Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

Visokošolski program Gradbeništvo, Konstrukcijska smer

Kandidat: Siniša Jovanović

Analiza viadukta Ravbarkomanda v skladu s standardom EC 8/2

Diplomska naloga št.: 256

Mentor: izr. prof. dr. Tatjana Isaković

Somentor: prof. dr. Matej Fischinger

IZJAVA O AVTORSTVU

Podpisani SINIŠA JOVANOVIĆ izjavljam, da sem avtor diplomske naloge z naslovom: "ANALIZA VIADUKTA RAVBARKOMANDA V SKLADU S STANDARDOM EC8/2".

Izjavljam, da prenašam vse materialne avtorske pravice v zvezi z diplomsko nalogo na UL, Fakulteto za gradbeništvo in geodezijo.

Ljubljana, 06.10.2006.

(podpis)

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	006(4):624.042.7:624.21(043.2)
Avtor:	Siniša Jovanović
Mentor:	izr. prof. dr. Tatjana Isaković
Naslov:	Analiza viadukta Ravbarkomanda v skladu s standardom
	EC8/2
Obseg in oprema:	47 str., 33 pregl., 11 slik, 17 en., 3 pril.
Ključne besede:	viadukt Ravbarkomanda, potresna obtežba, standard EC8/2
Izvleček	

V diplomski nalogi je prikazana analiza viadukta Ravbarkomanda v skladu s standardom Evrokod 8/2. Potresno obtežbo smo določili v skladu s standardom Evrokod 8/1. Viadukt smo analizirali z modalno analizo s projektnim spektrom pospeškov. Račun smo naredili za različne predpostavljene načine obnašanja in temu ustrezne faktorje redukcije potresne obtežbe. Obremenitve zaradi potresne obtežbe smo primerjali z nosilnostjo stebrov in sicer pod predpostavko, da bo nosilnost zagotovljena navkljub pomankljivim konstrukcijskim detajlom. Z enako predpostavko smo ocenili tudi duktilnost stebrov. Analizirali smo tudi premike konstrukcije in potresne obremenitve v elastomernih ležiščih na vrhu stebrov. Poleg analize obstoječe konstrukcije smo naredili tudi analizo konstrukcije, podprte s stebri, ki so utrjeni z betonsko oblogo. Pri tem nas je predvsem zanimalo koliko se poveča togost konstrukcije in posledično obremenitve konstrukcije.

Ugotovili smo, da upogibna nosilnost stebrov ustreza potresnim zahtevam, ki so določene pod predpostavko delno duktilnega obnašanja konstrukcije in predpostavko, da obstoječi konstrukcijski detajli lahko takšno nosilnost dejansko zagotovijo. To je potrdil tudi eksperiment, narejen na ZAG-u. Ugotovili smo, da je strižna nosilnost kratkih stebrov, določena v skladu z EC8/2 premajhna. Pod predpostavko, da so konstrukcijski detajli primerni smo ocenili, da je zagotovljena minimalna zahtevana duktilnost konstrukcije. Ugotovili smo, da se lahko porušijo elastomerna ležišča nad kratkimi stebri. Analiza konstrukcije, podprte s stebri, utrjenimi z betonsko oblogo je pokazala, da se lahko obremenitve v stebrih povečajo za največ 41%.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION

UDC:	006(4):624.042.7:624.21(043.2)
Author:	Siniša Jovanović
Supervisor:	Assoc. prof. dr. Tatjana Isaković
Title:	Analysis of viaduct Ravbarkomanda according to standard
	EC8/2
Notes:	47 p., 33 tab., 11 fig, 17 eq., 3 suppl.
Key words:	viaduct Ravbarkomanda, earthquake load, standard EC8/2
Abstract	

The graduation thesis deals with the seismic analysis of the viaduct Ravbarkomanda according to the standard Eurocode 8/2. The seismic load was defined according to the standard Eurocode 8/1. Modal analysis with the design acceleration spectrum was used in the study. Different types of the seismic response were examined, using different reduction (behavior) factor of the seismic load. The seismic demand was compared with the strength of the columns, assuming that the strength would be ensured in spite of deficient construction details. Based on the same assumption, the ductility of columns was estimated, too. Displacements of the structure and the seismic demand in the elastomeric bearings (above the columns) were also analyzed.

The analysis of the structure, supported by the strengthen columns (using concrete jackets), was also made. The increase of the stiffness and related increase of the seismic load were particularly investigated.

It was found that the flexural strength of the columns could resist the seismic demand, which is related to the limited ductile response. When comparing the strength and demand, it was assumed that the construction details could ensure such flexural strength. This was proved by the experiment that was done at the ZAG. The shear strength of the short columns, defined according to EC8/2 was found insufficient. Assuming that the construction details were adequate, the ductility of columns was found suitable. The collapse of the elastomeric bearings above the short columns was found possible. It was found that the seismic demand in the structure supported by jacketed (strengthen) columns could increase up to 35%.

ZAHVALA

Za pomoč pri nastajanju diplomske naloge se iskreno zahvaljujem mentorici izr. prof. dr. Tatjani Isaković in somentorju prof. dr. Mateju Fischinger.

Posebej se zahvaljujem svoji hčerki Ani in soprogi Vesni za potrpežljivost skozi vsa leta študija in jima to diplomsko nalogo tudi posvečam.

KAZALO VSEBINE

1	UVOD	1
2	OPIS VIADUKTA RAVBARKOMANDA	3
2.1	Geometrijske karakteristike elementov	3
3	OBTEŽBE KONSTRUKCIJE	5
3.1	Lastna teža	5
3.2	Prometna obtežba	6
3.3	Potresna obtežba	6
4	MODELI KONSTRUKCIJE	10
4.1	Določitev karakteristik razpokanih prerezov	10
4.2	Model za analizo konstrukcije v prečni smeri ("močna" os stebrov)	14
4.3	Model za analizo konstrukcije v vzdolžni smeri (''šibka'' os stebrov)	16
5	OBREMENITVE KONSTRUKCIJE PRI POTRESNI OBTEŽBI	19
5.1	Prečna smer	19
5.1.1	Model z nerazpokanimi stebri	19
5.1.2	Model z razpokanimi stebri	20
5.2	Vzdolžna smer	21
5.2.1	Model z nerazpokanimi stebri in minimalnim strižnim	
	modulom (G _{b,min})	22
5.2.2	Model z razpokanimi stebri in minimalnim strižnim	
	modulom $(G_{b,min})$	23
5.2.3	Model z nerazpokanimi stebri in maksimalnim strižnim	
	modulom (G _{b,max})	24
5.2.4	Model z razpokanimi stebri in maksimalnim strižnim	
	modulom (G _{b,max})	25
5.2.5	Povzetek rezultatov	26

6	IZRAČUN NOSILNOSTI STEBROV	27
6.1	Primerjava računskih upogibnih momentov z upogibno	
	nosilnostjo stebrov	27
6.1.1	Prečna smer nerazpokani prerezi	28
6.1.2	Prečna smer razpokani prerezi	29
6.1.3	Vzdolžna smer	30
6.2	Primerjava računskih strižnih sil s projektno strižno	
	nosilnostjo stebrov	31
6.2.1	Prečna smer	31
6.2.2	Vzdolžna smer	37
7	DUKTILNOST ZA UKRIVLJENOST IN PREPREČITEV	
	UKLONA VZDOLŽNIH PALIC	39
7.1	Prečna smer	39
7.2	Vzdolžna smer	41
8	UTRDITEV STEBROV Z BETONSKO OBLOGO	42
9	ZAKLJUČKI ANALIZE NA OSNOVI ZAHTEV EC8/2	46
VIRI		47

VII

KAZALO PREGLEDNIC

Preglednica 4.1: Vrednosti osnih sil v stebrih zaradi skupne stalne obtežbe	12
Preglednica 4.2: Mase v vozliščih	15
Preglednica 4.3: Nivoji osnih sil v stebrih	15
Preglednica 4.4: Vrednosti razpokanih stebrov	16
Preglednica 4.5: Mase	18
Preglednica 4.6: Nivoji osnih sil v stebrih	18
Preglednica 4.7: Vrednosti razpokanih stebrov	18
Preglednica 5.1: Notranje sile v stebrih	19
Preglednica 5.2: Pomiki konstrukcije v prečni smeri	20
Preglednica 5.3: Notranje sile v stebrih	20
Preglednica 5.4: Pomiki konstrukcije v prečni smeri	21
Preglednica 5.5: Nihajni časi in notranje sile v stebrih	22
Preglednica 5.6: Pomiki	22
Preglednica 5.7: Nihajni časi in notranje sile v stebrih	23
Preglednica 5.8: Pomiki	24
Preglednica 5.9: Nihajni časi in notranje sile v stebrih	24
Preglednica 5.10: Pomiki	25
Preglednica 5.11: Nihajni časi in notranje sile v stebrih	25
Preglednica 5.12: Pomiki	26
Preglednica 6.1: Primerjava projektne upogibne nosilnosti prerezov ob vpetju	
stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi	28
Preglednica 6.2: Primerjava projektne upogibne nosilnosti prerezov ob vpetju	
stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi	29
Preglednica 6.3: Primerjava projektne upogibne nosilnosti prerezov ob vpetju	
stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi (nerazpokani	
stebri in maksimalni strižni modul)	30
Preglednica 6.4: Največje pričakovane projektne vrednosti strižnih sil v stebrih V_d pri	
modelu z nerazpokanimi prerezi	32

Preglednica 6.5: Največje pričakovane projektne vrednosti strižnih sil v stebrih V_d pri	
modelu z razpokanimi prerezi	33
Preglednica 6.6: Primerjava računskih strižnih sil zaradi potresne obtežbe in projektnih	
vrednosti strižne nosilnosti za model z nerazpokanimi stebri	35
Preglednica 6.7: Primerjava računskih strižnih sil zaradi potresne obtežbe in projektnih	
vrednosti strižne nosilnosti za model z razpokanimi prerezi	36
Preglednica 6.8: Največje pričakovane vrednosti strižnih sil v stebrih V_d za model z	
nerazpokanimi stebri in maksimalno togostjo ležišč	37
Preglednica 6.9: Primerjava projektnih vrednosti strižne nosilnosti in prečnih sil zaradi	
potresne obtežbe za model z nerazpokanimi stebri in maksimalno togostjo ležišč	38
Preglednica 7.1: Normirane osne sile v stebrih	41
Preglednica 8.1: Mase v vozliščih	42
Preglednica 8.2: Notranje sile v stebrih – analiza v prečni smeri	43
Preglednica 8.3: Mase v vozliščih	44
Preglednica 8.4: Nihajni časi in notranje sile v stebrih – analiza v vzdolžni smeri	44

KAZALO SLIK

Slika 2.1: Prečni prerezi konstrukcijskih elementov viadukta Ravbarkomanda	4
Slika 3.1 : Primerjava elastičnega spektra ter projektnega spektra za različne vrednosti	
faktorja obnašanja q	9
Slika 4.1: Ekvivalentna prereza stebrov, za račun momenta in ukrivljenosti na	
meji tečenja upogibne armature	12
Slika 4.2: Zveza med napetostjo in deformacijo za beton C50/60	13
Slika 4.3: Zveza med napetostjo in deformacijo za jeklo GA240/360	13
Slika 4.4: Model za analizo konstrukcije v prečni smeri	14
Slika 4.5: Skica mas za analizo konstrukcije v prečni smeri	15
Slika 4.6: Modeli za anlizo konstrukcije v vzdolžni smeri	17
Slika 4.7: Skica mas za analizo konstrukcije v vzdolžni smeri	18
Slika 7.1: Idealizacija diagrama moment – ukrivljenost za določitev	
ukrivljenosti Φ_y (za stebre od 19 do 27 za nivo osne sile 10550 kN)	40
Slika 7.2: Idealizacija diagrama moment – ukrivljenost za določitev	
ukrivljenosti Φ_y (za stebre od 19 do 27 za nivo osne sile 10550 kN)	41

KAZALO ENAČB

Enačba 1: Izračun teže kovinske ograje za pešce	5
Enačba 2: Izračun teže jeklene varnostne ograje	5
Enačba 3: Izračun teže hodnikov in robnih vencev	5
Enačba 4: Izračun teže asfalta	5
Enačba 5: Izračun teže hidroizolacije	5
Enačba 6: Izračun teže prekladne konstrukcije	5
Enačba 7: Izračun teže prečnikov	5
Enačba 8: Izračun lastne teže zgornje konstrukcije	5
Enačba 9: Izračun mase zgornje konstrukcije	5
Enačba 10: Izračun lastne teže stebrov	5
Enačba 11: Izračun mase kape stebra	5
Enačba 12: Izračun mase zob na kapi stebra	5
Enačba 13: Pretvorba na linijsko obtežbo	6
Enačba 14: Izračun skupne stalne obtežbe	6
Enačba 15: Izračun skupne stalne mase	6
Enačba 16: Izračun koncentrirane mase zgornje konstrukcije	14
Enačba 17: Izračun mase v vozlišču (stik stebra in prekladne konstrukcije)	14

KAZALO PRILOG

A Prerez stebra S16

Armaturni koši stebrov viadukta Ravbarkomanda Izpis rezultatov upogibne nosilnosti obstoječih stebrov viadukta Ravbarkomanda

1 UVOD

V diplomski nalogi je opisano delo, ki je bilo narejeno v okviru prvega dela študije potresnega odziva viadukta Ravbarkomanda in sicer v okviru projekta "Študije in modelne preiskave potresne ranljivosti in predlogi utrditve za stebre viadukta Ravbarkomanda in sorodno konstruirane premostitvene objekte", ki ga je financirala Družba za avtoceste Republike Slovenije.

Viadukt Ravbarkomanda vsebuje konstrukcijske detajle, ki niso primerni za potresna območja. V stebrih je npr. stremenska armatura postavljena na notranji strani vzdolžnih palic, zato ni primernega objetja betonskega prereza in lahko pride do uklona vzdolžnih palic. Količina stremen se po višini stebrov zmanjšuje, kar bi lahko pri potresni obtežbi povzročilo krhko strižno porušitev v višjih delih stebra, saj so prečne sile pri potresni obtežbi konstantne vzdolž celega stebra. Preklopi vzdolžne armature so delno narejeni v področju največjih obremenitev ob vpetju stebra v temelj, kar lahko zelo zmanjša upogibno nosilnost prereza. Pomankljivosti srečamo tudi v ležiščih in prekladni konstrukciji. Zato je bila narejena študija potresne utrditve viadukta.

V nalogi smo najprej ocenili potresne vplive (obremenitve) v stebrih in sicer v skladu z zahtevami evropskega standarda Evrokod 8/1. Potresno obtežbo smo definirali z ustreznim spektrom odziva. Na to smo ocenili nosilnost in duktilnost stebrov v skladu z evropskim standardom Evrokod 8/2, kot da bi bili konstrukcijski detajli ustrezni. Eksperiment, ki je bil narejen na Zavodu za gradbeništvo, je potrdil, da večina daljših stebrov dejansko razpolaga z ocenjeno nosilnostjo.

Študija je pokazala, da je stebre potrebno utrditi, tako da v njih zagotovimo minimalno objetje betonskega prereza v kritičnih območjih, v krajših stebrih pa tudi tako, da zagotovimo potrebno strižno nosilnost. Zato smo v nalogi analizirali tudi potresne obremenitve viadukta za primer ko se stebri utrdijo z 10 cm betonskim plaščem. V tem primeru se poveča togost viadukta in posledično tudi potresna obtežba. V nalogi smo najprej podali kratek pregled osnovnih karakteristik viadukta (2. poglavje). Temu sledi analiza obtežbe (3. poglavje). Pri določitvi potrebne nosilnosti smo upoštevali kombinacijo stalne in potresne obtežbe. Pri računu mas smo v skladu s standardom EC8/2 upoštevali tudi ustrezen del prometne obtežbe.

V 4. poglavju so opisani modeli, s katerimi smo analizirali vpliv potresne obtežbe. Upoštevali smo različne modele za elastomerna ležišča in stebre. Za analizo smo uporabili program SAP2000. Analizo smo izvedli ločeno za vzdolžno in prečno smer viadukta. V 5. poglavju s programom SAP2000 določimo obremenitve konstrukcije. V 6. poglavju izračunamo strižne in upogibne nosilnosti stebrov ter jih primerjamo z obremenitvami pri potresni obtežbi. Upogibno nosilnost smo ocenili s programom DIAS-P. Obstoječa duktilnost stebrov je ocenjena v 7. poglavju naloge. Za račun ukrivljenosti smo uporabili program DIAS. V 8. poglavju so povzeti zaključki analize na osnovi zahtev EC8/2. V 9. poglavju so povzeti vplivi v stebrih v primeru, ko so slednji utrjeni z betonskim plaščem, debeline 10 cm.

2 OPIS VIADUKTA RAVBARKOMANDA

2.1 Geometrijske karakteristike elementov

Viadukt Ravbarkomanda predstavlja dva medseboj ločena objekta. Na levem delu poteka promet iz smeri Koper – Ljubljana, na desnem pa iz smeri Ljubljana – Koper. Diplomska naloga obravnava desni del viadukta, ki je v originalnem načrtu podprt s stebri v oseh 15 do 30. Desni del viadukta je AB okvirna konstrukcija, ki jo tvorita zgornja in spodnja konstrukcija (slika 2.1). Zgornja konstrukcija poteka preko 17 polj razponov 33,3 + 34,0 + 34,0 + 34,0 + 34,0 + 34,0 + 34,0 + 34,0 + 34,0 + 37,7 + 37,7 + 37,7 + 37,7 + 37,7 + 34,0 + 37,7 + 33,3 m, tako da znaša skupna dolžina viadukta 591,4 m. Zgornjo konstrukcijo sestavljajo AB voziščna plošča širine 13,10 m in debeline 0,25 m, ki leži na štirih prednapetih AB "I" nosilcih na medsebojni razdalji 2,69 m. V voziščno ploščo so nad opornikoma ter nad tremi stebri v oseh 18, 23 in 27 vgrajene jeklene dilatacije. AB "I" nosilci so med sabo povezani s AB prečniki dimenzij 299/220/30 cm, ter prečno prednapeti. Debelina stojine se spreminja od 16 cm na začetku nosilca do 36 cm na sredini razpetine. Zgornja pasnica je širine 70 cm in višine 31,2 cm, spodnja pa širine 46 cm ter višine 40 cm. Pasnici sta trapezne oblike. Celotna višina AB "I" nosilca je 219,2 cm.

Spodnjo konstrukcijo predstavlja 16 vmesnih podpor in masivna krajna opornika. Vsako vmesno podporo tvori AB steber s škatlastim prečnim prerezom 350/220 cm, z debelino sten 30 cm, ki je spodaj vpet v AB temelj. Na mestu vpetja v temelje je vsak steber armiran z 90 palicami ϕ 22 ter prečno armaturo (štiri strižna stremena) ϕ 16/20 cm. V originalnem načrtu je ta odsek armature označen kot koš A. Potem se z višino stebra količina vzdolžne in prečne armature postopoma zmanjšuje v odsek armiran z 90 ϕ 16 in ϕ 14/20 cm označen z koš B ter v odsek z 90 ϕ 14 in ϕ 10/20 cm označen koz koš C. Višine stebrov se spreminjajo tako, da je najnižji pri oporniku v osi 15 (4,5 m), najvišji pa na sredini viadukta v osi 22 (32,5 m). Zgornji del stebrov tvori AB "kapa" stebra dimenzij 10,9/2,2/2,0 m v obliki prisekane piramide. V zgornjem delu "kape" so izvedeni AB zobje, med katerimi so položena elastomerna ležišča so prosto položeni zgoraj opisani AB "I" nosilci. Pri tem se vsa vertikalna obtežba in lastna teža zgornje konstrukcije preko ležišč, stebrov in temeljev prenaša v temeljna tla. Na kapah stebrov v osi 18, 23 in 27 so vgrajena teflonska ležišča, na ostalih pa armirana elastomerna ležišča dimenzij 30/40/8,5 cm. S preiskavami, ki so bile

narejene na ZAG-u je bilo ugotovljeno, da je beton v viaduktu kvalitete C50/60. Armatura je gladka, kvaliteta jekla pa 240/360.

Slika 2.1: Prečni prerezi konstrukcijskih elementov viadukta Ravbarkomanda

3 OBTEŽBE KONSTRUKCIJE

3.1 Lastna teža

Na osnovi geometrije prečnih prerezov elementov (kovinske ograje, prekladne konstrukcije, stebrov, ...) viadukta izračunam težo in maso posameznih elementov:

- kovinska ograja za pešce: Napaka! Zaznamek ni definiran.Napaka! Zaznamek ni

definiran. $\Sigma m = 13,87 \text{ t}$; $g_{ogr} = \frac{g \cdot \Sigma m}{l} = \frac{9,81 \cdot 13,87}{591,4} = 0,23 \text{ kN/m}^{1}$ (1) - jeklena varnostna ograja: $g_{vogr} = 0,44 \text{ kN/m}^{1}$ (2) - hodniki in robni venci: $g_{hodn} = 2 \cdot A_{hodn} \cdot \gamma_{AB} = 2 \cdot 0,465 \cdot 25 = 23,25 \text{ kN/m}^{1}$ (3) - asfalt: $g_{asf} = 1,4 \cdot A_{asf} \cdot \gamma_{asf} = 1,4 \cdot (11,07 \cdot 0,08) \cdot 25 = 31,00 \text{ kN/m}^{1}$ (4) - hidroizolacija: $g_{HI} = 1,4 \cdot A_{HI} \cdot \gamma_{HI} = 1,4 \cdot (13,07 \cdot 0,005) \cdot 11 = 1,00 \text{ kN/m}^{1}$ (5) - prekladna konstrukcija: $g_{prekl} = A_{prekl} \cdot \gamma_{AB} = 5,685 \cdot 25 = 142,13 \text{ kN/m}^{1}$ (6) - prečniki:

$$g_{pre\check{c}r} = \frac{A_{pre\check{c}} \cdot d_{pre\check{c}} \cdot \gamma_{AB} \cdot n}{l} = \frac{(2,79 \cdot 1,95) \cdot 0,3 \cdot 25 \cdot 12}{34} = 14,40 \text{ kN/m}^1 (7)$$

- lastna teža zgornje konstrukcije:

$$g_{lastna} = g_{ogr} + g_{vogr} + g_{hodn} + g_{asf} + g_{HI} + g_{prekl} + g_{prečr} = 0,23 + 0,44 + 23,25 + 31,00 + 1,00 + 142,13 + 14,40 = 212,45 \text{ kN/m}^{1}$$
(8)

- masa zgornje konstrukcije:

 $m_{lastna} = g_{lastna} / g = 212,45 / 9,81 = 21,66 \text{ t/m}^1 (9)$

- stebri:	$g_{steb} = A_{steb} \cdot \gamma_{AB} = 2,7 \cdot 25 = 67,5 \text{ kN/m}^1 (10)$
- kapa stebra:	$G_{kape} = V_{kape} \cdot \gamma_{AB} = 31,1 \cdot 25 = 777,5 \text{ kN} (11)$
- zobje na kapi stebra:	$G_{zob} = V_{zob} \cdot \gamma_{AB} = 1,431 \cdot 25 = 35,78 \text{ kN} (12)$

3.2 Prometna obtežba

V skladu z EC8/1 člen 4.1.2 (4) upoštevam navidezno stalni del prometne obtežbe (za cestne mostove z gostim prometom) $Q_{k,I}$, ki ustreza obtežnemu modelu 1 (LM1):

 $\Psi_{2,1} = \begin{cases} 0,20; \text{ za enakomerni del obtežbe (UDL)} \\ 0,00; \text{ za koncentrirani del obtežbe (tandem)} \end{cases}$

- širina vozišča: $w = 10,745 \,\mathrm{m}$ - število voznih pasov: $n_l = \mathrm{int}\left(\frac{w}{3}\right) = 3$ - širina voznih pasov: $3,0 \,\mathrm{m}$ - širina preostalega dela: $w - 3 \cdot n_l = 1,745 \,\mathrm{m}$ - vozni pas 1: $q_{lk} = 9,0 \,\mathrm{kN/m^2}$ - vozna pasova 2 in 3: $q_{lk} = 2,5 \,\mathrm{kN/m^2}$ - ostalo območje: $q_k = 2,5 \,\mathrm{kN/m^2}$

Pretvorba na linijsko obtežbo:

 $q_{k,1} = 3.9,0 + (10,745 - 3).2,5 = 46,36 \text{ kN/m}^1$ (13)

 $\Psi_{21}q_{k1} = 0.20 \cdot 46.36 = 9.27 \text{ kN/m}^{1}$

Lastni teži konstrukcije prištejem 20 % prometne obtežbe ter dobim skupno stalno obtežbo:

- skupaj stalna obtežba: $g_{stalna} = g_{lastna} + \Psi_{2,1}q_{k,1} = 212,45 + 9,27 = 221,72 \text{ kN/m}^1 (14)$ - skupaj stalna masa: $m_{stalna} = g_{stalna} / g = 221,72 / 9,81 = 22,60 \text{ t/m}^1 (15)$

3.3 Potresna obtežba

Viadukt Ravbarkomanda se nahaja v območju potresne aktivnosti s pričakovanim horizontalnim pospeškom tal $a_g = 0.23g$. Na osnovi podatkov o sestavi temeljnih tal je razvidno, da je viadukt temeljen na tleh, ki so v EC8/1 opredeljena kot tla "Tip A" ter, da je za horizontalni in vertikalni elastični spekter potrebno upoštevati spekter pospeškov "Tip1". V skladu z EC8/2 je za analizo bila uporabljena modalna analiza s spektrom odziva, kjer je upoštevan projektni spekter pospeškov, določen v EC8/1. Pri določitvi projektnega spektra smo upoštevali različne vrednosti faktorja obnašanja *q*, in sicer 1,0; 1,5 in 3,5. Z različnimi faktorji obnašanja smo upoštevali različne stopnje zmanjšanja potresnih obremenitev v stebrih. Na ta način je bilo mogoče oceniti vrsto odziva stebrov pri potresni obtežbi in nivo pričakovanih poškodb. Na podlagi te ocene smo določili kakšni konstrukcijski detajli so v skladu z EC8/2 potrebni za zagotovitev pričakovanega odziva in ali obstoječi konstrukcijski detajli zagotavljajo takšno vrsto odziva.

Najprej smo izračunali vrednost upogibnih momentov in osnih sil, ki jih v stebrih povzroča največja pričakovana potresna obtežba na lokaciji viadukta Ravbarkomanda. To pomeni, da smo upoštevali faktor obnašanja q = 1,0. V kolikor bi obstoječa upogibna nosilnost stebrov ustrezala tem nivoju potresne obtežbe ne bi pričakovali tečenja upogibne armature (večjih poškodb). Hkrati bi seveda tudi strižna nosilnost morala biti večja ali enaka od vrednosti prečnih sil, ki se v stebrih pojavijo pri tem nivoju potresne obtežbe. Z drugimi besedami, v kolikor bi nosilnost stebrov (upogibna in strižna) zadoščala notranjih silam, ki se v stebrih pojavijo pri največji pričakovani potresni obtežbi na lokaciji viadukta Ravbarkomanda, v stebrih ne bi pričakovali tečenja armature (večjih poškodb).

Faktor obnašanja q = 1,5 pomeni, da smo največjo pričakovano potresno obtežbo zmanjšali s faktorjem 1,5. Posledično so tudi notranje sile v stebrih manjše, kot v prej opisanem primeru. V kolikor nosilnost stebrov ustreza temu, zmanjšanemu nivoju potresnih sil pa lahko v konstrukciji pričakujemo določene poškodbe. To tudi pomeni, da do tečenja armature (večjih poškodb) ne bo prišlo, dokler ne bo presežen pospešek temeljnih tal 0,23g/1,5 = 0,15g. Pri višjih vrednostih pospeškov temeljnih tal (0,15g - 0,23g) pa lahko pričakujemo omejene poškodbe. Poškodbe, ki jih lahko v konstrukciji dovolimo so lahko le duktilne, upogibne poškodbe. Zato moramo z ustreznimi konstrukcijskimi detajli zagotoviti, da ne pride do strižnih poškodb, oziroma krhke strižne porušitve. Z ustreznimi konstrukcijskimi detajli moramo preprečiti tudi poškodbe, ki lahko nastanejo zaradi morebitnih velikih tlačnih napetosti v prerezih (moramo zagotoviti primerno objetje betona v kritičnih prerezih), kakor tudi uklon vzdolžne armature. Stebri viadukta Ravbarkomanda ne vsebujejo konstrukcijskih detajlov, ki jih EC8/2 predpisuje za preprečitev takšnih poškodb. Zato je bilo potrebno kasneje z eksperimentom pokazati, ali nestandardni konstrukcijski detajli v stebrih zagotavljajo potrebno varnost glede nedovoljenih vrst poškodb. Z drugimi besedami, bilo je potrebno preveriti ali lahko obstoječi detajli zagotovijo delno duktilno obnašanje konstrukcije (omejene upogibne poškodbe).

Faktor obnašanja q = 3,5 pomeni, da je obnašanje konstrukcije elastično dokler ni presežen pospešek temeljnih tal 0,23g/3,5 = 0,07g. V kolikor nosilnost stebrov ustreza tako določenem nivoju potresnih obtežb lahko v stebrih pričakujemo poškodbe, ki so večje kot v primeru zmanjšanja potresnih sil s faktorjem q = 1,5. Zato so v primeru zmanjšanja potresnih sil s faktorjem q = 3,5 potrebni bolj strogi konstrukcijski detajli.

V skladu z EC8/1 so za horizontalni elastični spekter upoštevane naslednje enačbe:

$$0 \le T \le T_B : S_e(T) = a_g \cdot S \cdot \left[1 + \frac{T}{T_B} \cdot (\eta \cdot 2, 5 - 1) \right]$$
$$T_B \le T \le T_C : S_e(T) = a_g \cdot S \cdot \eta \cdot 2, 5$$
$$T_C \le T \le T_D : S_e(T) = a_g \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T_C}{T} \right]$$
$$T_D \le T \le 4s : S_e(T) = a_g \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T_C \cdot T_D}{T^2} \right]$$

Za reducirani elastični spekter, to je projektni spekter za elastično analizo pa enačbe:

$$0 \le T \le T_B : S_d(T) = a_g \cdot S \cdot \left[\frac{2}{3} + \frac{T}{T_B} \cdot \left(\frac{2,5}{q} - \frac{2}{3}\right)\right]$$
$$T_B \le T \le T_C : S_d(T) = a_g \cdot S \cdot \frac{2,5}{q}$$
$$T_C \le T \le T_D : S_d(T) = \begin{cases} = a_g \cdot S \cdot \frac{2,5}{q} \cdot \left[\frac{T_C}{T}\right] \\ \ge \beta \cdot a_g \end{cases}$$
$$T_D \le T : S_d(T) = \begin{cases} = a_g \cdot S \cdot \frac{2,5}{q} \cdot \left[\frac{T_C \cdot T_D}{T^2}\right] \\ \ge \beta \cdot a_g \end{cases}$$

Pri tem je za tla "Tip A" potrebno upoštevati vrednosti:

$$S = 1,0$$

 $T_{B} = 0,15$ s

$$T_{C} = 0,4 \, \mathrm{s}$$

$$T_D = 2.0 \text{ s}$$

Za vrednosti faktorja dušenja η in faktorja β , s katerim je določena minimalna potresna obtežba so privzete vrednosti po priporočilih EC8/1 in sicer:

 $\eta = 1,0$; za 5% viskozno dušenje in

 $\beta = 0,2$

Na sliki 3.1 so za primerjavo prikazani zgoraj navedeni spektri z upoštevanjem ustreznih faktorjev.

Slika 3.1: Primerjava elastičnega spektra ter projektnega spektra za različne vrednosti faktorja obnašanja q

4 MODELI KONSTRUKCIJE

Na osnovi geometrije viadukta (desni del, smer od Ljubljane proti Kopru) sem oblikoval modele v računalniškem programu SAP 2000. V vseh modelih so vsi konstrukcijski elementi modelirani z linijskimi elementi.

Ker so v zgornjo konstrukcijo (voziščno ploščo) nad opornikoma in nad stebri v osi 18, 23 in 27 vgrajene jeklene dilatacije, ki omogočajo neodvisno premikanje sosednjih dilatiranih delov v smeri osi voziščne plošče, sem viadukt obravnaval posebej v vzdolžni in posebej v prečni smeri. Pri tem za analizo v vzdolžni smeri razdelim viadukt na 4 medseboj neodvisne konstrukcije (zavorne enote), ki po statični zasnovi predstavljajo ravninske okvirje. S tem je tudi bila omogočena poenostavljena kontrola potresne analize (nihajni časi, togosti, pomiki, ...) za posamezen okvir, ki ga lahko nadomestimo z modelom z eno prostostno stopnjo. V prečni smeri je konstrukcija modelirana kot kontinuirna greda podprta s stebri. Stebri so s prekladno konstrukcijo povezani členkasto. Prekladna konstrukcija je nad opornikoma modelirana kot vrtljivo podprta.

Po priporočilih EC8/2 ter ob predpostavki duktilnega obnašanja stebrov sta pri elastični analizi (za prečno in vzdolžno smer) upoštevana dva modela in sicer:

a) model kjer so upoštevane karakteristike nerazpokanih stebrov in

 b) model kjer so upoštevane karakteristike razpokanih stebrov določen po aneksu C.
 Podroben postopek določitve karakteristik razpokanih prerezov stebrov je opisan v nadaljevanju v poglavju 4.1.

Ker je prekladna konstrukcija prednapeta, so v skladu z EC8/2 (člen 4.2.2.3) pri vseh analizah upoštevane karakteristike nerazpokanega prereza preklade.

4.1 Določitev karakteristik razpokanih prerezov

Izračun razpokanih prerezov je izveden v skladu z EC8/2 po metodi 1 (aneks C). Za izračun momentov na meji tečenja M_y ter ukrivljenosti na meji tečenja Φ_y sem uporabil program DIAS

pri čemer je bilo potrebno dejanski škatlasti prerez stebra modelirati z ustreznim "I" prerezom zaradi računskih omejitev programa.

Dejanski prerez stebra sem modeliral s prerezom v obliki "I" profila (slika 4.1) z ojačanimi (dodatnimi) pasnicami tako, da se geometrijske karakteristike (ploščina, vztrajnostni moment,...) modeliranega prereza ujemajo z dejanskim prerezom. Vzdolžno armaturo dejanskega prereza razporedim v osi modeliranega prereza ter upoštevam 2,9 cm betonskega kritja. Na spodnji sliki sta prikazana ekvivalentna prereza z vzdolžno armaturo koša A (90 ϕ 22), za določitev karakteristik razpokanega (efektivnega) prereza za analizo v vzdolžni in prečni smeri. Za armaturna koša B (90 ϕ 18) in C (90 ϕ 14) je edina razlika v premeru vzdolžne armature.

Slika 4.1: Ekvivalentna prereza stebrov, za račun momenta in ukrivljenosti na meji tečenja upogibne armature

Ker je stanje deformacij in napetosti v prerezu enolično določeno le če poznamo osno silo, je bilo potrebno le te določiti na osnovi dosedanjih zbranih podatkih V programu SAP2000 sem upošteval model konstrukcije, ki bo prikazan v poglavju 4.2 upoštevajoč stalno obtežbo (lastno težo in 20% navidezno stalne prometne obtežbe) in geometrijske karakteristike nerazpokanih prerezov. Vrednosti osnih sil ob vpetju stebra v temelj se gibljejo v razponu od 8893 kN (v stebru v osi S16) do 10754 kN (v stebru v osi S26) in so prikazane v preglednici 4.1.

Preglednica 4.1: Vrednosti osnih sil v stebrih zaradi skupne stalne obtežbe

Steber	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S 30
N [kN]	9927	8993	9711	10007	10604	10613	10488	10668	10713	10353	10449	10754	10583	9811	9482	10165

Zaradi poenostavitve računa razdelim osne sile v stebrih v štiri nivoje in sicer: 9000 kN, 9600 kN, 10050 kN in 10550 kN s toleranco +-200 kN. Pri tem za določitev točk diagrama $\sigma - \varepsilon$ betona, ki jih je potrebno vnesti v program DIAS upoštevam beton C50/60 in določila iz EC2/1 člen 3.1.5, ki velja za nelinearno zvezo med deformacijami in napetostjo po naslednjih enačbah:

$$\frac{\sigma_c}{f_{cm}} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta}$$
$$\eta = \varepsilon_c / \varepsilon_{c1}$$
$$k = 1, 1 \cdot E_{cm} \cdot |\varepsilon_{c1}| / f_{cm}$$

Posamezne vrednosti za beton C50/60 so odčitane v EC2/1 (tabela 3.1) ter podane v nadaljevanju:

$$f_{ck} = 5.0 \text{ kN/cm}^2$$

 $\varepsilon_{c1} = 2.45 \%$
 $\varepsilon_{cu1} = 3.5 \%$
 $k = 1.72$
 $E_{cm} = 3700 \text{ kN/cm}^2$

$$f_{cm} = 5.8 \, \text{kN/cm}^2$$

Na sliki 4.2 je prikazan delovni diagram (zveza med napetostmi in deformacijami) za beton C50/60 ob upoštevanju zgornjih enačb in podatkov.

Slika 4.2: Zveza med napetostjo in deformacijo za beton C50/60

Za armaturno jeklo GA240/360 pa sem uporabil bilinearno funkcijo ter podatke:

$$\sigma_y = 24.0 \text{ kN/cm}^2$$

 $E_s = 20000 \text{ kN/cm}^2$
 $\varepsilon_y = 1.2 \%$

Slika 4.3: Zveza med napetostjo in deformacijo za jeklo GA240/360

Vstrajnostni moment razpokanega prereza ocenim po enačbi:

Napaka! Zaznamek ni definiran. $J_{cr} = \frac{M_y}{E_c \Phi_y}$, efektivnega prereza pa po enačbi:

 $J_{eff} = 0,08J_{un} + J_{cr}$ (prEN 1998-1 Aneks C metoda 1). Izračunane vrednosti razpokanih in efektivnih prerezov za posamezno smer analize za štiri nivoje osnih sil so prikazane v poglavjih 4.2 in 4.3.

4.2 Model za analizo konstrukcije v prečni smeri ("močna" os stebrov)

Po statični zasnovi model konstrukcije predstavlja kontinuirno gredo podprto s stebri. Na mestu opornikov so možni pomiki v smeri osi prekladne konstrukcije, ter upogibna zasuka. Vseh 16 stebrov je s prekladno konstrukcijo členkasto povezano, v temelje pa so stebri togo vpeti. Na spodnji sliki je prikazan model za analizo konstrukcije v prečni smeri.

Slika 4.4: Model za analizo konstrukcije v prečni smeri

Posamezno polje je razdeljeno na 5 enako dolgih elementov, ki so medseboj togo povezani. Na mestih povezave so vozlišča v katerih je koncentrirana masa zgornje konstrukcije

določena po enačbi:
$$m_{vozl} = \frac{m_{sta \ln a} \cdot l_{polja}}{5}$$
 (16)

V vozliščih kjer se stikajo dva polja in steber pa upoštevam dodatno maso kape, zob in

polovico mase stebra po enačbi:
$$m_{stik} = \frac{m_{vozl}^{levo}}{2} + \frac{m_{vozl}^{desno}}{2} + \frac{m_{stebra}}{2} + m_{kape} + m_{zob}$$
 (17)

V nadaljevanju je na sliki 4.5 prikazana skica mas, v preglednici 4.2 pa povzetek mas po posameznih vozliščih. Skupna masa, ki je na ta način izračunana in pri tem modelu upoštevana v računu znaša 15855 t.

Slika 4.5: Skica mas za analizo konstrukcije v prečni smeri

Steber/opornik	OL	S15	S1	.6 5	S17	S18	S 19	S20	S2	21 8	S 22	S23	S24	a S2	25 S	26	S27	S 2	.8 S	29	530	OD
<i>m_{stik}</i> [t]	75	264	27	3 2	297	314	345	345	33	38 3	349	349	338	3 32	23 3	24	314	29	5 2	85 2	259	75
Polje med stebroma	O S	0L- S 15 S	15- 516	S16- S17	- S17 S17	7- S1 8 S1	8- S1 .9 S2	19- S 20 S	20- 21	S21- S22	- S22 S2	2- S2 3 S2	23- S 24 S	524- 525	S25- S26	S2 S2	5- S2 7 S2	27- 28	S28- S29	S29- S30	- S3 O	0- D
m_{vozl} [t]	1	51 1	54	154	15	4 15	54 13	54 1	54	154	15	4 15	54	154	170	17	0 1	70	154	170	15	51

Preglednica 4.2: Mase v vozliščih

V modelu z nerazpokanimi prerezi so upoštevane naslednje geometrijske karakteristike

stebrov:

 $A = 2,7 \text{ m}^2$ $I = 3,48 \text{ m}^4$

$$A_s = 2,1 \text{ m}^2$$

Pri modelu z razpokanimi stebri so za različne nivoje osnih sil, vrednosti za posamezne stebre podane v nadaljevanju:

Nivo osne sile [kN]	9000	9600	10050	10550
Steber	16	17; 28; 29	15;18; 30	od 19 do 27

Steber	16	17; 28; 29	15;18; 30	od 19 do 27
M_{y} [kNm]	21342	22017	22526	23035
ϕ_{v}	0,000503	0,000507	0,000511	0,000514
$I_{cr}[\mathrm{m}^4]$	1,147	1,174	1,191	1,211
I_{eff} [m ⁴]	1,425	1,452	1,470	1,490

Preglednica 4.4: Vrednosti razpokanih stebrov

Za prekladno konstrukcijo, ki je prednapeta so v skladu z EC8/2 upoštevane karakteristike nerazpokanega prereza in sicer:

 $A = 5,55 \text{ m}^2$ $I = 74,8 \text{ m}^4$

 $A_s = 4,4 \text{ m}^2$

4.3 Model za analizo konstrukcije v vzdolžni smeri ("šibka" os stebrov)

Pri analizi v vzdolžni smeri je upoštevan model, kjer je posamezna zavorna enota (ZE) modelirana kot konstrukcija zase. Gledano iz smeri od Ljubljane proti Kopru, prva ZE zajema konstrukcijo od prvega opornika do prve dilatacije, druga, konstrukcijo med prvo in drugo dilatacijo, tretja, konstrukcijo med drugo in tretjo dilatacijo, in četrta, konstrukcijo med tretjo dilatacijo in drugim opornikom. Konstrukcije so modelirane tako, da so na mestu jeklene dilatacije podprte s pomičnimi podporami. Prekladno konstrukcijo in stebre povezuje linijski element, ki predstavlja skupino osmih elastomernih ležišč, ki je na obeh koncih togo vpet. Poudariti je potrebno, da pri takšni analizi ne bo možno upoštevati morebitne medsebojne trke med sosednjimi ZE pri potresni obtežbi. Omogočena pa bo kontrola pomikov posameznih elastomernih ležišč.

Elastomerna ležišča so dimenzij 30/40/8,5 cm. Vsako ležišče ima 7 elastomernih plasti, ki jih med sabo povezuje jeklena armirana pločevina. Debelina elastomera znaša 6,1 cm, strižni modul pa G = 1000 kN/m². Dovoljeni pomik ležišča je 6,0 cm.

V skladu z zahtevami EC8/2, sta za elastomerna ležišča upoštevana dva modela:

- a) elastomerna ležišča so modelirana tako, da imajo minimalno pričakovano togost (s tem modelom določimo maksimalne pomike ležišč) in
- b) elastomerna ležišča so modelirana tako, da imajo maksimalno pričakovano togost (s tem modelom določimo maksimalne sile v ležiščih)

Za primer a) je potrebno upoštevati vrednost:

 $G_{b,\min} = 1,1 \cdot G = 1,1 \cdot 1000 = 1100 \text{ kN/m}^2$

za primer b) pa:

 $G_{b,\text{max}} = 1.5 \cdot G = 1.5 \cdot 1000 = 1500 \text{ kN/m}^2.$

Mase posamezne ZE so za razliko od analize v prečni smeri koncentrirane v dveh višinah tako, da je masa prekladne konstrukcije na vrhu elastomernega ležišča, masa kape, masa zob in polovica mase stebra pa na vrhu stebra. Pri tem polja med stebri niso razdeljena v elemente kot v prečni analizi, ampak so polovice mas sosednjih polj seštete in koncentrirane v vozliščih nad stebri na vrhu elastomernih ležišč.

Slika 4.6: Modeli za anlizo konstrukcije v vzdolžni smeri

Slika 4.7: Skica mas za analizo konstrukcije v vzdolžni smeri

Zavorna enota	1					2				3				4				
Steber/opornik	OL	S15	S 16	S17	S18	S19	S20	S21	S22	S23	8 S24	S25	S26	S27	S28	S29	S 30	OD
m_{stik}^{stber} [t]		112	119	143		192	192	185	195		185	161	154		133	123	98	
m_{stik} [t]		1137	768	1153		1153	768	768	1153		1153	810	1278		1236	810	1179	

Preglednica 4.5: Mase

Preglednica 4.6: Nivoji osnih sil v stebrih

Nivo osne sile [kN]	9000	9600	10050	10550
Steber	16	17; 28; 29	15;18; 30	od 19 do 27

Preglednica 4.7: Vrednosti razpokanih stebrov

Steber	16	17; 28; 29	15;18; 30	od 19 do 27
M_y [kNm]	14464	14978	15364	15621
ϕ_{y}	0,000771	0,000778	0,000783	0,000787
$I_{cr}[\mathrm{m}^4]$	0,50703	0,52032	0,53032	0,53645
$I_{eff} [m^4]$	0,641	0,654	0,664	0,671

Za prekladno konstrukcijo so upoštevane enake karakteristike kot pri modelu za analizo v konstrukcije v prečni smeri v poglavju 4.2.

5 OBREMENITVE KONSTRUKCIJE PRI POTRESNI OBTEŽBI

Vrednosti notranjih sil, pomiki konstrukcije in nihajni časi so določeni s programom SAP2000 in sicer z modalno analizo s spektrom pospeškov definiranim v 3. poglavju.

5.1 Prečna smer

5.1.1 Model z nerazpokanimi stebri

V preglednici 5.1 so prikazane projektne vrednosti osnih sil N_{Ed} , upogibnih momentov M_{Ed} in prečnih sil V_{Ed} v stebrih pri različnih faktorjih obnašanja. Nihajni čas konstrukcije pri tem modelu znaša 1,68 s. V preglednici 5.2 so prikazani pomiki na vrhu posameznega stebra. Pomiki konstrukcije so določeni pri faktorju obnašanja q = 1,0.

	Višina	N_{EI}	q =	1,0	q =	1,5	q =	3,5
Steber	skupaj s kapo [m]	[kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]
S15	10,5	9927	27961	2663	18641	1775	8005	762
S16	12,5	8993	39383	3151	26257	2101	11285	903
S17	19,5	9711	31585	1620	21060	1080	9403	482
S18	24,5	10007	33958	1386	22644	924	10720	438
S19	33,5	10604	27366	817	18250	545	9011	269
S20	33,5	10613	36186	1080	24132	720	12120	362
S21	31,5	10488	48214	1531	32154	1021	16158	513
S22	34,5	10668	42026	1218	28027	812	14013	406
S23	34,5	10713	36744	1065	24504	710	12278	356
S24	31,5	10353	32430	1030	21627	687	10853	345
S25	24,5	10449	39055	1594	26043	1063	12484	510
S26	22,5	10754	37173	1652	24786	1102	10988	488
S27	19,5	10583	37864	1942	25246	1295	10856	557
S28	16,5	9811	35329	2141	23555	1428	10096	612
S29	13,5	9482	29024	2150	19351	1433	8300	615
S30	6,5	10165	22319	3434	14879	2289	6380	982

Steber	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S 30
Pomik [cm]	0,9	1,7	3,2	5,4	8,0	10,6	12,5	13,1	11,4	8,4	6,2	5,0	3,9	2,6	1,5	0,3

Preglednica 5.2: Pomiki konstrukcije v prečni smeri

5.1.2 Model z razpokanimi stebri

V preglednici 5.3 so prikazane projektne vrednosti osnih sil N_{Ed} , upogibnih momentov M_{Ed} in prečnih sil V_{Ed} v razpokanih stebrih pri različnih faktorjih obnašanja. Kot je bilo pričakovati je pri tem modelu nihajni čas konstrukcije večji in znaša 2,40 s.

	Višina	N_{Ed}	q =	1,0	q =	1,5	q =	3,5
Steber	skupaj s kapo [m]	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]
S15	10,5	9927	20599	1962	13735	1308	5896	562
S16	12,5	8993	27743	2219	18498	1480	8802	704
S17	19,5	9711	20067	1029	13377	686	8124	417
S18	24,5	10007	19941	814	13289	542	9779	399
S19	33,5	10604	15080	450	10048	300	8239	246
S20	33,5	10613	19015	568	12669	378	10856	324
S21	31,5	10488	24897	790	16588	527	14217	451
S22	34,5	10668	21787	632	14516	421	12249	355
S23	34,5	10713	19781	573	13179	382	11147	323
S24	31,5	10353	18617	591	12404	394	10631	337
S25	24,5	10449	22963	937	15301	625	12363	505
S26	22,5	10754	21617	961	14410	640	9173	408
S27	19,5	10583	23327	1196	15554	798	7624	391
S28	16,5	9811	22452	1361	14972	907	6527	396
S29	13,5	9482	19467	1442	12980	962	5564	412
S30	6,5	10165	22872	3519	15249	2346	6573	1011

Preglednica 5.3: Notranje sile v stebrih

Pri primerjavi vrednoti prečni sil in upogibnih momentov na modelu z nerazpokanimi stebri in modelu z razpokanimi stebri je prišlo do pričakovanega zmanjšanja le teh. Obratno pa velja za pomike konstrukcije, ki so na račun razpokanih prerezov v povprečju večji za 20 % od tistih z nerazpokanimi. Opaziti je tudi, da so razlike pri kratkih stebrih precej večje. V preglednici 5.4 so enako kot v prejšnjem modelu prikazani pomiki na vrhu stebrov pri faktorju obnašanja q = 1,0.

15.7

14.3

11.2

13,0 15,0

Preglednica 5.4: Pomiki konstrukcije v prečni smeri

7.4

10.3

4,8

5.2 Vzdolžna smer

2.8

1,4

[cm]

V programu SAP2000 vnesem vrednosti izračunanih efektivnih prerezov stebrov (glej poglavje 4.1 in 4.3) za posamezno ZE. Po predpisu naredim za ležišča dve kombinaciji materialnih lastnosti, to je ležišča z strižnim modulom $G_{b,min}$ in $G_{b,max}$ (UBDP in LBDP, po določilih iz EC8/2 člen 7.5.2.3). Za vsako izmed zavornih enot dobim štiri različne modele in sicer:

- a) model z nerazpokanimi prerezi in minimalnim strižnim modulom,
- b) model z razpokanimi prerezi in minimalnim strižnim modulom,
- c) model z nerazpokanimi prerezi in maksimalnim strižnim modulom in
- d) model z razpokanimi prerezi in maksimalnim strižnim modulom.

Enako kot za prečno smer so notranje sile določene pri različnih faktorjih obnašanja. Pomiki konstrukcije so določeni na podlagi elastičnega spektra pospeškov. Nihajni časi konstrukcije, pomiki in notranje sile v stebrih za zgoraj omenjene modele bodo prikazane v posameznih poglavjih.

S28

3,9

6,7

8,4

5,4

S29

2,3

S30

0,7

5.2.1 Model z nerazpokanimi stebri in minimalnim strižnim modulom $(G_{b,min})$

V preglednici 5.5 so povzeti nihajni časi zavornih enot in notranje sile v stebrih. V preglednici 5.6 so prikazani pomiki prekladne konstrukcije, vrha stebrov in ležišč za posamezno zavorno enoto. Pomiki prekladne konstrukcije in pomiki na vrhu ležišč so določeni s programom SAP2000. Pomiki ležišč so izračunani kot razlika med pomikom prekladne konstrukcije in pomikom na vrhu stebra.

Zavorna	Nihajni		$N_{\rm EI}$	q = 1	1,0	q = 1	1,5	q = 3	3,5
enota	čas [s]	Steber	[kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]	<i>M_{Ed}</i> [kNm]	V _{Ed} [kN]
		S15	9927	16096	1529	10735	1020	5910	561
1	1,88	S16	8993	18207	1454	12142	969	6686	534
		S17	9711	20990	1075	13999	717	7767	398
		S19	10604	16959	506	16955	506	16953	506
2	3,36	S20	10613	16957	506	16953	506	16951	506
2		S21	10488	18165	576	18159	576	18156	576
		S22	10668	16373	474	16369	474	16366	474
		S24	10353	16371	519	12048	382	12020	381
3	2,71	S25	10449	20196	823	14828	605	14667	598
		S26	10754	21167	940	15514	689	15239	676
		S28	9811	20521	1242	13687	828	7534	456
4	1,87	S29	9482	18935	1400	12629	934	6929	512
		S 30	10165	9890	1514	6597	1010	3712	568

Preglednica 5.5: Nihajni časi in notranje sile v stebrih

Preglednica 5.6: Pomiki

Zavorna enota	1		2				3			4			
Pomik prekl.konstr.[cm]	11,0		11,8			11,8			10,9				
Steber	S15	S16	S17	S19	S20	S21	S22	S24	S25	S26	S28	S29	S 30
Pomik na vrhu stebra [cm]	1,0	1,6	4,4	9,1	9,1	8,6	9,3	8,8	6,6	5,9	3,1	1,9	0,3
Pomik ležišča [cm]	10,0	9,4	6,6	2,7	2,7	3,2	2,5	3,0	5,2	5,9	7,8	9,0	10,6

Glede na velikost pomikov posameznih zavornih enot in glede na velikost dilatacij med njimi (5 cm) lahko sklepamo, da lahko pride do medsebojnih trkov med posameznimi zavornimi enotami. Enako velja za trke med prekladno konstrukcijo in opornikoma. Za ležišča je predpostavljeno da lahko prenesejo maksimalni pomik, ki je enak debelini elastomernih plasti ležišč, ki znaša 6,1 cm. Poudarjene vrednosti v preglednici 5.6 prikazujejo presežek le tega.

5.2.2 Model z razpokanimi stebri in minimalnim strižnim modulom (*G*_{b,min})

Enako kot v prejšnjem modelu so v preglednici 5.7 povzeti nihajni časi zavornih enot in notranje sile v stebrih. V preglednici 5.8 so prikazani pomiki prekladne konstrukcije, vrha stebrov in ležišč za posamezno zavorno enoto.

Zavorna	Nihajni		N	q = 1	1,0	q = 1	1,5	q = 3	3,5
enota	čas [s]	Steber	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]
		S15	9927	14813	1407	9871	938	6688	635
1	2,15	S16	8993	15395	1229	10259	819	6982	557
		S17	9711	13153	674	8764	449	6066	311
		S19	10604	16969	506	16969	506	16969	506
2	5,27	S20	10613	16968	506	16968	506	16968	506
2		S21	10488	18752	595	18752	595	18752	595
		S22	10668	16158	468	16158	468	16158	468
		S24	10353	10331	328	10331	328	10330	328
3	3,87	S25	10449	14963	610	14954	610	14947	610
		S26	10754	16748	744	16726	743	16712	742
		S28	9811	14735	892	9828	595	6320	382
4	2,08	S29	9482	15497	1146	10335	764	6592	487
	-	S 30	10165	10631	1629	7102	1088	4532	694

D 1 1 '		AT'1 ' '	~ • •	· ·	• 1	. 1 .1
Uradiadnica	~ /·	$N_1h_01h_1$	0001 1n	notrania	C1 0 V	otohrih
TICEICUIIICa	J.1.	INITALI	Casi III	nouanic	SILC V	SICULIII

Zavorna enota	1			2			3			4			
Pomik prekl.konstr.[cm]		11,7			11,6			11,7			11,7		
Steber	S15	S16	S17	S19	S20	S21	S22	S24	S25	S26	S28	S29	S 30
Pomik na vrhu stebra [cm]	2,5	3,8	7,7	10,5	10,5	10,3	10,6	10,5	9,1	8,5	6,1	4,3	0,7
pomik ležišča [cm]	9,2	7,9	4,0	1,1	1,1	1,3	1,0	1,2	2,6	3,2	5,6	7,4	11,0

Preglednica 5.8: Pomiki

Enako kot pri modelu z nerazpokanimi stebri so v preglednici 5.8 poudarjene vrednosti kjer je pomik ležišča presežen.

5.2.3 Model z nerazpokanimi stebri in maksimalnim strižnim modulom (G_{b,max})

V preglednici 5.9 so povzeti nihajni časi zavornih enot in notranje sile v stebrih. V preglednici 5.10 pa so prikazani pomiki.

Zavorna	Nihajni	ijni S Steber	N_{-} .	q = 1	1,0	q = 1	1,5	q = 3	3,5
enota	čas [s]	Steber	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]
		S15	9927	19319	1835	12871	1223	6163	585
1 1	1,61	S16	8993	21341	1704	14218	1135	6810	544
		S17	9711	22355	1145	14893	763	7157	367
2 2 2 2	S19	10604	16978	506	16978	506	16978	506	
	3,25	S20	10613	16976	506	16976	506	16976	506
Z		S21	10488	18447	585	18447	585	18447	585
		S22	10668	16286	472	16286	472	16286	472
		S24	10353	17886	567	11932	379	11351	360
3	2,52	S25	10449	23481	957	15665	639	14849	605
		S26	10754	25109	1115	16751	744	15825	703
		S28	9811	22574	1366	15039	910	7124	431
4	2,08	S29	9482	21704	1605	14460	1069	6840	506
	· _	S30	10165	12431	1904	8281	1268	3942	604

Preglednica 5.9: Nihajni časi in notranje sile v stebrih

Zavorna enota	1			2			3			4			
Pomik prekl.konstr.[cm]		9,4			11,7			11,8			9,2		
Steber	S15	S16	S17	S19	S20	S21	S22	S24	S25	S26	S28	S29	S 30
Pomik na vrhu stebra [cm]	1,2	1,9	4,7	9,8	9,8	9,4	10,0	9,6	7,7	7,0	3,4	2,2	0,3
pomik ležišča [cm]	8,2	7,5	4,7	1,9	1,9	2,3	1,7	2,2	4,1	4,8	5,8	7,0	8,9

Preglednica 5.10: Pomiki

5.2.4 Model z razpokanimi stebri in maksimalnim strižnim modulom (G_{b,max})

Tako kot pri prejšnjih modelih so v preglednicah 5.11 in 5.12 povzeti nihajni časi zavornih enot, notranje sile v stebrih in pomiki.

Zavorna	Nihajni		N	q = 1	1,0	q = 1	1,5	q = 1	3,5
enota	čas [s]	Steber	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]
		S15	9927	18748	1781	12494	1187	7068	671
1 1,90	S16	8993	18684	1492	12451	994	7058	563	
		S17	9711	14231	729	9484	486	5400	277
		S19	10604	16956	506	16956	506	16956	506
2	5 20	S20	10613	16955	506	16955	506	16955	506
2	5,20	S21	10488	18869	599	18869	599	18869	599
		S22	10668	16097	466	16097	466	16097	466
		S24	10353	9921	315	9921	315	9921	315
3	3,74	S25	10449	14976	611	14972	611	14970	611
		S26	10754	17088	759	17080	758	17075	758
		S28	9811	15872	961	10580	640	5716	346
4	1,81	S29	9482	17574	1299	11713	866	6314	467
	-	S30	10165	13759	2107	9180	1406	4948	758

Preglednica 5.11: Nihajni časi in notranje sile v stebrih

Zavorna enota	1			2			3			4			
Pomik prekl.konstr.[cm]		11,1			11,5			11,6			10,5		
Steber	S15	S16	S17	S 19	S20	S21	S22	S24	S25	S26	S28	S29	S30
Pomik na vrhu stebra [cm]	3,2	4,6	8,4	10,8	10,8	10,6	10,9	10,8	9,8	9,3	6,6	4,9	0,9
Pomik ležišča [cm]	7,9	6,5	2,7	0,7	0,7	0,9	0,6	0,8	1,8	2,3	3,9	5,6	9,6

Preglednica 5.12: Pomiki

5.2.5 Povzetek rezultatov

Na osnovi dosedanjih rezultatov lahko sklepamo, da pri potresni obtežbi lahko pride do medsebojnih trkov med posameznimi zavornimi enotami ter trki med prekladno konstrukcijo in opornikoma. Nad kratkimi stebri so pomiki ležišč razmeroma veliki, zato lahko pričakujemo porušitev le teh. Potrebno je poudariti, da so prikazane vrednosti pomikov določene le za vpliv potresne obtežbe in bi jim po zahtevah EC8/2 bilo potrebno prišteti še 40% pomikov zaradi temperaturnih vplivov.

Kot je navedeno v EC8/2 so z modeli z minimalnim strižnim modulom ležišč določeni največji pomiki konstrukcije, z modeli z maksimalnim strižnim modulom ležišč pa največje notranje sile.

6 IZRAČUN NOSILNOSTI STEBROV

Analizirana je bila upogibna nosilnost in strižna nosilnost prereza. Vrednosti so bile primerjane z notranjimi silami pri kombinaciji stalne in potresne obtežbe. Pri določitvi nosilnosti in duktilnosti prerezov smo upoštevali, da lahko obstoječi konstrukcijski detajli preprečijo uklon vzdolžnih armaturnih palic. Ta predpostavka je ključna saj bi se lahko v primeru uklona vzdolžnih palic upogibna in strižna nosilnost bistveno zmanjšali. Ker obstoječi konstrukcijski detajli ne ustrezajo zahtevam EC8/2, je bilo potrebno kasneje omenjeno predpostavko dokazati z eksperimentom.

Prepodpostavke, ki smo jih upoštevali pri določitvi nosilnosti in načini, s katerimi smo te vrednosti izračunali, so opisani v posameznih poglavjih.

6.1 Primerjava računskih upogibnih momentov z upogibno nosilnostjo stebrov

Upogibno nosilnost stebrov M_{Rd} sem ocenil s programom DIAS-P. Upošteval sem predpis Eurocode, beton C50/60, jeklo S240, osne sile zaradi stalne obtežbe (glej poglavje 3) ter varnostne faktorje $\gamma_B = 1,5$ in $\gamma_S = 1,15$. Vzdolžne armaturne palice so v programu DIAS-P vstavljene po originalnem načrtu armaturnih košev stebrov. Ker se vzdolžna armatura z višino stebra zmanjšuje je bilo potrebno preveriti upogibne nosilnosti za posamezen armaturni koš. Iskazalo se je, da upogibne nosilnosti stebrov v prerezih z armaturnim košem B (90 ϕ 18) in C (90 ϕ 14) zadostujejo ter, da je najbolj kritičen prerez stebra ob vpetju v temelje, to je prerez armiran z armaturnim košem A (90 ϕ 22), kjer se pri potresni obtežbi tudi pojavijo maksimalni upogibni momenti.

Računski upogibni momenti, ki so določeni na modelu z razpokanimi stebri, presegajo upogibno nosilnost stebrov ob vpetju v temelje le v enem stebru in sicer takrat ko je obnašanje konstrukcije elastično (q = 1,0). Pri reducirani potresni obtežbi (q = 1,5), pa je upogibna nosilnost stebrov v vseh stebrih ustrezna.

V nadaljevanju so prikazane primerjave vrednosti upogibnih momentov in upogibne nosilnosti stebrov za posamezno smer analize.

6.1.1 Prečna smer nerazpokani prerezi

V preglednici 6.1 so prikazane primerjave projektne upogibne nosilnosti in računskih upogibnih momentov.

Preglednica 6.1: Primerjava projektne upogibne nosilnosti prerezov ob vpetju stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi

Steber	Višina skupaj	N _{Ed} [kN]	Upogibna nosilnost	<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]
	s kapo [m]		<i>M_{Rd}</i> [kNm]	<i>q</i> =1,0	<i>q</i> = 1,5	<i>q</i> = 3,5
S15	10,5	9927	26000	27961	18641	8005
S16	12,5	8993	24500	39383	26257	11285
S17	19,5	9711	26000	31585	21060	9403
S18	24,5	10007	26500	33958	22644	10720
S19	33,5	10604	27500	27366	18250	9011
S20	33,5	10613	27500	36186	24132	12120
S21	31,5	10488	27500	48214	32154	16158
S22	34,5	10668	27500	42026	28027	14013
S23	34,5	10713	27500	36744	24504	12278
S24	31,5	10353	27500	32430	21627	10853
S25	24,5	10449	27500	39055	26043	12484
S26	22,5	10754	27500	37173	24786	10988
S27	19,5	10583	27500	37864	25246	10856
S28	16,5	9811	26000	35329	23555	10096
S29	13,5	9482	26000	29024	19351	8300
S30	6,5	10165	26500	22319	14879	6380

Opaziti je da pri faktorju obnašanja q = 1,0 vrednosti upogibnih momentov presežejo projektno upogibno nosilnost v vseh stebrih z izjemo stebra S19 in S30. Na podlagi primerjav v preglednici 6.1 lahko sklepamo, da bo odziv stebrov in s tem tudi viadukta delno duktilen, saj je projektna upogibna nosilnost večine stebrov, večja od računskih upogibnih momentov zaradi potresne obtežbe, ki ustrezajo faktorju obnašanja q = 1,5 (v preglednici 6.1 so vrednosti upogibnih momentov, ki presegajo projektno upogibno nosilnost poudarjene in obrobljene z debelo črto).

6.1.2 Prečna smer razpokani prerezi

Tako kot v modelu z nerazpokanimi stebri so v preglednici 6.2 prikazane primerjave projektne upogibne nosilnosti in računskih upogibnih momentov. Pri tem modelu je upogibna nosilnost presežena le v stebru S16 pri faktorju obnašanja q = 1,0.

Preglednica 6.2: Primerjava projektne upogibne nosilnosti prerezov ob vpetju stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi

Steber	Višina skupaj	N _{Fd} [kN]	Upogibna nosilnost	<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]
	s kapo [m]		<i>M_{Rd}</i> [kNm]	<i>q</i> =1,0	<i>q</i> = 1,5	<i>q</i> = 3,5
S15	10,5	9927	26000	20599	13735	5896
S16	12,5	8993	24500	27743	18498	8802
S17	19,5	9711	26000	20067	13377	8124
S18	24,5	10007	26500	19941	13289	9779
S19	33,5	10604	27500	15080	10048	8239
S20	33,5	10613	27500	19015	12669	10856
S21	31,5	10488	27500	24897	16588	14217
S22	34,5	10668	27500	21787	14516	12249
S23	34,5	10713	27500	19781	13179	11147
S24	31,5	10353	27500	18617	12404	10631
S25	24,5	10449	27500	22963	15301	12363
S26	22,5	10754	27500	21617	14410	9173
S27	19,5	10583	27500	23327	15554	7624
S28	16,5	9811	26000	22452	14972	6527
S29	13,5	9482	26000	19467	12980	5564
S 30	6,5	10165	26500	22872	15249	6573

6.1.3 Vzdolžna smer

Za vzdolžno smer je pri primerjavi projektnih upogibnih nosilnosti in računskih upogibnih momentov upoštevan model iz točke 5.2.3 (nerazpokani stebri in maksimalni strižni modul), ki je v primerjavi z ostalimi modeli najbolj kritičen (vrednosti notranjih sil so največje).

Preglednica 6.3: Primerjava projektne upogibne nosilnosti prerezov ob vpetju stebrov v temelj in računskih upogibnih momentov pri potresni obtežbi (nerazpokani stebri in maksimalni strižni modul)

Zavorna	Steber	Višina skupaj	Upogibna N _{Ed} [kN]		<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]	<i>M_{Ed}</i> [kNm]
enota		s kapo [m]		<i>M_{Rd}</i> [kNm]	<i>q</i> =1,0	<i>q</i> = 1,5	<i>q</i> = 3,5
	S15	10,5	9927	16900	19319	12871	6163
1	S16	12,5	8993	15600	21341	14218	6810
	S17	19,5	9711	16700	22355	14893	7157
	S19	33,5	10604	17250	16978	16978	16978
2	S20	33,5	10613	17250	16976	16976	16976
2	S21	31,5	10488	17300	18447	18447	18447
	S22	34,5	10668	17400	16286	16286	16286
	S24	31,5	10353	17000	17886	11932	11351
3	S25	24,5	10449	17200	23481	15665	14849
	S26	22,5	10754	17400	25109	16751	15825
	S28	16,5	9811	16800	22574	15039	7124
4	S29	13,5	9482	16400	21704	14460	6840
	S30	6,5	10165	17000	12431	8281	3942

Iz primerjav upogibnih nosilnosti in računskih upogibnih momentov pri potresni obtežbi lahko sklepam, da bo odziv viadukta delno duktilen, saj je projektna upogibna nosilnost večine stebrov, večja od računskih upogibnih momentov zaradi potresne obtežbe, ki sem jih izračunal pri faktorju obnašanja q =1,5. Tudi v EC8/2 je za viadukte podprte z elastomernimi ležišči predviden delno duktilen odziv (pretežno elastičen). V zgornji preglednici lahko opazimo, da so v stebru v osi S21 računski upogibni momenti presegli nosilnost ne glede na faktor obnašanja. Do slednjega prihaja zaradi relativno dolgega nihajnega časa in omejitve projektnega pospeška na $S_d(T) \ge \beta \cdot a_g = 0, 2 \cdot 0, 23 \cdot 9, 81 = 0, 45$ v skladu z EC8/1 člen 3.2.2.5.

6.2 Primerjava računskih strižnih sil s projektno strižno nosilnostjo stebrov

Po zahtevah EC8/2 člen 5.6.2(2)(a) je potrebno strižno nosilnost primerjati z računskimi prečnimi silami pomnoženimi z faktorjem obnašanja q, ki je bil uporabljen v linearni analizi. Ker se je pri računu izkazalo, da so te sile lahko večje od največje možne prečne sile v stebru (sila, ki je ocenjena na osnovi upogibne nosilnosti stebra) sem pri oceni strižne nosilnosti upošteval manjšo izmed teh dveh vrednosti. V nadaljevanju je prikazan izračun največje možne prečne sile in projektne strižne nosilnosti stebrov za posamezno smer analize.

6.2.1 Prečna smer

Največja možna (ocenjena) prečna sila v stebru $V_{C,a}$ je določena po enačbi:

 $V_{C,o} = \frac{M_o}{h}$, kjer je *h* višina stebra v m, M_o največja možna upogibna nosilnost stebra v kNm in znaša:

 $M_o = 1,35 \cdot M_{Rd}$, pri čemer je M_{Rd} , projektna upogibna nosilnost (glej preglednico 6.1). Sile $V_{C,o}$ sem primerjal z računskimi prečnimi silami pri potresni obtežbi V_{Ed} (glej preglednico 5.1) pri faktorju obnašanja q = 1,0. Za primerjavo s strižno nosilnostjo stebra sem upošteval manjšo izmed teh dveh vrednosti ter jo označil z V_d . V preglednicah 6.4 in 6.5 so povzeti rezultati za model z nerazpokanimi stebri (poglavje 5.1.1) in model z razpokanimi stebri (poglavje 5.1.2). Preglednica 6.4: Največje pričakovane projektne vrednosti strižnih sil v stebrih V_d pri modelu z nerazpokanimi prerezi

Steber	Višina stebra [m]	<i>M_{Rd}</i> [kNm]	<i>M_O</i> [kNm]	<i>V_{C,o}</i> [kN]	V _{Ed} [kN]	V _d [kN]
S15	10,5	26000	35100	3343	2663	2663
S16	12,5	24500	33075	2646	3151	2646
S17	19,5	26000	35100	1800	1620	1620
S18	24,5	26500	35775	1460	1386	1386
S19	33,5	27500	37125	1108	817	817
S20	33,5	27500	37125	1108	1080	1080
S21	31,5	27500	37125	1179	1531	1179
S22	34,5	27500	37125	1076	1218	1076
S23	34,5	27500	37125	1076	1065	1065
S24	31,5	27500	37125	1179	1030	1030
S25	24,5	27500	37125	1515	1594	1515
S26	22,5	27500	37125	1650	1652	1650
S27	19,5	27500	37125	1904	1942	1904
S28	16,5	26000	35100	2127	2141	2127
S29	13,5	26000	35100	2600	2150	2150
S 30	6,5	26500	35775	5504	3434	3434

Steber	Višina stebra [m]	<i>M_{Rd}</i> [kNm]	<i>M_O</i> [kNm]	<i>V_{C,o}</i> [kN]	V _{Ed} [kN]	V _d [kN]
S15	10,5	26000	35100	3343	1962	1962
S16	12,5	24500	33075	2646	2219	2219
S17	19,5	26000	35100	1800	1029	1029
S18	24,5	26500	35775	1460	814	814
S19	33,5	27500	37125	1108	450	450
S20	33,5	27500	37125	1108	568	568
S21	31,5	27500	37125	1179	790	790
S22	34,5	27500	37125	1076	632	632
S23	34,5	27500	37125	1076	573	573
S24	31,5	27500	37125	1179	591	591
S25	24,5	27500	37125	1515	937	937
S26	22,5	27500	37125	1650	961	961
S27	19,5	27500	37125	1904	1196	1196
S28	16,5	26000	35100	2127	1361	1361
S29	13,5	26000	35100	2600	1442	1442
S 30	6,5	26500	35775	5504	3519	3519

Preglednica 6.5: Največje pričakovane projektne vrednosti strižnih sil v stebrih V_d pri modelu z razpokanimi prerezi

Računsko strižno nosilnost izračunam v skladu z EC8/2 člen 5.6.2(2) po postopku iz EC2/1 člen 6.2. V nadaljevanju je prikazan postopek za izračun strižne nosilnosti po enačbi:

 $V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp}\right] \cdot b_w \cdot d, \text{ pri čemer minimalna vrednost določimo po enačbi:}$

$$V_{Rd,c}^{\min} = \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \text{, in je}$$
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2}$$

Pri tem so upoštevane naslednje vrednosti:

$$C_{Rd,c} = 0.18 / \gamma_c = 0.18 / 1.5 = 0.12$$

 $k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{3150}} = 1.25 < 2$, kjer je d statična višina prereza v mm

$$\rho_l = \frac{A_{sl}}{b_w \cdot d} = \frac{11391}{600 \cdot 3150} = 0,006 < 0.02$$
, kjer je A_{sl} natezna armatura v mm², ki je ustrezno

sidrana, b_w najmanjša širina prereza v mm in *d* statična višina prereza v mm. $f_{ck} = 50$ MPa je karakteristična cilindrična tlačna trdnost $k_I = 0,15$

$$\sigma_{cp} = \frac{N_{Ed}}{A_C} = \frac{N_{Ed}}{2.7 \cdot 10^6} < 0.2 f_{cd}, \text{ kjer je } N_{Ed} \text{ računska osna sila v N, } A_C \text{ ploščina prereza v}$$

mm² in f_{cd} projektna tlačna trdnost betona, ki znaša za beton C50/60 f_{cd} = 33,3 MPa. Računska osna sila N_{Ed} je v tem primeru osna sila v območju armaturnega koša C. Da zagotovim nekaj dodatne varnosti osno silo odčitam na vrhu stebra, ki je v nadaljevanju označena z $N_{Ed,vrh}$.

Ker je prečna sila zaradi potresne obtežbe vzdolž celotnega stebra konstantna, sem strižno nosilnost izračunal na vrhu stebra (armaturni koš C). Na tem mestu je steber armiran s štiristrižnimi stremeni ϕ 10/20 cm. Pri računu sem upošteval beton kvalitete C50/60.

V skladu z EC2/1 člen 6.2.3(3) izračunam prispevek stremen k strižni nosilnosti po enačbi:

$$V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot \cot \theta$$
, kjer sem upošteval naslednje vrednosti:

 $A_{sw} = 4 \cdot 0,79 = 3,16 \text{ cm}^2$ je ploščina stremenskih palic,

s = 20 cm je razdalja med stremeni,

 $z = 0.81 \cdot 350 = 283 \text{ cm}$ je ročica notranjih sil,

 $f_{ywd} = 24/1,15 = 20,9 \text{ kN/cm}^2$ je projektna vrednost meje tečenja jekla stremen,

 θ = 45° in je naklonski kot betonske tlačne diagonale.

Projektna nosilnost stremen tako znaša:

$$V_{Rd,s} = \frac{3,16}{20} 283 \cdot 20,9 = 935 \,\mathrm{kN}.$$

Pri tem je po določilih iz EC8/2 člen 5.6.2(2)(b) potrebno vrednosti $V_{Rd,c}$, $V_{Rd,s}$ in

 $V_{Rd,max}$ zmanjšati za faktor $\gamma_{Bd1} = 1,25$ s čimer je upoštevana varnost proti krhki strižni porušitvi. V preglednicah 6.6 in 6.7 je prikazana primerjava računskih strižnih sil in projektne strižne nosilnosti stebrov.

Steber	N _{Ed,vrh} [kN]	<i>V_d</i> [kN]	V _{Rd,c} [kN]	V _{Rd,c} /1,25 [kN]	V _{Rd,s} [kN]	V _{Rd,s} /1,25 [kN]	$V_{Rd,c}/1,25+V_{Rd,s}/1,25$ [kN]
S15	9218	2663	1852	1481	935	748	2229
S16	8150	2646	1739	1391	935	748	2139
S17	8394	1620	1765	1412	935	748	2160
S18	8353	1386	1761	1409	935	748	2157
S19	8343	817	1760	1408	935	748	2156
S20	8352	1080	1761	1408	935	748	2156
S21	8362	1179	1762	1409	935	748	2157
S22	8339	1076	1759	1407	935	748	2155
S23	8385	1065	1764	1411	935	748	2159
S24	8226	1030	1747	1398	935	748	2146
S25	8795	1515	1807	1446	935	748	2194
S26	9235	1650	1853	1483	935	748	2231
S27	9267	1904	1857	1485	935	748	2233
S28	8697	2127	1797	1437	935	748	2185
S29	8570	2150	1783	1427	935	748	2175
S 30	9727	3434	1905	1524	935	748	2272

Preglednica 6.6: Primerjava računskih strižnih sil zaradi potresne obtežbe in projektnih vrednosti strižne nosilnosti za model z nerazpokanimi stebri

Steber	N _{Ed,vrh} [kN]	<i>V_d</i> [kN]	V _{Rd,c} [kN]	V _{Rd,c} /1,25 [kN]	V _{Rd,s} [kN]	V _{Rd,s} /1,25 [kN]	V _{Rd,c} /1,25+V _{Rd,s} /1,25 [kN]
S15	9218	1962	1852	1481	935	748	2229
S16	8150	2219	1739	1391	935	748	2139
S17	8394	1029	1765	1412	935	748	2160
S18	8353	814	1761	1409	935	748	2157
S19	8343	450	1760	1408	935	748	2156
S20	8352	568	1761	1408	935	748	2156
S21	8362	790	1762	1409	935	748	2157
S22	8339	632	1759	1407	935	748	2155
S23	8385	573	1764	1411	935	748	2159
S24	8226	591	1747	1398	935	748	2146
S25	8795	937	1807	1446	935	748	2194
S26	9235	961	1853	1483	935	748	2231
S27	9267	1196	1857	1485	935	748	2233
S28	8697	1361	1797	1437	935	748	2185
S29	8570	1442	1783	1427	935	748	2175
S 30	9727	3519	1905	1524	935	748	2188

Preglednica 6.7: Primerjava računskih strižnih sil zaradi potresne obtežbe in projektnih vrednosti strižne nosilnosti za model z razpokanimi prerezi

Po določilih EC2 je potrebno v stebrih, kjer prečna sila zaradi potresne obtežbe preseže projektno strižno nosilnost betona, le to zanemariti in prečno silo v celotni prevzeti le s stremensko armaturo. Računske vrednosti strižnih sil, ki presegajo projektno strižno nosilnost betona so v preglednicah 6.6 in 6.7 označene s poševno ali navpično šrafuro.

Ker je eksperiment pokazal, da v konkretnem primeru betona ni potrebno zanemariti, smo strižno nosilnost betona upoštevali pri določitvi strižne nosilnosti stebrov (zadnji stolpec v preglednicah 6.6 in 6.7). V preglednicah 6.6 in 6.7 so vrednosti prečnih sil, ki presegajo projektno strižno nosilnost prereza (strižna nosilnost betona + strižna nosilnost armature) poudarjene in označene z navpično šrafuro.

Če upoštevamo predpostavko, da vsi konstrukcijski detajli ustrezajo zahtevam, ki jih določata EC8 in EC2, se pri primerjavi projektnih strižnih nosilnosti stebrov in računskih prečnih sil izkaže, da strižna nosilnost v večini stebrov ustreza potresnim zahtevam. Le pri stebrih v oseh

S15, S16, S28, S29 in S30 so vrednosti strižnih sil presegle projektno strižno nosilnost in je tako pričakovati večje poškodbe (poudarjene in navpično šrafirane vrednosti v preglednicah 6.6 in 6.7).

6.2.2 Vzdolžna smer

Pri določitvi projektne strižne nosilnosti za vzdolžno smer veljajo enake predpostavke in določila iz prejšnjega poglavja. Vrednosti največjih možnih prečnih sil V_d so prikazni v preglednici 6.8. Enako kot v poglavju 6.1.3 je pri primerjavi strižne nosilnosti z največjimi možnimi prečnimi silami V_d upoštevan model iz točke 5.2.3 (nerazpokani stebri in maksimalni strižni modul), ki je v primerjavi z ostalimi modeli najbolj kritičen (vrednosti notranjih sil so pri tem modelu največje). Povzetek primerjav je prikazan v preglednici 6.9.

Zavorna enota	Steber	Višina skupaj s kapo [m]	<i>M_{Rd}</i> [kNm]	<i>M_O</i> [kNm]	<i>V_{C,o}</i> [kN]	V _{Ed} [kN]	V _d [kN]
	S15	10,5	16900	22815	2173	1835	1835
1	S16	12,5	15600	21060	1685	1704	1685
	S17	19,5	16700	22545	1156	1145	1145
	S19	33,5	17250	23288	695	506	506
2	S20	33,5	17250	23288	695	506	506
2	S21	31,5	17300	23355	741	585	585
	S22	34,5	17400	23490	681	472	472
	S24	31,5	17000	22950	729	567	567
3	S25	24,5	17200	23220	948	957	948
	S26	22,5	17400	23490	1044	1115	1044
	S28	16,5	16800	22680	1375	1366	1366
4	S29	13,5	16400	22140	1640	1605	1605
	S30	6,5	17000	22950	3531	1904	1904

Preglednica 6.8: Največje pričakovane vrednosti strižnih sil v stebrih V_d za model z nerazpokanimi stebri in maksimalno togostjo ležišč

Zavorna enota	Steber	N _{Ed,vrh} [kN]	V _d [kN]	V _{Rd,c} [kN]	V _{Rd,c} /1,25 [kN]	V _{Rd,s} [kN]	V _{Rd,s} /1,25 [kN]	<i>V_{Rd,c}</i> /1,25+ <i>V_{Rd,s}</i> /1,25 [kN]
	S15	9218	1835	1260	1008	588	470	1479
1	S16	8150	1685	1189	951	588	470	1422
	S17	8394	1145	1206	964	588	470	1435
	S19	8343	506	1202	962	588	470	1432
2	S20	8352	506	1203	962	588	470	1433
2	S21	8362	585	1203	963	588	470	1433
	S22	8339	472	1202	962	588	470	1432
	S24	8226	567	1194	955	588	470	1426
3	S25	8795	948	1232	986	588	470	1456
	S26	9235	1044	1262	1009	588	470	1480
	S28	8697	1366	1226	981	588	470	1451
4	S29	8570	1605	1217	974	588	470	1444
	S 30	9727	1904	1294	1036	588	470	1506

Preglednica 6.9: Primerjava projektnih vrednosti strižne nosilnosti in prečnih sil zaradi potresne obtežbe za model z nerazpokanimi stebri in maksimalno togostjo ležišč

Za vzdolžno smer veljajo podobne ugotovitve kot v prečni smeri. Stebri v bližini opornikov (S15, S16, S29 i S30) imajo manjšo projektno vrednost strižne nosilnosti kot so potresne zahteve določene po EC8/2. Vrednosti, ki presežejo nosilnost so označene na enak način kot v preglednici 6.7.

7 DUKTILNOST ZA UKRIVLJENOST IN PREPREČITEV UKLONA VZDOLŽNIH PALIC

7.1 Prečna smer

Duktilnost za ukrivljenost μ_{Φ} je določena kot razmerje Φ_u / Φ_y , kjer je Φ_u mejna ukrivljenost in Φ_y ukrivljenost na meji tečenja upogibne armature, ki jo določimo v skladu z EC8/2 člen E.3.2(3) z idealizacijo diagrama ukrivljenosti (slika 7.1). Pri računu ukrivljenosti so bile upoštevane naslednje predpostavke:

- izvedeni armaturni detajli lahko preprečijo uklon vzdolžne armature in razpad betonskega jedra (ta predpostavka je bila kasneje dokazana z eksperimentom),
- povprečna tlačna trdnost betona f_{cm} = 58 MPa (določeno v preglednici 3.1 standarda EC2 za beton C50/60),
- diagram betona za enoosno stanje napetosti z maksimalno deformacijo 3,5%o (diagram v skladu s členom 3.1.5 v standardu EC2),
- meja tečenja jekla 240 MPa
- meja pretrga jekla 360 MPa pri deformaciji 5%
- modul elastičnosti za jeklo 200 Gpa

Vrednosti so določene s programom DIAS. Vrednost duktilnost za ukrivljenost za stebre z nivojem osne sile 10550 kN znaša:

 $\mu \phi = \Phi_u / \Phi_y = 0.0125 / 0.0012 = 10.4$ kot je razvidno tudi na sliki 7.1. Za ostale stebre (nivo osne sile 9000 kN, 9600 kN in 10050 kN) je vrednost duktilnosti za ukrivljenost določena na enak način in ravno tako znaša približno 10.

Slika 7.1: Idealizacija diagrama moment – ukrivljenost za določitev ukrivljenosti Φ_y (za stebre od 19 do 27 za nivo osne sile 10550 kN)

Glede na to, da so normirane osne sile η_k določene v skladu z EC8/2 člen 6.2.1(2) po neenačbi: $\eta_k = N_{Ed} / A_c \cdot f_{ck} > 0,08$, v stebrih razmeroma majhne – vrednost je manjša od 0,08 (glej preglednico 7.1) in da je oblika prečnega prereza ugodna (škatlasta) so duktilnosti za ukrivljenosti razmeroma velike - imajo vrednost približno 10.

S primerjavo projektne upogibne nosilnosti in računskih upogibnih momentov zaradi potresne obtežbe smo ugotovili, da pri potresni obtežbi lahko pričakujemo delno duktilno obnašanje viadukta. Glede na to da je duktilnost za ukrivljenost več kot 7, lahko skladno z EC8/2 (člen 6.2.1(3)) ugotovimo, da posebni ukrepi za zagotovitev objetja prereza stebrov v konkretnem primeru (škatlasta oblika prerezov in razmeroma majhne normirane osne sile) niso potrebni. Skladno temu lahko tudi ugotovimo: Če bi konstrukcijski detajli ustrezali zahtevam EC8/2, ne bi bilo potrebno zagotoviti posebne armature za preprečitev uklona vzdolžnih armaturnih palic. Ker konstrukcijski detajli ne ustrezajo zahtevam EC8/2 (vzdolžna armatura ni podprta s stremeni) je bilo potrebno eksperimentalno dokazati, da ne obstaja nevarnost uklona vzdolžne armature. Posledično pa tudi, da obstoječa armatura zagotavlja upogibno in strižno nosilnost, ki je določena v predhodnih poglavjih.

Steber	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S 30
Normirana osna sila N _{Ed} /A _c /f _{ck}	0,074	0,067	0,072	0,074	0,079	0,079	0,078	0,079	0,079	0,077	0,077	0,079	0,078	0,073	0,070	0,075

Preglednica 7.1: Normirane osne sile v stebrih

7.2 Vzdolžna smer

Tudi v vzdolžni smeri je ocenjena vrednost duktilnosti za ukrivljenost presegla minimalno vrednost 7, pri kateri posebni ukrepi za objetje betonskega dela prereza niso potrebni. Vrednost duktilnosti za ukrivljenost je v vseh stebri približno 10. Skladno temu tudi za vzdolžno smer veljajo enaki zaključki kot za prečno smer viadukta (glej predhodno poglavje). Vrednost duktilnost za ukrivljenost za stebre z nivojem osne sile 10550 kN znaša: $\mu_{\Phi} = \Phi_u / \Phi_y = 0,0256 / 0,0025 = 10,2$ in je razvidno tudi na sliki 7.2. Za ostale stebre (nivo osne sile 9000 kN, 9600 kN in 10050 kN) je vrednost duktilnosti za ukrivljenost določena na enak način in ravno tako znaša približno 10.

Slika 7.2: Idealizacija diagrama moment – ukrivljenost za določitev ukrivljenosti Φ_y (za stebre od 19 do 27 za nivo osne sile 10550 kN)

8 UTRDITEV STEBROV Z BETONSKO OBLOGO

Glede na slabo obstoječe stanje stebrov, katerim je potrebno v vsakem primeru obnoviti vrhno plast betona, so v nadaljevanju tega poglavja prikazani vplivi potresne obremenitve pri obbetoniranju stebrov z armiranim betonskim plaščem debeline 10 cm. Upoštevali smo, da je razred betona betonske obloge enak razredu v obstoječem stanju in sicer C50/60. Tako kot v predhodnih analizah so ločeno obravnavani odzivi konstrukcije v vzdolžni in prečni smeri. Za analizo smo uporabili program SAP2000 in modele opisane v poglavju 4. Upoštevani so le modeli z nerazpokanimi stebri (ojačanimi) in maksimalno togostjo ležišč (glej poglavje 4.3). Za prekladno konstrukcijo smo upoštevali karakteristike nerazpokanega prečnega prereza, ki so podane v poglavju 4.2.

Karakteristike prečnih prerezov ojačanih stebrov:

Ploščina $A = 3,7 \text{ m}^2$

Torzijski vztrajnostni moment $I_x = 6.5 \text{ m}^4$

Vztrajnostni moment v prečni smeri $I = 5.2 \text{ m}^4$

Vztrajnostni moment v vzdolžni smeri $I = 2,6 \text{ m}^4$

Strižni prerez v prečni smeri $A_s = 2,7 \text{ m}^2$

Strižni prerez v vzdolžni smeri $A_s = 2,0 \text{ m}^2$

Zaradi nove plasti betona smo pri vseh modelih upoštevali povečanje mase stebrov (z 6,9 na 9,5 t/m¹). Na ta račun se je masa konstrukcije povečala za 440 t, kar v primerjavi z obstoječo maso znaša 3%. V preglednici 9.1 je prikazan povzetek mas po posameznih vozliščih določen na enak način kot v poglavju 4.2. Obremenitve konstrukcije v prečni smeri pri modelu z utrjenimi stebri so povzete v preglednici 9.2.

Steber/opornik	OL	S15	5 S	16	S17	S18	SI	19	S20	S21	S2	22	S23	S24	4 S2	25	S26	S27	S	28	S29	S 30	OD
<i>m_{stik}</i> [t]	75	275	5 28	87	320	344	38	36	386	377	39) 1	391	377	7 35	52	351	336	3	14	300	265	75
Polje med stebroma	C S	0L- S 15 S	515- 516	S16 S17	5- S1 7 S1	7- S 18 S	18- 19	S19 S20	- S2) S2	$\begin{array}{c c} 0 - & \mathbf{S}_{1}^{\prime} \\ \mathbf{S}_{1} & \mathbf{S}_{2}^{\prime} \end{array}$	21- 22	S22 S23	2- S2 3 S2	3- 8 24 8	524- 525	S25 S26	- S2 5 S2	6- S 27 S	27- 28	S2 S2	8- S2 9 S	29- S 30 (30-)D
$m_{vozl}[t]$	1	51	154	154	4 15	54 1	54	154	15	4 1	54	154	4 15	54	154	170) 17	0 1	70	15	4 1	70 1	51

8.1 Obremenitve konstrukcije v prečni smeri

	Višina skupaj s	N_{Ed}	q =	1,0	q =	1,5	q =	3,5
Steber	skupaj s kapo [m]	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]
S15	10,5	10197	30388	2894	20256	1929	8683	827
S16	12,5	9316	44571	3566	29710	2377	12733	1019
S17	19,5	10212	38103	1954	25400	1303	10896	559
S18	24,5	10638	41351	1688	27569	1125	11854	484
S19	33,5	11466	33702	1006	22472	671	9684	289
S20	33,5	11476	45234	1350	30164	900	13011	388
S21	31,5	11300	61034	1938	40699	1292	17556	557
S22	34,5	11556	53272	1544	35523	1030	15319	444
S23	34,5	11602	45629	1323	30427	882	13124	380
S24	31,5	11163	39369	1250	26252	833	11322	359
S25	24,5	11080	48749	1990	32502	1327	13976	570
S26	22,5	11333	46668	2074	31111	1383	13340	593
S27	19,5	11085	46289	2374	30857	1582	13222	678
S28	16,5	10236	42609	2582	28402	1721	12172	738
S29	13,5	9829	33912	2512	22605	1674	9689	718
S30	6,5	10333	19981	3074	13320	2049	5710	878

Preglednica 8.2: Notranje sile v stebrih – analiza v prečni smeri

V primeru utrditve stebrov z betonsko oblogo se je zaradi povečanja togosti stebrov skrajšal nihajni čas konstrukcije in so se posledično povečale obremenitve v konstrukciji. Togost konstrukcije se je v primerjavi s stebri v originalni konstrukciji povečala za 39%. Obremenitve so se povečale za največ 27%.

8.2 Obremenitve konstrukcije v vzdolžni smeri (zavorne enote, nerazpokani stebri, maksimalna togost ležišč)

Dodatna masa zaradi nove plasti betona je koncentrirana na vrhu stebrov na enak način kot je opisano v poglavju 4.3 (preglednica 4.5). V preglednici 9.3 je prikazan povzetek mas po posameznih vozliščih. Nihajni časi in notranje sile so povzete v preglednici 9.4.

Zavorna enota	1					2				3				4				
Steber/opornik	OL	S15	S 16	S17	S 18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S 30	OD
m_{stik}^{stber} [t]		123	133	166		233	233	223	237		223	190	180		152	138	104	
m_{stik} [t]		1137	768	1153		1153	768	768	1153		1153	810	1278		1236	810	1179	

Preglednica 8.3: Mase

Preglednica 8.4: Nihajni časi in notranje sile v stebrih- analiza v vzdolžni smeri

Zavorna	Nihajni		$N_{\rm EI}$	q = 1	1,0	q = 1	1,5	<i>q</i> = 3,5		
enota	čas [s]	Steber	[kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	M _{Ed} [kNm]	V _{Ed} [kN]	
		S15	10197	19459	1849	12984	1233	5962	566	
1	1,53	S16	9316	22198	1772	14798	1181	6769	540	
		S17	10212	26017	1333	17345	888	7948	407	
		S19	11466	23131	690	17538	523	17535	523	
2	2,75	S20	11476	23127	690	17535	523	17532	523	
2		S21	11300	24728	784	18748	595	18743	595	
		S22	11556	22349	647	16945	491	16942	491	
		S24	11163	25381	805	16921	537	12385	393	
3	2,21	S25	11080	30931	1261	20621	841	14994	611	
		S26	11333	32229	1431	21486	954	15547	690	
		S28	10236	25222	1526	16815	1018	7674	464	
4	1,53	S29	9829	23103	1708	15402	1139	7025	519	
		S30	10333	12120	1856	8080	1237	3710	568	

Obremenitve so se v primerjavi s stebri v originalni konstrukciji povečali za največ 41%. Togost konstrukcije se je pri tem povečala za:

- 12% pri zavorni enoti 1,
- 44% pri zavorni enoti 2,
- 33% pri zavorni enoti 3 in
- 86% pri zavorni enoti 4.

Poudariti je potrebno, da v primeru obbetoniranja stebrov z armiranim betonskim plaščem prihaja do naslednjih pomankljivosti:

- a) Dodatna betonska obloga povečuje togost konstrukcije in se posledično s tem povečajo potresne obremenitve v konstrukciji.
- b) Stik med starim in novim betonom je lahko s časoma problematičen zaradi krčenja in tečenja v novem betonu. Zato bi bilo potrebno zagotoviti posebno armaturo, s katero bi preprečili porušitev stika med obema plastema.
- c) V primeru betonske obloge se je težko izogniti povečanju upogibne nosilnosti stebrov, kar pomeni, da se bodo povečale tudi obremenitve v temeljih. Še bolj kritične so obremenitve ležišč, ki so na kratkih stebrih že tako lahko preobremenjena.

9 ZAKLJUČKI ANALIZE NA OSNOVI ZAHTEV EC8/2

V skladu z EC8/2 smo ugotovili tip odziva konstrukcije pri potresni obtežbi in ocenili kakšna je njena nosilnost, pod predpostavko primernih konstrukcijskih detajlov. Dejanska stopnja nosilnosti in duktilnosti stebrov je bila potem ocenjena z eksperimentom, narejenim na ZAGu.

Ugotovili smo, da upogibna nosilnost stebrov zadostuje potresni obtežbi, reducirani s faktorjem 1,5. Torej lahko pričakujemo delno duktilno obnašanje konstrukcije, pod pogojem, da ne pride do uklona vzdolžnih armaturnih palic, ki niso objeta s stremeni. V eksperimentu do uklona vzdolžne armature ni prišlo.

V kolikor se strogo držimo določil standarda EC8/2, v velikem številu stebrov (stebri v osi S15 – S18 in S25 – S30) strižna nosilnost ne zadošča potresnim zahtevam, saj pri večjih strižnih napetostih moramo, v skladu s standardom zanemariti prispevek betona k strižni nosilnosti. Glede na rezultate eksperimenta, ki je pokazal mnogo večjo strižno nosilnost, kot je tista, ocenjena strogo upoštevajoč določila standarda EC8/2, lahko pri oceni strižne nosilnosti upoštevamo tudi prispevek betona. V tem primeru strižna nosilnost ne zadošča v stebrih S15 – S16 in S28 – S30.

Ocenjena duktilnost za ukrivljenost stebrov je znašala več kot 7, kar je po EC8/2 meja, pri kateri pri razmeroma majhnih osnih silah posebni ukrepi za objetje betonskega prereza niso potrebni. Ta meja je postavljena pod predpostavko, da so konstrukcijski detajli standardni. Ker stebri viadukta Ravbarkomanda vsebujejo detajle, ki niso tipični za gradnjo na potresnih območjih, je bilo potrebno z eksperimentom ugotoviti ali stebri dejansko zagotavljajo takšno duktilnost.

Analiza konstrukcije v vzdolžni smeri je pokazala, da so lahko pri močnejši potresni obtežbi ogrožena ležišča nad kratkimi stebri, kjer zahtevani pomiki pri potresni obtežbi lahko presežejo dopustne pomike za več kot dvakrat.

UPORABLJENI VIRI

DIAS, Program za račun nosilnosti in ukrivljenosti armiranobetonskih prerezov, Univerza v Ljubljani, FGG, IKPIR, 1990.

DIAS-P, Program za dimenzioniranje armiranobetonskih prerezov, Univerza v Ljubljani, FGG, IKPIR, 1993 – 2006.

Evrokod 2: Projektiranje betonskih konstrukcij – Del 1-1: Splošna pravila in pravila za stavbe, SIST EN 1992-1-1.

Evrokod 8 : Projektiranje potresnoodpornih konstrukcij, Del 1 : Splošna pravila, potresni vplivi in vplivi na stavbe, SIST EN 1998-1, marec 2005.

Eurocode 8: Design of structures for earthquake resistance, Part 2: Bridges, prEN 1998-2, DRAFT No 5, (pr Stage 51), June 2004.

SAP 2000, Structural Analysis Programe, Computers and Structures Inc, 1995, Berkeley, ZDA, verziji 8 in 9.

Študije in modelne preiskave potresne ranljivosti in predlogi utrditve za stebre viadukta Ravbarkomanda in sorodno konstruirane premostitvene objekte – eksperimentalni del. 2006. Ljubljana, Zavod za gradbeništvo.

OSTALI VIRI

Campion, R. P. 2001.Engineering with rubber: how to design rubber Components. Munich, Hanser, Cincinnati. HanserGardne

Crowther, Bryan 2001. The handbook of rubber bonding. Shrewsbury. Rapra Technology. Kelly, James M. 1993. Earthquake-resistant design with rubber. London, Springer-Verlag. O'Brien, Eugene J. 1994. Reinforced and prestressed concrete design. Harlow, Longman Scientific & Technical.

Welker, Klaus-Dieter 1989. Das Verhalten von gummielastischen Kupplungen bei verändlicher Temperatur, Dissertation. Dortmund, samozaložba.