m
D=	1,00 m
Teža kola=	444,60 kN

Profil /	Priloga	$R_{b,cal}(=Q_p)$	$R_{s,cal}(=Q_s)$	$R_{c,cal} = Q_p + Q_s$
Vrtina		(kN)	(kN)	(KN)
DO-3	A7	17412,0	3861,0	21273,0
GV-1	A8	17416,0	4260,0	21676,0
GV-2	A9	17416,0	4519,0	21935,0
GV-3	A10	17180,0	2730,0	19910,0
GV-4	A11	17068,0	2357,0	19425,0
			min:	19425,0
			mean:	20843,8

Vrednosti korelacijskih faktorjev glede na število izvedenih sond n=5

ξ3=1,29 *ξ4*=1,15

$$\begin{split} R_{c,k} &= R_{b,k} + R_{s,k} = \left(R_{b,cal} + R_{s,cal} \right) / \xi = R_{cal} / \xi = Min \left\{ R_{cal,mean} / \xi_3; R_{cal,min} / \xi_4 \right\}, \\ R_{cal,mean} / \xi_3 &= 16158,0, \quad R_{cal,min} / \xi_4 = 16891,3, \rightarrow R_{c,k} = 16158,0 \ kN \\ R_{b,k} &= \sum_n R_{b,cal} / n \cdot \xi_3 = 13409,6, \quad R_{s,k} = \sum_n R_{s,cal} / n \cdot \xi_3 = 2748,4, \\ R_{c,k} &= R_{b,k} + R_{s,k} = 16158,0 \ kN \,. \end{split}$$