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Abstract: Most cadastral systems today are coordinate-based and contain only a weak or no reference
to measurements or the origin of the information. In some contexts, this is largely due to the transition
of land data management and maintenance from an analogue to a digital environment. This study
focuses on analysing the importance of the measurement-based cadastre and the digitisation process
in North Macedonia and Slovenia. The survey-based boundary data and their integration into the
digital environment were not considered in either case study. The positional differences between the
survey-based boundary coordinates and the graphical coordinates of the boundaries are significant.
The RMSE(2D) for Trebosh was 48 cm, and the RMSE(2D) for Ivanjševci was 56 cm. Consequently,
the differences in location affected the areas of the cadastral parcels, resulting in an RMSE of 26 m2

and 23 m2 for Trebosh and Ivanjševci, respectively. These differences can be considered as differences
within the cadastral boundary data. Therefore, before harmonising the data between the cadastre
and the land register, the inconsistencies within the cadastral data should be eliminated first. The
differences in the location of cadastral boundaries and parcel area create new challenges in cadastral
procedures (formatting of parcels), conflicts in the relocation of boundaries, and impacts on the
land market. The solution lies in the way data is maintained, avoiding duplication of attributes or
eliminating inconsistencies (after duplication). Both solutions require further modifications of the
legal framework for cadastral procedures related to boundary adjustments and data compliance. This
study provides a basis for evaluating inconsistencies in cadastral data and highlights the importance
of proper source data selection in the digitization process.

Keywords: land; cadastre; cadastral map; surveying; measurement-based; cadastral triangular model

1. Introduction

The land administration system (LAS) includes two main functions: the cadastre and
land registration [1,2]. The cadastre is usually defined as a public inventory of surveyed
land boundaries. Land registration defines the associated land rights and the parties
involved [3,4]. In recent decades, much attention has been paid to the establishment of a
LAS but not to its maintenance [5]. That is, once the relationship between people, rights,
and the land was recorded, the procedures for capturing changes to these entities were
poorly defined and ill-conceived [6]. Efforts to build LAS focused primarily on countries
with low cadastral coverage [7]. However, not much attention was paid to maintaining the
system and updating land data, for instance, in countries with complete cadastre [8].

Surveying and mapping techniques have been and are still used differently in different
cases. For example, advanced and innovative techniques are being tested and applied
mainly in developing countries with low cadastral coverage to establish a LAS [9,10].
These are generally indirect techniques, such as delineating visible land boundaries using
remote sensing data, including satellite imagery, and, increasingly, imagery from unmanned
aerial vehicles (UAVs) [11–14]. In developed contexts, when countries have full cadastral
coverage and registered land rights, there are few case studies reporting on the ability
of UAV-based cadastral mapping to update land data and meet accuracy requirements
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compared to ground-based methods [15–20]. However, image-based cadastral mapping
is not new in these countries. In the 20th century, particularly from 1930 onwards, aerial
surveys and photogrammetric mapping methods were used to collect cadastral data in
many countries [21,22].

In countries with a long tradition of the so-called parcel-oriented cadastre and a
complete cadastre, conventional surveying (e.g., theodolites) and mapping techniques were
used, which required high positional accuracy, and cadastral outputs were produced in
analogue form. In these cases, the digitization process was initiated in the 1990s and at
the beginning of the new century with the digitisation of existing analogue cadastral maps
and the computerisation of land records [23]. The digitisation process was followed by the
conversion and integration of cadastral data, change of the environment—for example, from
computer-aided design (CAD) to geographic information systems (GIS), and harmonisation
of cadastral data. Today’s cadastral surveying is still ground-based but more advanced,
including total stations and receivers of global navigation satellite systems.

The conversion of the cadastre from paper-based to digital data made it possible to
better identify inconsistencies between the cadastral data and the land register [24,25].
These discrepancies usually concerned the common attributes of the cadastre and the land
register, such as the parcel numbers (updated in the cadastral map but not in the land
register, or vice versa) and the differences in the area (the area calculated from the cadastral
map differs from the area in the land register document) [24,26]. After digitisation, a
harmonisation process was initiated in many countries to eliminate inconsistencies [24].
This process is highly dependent on the cadastral data on boundaries, which was used as
input to compare and identify inconsistencies in the land records.

Digitisation also led to a change from a measurement-based cadastre to a coordinate-
based cadastre in some countries [27]. The processing of measurement data and the storage
of the resulting coordinates corresponds to a coordinate-based cadastre. The measurement-
based cadastre uses measurement data as a carrier of metric information [28]. To implement
a digital measurement-based cadastre and manage survey data digitally, supporting tools
and improving the design of the traditional environment GIS are required [29].

In most cases, the digital ownership layer was created by scanning and vectorising
analogue cadastral maps. This raises the question of whether the digitization process was
properly carried out in regions where measurement-based cadastral data from fieldwork
existed alongside analogue cadastral maps. To get a clear idea of the complexity and quality
of cadastral data [30], especially land boundaries, it is necessary to take into account the
historical development of the country under consideration [31,32].

This study explores the challenges posed by the digitization process and the complexity
of boundary definition in countries with traditional parcel-oriented cadastre. The objective
is to identify the inconsistencies in cadastral boundary data, which are mainly caused by the
way they are maintained, and to reconsider the process of digitisation. We used the cadastral
triangulation model (CTM) [30] as a framework to present and clarify these challenges. It
was also used to evaluate the cadastral boundaries and the digitising process. The CTM
distinguishes three types of land boundaries, namely physical boundaries, documentary
boundaries, and digital spatial boundaries, and which of these should be treated as cadastral
or legal boundaries.

The paper is organised as follows: after a description of the research context (Section 1),
an overview of the CTM and the selected case studies, including the dataset on land
boundaries, and the methodological approach are described (Section 2). The results are
then presented and discussed (Section 3). Finally, general statements are made about the
CTM and variations, the revised digitization process, the importance of measurement-based
data, and inconsistencies in land boundary data (Section 4).
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2. Materials and Methods
2.1. Cadastral Triangular Model

The cadastral triangular model (CTM) was formulated and proposed by Grant et al. [33]
and can be applied to analyse cadastral systems using cadastral data for land boundaries.

The model consists of four elements: physical boundary, documentary boundary,
digital spatial boundary, and legal boundary. The last element is a conceptual element used
to clarify and determine which of the previous three elements should be considered formal
or cadastral when determining the boundary position in the field.

Physical boundaries are clues to the land boundary in the real physical world. Physical
features may be natural features (e.g., land cover), including movable boundaries such
as riverbanks, or man-made features such as walls and fences visible on remote sensing
imagery. This group also includes boundary markers that may be visible on satellite or
aerial imagery. The arrows pointing to the physical boundary (Figure 1) represent the use
of information from the documentary records or the digital spatial boundary to either place
boundary markers at boundary locations or record and locate existing physical features
that represent boundaries (natural boundaries, fences, walls, markers).
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Figure 1. Cadastral Triangular Model (CTM) [33].

A documentary boundary is evidence of a recorded boundary based on documents
that are legally backed up by a regulated procedure, such as an adjudication or a cadastral
survey. This type of information includes survey measurements, e.g., measurements on
boundary markers, offsets to other features, calculated boundary dimensions, etc. It also
includes cadastral maps and plans showing the relationships between land boundaries,
markers, and other features. The documentary boundary also includes survey plans, field
notes, and other documents based on the cadastral survey. The arrows pointing to the
documentary boundary (Figure 1) represent the recording and approval of field notes,
calculation sheets, reports, and survey plans based on the measurement of boundary stones
or other markers and physical features. Paper-based cadastral maps of boundaries are also
classified as documentary boundaries.
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A digital spatial boundary is a boundary that is stored in a digital spatial database.
This database is usually initially created by scanning and georeferencing analogue cadastral
maps. The points, lines, and polygons are defined as spatial objects that have coordinates
with respect to an official coordinate reference system and the topological relationship
between spatial objects is defined. Arrows pointing to the digital spatial boundary (Figure 1)
represent the use of documented boundary information or information about the location
of physical boundary features (coordinates) to maintain data on spatial objects in the
database by adding changed or new boundaries (e.g., subdivisions) and to update and
adjust the digital spatial database based on the surveying of physical boundaries using
improved measurements.

2.2. Cadastral Boundary Data

Most designs of land administration GIS solutions are characterised by the fact that the
position of land boundaries is represented by derived coordinates rather than by original
measurements [29]. This approach has also affected the maintenance and management
of cadastral data. Many cadastral systems today are coordinate-based and have various,
sometimes only a weak reference to measurements or the origin of the information [34].

The LAS of North Macedonia and Slovenia were selected for this study. The selection
is justified by the availability of similar cadastral data on land boundaries, which are based
on measurements and coincide with the elements of the CTM. Specifically, the focus is
on cadastral districts that have field books from land surveying in addition to analogue
cadastral maps. In addition to data collection, literature research and interviews with key
informants were also conducted.

2.2.1. Measurement-Based Data and Analogue Cadastral Maps

In North Macedonia, the main functions of the LAS are performed by the Agency
for Real Estate Cadastre (AREC). In Slovenia, the same functions are performed by two
public bodies. The Surveying and Mapping Authority of the Republic of Slovenia (SMA)
is responsible for the cadastre, and land registration is carried out at the Supreme Court.
Both countries have a complete cadastre, and the maintenance of the cadastre, such as
cadastral surveying and the determination of cadastral boundaries, is carried out by private
surveying offices [24,35]. In North Macedonia, the Real Estate Cadastre is the public
register of registered real estate boundaries (land plots, buildings, parts of buildings), real
estate rights and parties involved. The Real Estate Cadastre was created mainly through
three types of registrations: systematic, sporadic and conversion [36]. In the latter, the
measurement-based cadastral data of boundaries were converted from Land cadastre
into Real Estate cadastre through a digitisation process [24]. The Slovenian LAS is very
similar. The Slovenian Real Estate Cadastre, introduced in 2022 by merging the former land
cadastre and building cadastre [35], includes data on land boundaries, buildings, and parts
of buildings. The data on building parts forms the basis for the registration of strata titles
in the land registry.

In North Macedonia, the measurement-based cadastral survey (field book known as
tacheometric survey) was conducted from 1928–1945. It covered some towns and their
surroundings (see Figure 2a, in light grey). The cadastral survey was carried out using the
surveying technologies of the time, such as theodolites. During this period, 549 cadastral
districts were surveyed. The total surveyed area was about 7000 km2, which is almost
30% of the total territory. For the rest of the territory, around 70% of cadastral maps were
produced using airborne methods (Figure 2a, in white). From 1950 to 1990, analogue stereo
plotters were used to produce analogue cadastral maps. From 1998 to2005, cadastral maps
were produced directly in digital format using stereo instruments SD2000 and SD3000 [36].
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Figure 2. Regions with measurement-based cadastral survey including surveying field books;
(a) Cadastral survey in North Macedonia in the period 1928–1945 (grey) [36]. (b) Cadastral
survey in Slovenia in the period 1945–1974 and in the period 1975–2005 (red and yellow) [37];
(c) Example of archived/initial cadastral map at 1:2500 scale; (d) Example of working cadastral map
at 1:2500 scale.

As far as their origin is concerned, cadastres were established on the territory of
present-day Slovenia in the period between the middle of the 18th and 19th centuries. The
Theresian cadastre was characterised mainly by the fact that land was not surveyed but
only inventoried and assessed in terms of its yield on the basis of the estimated area, soil
quality and type of crops. The Josephinian cadastre from the end of the 18th century was
characterised mainly by the fact that the land was surveyed using the prescribed surveying
instruments (wooden surveying stick, surveying chain, wooden pegs, and wooden posts),
but the cadastral maps were not prepared for all inventoried areas. An important role in the
introduction of a more stable cadastre was played by the patent of Emperor Franz Joseph I
in 1817. Surveying with surveying instruments (surveying table, diopter with ruler, plumb
bob, stake-out flags, and target marks) was carried out by trained surveyors, but the maps
were drawn directly in the field, and there were only limited numerical data archived in
the cadastre—the so-called graphic cadastre. The use of surveying tables was abolished in
the 1920s, while the modern polar and orthogonal surveying methods with the required
field books had already been introduced at the end of the 20th century [38].

Cadastral surveying of wider areas, e.g., of the whole cadastral district or part of it,
based on field books (tacheometry) was carried out partly already before 1945, but more
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massively in the period 1945–1974, when the new coordinate system D48/GK was intro-
duced [39]. Systematic cadastral surveying and maintenance of cadastral data continued
on the basis of the legislation from 1974 until 2000; however, with the new legislation in
2000, systematic land surveying of larger areas was no longer supported by the state;
there have been only a few projects in the last two decades, except for land consolidation,
which has also contributed to higher coverage of quality cadastral data. Consequently, the
land cover with the so-called numerical cadastre is still very limited in Slovenia [37,40].
Systematic land surveying was conducted in urban areas and the north-eastern part of the
country covering approximately 12% of the territory (Figure 2b, red and yellow) [37]. This
was and still is reflected in the method of updating cadastral maps, i.e., in the areas with
the new cadastral land survey, the measurement-based method is used for updating maps
while in the areas of the old graphic cadastre concerning its origin maps are updated using
some geometric and positional adjustments [39].

In North Macedonia and Slovenia, the map of the first cadastral survey is called
the “archived map” (Figure 2c). Boundary updates for all cadastral-related events (e.g.,
subdivisions, land consolidation) were drawn on a cadastral map called a “working map”
(Figure 2d), which was a copy of the archived cadastral map. Cadastral boundaries were
mapped mostly at a scale of 1:2500. In urban areas, scales of 1:500 and 1:1000 have also been
used, while the land boundaries in mountainous areas were mapped at a scale of 1:5000.

In both cases, all cadastral maps were accompanied by field books detailing the
measurements of each cadastral boundary point (Figure 3). In addition, special geodetic
reference networks were designed for the surveyed parts, using the network points as
station/orientation points from which the survey (direction, distance) of each boundary
point was made. These networks are very dense and accurate as they are connected to
the national trigonometric network. The network points are often situated underground
(30–40 cm deep) and are still available nowadays. If a control point is damaged or lost, the
next control points are located at a distance of about 150–200 m (Figure 2c,d).
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Figure 3. (a,b) Surveying field books; (a) Surveying field book from initial cadastral survey—North
Macedonia; (b) Surveying field books in process of cadastral maintenance—Slovenia.

Field books represent a measurement-based cadastral survey, and the derived data on
land boundaries based on CTM can be categorised as documentary boundaries.

2.2.2. Digital Cadastral Data—Process of Digitisation

In countries with complete cadastral coverage, the most common method of creating
digital cadastral maps, i.e., the land boundary data layer, is to scan and vectorise bound-
aries from analogue cadastral maps. This was selected in North Macedonia and Slovenia
as a suitable method for extracting boundary features in vector format. However, the
cadastral measurements from the field books were not considered in the digital conversion,
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although the analogue cadastral maps were derived from the measurements archived in the
field books.

The digitisation of analogue cadastral maps was essentially done in a three-steps
process: (1) analogue cadastral maps were scanned, (2) georeferenced, and (3) vectorised
(Figure 4). This approach introduced additional geometric errors in each of these three
steps. In addition, there is a mapping error due to the map scale. The field books, on the
other hand, may only contain errors from surveying.

Land 2022, 11, x FOR PEER REVIEW 7 of 20 
 

boundaries from analogue cadastral maps. This was selected in North Macedonia and 
Slovenia as a suitable method for extracting boundary features in vector format. However, 
the cadastral measurements from the field books were not considered in the digital con-
version, although the analogue cadastral maps were derived from the measurements ar-
chived in the field books. 

The digitisation of analogue cadastral maps was essentially done in a three-steps pro-
cess: (1) analogue cadastral maps were scanned, (2) georeferenced, and (3) vectorised (Fig-
ure 4). This approach introduced additional geometric errors in each of these three steps. 
In addition, there is a mapping error due to the map scale. The field books, on the other 
hand, may only contain errors from surveying. 

 
Figure 4. Digitisation of analogue cadastral maps in North Macedonia and Slovenia. Field books 
with measurement data were not considered in this process. 

This approach resulted in all cadastral features being in vector format and initially 
maintained in the file system. Later they were converted to coordinate-based GIS plat-
forms and stored in cadastral spatial databases. Field books containing surveying meas-
urements were not integrated into such a GIS platform, nor was the coordinate-based GIS 
established by calculating coordinates from surveying measurements. 

In addition, the separate maintenance of two databases, the cadastral spatial database 
and the land registry database, resulted in numerous inconsistencies between the two da-
tabases, such as a cadastral parcel being updated (divided) in the administrative part but 
not in the graphical part, mismatch on numeration of cadastral parcels, inconsistencies in 
the data on cadastral parcel area (one data on parcel area in the land title certificate, an-
other data on parcel area in the graphical part) etc. [24,25]. These inconsistencies were one 
more reason to start harmonising process between the two databases. The harmonisation 
was based on vectorised land boundaries in both cases. 

Vectorised cadastral boundaries are categorised as digital spatial boundaries accord-
ing to the CTM. 

2.3. Study Areas—Inconsistencies in Cadastral Boundary Data 
Two cadastral districts (municipalities), one from North Macedonia and one from 

Slovenia, were selected to identify the inconsistencies in the boundary data and to revise 
the digitisation process. The cadastral districts of Trebosh and Ivanjševci were selected for 
North Macedonia and Slovenia, respectively (Figure 5). Trebosh is located in the north-
western part of North Macedonia and has an area of 446 hectares. Ivanjševci is located in 
the north-eastern part of Slovenia and has an area of 235 hectares. 

The data collection included cadastral survey measurement data such as tacheomet-
ric reports, official georeferenced cadastral maps (used in the vectorisation process), vec-
torised cadastral boundaries, and official coordinates of the geodetic network from which 
the points of the boundaries were surveyed (Figure 5). Data were collected from local ca-
dastral offices and e-portals of both countries [41,42]. 

Field Books
Error 1

Cadastral mapping 
(paper-based)

Error 2

Scanning
Error 3

Georeferencing
Error 4

Vectorization
Error 5

Vectorised 
Cadastral Map

Figure 4. Digitisation of analogue cadastral maps in North Macedonia and Slovenia. Field books
with measurement data were not considered in this process.

This approach resulted in all cadastral features being in vector format and initially
maintained in the file system. Later they were converted to coordinate-based GIS platforms
and stored in cadastral spatial databases. Field books containing surveying measurements
were not integrated into such a GIS platform, nor was the coordinate-based GIS established
by calculating coordinates from surveying measurements.

In addition, the separate maintenance of two databases, the cadastral spatial database
and the land registry database, resulted in numerous inconsistencies between the two
databases, such as a cadastral parcel being updated (divided) in the administrative part but
not in the graphical part, mismatch on numeration of cadastral parcels, inconsistencies in
the data on cadastral parcel area (one data on parcel area in the land title certificate, another
data on parcel area in the graphical part) etc. [24,25]. These inconsistencies were one more
reason to start harmonising process between the two databases. The harmonisation was
based on vectorised land boundaries in both cases.

Vectorised cadastral boundaries are categorised as digital spatial boundaries according
to the CTM.

2.3. Study Areas—Inconsistencies in Cadastral Boundary Data

Two cadastral districts (municipalities), one from North Macedonia and one from
Slovenia, were selected to identify the inconsistencies in the boundary data and to revise
the digitisation process. The cadastral districts of Trebosh and Ivanjševci were selected for
North Macedonia and Slovenia, respectively (Figure 5). Trebosh is located in the north-
western part of North Macedonia and has an area of 446 hectares. Ivanjševci is located in
the north-eastern part of Slovenia and has an area of 235 hectares.

The data collection included cadastral survey measurement data such as tacheometric
reports, official georeferenced cadastral maps (used in the vectorisation process), vectorised
cadastral boundaries, and official coordinates of the geodetic network from which the
points of the boundaries were surveyed (Figure 5). Data were collected from local cadastral
offices and e-portals of both countries [41,42].

A comparative method was used to analyse the digitisation and location differences
between the two data layers (measurement-based and vectorised data). First, the coordi-
nates of the boundary points were calculated from the field books/tacheometric reports.
Second, the parcel boundaries were plotted considering the calculated coordinates from
the tacheometry, which are in the formal state coordinate system. Then, the cadastral
boundaries constructed from the tacheometric reports were compared with the vectorised
land boundaries.
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Positioning accuracy was assessed as root mean square error (RMSE). The value of
RMSE is usually calculated using a series of control measurements (coordinate values
from an independent source with higher accuracy for identical points). In this study,
the boundary coordinates obtained from the field book data were considered as ground
truth, while the coordinates obtained from the vectorised boundaries were considered as
measured values. In addition to calculating the differences in east and north directions,
another distance-based analysis was performed. Moreover, after the parcel boundaries
were constructed based on field books, the area differences between the parcels between
the two layers were assessed.

3. Results and Discussions
3.1. Cadastral Boundary Data in Pre-Digitisation Phase

The focus of this study has been on cadastral districts with measurement-based data
on land boundaries along with analogue cadastral maps, i.e., the cadastral districts where
ground-based cadastral surveying was conducted in the past century. Observation of the
selected case studies, namely the cadastral districts of Trebosh and Ivanjševci, showed
that the situation in the pre-digitisation period was clearer in terms of legal or cadastral
boundaries. For example, during the adjudication (static model), survey-based data on
physical boundaries were recorded and stored in field books. Analogue cadastral maps
were created from the cadastral measurements to allow for more efficient data management
and keep the geometric and positional accuracy derived from the quality of surveying. The
field books, together with the analogue cadastral maps, formed the documentary boundary
that also defined the legal/cadastral boundary (Figure 6a).

While the cadastre was maintained, survey data on new land boundaries continued to
be recorded in the field books and changes were mapped on paper-based cadastral maps.
In the event of boundary disputes or missing boundary markers, data from the field books
were used to locate the physical boundary on site.

Discrepancies between the physical boundaries and the documentary boundaries
occurred when the documentary boundaries were incorrect or outdated (Figure 6b). The
errors may have occurred during the cadastral survey, resulting in discrepancies in the
location of the boundary. The outdatedness was usually caused by man-made informal
changes of boundaries in the field or by natural changes such as riverbanks, and the time
factor of these types of obsolescence gave some precedence to the physical boundaries
so that in the case of disputes or other land-related legal events, they were considered
legitimate because they had been in use for so long.



Land 2023, 11, 2318 9 of 19

Land 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 
(a) (b) 

Figure 6. Evaluation of land boundaries and inconsistencies based on cadastral triangular model 
(CTM); (a) CTM for static model in pre-digitisation period; (b) CTM for dynamic model/mainte-
nance in pre-digitisation period. 

While the cadastre was maintained, survey data on new land boundaries continued 
to be recorded in the field books and changes were mapped on paper-based cadastral 
maps. In the event of boundary disputes or missing boundary markers, data from the field 
books were used to locate the physical boundary on site.  

Discrepancies between the physical boundaries and the documentary boundaries oc-
curred when the documentary boundaries were incorrect or outdated (Figure 6b). The 
errors may have occurred during the cadastral survey, resulting in discrepancies in the 
location of the boundary. The outdatedness was usually caused by man-made informal 
changes of boundaries in the field or by natural changes such as riverbanks, and the time 
factor of these types of obsolescence gave some precedence to the physical boundaries so 
that in the case of disputes or other land-related legal events, they were considered legit-
imate because they had been in use for so long. 

3.2. Digitising Cadastral Boundary Data—Revised 
In both cases, i.e., North Macedonia and Slovenia, analogue cadastral maps were 

used as the main input for the digitisation process. The georeferenced maps were vector-
ised, but the measurement data were not taken into account. On the contrary, the coordi-
nates of the boundary points were to be calculated from the field books to avoid errors 
caused additionally by the scanning, georeferencing and vectorisation of the analogue ca-
dastral maps. The scanned and georeferenced cadastral maps (in raster format) served as 
a background and were used as a guide to linking the calculated coordinates of the bound-
ary points more efficiently. The digitisation process carried out in practice is shown in 
Figure 7a. The revised digitisation approach based on the CTM is shown in Figure 7b, and 
the workflow is reproduced in Figure 8. 
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3.2. Digitising Cadastral Boundary Data—Revised

In both cases, i.e., North Macedonia and Slovenia, analogue cadastral maps were used
as the main input for the digitisation process. The georeferenced maps were vectorised,
but the measurement data were not taken into account. On the contrary, the coordinates
of the boundary points were to be calculated from the field books to avoid errors caused
additionally by the scanning, georeferencing and vectorisation of the analogue cadastral
maps. The scanned and georeferenced cadastral maps (in raster format) served as a
background and were used as a guide to linking the calculated coordinates of the boundary
points more efficiently. The digitisation process carried out in practice is shown in Figure 7a.
The revised digitisation approach based on the CTM is shown in Figure 7b, and the
workflow is reproduced in Figure 8.
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Figure 7. (a) The process of digitisation conducted in North Macedonia and Slovenia based on CTM;
(b) Revised process of digitisation based on CTM by considering surveying field books.
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The revised digitisation workflow still contains systematic errors from the cadastral
surveying. In addition, errors can occur due to the computerisation of numerical surveying
data or calculations. However, human errors can be easily detected and corrected in most
cases. In contrast, the errors that occurred during the vectorisation of analogue cadastral
maps cannot be simply traced or avoided (Figure 4).

3.3. Identification of Inconsistencies in Cadastral Boundary Data

The proposed digitisation approach can be applied to both coordinate-based GIS and
measurement-based GIS if it supports the storage and visualisation of scanned and/or
computerised field books. In this study, a coordinate-based approach was used as the aim
was to identify inconsistencies between the two layers of land boundaries.

Once the boundary points were imported and compared to the vectorised boundaries,
inconsistencies in the position of the boundary points were also detectable by visual
interpretation. Some examples of such inconsistencies are shown in Figure 9.
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Figure 9. Inconsistencies in cadastral data on land boundaries. (a) Calculated coordinates of boundary
points from tacheometry (field book) and overlaid with vectorised boundaries (green); (b) Connected
boundary points for area-based analysis; (c) Example of differences in boundary positions—natural
boundary; (d) Example of differences in boundary positions—man-made boundary.
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In addition to the visual analysis, an additional statistical analysis was performed. The
differences in easting and northing of parcel boundary points are shown in Figure 10a,b.
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Figure 10. (a,b) Coordinate differences (easting and northing) for boundary points in cadastral disrict
Trebosh, North Macedonia, and (c,d) distance—based analysis between pairs of boundary points
calculated from measurements and obtained from vectorisation.

Positional analysis was performed by calculating the RMSE and distances between
identical boundary points from two spatial data layers (Figure 10c,d). The boundary points
from the two layers had the same IDs, and a list of coordinate pairs was created to conduct
the analysis. The differences in the boundary positions are listed in Table 1. Furthermore,
an area-based analysis was performed by calculating the RMSE, and the minimum, mean,
and maximum area differences. The area differences are shown in Table 2.

The results showed similar differences between the measurement-based and vectorised
coordinates of the selected case studies. The horizontal RMSE was 0.48 m and 0.56 m for
Trebosh and Ivanjševci, respectively. The distance-based differences yielded a mean of
0.40 m for Trebosh and 0.49 m for Ivanjševci. However, in some cases, the distance between
the measurement-based coordinates and the vectorised coordinates resulted in a difference
of more than 2 m (Table 1).

These types of differences in boundary data can be categorised as discrepancies be-
tween the measurement-based (or documentary) boundaries and the digital spatial bound-
aries. Simply put, discrepancies within cadastral data about boundaries. The selection of
cadastral data for determining or staking land boundaries in the field should be considered
critical. This has primarily to do with the certainty and confidence that the surveyor has
in the cadastral data. In addition to the computable coordinates, the survey data provide
additional spatial or metric information to locate the position of the boundary in the field,
which brings confidence when staking boundary points [28,34].
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Table 1. Positional accuracy of boundary points—documentary boundaries compared to digital
spatial boundaries.

Cadastral District RMSE (x) RMSE (y) RMSE (2D) min∆ (D) mean∆ (D) max∆ (D)

Trebosh, North
Macedonia 0.38 m 0.29 m 0.48 m 0.05 m 0.40 m 2.10 m

Ivanjševci, Slovenia 0.43 m 0.36 m 0.56 m 0.01 m 0.49 m 2.29 m
∆ difference.

Table 2. Differences of land parcel areas—documentary boundaries compared to digital
spatial boundaries.

Cadastral District RMSE (Area) min∆ (Area) mean∆ (Area) max∆ (Area) Average Parcel (Area)

Trebosh, North Macedonia 25.9 m2 1 m2 18.7 m2 81.1 m2 2955.8 m2

Ivanjševci, Slovenia 22.8 m2 1 m2 17.4 m2 77.4 m2 1252.4 m2

∆ difference.

Having only the coordinates of boundary points does not seem to be sufficient to
locate the boundary in the field with certainty since there is no additional information or
metric relationships to other spatial objects or geodetic points. The main advantage of a
measurement-based system over a coordinate-based system is the ease of updating and
improving accuracy over time due to the existence and value of measurements that are
independent of other measurements [28,29,34]. For this reason, documentary boundaries
are preferable for determining cadastral boundaries or relocating boundary points [33].

Consequently, the differences in boundary lines resulted in differences in the area of
the plots. The area differences resulted in an RMSE of 26 m2 for Trebosh and an RMSE of
23 m2 for Ivanjševci, corresponding to average plot sizes of 2956 m2 and 1252 m2, respec-
tively. However, the differences in area are not directly related to plot size. They are mainly
related to the mapping scale, the shape of the plot, and the mapping skills of the operator.
Sometimes the differences were larger for smaller plots; for example, a difference of 23 m2

was registered for a plot of 933 m2 and 8 m2 for a plot of 2788 m2. The mean area difference
for Trebosh was 19 m2, and for Invanjševci, 17 m2 (Table 2).

The area is one of the most important units in the cadastre and especially in the land
market [1,43]. Usually, prices for land are set per square meter. Thus, the question of which
data should be considered relevant in the digitization process, namely the documentary or
the vectorised, affects the cadastral procedures and the legal documents. It also affects the
harmonization process between the attributes of the cadastre and the land registration.

For example, in the case of North Macedonia, the area is one of the attributes indicated
in the land registration. In the harmonization of attributes between the cadastre and the
land registry, vectorised cadastral boundaries were considered relevant, which resulted in a
change of the areas in the land title certificates [24]. In addition, many cadastral boundaries
were determined using documentary data on boundaries (prior to digitization), and these
differences, in post digitizing phase, pose an additional challenge when formatting parcels,
e.g., in subdivision procedures, i.e., half of the parcel from documentary data does not
correspond to half of the vectorised parcel.

In Slovenia, the situation is different; the area is part of the cadastre and is not shown in
the land title certificate. Therefore, during land formatting or harmonization, no additional
changes need to be made in the land register or the land title certificates related to this area.
Moreover, it offers the possibility of using both documentary and digital spatial boundaries
(even if created by vectorising) as a sporadic process. The emplacement of land boundaries
continues to be done with documentary boundaries case by case, where alignments are
applied to digital spatial boundaries without complication regarding the changes in the
area of land parcels.

As a rule, there are inconsistencies between cadastral and land registry data [24,25],
mainly due to unclear definitions of attributes or duplication of attributes. Cadastral data,
together with attributes generated from geometry, should be part of the cadastre and not
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duplicated in the land registry [3]. For this reason, many harmonization processes have
been performed to eliminate such inconsistencies. The harmonization process requires data
in digital format, namely vector format. However, before harmonisation, or more precisely
during digitization, the inconsistencies between the cadastral data themselves should be
systematically avoided.

3.4. Cadastral Boundary Data in Post-Digitisation Period

The digitisation approach has also affected the maintenance of cadastral data on land
boundaries. In land surveying practice, determining the location of the parcel boundary
and recording the land boundary data involves on-site measurements. Digitisation has
led to changes in surveying technologies and methods, and it seems that the conventional
approach to surveying is no longer a precondition for practising surveying, especially in
the land administration domain.

In the case of North Macedonia, after establishing digital data the emplacement of
boundary marks is done using digital spatial boundary coordinates. This approach is
generally less common, considering that other evidence, such as documentary boundary,
is available and more reliable. Prior to digitisation in areas where measurement-based
cadastre was established, all cadastral procedures, including the emplacement of boundary
points or to locate existing physical features that represent boundaries, were done using the
field book data, i.e., through documentary boundary (Figure 11). Thus, once digital spatial
boundaries were available, documentary boundaries are no longer used and maintained
(Figure 12a).
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The Slovenian approach to post-digitisation is far too different. Although digital
spatial boundaries have been created from analogue cadastral maps, even in the areas
with high-quality survey data in field books, the emplacement of boundaries in the field
still relies on documentary boundary records. In this case, the surveyor must refer to the
records of documentary evidence and calculate the coordinates of the boundary points
from the measurements. This approach is used only sporadically and on a case-by-case
basis. Once the documentary boundary is determined onsite, the necessary alignments are
made to the digital spatial boundary.

In the case of a new boundary, e.g., subdivision, the physical features representing
the boundary are surveyed and considered as documentary as well as digital spatial
boundaries. The newly surveyed boundaries, namely documentary boundaries, are stored
in digital format in the form of surveying reports. In addition, these new records are used
to reallocate the boundary in place if needed.

In both cases, North Macedonia and Slovenia, the new boundaries are surveyed using
ground-based techniques, including total stations and GNSS receivers. The application of
indirect-mapping techniques falls outside the scope of cadastral surveying and is usually
used for other surveying purposes.

3.5. CTM for Indirect-Mapping Techniques—Fit for Purpose

The current CTM, as proposed by Grant et al. [33], may be considered more appro-
priate for developed countries that have a long cadastral history and where ground-based
surveying techniques were used, with the original cadastral output being on paper. This
is primarily because digital spatial boundaries were created by digitising documentary
boundaries in analogue format (Figure 7a).

For developing countries adopting a digital cadastre, this approach should be revised
since no digitization process is required. Today, survey data and cadastral maps are directly
available in digital format, and documentary boundaries may also be digital. However,
the content of documentary boundaries is strongly dependent on surveying and mapping
techniques that are applied and used.

For example, the Fit-for-purpose initiative [7] suggests using indirect mapping tech-
niques instead of ground-based ones. In this sense, UAV-based cadastral mapping is
increasingly being used to implement cadastres in countries with little or no cadastral
coverage. In indirect mapping techniques, the documentary boundaries for land parcels



Land 2023, 11, 2318 15 of 19

may be in the form of photo sketches with additional survey data or reports, such as line
dimensions of the land parcel or other objects visible in the image, sensor characteristics,
flight parameters, image accuracy, ground sampling distance, etc. However, the need for
documentary boundaries depends on the purpose of the application and the required posi-
tional accuracy. Namely, Fit-for-purpose can be only introduced digital spatial boundaries
by delineating land boundaries from remote sensing imagery, while digital documentary
boundaries can be optional (Figure 13a).
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In more developed contexts that have full cadastral coverage, the maintenance of
cadastral boundaries is usually done with ground-based techniques. The application of
UAV-based cadastral mapping is very limited—there are few case studies on updating and
evaluating the accuracy and compliance [18,44]. The main challenge in this context is the
maintenance of cadastral data over land boundaries [6]. The changes in physical boundaries
that cadastres attempt to map are complex and dynamic [30], and underestimating the
dynamics of human-land relationships leads to outdated cadastral maps. In other words,
this leads to inconsistencies between physical and cadastral boundaries—both digital
spatial and documentary. An automated approach is needed to identify areas that need to
be updated or where there is a discrepancy between physical and cadastral boundaries.

In cadastral applications, UAVs have shown great potential for mapping urban and
rural areas. In addition, UAVs provide a fast, accurate, and flexible system for data collec-
tion. This is mainly due to the good visibility of physical boundaries (artificial or natural)
in a UAV orthoimage [45]. Recent developments show that delineating visible physical
boundaries can be automated using various image processing algorithms, computer vision,
and machine learning methods, including deep learning [46].

Automatic detection of physical boundaries using remote sensing imagery, especially
UAV imagery (since it is more accurate and flexible), opens new possibilities for countries
with a complete cadastre. The approach can be used for maintenance purposes in the
form of automatic revision of existing cadastral maps to automatically identify areas where
discrepancies exist. Detected visible physical boundaries can be used as preliminary digital
spatial boundaries that can later be manually aligned using UAV imagery or resurveyed



Land 2023, 11, 2318 16 of 19

using ground-based techniques, where documentary boundaries can be determined and
reconciled with the digital spatial boundaries. For this reason, digital documentary bound-
aries are not emphasised as a special type of boundary. The approach can be classified as
fit-for-purpose maintenance for countries with complete cadastres and can be expressed by
the CTM (Figure 13b).

This study examined measurement-based data in North Macedonia and Slovenia,
which are very similar in content and form. However, different countries or cadastral
systems may have different approaches to the storage, content, and format of such data.
Approaches may include measurements at boundary markers, offsets to other features,
calculated boundary dimensions, etc. They may also include survey plans, field notes, and
other documents based on cadastral surveys. The type of information and the surveying
and mapping technique used can affect the accuracy of the land boundary positions and,
consequently, the digitisation process.

4. Conclusions

Observations and analysis focused on identifying inconsistencies in cadastral bound-
ary data resulting from digitisation. Specifically, the focus was on what cadastral boundary
data were used as input during digitisation.

In the two selected case studies, one in North Macedonia and one in Slovenia, mainly
analogue cadastral maps were used as input. The differences between the coordinates
calculated from the measurements and those obtained from the vector representation were
considerable, yielding a horizontal RMSE of 0.48 m for Trebosh and 0.56 m for Ivanjševci.
Consequently, the area differences resulted in an RMSE of 26 m2 for Trebosh and an RMSE
of 23 m2 for Ivanjševci. These differences can be considered a discrepancy in the cadastral
data on land boundaries. The differences between the cadastral boundary data are due
to digitisation, which introduces additional errors through scanning, georeferencing, and
vectorization of analogue cadastral maps. The use of measurement-based data, i.e., the
calculation and import of coordinates directly in digital format, avoids these errors. More-
over, it should be emphasised that in the pre-digitization phase, the situation regarding
discrepancies was clearer; basically, discrepancies existed only in the case of errors or out-
dated documentary boundaries. Therefore, it should be pointed up that before harmonising
the cadastral data with the land registry data, harmonisation within the cadastral data
is first required, or duplication of cadastral attributes should be avoided. Removing the
area information from the land registry extracts makes the maintenance of the cadastral
boundary data more flexible by avoiding complications or changes that are required in the
legal data.

In the case of North Macedonia, the documentary boundary data are not used or main-
tained after the digitisation of the cadastral maps. Since in the pre-digitisation phase, the
cadastral boundaries were defined and relocated as documentary boundaries, the current
approach (defining digital spatial boundaries as masters) leads to new obligations when re-
locating the same boundaries or formatting land plots or other cadastral procedures—due
to the different location of the boundaries and the different area of the land plots. In the
case of Slovenia, although the documentary boundary data was deemed irrelevant during
the digitisation process, it was still retained, and in the event of a boundary relocation,
the documentary boundary data is calculated and staked in the field. This represents a
sporadic approach to matching and integrating documentary boundaries into the digital
spatial database. For this reason, countries that have survey data should use it as a data
source for digitisation.

The content of the documentary boundaries depends on the surveying and mapping
techniques used. Countries with complete cadastres in the past and today mostly use
ground-based techniques, while countries with low cadastral coverage use more innovative
approaches, such as indirect mapping techniques. In view of this, the current CTM is more
suitable for countries that have a long cadastral tradition and where paper cadastral maps
exist. This is mainly because the digital spatial boundaries within the model are derived
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from vectorising the documentary boundaries. However, it provides a basis for further
analysis to identify the reasons for having dichotomy in land boundary data and to evaluate
the cadastral systems. Today, all cadastral data can be digital; therefore, documentary
boundaries should also be digital; even if no significant deviations from digital spatial
boundaries are expected, they can still be used for further accuracy improvements. In short,
the digital-based approach is different from the past—map scale and manual mapping
are not a problem. Therefore, the digital documentary boundary can be its own type of
boundary or integrated with the digital spatial boundary (as it did not exist in the past but
was created from the documentary boundaries).

Based on this, a CTM for a fit-for-purpose cadastre in developing countries has been
proposed, where digital documentary boundaries are optional. In addition, a cadastral
maintenance model was proposed to identify inconsistencies between visible physical
and digital spatial boundaries. The maintenance model is suitable for countries with full
cadastral coverage using indirect mapping techniques, such as UAVs.

Further studies could revise the proposed approach or develop a new CTM for coun-
tries with low cadastral coverage and cadastres directly in digital format. In addition,
studies could focus more on maintenance models for countries with complete cadastres,
such as using artificial intelligence for automatic digitisation or improving accuracy based
on measurement data.
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32. Pivac, D.; Roić, M.; Križanović, J.; Paar, R. Availability of Historical Cadastral Data. Land 2021, 10, 917. [CrossRef]
33. Grant, D.; Enemark, S.; Zevenbergen, J.; Mitchell, D.; McCamley, G. The Cadastral triangular model. Land Use Policy 2020,

97, 104758. [CrossRef]
34. Goodchild, M.F. Measurement-based GIS. In Spatial Data Quality, 1st ed.; Shi, W., Fisher, P.F., Goodchild, M.F., Eds.; Taylor and

Francis: New York, NY, USA, 2002; p. 13. ISBN 97804292196100.
35. Drobež, P.; Grigillo, D.; Lisec, A.; Kosmatin Fras, M. Remote sensing data as a potential source for establishment of the 3D

cadastre in Slovenia. Geod. Vestn. 2016, 60, 392–422. [CrossRef]
36. Fetai, J. Рaзвojoт нa кaтaстaрoт вo Републикa Мaкедoниja = Тhe Development of Cadastre in Republic of Macedonia. Master’s

Thesis, Ss. Cyril and Methodius University in Skopje, Faculty of Civil Engineering, Skopje, North Macedoia, 2009.
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Abstract: In order to transcend the challenge of accelerating the establishment of cadastres and to
efficiently maintain them once established, innovative, and automated cadastral mapping techniques
are needed. The focus of the research is on the use of high-resolution optical sensors on unmanned
aerial vehicle (UAV) platforms. More specifically, this study investigates the potential of UAV-based
cadastral mapping, where the ENVI feature extraction (FX) module has been used for data processing.
The paper describes the workflow, which encompasses image pre-processing, automatic extraction
of visible boundaries on the UAV imagery, and data post-processing. It shows that this approach
should be applied when the UAV orthoimage is resampled to a larger ground sample distance (GSD).
In addition, the findings show that it is important to filter the extracted boundary maps to improve
the results. The results of the accuracy assessment showed that almost 80% of the extracted visible
boundaries were correct. Based on the automatic extraction method, the proposed workflow has
the potential to accelerate and facilitate the creation of cadastral maps, especially for developing
countries. In developed countries, the extracted visible boundaries might be used for the revision of
existing cadastral maps. However, in both cases, the extracted visible boundaries must be validated
by landowners and other beneficiaries.

Keywords: land plot; land cadastre; cadastral boundaries; cadastral maps; UAV; image processing;
image segmentation; feature extraction

1. Introduction

Establishing a complete land cadastre and keeping it up-to-date is a contemporary challenge
for many developing and developed countries, respectively [1,2]. In this research, the distinction
between ‘developing’ and ‘developed’ countries is considered from a land administration perspective.
A developing country refers to a country with low cadastral coverage. A developed country refers to full
coverage of a country’s territory with defined cadastral land plot boundaries and associated land rights.
According to the International Federation of Surveyors (FIG) and the World Bank, only one-quarter of
people’s land rights across the world are formally recognized by cadastral or other land recording
systems [1]. Thus, in developing countries, initial efforts are directed to accelerating cadastral mapping
as a basis for defining and recording land rights boundaries and formalizing land-related rights aiming
to guarantee land tenure security [3,4]. In developed countries, beyond the initial adjudication stage
or establishment of a cadastre, another challenge is the maintenance of person-right-land relation
attributes and keeping the cadastral systems up-to-date [5,6]. In countries with a tradition and long
history of developing a cadastral system, conventional ground-based cadastral surveying techniques
and high positional accuracy of boundary surveying were required. Decades were needed to complete
the process of cadastral surveying/mapping and registration [1,6]. Although land cadastres were
established, some of the cadastral systems could not be maintained, which led to outdated cadastral
maps. Person-right-land relationship is complex and dynamic. Keeping the cadastral system up-to-date
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(continuous recording of person-right-land relation attributes, in any land related event, as close as
possible to real-time) also requires a flexible and dynamic cadastral system [2,7]. Proposed cadastral
surveying techniques are mostly indirect ones rather than ground-based. Ground-based techniques
are often argued as being time-consuming and labor intensive [1,5,8].

Emerging tools are mapping techniques based on remote sensing data, in particular, data acquired
with sensors on Unmanned Aerial Vehicles (UAVs) [9–18]. Cadastral maps are usually defined as
a spatial representation of recorded land plot boundaries or other spatial units that the land rights
concern [19]. In general, sensors on UAVs provide low-cost, efficient, and flexible high-resolution
spatial data acquisition systems enabling the production of point clouds, Digital Surface Models (DSM)
and orthoimages [20,21]. In cadastral applications, UAVs have gained increasing popularity due to the
high cadastral mapping potential in a different setting, in rural and urban areas, for developing and
developed countries [22]. In addition, UAVs are used for both the creation and updating of cadastral
maps [22]. In developing countries, UAV-based cadastral mapping usually serves as a tool for the
creation of a formal cadastral system [11–13]. In developed countries, the case studies focus on the
assessment of UAVs’ data positional accuracy estimation and its conformity with local positional
accuracy requirements aiming to use the UAV data for updating existing cadastral maps [14–18]. Here,
updating in most cases refers to the comparison of two cadastral maps—one representing the database
state, the other recently acquired data. The term updating can be used as a synonym for a “revision” of
existing cadastral maps [23]. However, in all case studies reported in [22], cadastral boundaries are
manually delineated.

It is argued that a large number of cadastral boundaries are visible and coincide with natural or
manmade physical object boundaries [2,24,25]. In the land administration domain, automatic extractions
of visible cadastral boundaries have been a recent topic of investigation. The latest studies, though
limited in number, assert that visible boundaries, such as hedges, land cover boundaries, etc., which
might indicate cadastral boundaries, could be automatically extracted using methods such as algorithms
that detect object boundaries in images [22,26–29]. In fact, not all visible cadastral boundaries can be
automatically detected—certain boundaries would require a semi-automatic approach, especially in
urban areas where the morphology of cadastral boundaries is complex [7]. Nevertheless, the potential
of computer vision methods for automatic detection and extraction of visible objects in the images
is promising for cadastral applications, especially due to the urgent global need for accelerating and
facilitating cadastral mapping as a basis for registration of land rights and following the dynamics of
land tenure and land use.

1.1. Visible Boundary Detection and Extraction for Cadastral Mapping

Automatic feature extraction methods from images acquired with high-resolution optical sensors
have already proved to be useful for the extraction of boundaries of linear features such as roads
and rivers [30–34], and to a much lesser degree, they have also been explored for the purpose of
cadastral boundary delineation. A recent study from Crommelinck et al. [22] provides an overview of
computer vision methods that might be applicable in the land administration domain for automatic
detection and extraction of object boundaries from images acquired with high-resolution optical sensors.
Additionally, the general workflow for automatic detection and extraction of visible object boundaries
for UAV-based cadastral mapping is provided [22]. The general workflow consists of (i) image
pre-processing, (ii) image segmentation, (iii) line extraction, (iv) contour or boundary generation, and
(v) image and/or boundary post-processing. Image pre-processing usually includes image conversions,
such as resampling or tiling, in order to fit the requirements of a chosen computer vision method. Image
segmentation refers to the process of dividing a digital image into non-overlapping objects, which
represent homogeneous areas [35]. The third workflow step is the extraction of lines or edges from the
segmented images [36]. The next step, contour generation, refers to the extraction of a closed object
outlines in the image. In computer vision, they are usually defined as object boundaries, which are
derived from connecting edges or lines. An ‘object boundary’ should encompass an ‘object’ in an image,
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and due to this, both terms are used synonymously in this study. In cadastral applications, objects are
usually defined as polygon-based spatial units. The final step, post-processing, includes interventions
on the image such as vectorization and/or simplification of automated extraction of objects [26,37].
However, only a limited number of studies have investigated the automatic extraction of objects from
images acquired with high-resolution optical sensors for cadastral boundary delineation.

The work by Babawuro and Zou [38] tested Canny and Sobel edge-detection algorithms for the
extraction of visible cadastral boundaries from high-resolution satellite imagery (HRSI). In addition,
the Hough Transform feature extraction method was used to connect edges and to identify straight lines.
The visual presentation of the results showed that the proposed approach can detect agricultural land
boundaries, but there were no quantity measures on quality assessment. Kohli et al. [28,29] investigated
the use of an object-based approach, namely the multi-resolution segmentation (MRS) and estimation
of scale parameter (ESP) to extract visible cadastral boundaries from HRSI. An object-based approach
refers to the extraction of object outlines based on a grouping of pixels with similar characteristics and
is applied to high-level features which represent shapes in an image [22]. The accuracy assessment
in Kohli et al. [28] was pixel-based, and the detection quality in terms of error of commission and
omission for MRS were 75% and 38%, respectively. For ESP, the error of commission was 66% and
the error of omission 58%. The localization quality for MRS was 71%, whereas it was 73% for ESP,
within a 41–200 cm distance from the reference boundaries. Another case of the automatic extraction of
visible boundaries based on HRSI is described in Wassie et al. [27]. The study explored the potential of
mean-shift segmentation for the extraction of visible cadastral boundaries. The mean-shift segmentation
algorithm is a QGIS open source plugin [27]. The object-based measures were applied for the accuracy
assessment. Within a buffer distance of 2 m, the percentage indicated the correctness was 34%, while
for the completeness it was 83% [27]. The extractions with mean-shift segmentation were closed object
boundaries (polygon-based) in vector format and topologically correct. The mean-shift segmentation
was applied to a full extent of satellite images. Accordingly, some of the automatic object extraction
methods were applied also using UAV images.

The study from Crommelinck et al. [26] outlines the potential of the Global Probability of Boundary
(gPb) contour detection method for an automatic boundary delineation based on UAV imagery. gPb is
open-source and available as pre-compiled Matlab package. The method was found to be applicable
only for processing images of fewer than 1000 x 1000 pixels due to the demanding computing
process [26]. The contour map or detected objects were in raster format and required vectorization.
Furthermore, Crommelinck et al. [37] discuss the interactive method of visible boundary extractions.
The interactive method combines the gPb contour detection, simple linear iterative clustering (SLIC)
super pixels and random forest classifier, which allow a semi-automatic approach for the delineation of
visible boundaries. The interactive method was tested on visible road outlines based on UAV datasets.
The results show that the approach is much more efficient than manual boundary delineation, and all
road boundaries were delineated comprehensively.

All the case studies reviewed, both automatic boundary extractions from HRSI and UAV images,
have been tested in rural areas since it is argued that most of the cadastral boundaries are visible in
such areas [26]. However, not all computer vision automatic feature extraction methods suitable for
visible cadastral boundary delineation have already been tested.

Another tool that is also referred to as the ‘state-of-the-art’ for automatic detection and extraction
of features from images is the ENVI feature extraction (FX) module [39,40]. ENVI FX is an object-based
module for detecting and extracting multiple object outlines from high-resolution multispectral or
panchromatic digital images. The extraction is based on spectral (brightness and color), texture,
and spatial characteristics [41]. To the best of the authors’ knowledge, there have been no previous
publications, nor evidence, that the ENVI FX module has been applied for detecting and extracting
visible cadastral boundaries on UAV images.

The justification for using this method is based on Crommelinck et al. [22], in which general
workflow and feature extraction methods appropriate for cadastral mapping are provided. The main aim
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of this study is not to compare automatic feature extraction methods already used for cadastral mapping.
Instead, the study focuses on the potential of a feature extraction method which has not been tested yet
in cadastral applications. The study can be seen as an important contribution to land administration
discussions focusing on cadastral mapping, as there have been a limited number of studies for automatic
visible cadastral boundary delineation from imageries acquired using high-resolution optical sensors.

1.2. Objective of the Study

The study is based on the assumption that many cadastral boundaries are visible [2]. The study’s
main objective is to outline the potential of the ENVI FX module as well as its limitations for the
automatic delineation of visible object boundaries for UAV-based cadastral mapping. It investigates
which processing steps (scale level and merge level) using the ENVI FX module need to be applied for
UAV-based cadastral mapping. The automatic delineated visible boundaries on UAV images, similarly
as manual delineations, can be used for both the creation and updating/revision of cadastral maps.

Overall, the study addresses the whole of the UAV-based cadastral mapping workflow steps,
which include image pre-processing, automatic detection and extraction of visible object boundaries
on the UAV image, and post-processing of extracted boundaries to more closely approximate
cadastral boundaries.

2. Materials and Methods

2.1. UAV Data

To achieve the objective of the study, a rural area in Slovenia was selected as the number of visible
(cadastral) boundaries in such areas is higher compared to dense urban ones. In addition, the selected
rural area includes roads, agricultural field outlines, fences, hedges, and tree groups, which are assumed to
indicate cadastral boundaries [22]. The UAV images of the case study area were indirectly geo-referenced,
using an even distribution of ground control points (GCP) within the field as criteria. The GCPs were
surveyed with real-time kinematic (RTK) by using Global Navigation Satellite System (GNSS) receiver,
Leica Viva, connected in the Slovenian GNSS network, SIGNAL. The signals were received from satellite
constellations of GPS and GLONASS. The total number of GCPs was 12. The Position dilution of
precision (PDOP) values ranged from 1.2 to 1.7. The flight altitude was 80 m and 354 images were taken
to cover the study area. The images were captured on October 19th, 2018 in the noon time (good weather
conditions, clear sky) at solar zenith angle of approximately 35 degrees. The study site had a coverage
area of 25 ha. The planimetric accuracy assessment of the UAV orthoimage was based on comparison
between GCPs coordinates surveyed with the GNSS receiver and the coordinates of GCPs on the UAV
orthoimage. The estimated root-mean-square-error (RMSE) was 2.5 cm. Table 1 shows the specifications
of data capture and Figure 1 shows the UAV orthoimage of the study area.

Table 1. Specification of unmanned aerial vehicle (UAV) dataset for the selected study area in Slovenia.

Location UAV Model
Camera/Focal

Length
[mm]

Overlap
Forward/Sideward

[%]

Flight
altitude [m]

GSD
[cm] Pixels

Ponova vas,
Slovenia

DJI Phantom
4 Pro

1” CMOS
20mp/24 80/70 80 2.0 35,551 × 31,098
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Figure 1. (a) Cadastral map and ground control points (GCPs). (b) Manually delineated object visible
boundaries used as reference data to determine the detection/extraction quality. (a,b) Overlaid on UAV
orthoimage of Ponova vas, Slovenia (EPSG 3794).

2.2. Reference data

The current cadastral map for the selected area was retrieved from the e-portal of the Slovenian
Surveying and Mapping Authority, which is an online platform for requesting official cadastral data [42].
The cadastral map was overlaid on the UAV orthoimage (Figure 1a). The visual interpretation of the
combined dataset showed immediately that the cadastral map does not correspond with the visible
objects that indicate land possession (land cover) boundaries (roads, agricultural field outlines) on
the UAV orthoimage. From the initial analyses, it appeared that only 8% of cadastral boundaries
correspond with the manually digitized visible boundaries (at 25 cm tolerance). This is because the
current official cadastral map was created by digitizing previous analog cadastral maps whose origin
goes back in the first half of 19th century. Due to the underestimated need for cadastral map updating
as well as due to the land reforms in the 20th century (i.e., land nationalization and denationalization)
the current possession land boundaries do not correspond with cadastral boundaries. Considering
this, as reference data, manually digitized boundaries were used instead of the official cadastral
data, as the aim of this research is to automatically delineate visible object boundaries from a UAV
orthoimage and, at the same time, study the potential of the ENVI FX solution for the automatic
detection of visible boundaries. Moreover, during the manual digitization of reference boundaries,
some white stones considered as possession boundary signs were used as a guide for proper digitization
(Figure 1b). The placement of white stones is a common practice in the selected study area, and for
this reason, they were considered as reliable information during the manual digitization. In addition,
the confidence in white stones as boundary signs is based on the authors’ experiences in professional
cadastral surveying.

2.3. Visible Boundary Delineation Method and Workflow

2.3.1. ENVI Feature Extraction (FX)

The investigated tool, ENVI FX, is a combined process of image segmentation and classification.
The focus of this study is only at image segmentation and calculating spatial attributes for each
segmented object [41]. In addition to spatial attributes, spectral and textural attributes are often used
by users for further image classification analysis.

The first step, image segmentation, is based on the technique developed by Jin [43] and involves
calculating a gradient map, calculating cumulative distribution function, modification of the gradient
map by defining a scale level, and segmentation of a modified gradient map by using the Watershed
Transform [44]. A gradient is calculated for each band of the image. The ENVI FX module uses two
approaches: edge method and intensity. The edge method calculates a gradient map using the Sobel
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edge detection algorithm [44]. The Intensity method converts each pixel to a spectral intensity value by
averaging it across the selected image bands [44]. The edge method is used for detecting features with
distinct boundaries and is considered in this study. In contrast, the Intensity method is suitable for digital
elevation models, images of gravitational potential and images of electromagnetic fields [44]. After
a gradient map is calculated, a density function of gradients over the whole map is calculated in the form
of a cumulative relative histogram [43]. Once the cumulative distribution function has been calculated,
it can be used along with the gradient map to calculate the gradient scale space [43]. The gradient
map can be modified by changing the scale level. The scale level is the relative threshold on the
cumulative relative histogram from which the corresponding gradient magnitude can be determined [43].
For example, at a scale level of 50, the lowest 50 percent of gradient magnitude values are discarded
from the gradient image [44]. Increasing the scale level results in fewer segments and keeps objects with
the most distinct boundaries [41]. Once the scale level is selected the Watershed Transform algorithm is
applied to the modified gradient map. The Watershed Transform is based on the concept of hydrologic
watersheds [22,35]. In digital imagery, the same process can be similarly explained as the darker a pixel,
the lower its "elevation" (minimum pixel). The algorithm categorizes a pixel by increasing the greyscale
value, then begins with the minimum pixels and "floods" the image, dividing the image into objects with
similar pixel intensities. The result is a segmented image and each segmented object is assigned with
a mean spectral value of all the pixels that belong to that object [44].

The second step is merging. This step aggregates over-segmented areas by using the ENVI
FX default full Lambda schedule algorithm. The algorithm is meant to aggregate object outlines
within larger, textured areas, such as trees and, fields, based on a combination of spectral and spatial
information [41,45]. The merge level represents the threshold Lambda value. Merging occurs when
the algorithm finds a pair of adjacent objects such that the merging cost is less than a defined threshold
Lambda value—if the merge level is set to 20, it will merge adjacent objects with the lowest 20 percent
of Lambda values [45]. When a merge level of 0 is selected no merging will be performed. In this step,
the selection of Texture Kernel Size is optional, i.e., the size of a moving box centered over each pixel
value. The ENVI FX default Texture Kernel Size is 3, and the maximum is 19 [45].

The final step is the export of object boundaries in a vector format and a segmented image in
a raster format. Moreover, each extracted object consists of spatial, spectral, and texture information in
the attribute table [41].

2.3.2. Visible Boundary Delineation Workflow

The visible boundary delineation workflow (Figure 2) consists of four main steps. In the following,
each workflow step is described in detail with additional comments based on our own preliminary
studies aiming to understand and justify the selection of the parameters and algorithms used. The first
and second steps were implemented in ENVI 5.5 image analysis software [46] by using the ENVI
FX [47] tool. The other steps were implemented using QGIS [48] and GRASS [49] functions.

1. Image pre-processing: The first step is resampling the UAV orthoimage. The UAV orthoimage was
resampled from 2 cm to lower spatial resolutions—25 cm, 50 cm and 100 cm ground sample
distances (GSD). The selected GSDs allowed the identification of the impact of different GSDs on
the results of automatic boundary extractions. The pixel average method was used for resampling
the UAV orthoimage as it provides a smoother image. In addition, further resampling methods
(nearest neighbor and bilinear) were tested and did not provide significant differences in the
number of automatic object boundary extractions—at higher scale and merge levels of the ENVI
FX algorithm. The resampling step was also applied in [26], to make transferable the investigated
method to a UAV orthoimage for cadastral mapping purposes. In addition, extracting objects
from a UAV orthoimage of lower spatial resolution is computationally less expensive.

2. Boundary detection and extraction: The ENVI FX module was applied to each down-sampled UAV
orthoimage. The detection and extraction of visible boundaries from the UAV orthoimage was
based on the ENVI FX scale and merge level values. The texture kernel size was set to default,
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i.e., 3. In addition, further object extractions were tested at the highest texture kernel size and no
differences in the number and locations of extracted objects were identified. Scale level values
ranged from 50 to 80 and merge level values from 50 to 99. The initial incremental value for both
scale and merge levels was 10. In cases where a jump in the total number of extracted objects was
detected the incremental value was dropped for both scale and merge levels. In order to identify
the optimal scale and merge values for the detection and extraction of visible objects for cadastral
mapping, all possible range values of scale and merge combinations were tested. For each
extraction information about the total number of extracted objects and processing time was stored.
This resulted in 50 boundary maps for each resampled UAV orthoimage. The boundary map
consisted of extracted objects (polygon-based), which were in digital vector format.

3. Data post-processing: The process included two steps: (i) the filtering of extracted objects, and
(ii) the simplification of extracted objects. (i) The minimum object area and the total number of
objects identified in the reference data (Figure 1b) were used to determine optimal scale and
merge levels. The minimum reference object area was 204 m2, and the total number of objects
was 68. All extracted objects that were smaller than the minimum object area from reference
data were filtered out (removed). The total number of remaining objects was compared with the
total number of objects from the reference data and the tolerance of +/- 10 objects was set—those
parameters that produced numbers of objects that were closest to those found in the reference data,
i.e., within defined tolerance, were deemed optimal. The boundary maps from which smaller
objects were removed were labeled as filtered objects. The output of filtered objects consisted of
holes, i.e., due to polygon-based geometry of objects, which were mostly present either in the
forest or individual trees and are of less relevance for cadastral applications—a boundary between
adjacent objects belongs to both. (ii) Extracted and filtered object boundaries were smoothed
and simplified to be used for the interpretation of possession boundaries aiming to support
a cadastral mapping (i.e., land plot restructuring in this case, as the situation requires a new
cadastral survey or land consolidation). The smoothing of extracted/filtered object boundaries
was done by using the Snakes algorithm [49]. The Douglas–Peucker algorithm was applied to
the smoothed object boundaries in order to further simplify the object boundaries [22,49]. These
objects both smoothed and simplified were labeled as simplified extracted/filtered objects.

4. Accuracy assessment: The accuracy assessment was object-based since the results were in vector
format. The buffer overlay method was used for accuracy assessment. The method is described
in detail in Heipke et al. [50]. The accuracy assessment was based on computing the percentages
of extracted (or reference) boundary lengths which overlapped within a buffer polygon area
generated around the reference (or extracted) boundaries (Figure 3) [50]. To determine the
completeness, correctness, and quality of extracted boundaries, calculated boundary lengths of
true positives (TP), false positives (FP), and false negatives (FN) were used. The completeness
refers to the percentage of reference boundaries which lie within the buffer around the extracted
boundaries (matched reference). The correctness refers to the percentage of extracted boundaries,
which lie within the buffer around the reference boundaries (matched extraction). The accuracy
assessment was performed on buffer widths of 25 cm, 50 cm, 100 cm, and 200 cm. The selection of
buffer widths is in line with other studies and was based on the most common tolerances regarding
boundary positions in land administration, especially for rural areas [26,27]. The percentage
indicating the overall quality was generated from the previous two by dividing the length of the
matched extractions with the sum of the length of extracted data and the length of unmatched
reference [50]. The accuracy assessment was applied to automatic extracted objects, simplified
extracted objects, filtered objects, and simplified filtered objects (Figure 2).
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Figure 3. Object-based accuracy assessment method—buffer overlaying method. (a) Matched reference.
(b) Matched extraction. (a,b) Calculation of boundary lengths of true positives (TP), false positives (FP)
and false negatives (FN) (Adapted from [50]).

3. Results

Resampling the UAV orthoimage to a lower spatial resolution, i.e., a larger value of GSD, resulted in
fewer and faster extractions of object boundaries compared to the number of extracted object boundaries
generated at the original size of the UAV orthoimage. The processing time for one boundary map was
1–2 min. A larger GSD, at the same scale and merge values, resulted in fewer boundary extractions
(Table 2, Figures 4 and 5).

Table 2. Ground sample distance (GSD) and number of pixels after image pre-processing.

GSD [cm] Pixels Resampling Method

25 2856 × 2498 Pixel average
50 1428 × 1249 Pixel average

100 714 × 625 Pixel average
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Figure 4. Scale/merge level and number of extracted objects from the resampled UAV orthoimages (a)
ground sample distance (GSD) 25 cm, (b) GSD 50 c, and (c) GSD 100 cm. (a–c) Grey labels—number of
extracted objects outside the range, black labels—the lowest number of extracted objects per scale and
merge parameter value.
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Figure 5. (a–i) Examples of extracted boundary maps. (a–c) GSD 25 cm; (d–f) GSD 50 cm, and (g–i)
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A lower scale level and merge level resulted in a higher number of extracted object boundaries for
each resampled UAV image. A higher scale and merge level resulted in fewer extracted boundaries
(Figure 4). In general, for all resampling, the biggest drop in the number of extracted object boundaries
was at scale level values within the range from 70 to 80, and merge level values within the range from
95 to 99 (Figure 4). The incremental value of 1, for merge level 95–99, turned out to be very sensitive in
dropping the number of extracted object boundaries (Figure 4a–c).

The optimal scale and merge levels for an automatic boundary delineation were investigated by
filtering out the total number of extracted objects with the minimum area of objects from the reference
data. The results of this filtering approach are presented in Figure 6. The results showed that for the
UAV orthoimages of higher spatial resolutions, namely a GSD of 25 cm, the optimal algorithm values
for cadastral mapping resulted in 80 for scaling and from 95 to 99 for merging. In contrast, for the UAV
orthoimages having a GSD of 50 cm and a GSD of 100 cm, the common optimal scale level values were
70–80 and merge level 95–98 (Figure 6). Some exceptions were observed for a GSD of 50 cm, where the
scale level was 50, 60, and merge level to its maximum. In general, the results showed that the optimal
scale and merge level values suitable for cadastral mapping range from 70 to 80 and from 95 to 99,
respectively (examples in Figure 5). The optimal scale and merge level values appeared similar as in
the investigation of the influence of different GSDs in extracting objects.
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Figure 6. Comparison in the number of extracted and filtered objects using different scale and merge
parameter values, to the number of objects identified in the reference data set.

For further analysis, optimal extracted objects with scale level 80 and merge level 95 for three
GSDs of UAV orthoimages were selected (Figure 7a,c,e). The selection was based on common scale
and merge levels for three GSDs as well on the highest number of filtered objects per GSD (Figure 6).
The filtering approach was additionally applied to the selected optimal extracted objects, i.e., with scale
level 80 and merge level 95, to remove objects under the minimum reference object area (Figure 7b,d,f).
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A simplification algorithm was applied to both extracted objects and filtered objects. The results
showed that if extracted objects are smoothed and smoothed objects are later simplified, the localization
of simplified objects is almost equal to that of the extracted ones (Figure 8). The initial tests show that
possible shifts in location are possible when a direct implementation of the simplification algorithm to
extracted visible objects is used.
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algorithm. (c) Extracted objects simplified with Douglas–Peucker algorithm (in black) and compared to
object simplifications on (b).
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The buffer overlay method was used for the accuracy assessment. The accuracy assessment method
was applied to the extracted objects, simplified extracted objects, filtered objects and simplified filtered
objects. The results show that there is no significant difference in accuracy assessment results when
comparing extracted and simplified objects (Table 3, Table 4, and Table 5). At a buffer width of 2 m, a GSD
of 50 cm and a GSD of 100 cm provide a higher percentage of correctly extracted objects compared to
a GSD of 25 cm. The percentage of correctly extracted objects was 66% for both a GSD of 50 cm and a GSD
of 100 cm (Tables 4 and 5). However, the filtering approach contributed to the increased correctness
(decreased completeness) and overall quality, for all GSDs. From the filtered objects, the best results for
correctness were recorded at a GSD of 50 cm (Figure 9). The percentage indicated the correctness was
77%, while for the completeness it was 67%.

Table 3. Accuracy assessment of boundary extractions for a GSD of 25 cm, scale 80, merge 95.

Buffer width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 58 37 18 26 16 20
50 73 48 28 39 26 31

100 78 56 38 50 36 41
200 81 (81) 1 61 (62) 1 48 (49) 1 59 (61) 1 46 (46) 1 50 (48) 1

1 Percentages of simplified boundaries.

Table 4. Accuracy assessment of boundary extractions for a GSD of 50 cm, scale 80, merge 95.

Buffer width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 45 40 28 35 21 23
50 64 55 46 56 38 41

100 71 61 57 68 48 52
200 75 (74) 1 65 (67) 1 65 (66) 1 76 (77) 1 56 (53) 1 59 (56) 1

1 Percentages of simplified boundaries.

Table 5. Accuracy assessment of boundary extractions for a GSD of 100 cm, scale 80, merge 95.

Buffer Width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 31 27 21 24 14 15
50 53 47 39 43 29 30

100 67 59 58 64 47 47
200 73 (71) 1 63 (67) 1 66 (66) 1 72 (73) 1 55 (52) 1 55 (52) 1
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4. Discussion

4.1. The Developed Workflow

The developed workflow aimed to provide a solution for UAV-based cadastral mapping using
automatic visible boundary extraction with the ENVI FX module (Figure 2). The developed workflow
consisted of four steps: (i) image pre-processing, (ii) boundary detection and extraction, (iii) data
post-processing, and (iv) accuracy assessment.

The first workflow step includes resampling of a UAV orthoimage. Here, the results of our case
study showed that larger GSDs provided faster and fewer extractions of visible object boundaries
compared to the original GSD of a UAV orthoimage. For higher spatial resolutions, i.e., smaller GSDs,
considering the selected Scale level and Merge level values, the total number of extracted objects
was higher.

The second step, which includes object boundary detection and extraction, is dependent on the
scale and merge level. The results, presented in Figure 4, showed that lower values of scale and merge
levels resulted in a higher number of extracted objects, which led to over-segmentation by reaching
thousands of extracted objects. Considering the total number of the reference objects, it is important to
note that a scale and a merge level that provide object extractions close to the total number of objects
from reference data are important for automatic delineation of visible cadastral boundaries.

The following step, data post-processing, aimed to investigate optimal scale and merge levels and
to simplify the extracted objects. The optimal values based on a filtering approach showed that for
all tested GSDs in this study, most suitable scale and merge level values for automatic delineation of
visible cadastral boundaries were 70–80 and 95–99, respectively. These values can be considered as
optimal scale and merge levels for rural areas in general or areas with characteristics similar to the
study area of this research. However, to validate the proposed workflow and optimal Scale and Merge
levels in areas with different characteristics, such as areas with a larger number of buildings or areas
with trees covering parts of boundaries, further experiments are needed. Hence, the scale and merging
levels appropriate for cadastral mapping have been determined and this step can be skipped from
the workflow step of data post-processing (Figure 2). The use of the Snakes algorithm for smoothing
and the Douglas–Peucker algorithm for simplifying has been shown to be very effective (Figure 8a,b).
This approach, when combining both smoothing and simplification algorithms, gives better results
in terms of a simplified boundary position compared to directly implementing the Douglas–Peucker
simplification algorithm, where undesired shifting in boundary position was observed (Figure 8c).
In [22], it was reported that the direct implementation of the Douglas–Peucker algorithm was used as
a post-processing method in many papers to improve the output by optimizing the shape of objects.
However, the simplification approach applied in this study was not examined in the previous papers.

The final step of the workflow was accuracy assessment (see also Section 4.2). The accuracy
assessment was based on the buffer overlay method. By increasing the width of the buffer, more extracted
boundaries appear to be within the buffer area, which impacts the completeness, correctness, and the
overall quality—larger the buffer, the better the results. To have a uniform assessment for all tested
GSDs the results were compared at a buffer distance of 2 m. From the reviewed publications presented
in Section 1.2, a buffer width of 2 m was also applied in [26–28] as most suitable for the presentation of
accuracy assessment results and to avoid uncertainties from resampling effects. However, for comparison
to cadastral data, buffer widths should be based on local accuracy requirements [26].

The workflow developed, overall, is in accordance with the general workflow for the cadastral
mapping based on suitable computer vision methods for automatic visible boundary extraction
provided in [22]. In addition, it provides an additional step and method in data post-processing,
such as filtering out irrelevant and small objects from the boundary map, which improves overall
quality assessment. Furthermore, it suggests a combined approach for the simplification of extracted
object boundaries.
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4.2. Quality Assessment

Bringing the scale and merge levels to the maximum resulted in some unextracted and fewer visible
objects for the whole extent of the image. Although some of the visible objects were left unextracted,
the maximum scale and merge level enabled the detection of a group of objects such as a group of tree
boundaries, especially at GSDs of 50 cm and 100 cm (Figure 5f,i). In both cases, the balance between
completeness and correctness was hard to achieve. This issue was also reported in [26,28]. For this
reason, the filtering approach was applied. It was based on the minimum object size as well as on the
total number of the objects, both defined based on the reference data. This allowed us to reduce the
risk that some of the visible object boundaries remained unextracted as well as over-segmented.

The optimal scale level of 80 and a merge level of 95, were chosen for all three GSDs, to investigate
the impact of the same scale and merge level in different resampling. The selection was based on common
scale and merge levels per GSD (Figure 6). However, this does not mean that the chosen scale and merge
level provided the best object boundary extraction for each of the GSDs. For instance, for small GSDs,
the correctness of extracted boundaries is higher at the maximum scale and merge levels (e.g., Figure 5c).
For the same scale and merge level, the correctness grows significantly from a GSD of 25 cm to a GSD of
50 cm. The correctness for a GSD of 100 cm was almost equal to the one for a GSD of 50 cm. Considering
that more optimal scale and merge levels were applicable for a GSD of 50 cm (Figure 6) and the difference
insignificant when compared to the results obtained for a GSD of 100 cm, a GSD of 50 cm appeared to be
better in detecting visible boundaries compared to the other two GSDs.

The quantitative method applied for accuracy assessment to automatically extracted objects,
filtered objects and to their simplifications, showed that there was no significant difference between
extracted objects and simplified objects. This result indicates that the method applied for simplification
can be considered appropriate, i.e., the original location of extracted objects was maximally maintained.
Although there was no difference in accuracy assessment, the simplification of extracted (or filtered)
objects is significant for proper cadastral mapping. Cadastral boundaries usually are defined by
straight lines with fewer vertices.

The percentage of suitable extracted boundaries (compared to reference data), for a scale level of
80 and a merge level of 95, resulted in 74% for the assessment of the completeness and 66% for the
assessment of the correctness for the extracted object boundaries having a GSD of 50 cm. However,
the filtering approach strongly influenced the accuracy assessment. For filtered extractions, the level of
completeness was 67%, and the level of correctness was 77%. These results show that the filtering
approach increased the correctness of automatically extracted boundaries, and it reaches almost 80%
(Table 4). This was due to filtering out small object boundaries from the boundary map. The excluded
small objects were mostly present in tree and built-up areas on the UAV orthoimage, i.e., only outlines
of group objects were retained (Figure 7c,d). In road extractions, the achieved values for extractions are
around 85% for correctness and around 70% for completeness to be of real practical importance [26,34].
Such percentages can hardly be achieved by the workflow developed for automatic delineation of all
visible boundaries since the morphology of cadastral boundaries is usually more complex and not all
cadastral boundaries are visible, unlike road boundaries.

The accuracy assessment was based on the manually delineated boundaries, which were defined
as reference data (Figure 1b). The visible boundaries were manually delineated on the ground truth
UAV orthoimage. It is argued that manually delineated boundaries influence the overall results of
the accuracy assessment since different human operators might digitize differently [26]. However,
in the selected case study, most of the object boundaries were sharp and the presence of white stones at
outlines of the agricultural field contributed to the objectivity of manual digitalization. In addition,
the real cadastral data could not be used since they did not correspond with the object boundaries
on the image (Figure 1a) and it would not have been possible to outline the potential of the ENVI FX.
However, the approach of automatic extraction of visible boundaries is case dependent. To reliably
avoid the influence of manually digitized reference data, the following studies should consider a case
study where the cadastral map is up to date.



Remote Sens. 2019, 11, 1510 16 of 20

4.3. Strengths and Limitations of the Automatic Extraction Method Used

The ENVI FX module handled the full extent of the resampled UAV orthoimages, and no additional
image tiling or image conversions were required. ENVI FX provided closed object boundaries directly
in vector format, topologically correct polygons. Therefore, no additional image post-processing step,
such as vectorization of detected object boundaries, was needed (Figure 5). Thus, the visible object
boundaries generated can be directly used for further processing and analysis within geographic
information systems (GIS). Additionally, the final output consists of spatial, spectral and textural
attributes which are assigned automatically to each extracted object and saved in the attribute table.
The vectorized and geo-referenced visible object boundaries, as interpreted in this research, are crucial
in cadastral applications especially for the purposes of land plot boundary delineations. Overall, ENVI
FX has the potential to automatically delineate visible cadastral boundaries, especially in rural areas.

A comparison of the results regarding the accuracy assessment obtained in this study and the
accuracies obtained in the studies [26–28] cannot be done at this time for a number of reasons. First, not all
the reviewed feature extraction methods have been applied to UAV imagery. Second, different UAVs
may provide different quality of orthoimages. Third, the nature, size, location, and the characteristics of
the study objects are far too different. In order to make a reliable comparison on accuracy assessments of
different feature extraction methods, first of all, each method has to be studied individually and later
tested at the same study area(s). However, the image processing approach of different feature extractions
methods may be comparable.

From the reviewed feature extraction methods that have already been applied for detection of
visible cadastral boundaries, it can be seen that the MRS method, ESP method, and mean-segmentation
method also do not require further image tiling and the final output of the boundary map was in vector
format [27,28]. In contrast, vectorization of detected object boundaries was needed for the gPb contour
detection method. In addition, it was reported that the method is inapplicable when processing UAV
images of more than 1000 pixels in width and height [26]. Similar issues regarding the vectorization of
detected object boundaries were reported in [38], where Canny and Sobel edge detection algorithms
were used. In order to obtain topologically correct polygons, an additional feature extraction method
was used aiming to connect the edges.

ENVI FX allowed some shadow areas in the UAV orthoimage to be extracted as boundaries;
however, these do not represent real boundaries in the field. In order to minimize the influence
of shadows on feature extraction, it is recommended to capture images in the local time where the
solar zenith angle has the smallest possible value. However, the solar zenith angle depends on the
geographic location of the study area. Additionally, some other factors such as weather conditions
also influence the quality of captured images. To avoid such issues, it is preferable to capture images
on a cloudy day without wind. Although ENVI FX has proved to be efficient, one of its limitations
is that it is not an open-source tool like mean-shift segmentation, gPb contour detection, Canny, and
Sobel, which might be a reason why it is not often used in the land surveyor community. In addition,
the extracted objects from the resampled UAV orthoimages were following the pixel borders and further
shape simplification was required to make them comparable to spatial units in cadastral applications.

Considering that the morphology of cadastral boundaries is complex [7], compared to physical
boundaries, such as boundaries of roads or rivers, delineation of cadastral boundaries cannot be
fully automated at this time, and additionally, the verification of the results has to be done with the
participation of landowners and other land rights holders. The limitations on extracting only visible
object boundaries lie in the fact that not all visible boundaries (land cover boundaries) represent
cadastral boundaries (land right boundaries). For instance, when two agricultural cadastral units leased
to the same farmer are farmed as one unit, and vice versa. However, visible object boundaries which
coincide with the land right boundaries can be automatically detected and used in cadastral applications.
In addition, the UAV-based spatial data acquisition is usually affected by special operational regulations
that restrict the use of this technology, in particular in urban areas [18].
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4.4. Applicability of the Developed Workflow

The developed workflow provided geo-referenced boundary maps in a format compliant with
the formats that are used in GIS environments. This shows that the extracted objects can be easily
transferable, and applicable in GIS for cadastral purposes. In cases where cadastral maps are rarely
present and the concept of fit-for-purpose cadastre is in place, the workflow, with the selected method
for automatic extraction of visible boundaries, shows the potential for the automation of the visible
cadastral boundary delineation procedure [1]. Thus, the approach developed generally contributes to
the acceleration and facilitation of the creation of cadastral maps (Figure 9b), especially in developing
countries, where general boundaries are accepted, and positional accuracy is of lesser importance [25].
However, the approach is suitable for the areas where the boundaries of physical objects are visibly
detectable on a UAV orthoimage, for instance, in rural areas. The workflow might be applicable
for both the creation and updating/revision of cadastral maps, similar to the manual delineations of
cadastral boundaries on a UAV orthoimage. In addition, the workflow developed might lower the costs
and time compared to the manual delineation of cadastral boundaries, especially in rural areas [26].

Furthermore, in developed countries, the approach based on automatic extraction of visible
boundaries might be used for a revision of current cadastral maps (Figure 9a). In this case, the extracted
visible boundaries can be used as a basis for a new cadastral survey or land rearrangements, depending
on the discrepancy between cadastral maps and land possession (as shown in the case study).
Although the beneficiaries agree with the visible boundaries, if higher accuracy is required, the revised
objects (spatial units) can later be manually delineated from a UAV orthoimage or re-surveyed with
ground-based surveying techniques. It must be emphasized that the extracted visible boundaries, both
for the creation of cadastral maps and updating, should be inspected by the local community and all
beneficiaries (landowners, other land rights holders) in order to be legally validated.

5. Conclusions

The overall aim of this study was to provide an UAV-based cadastral mapping workflow based on
the ENVI FX module for automatic detection of visible boundaries. The study first investigated, which
processing steps are required for a cadastral mapping workflow following the potential and limitations
of the ENVI FX for automatic visible boundary detection and extraction.

The results showed that more correct visible object boundaries, suitable for the interpretation of
land cover (cadastral) boundaries, were extracted at larger values of GSD. In addition, the identified
optimal scale and merge levels for detection and extraction of visible cadastral boundaries were between
70 and 80 and 95 and 99, respectively. The identification of the optimal parameters for cadastral mapping
was based on the defined minimum object area and the total number of objects from the reference data
using the so-called filtering approach. The filtering approach contributed to the increased correctness of
automatically extracted boundaries. The best results were recorded at the resampled UAV orthoimage
with a GSD of 50 cm, and the percentage of correctness indicated was 77%, while for the completeness it
was 67%. It must be emphasized that the workflow developed is applicable mostly for rural areas where
the number of visible boundaries is higher compared to complex urban areas.

The workflow can be used in developing countries to accelerate and facilitate the creation of
cadastral maps aiming to formalize a land tenure system and guarantee legal security to land rights
holders. In developed countries, the extracted visible boundaries based on this workflow might be
used for efficient revision of existing cadastral maps. However, in both cases, the extracted visible
boundaries have to be validated by landowners and other beneficiaries. The extraction of visible objects
can be considered as only one step in the facilitation of cadastral mapping, as extracting these is not
enough for complete and correct cadastral mapping. It is worth highlighting that cadastral boundaries
may, in fact, be completely inside the property and that some boundaries between properties may
not be clearly visible. In order to use the proposed workflow in the cadastral domain, the approach
can be expanded. Additional steps should focus on methods for the possible involvement of current
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landowners in the process of cadastral mapping. The extension of the current workflow is one of the
aims of the authors’ further research.
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Abbreviations

The following abbreviations are used in this article:

DSM Digital Surface Model
ESP Estimation of Scale Parameter
FIG International Federation of Surveyors
FN False Negative
FP False Positive
FX ENVI Feature Extraction
GCP Ground Control Point
GIS Geographic Information System
GNSS Global Navigation Satellite System
gPb Global Probability of Boundary
GSD Ground Sample Distance
HRSI High-Resolution Satellite Imagery
MRS Multi-Resolution Segmentation
PDOP Position Dilution of Precision
RMSE Root-Mean-Square-Error
RTK Real-Time Kinematic
SLIC Simple Linear Iterative Clustering
TP True Positive
UAV Unmanned Aerial Vehicle
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Abstract: Current efforts aim to accelerate cadastral mapping through innovative and automated
approaches and can be used to both create and update cadastral maps. This research aims to automate
the detection of visible land boundaries from unmanned aerial vehicle (UAV) imagery using deep
learning. In addition, we wanted to evaluate the advantages and disadvantages of programming-
based deep learning compared to commercial software-based deep learning. For the first case,
we used the convolutional neural network U-Net, implemented in Keras, written in Python using
the TensorFlow library. For commercial software-based deep learning, we used ENVINet5. UAV
imageries from different areas were used to train the U-Net model, which was performed in Google
Collaboratory and tested in the study area in Odranci, Slovenia. The results were compared with
the results of ENVINet5 using the same datasets. The results showed that both models achieved an
overall accuracy of over 95%. The high accuracy is due to the problem of unbalanced classes, which
is usually present in boundary detection tasks. U-Net provided a recall of 0.35 and a precision of
0.68 when the threshold was set to 0.5. A threshold can be viewed as a tool for filtering predicted
boundary maps and balancing recall and precision. For equitable comparison with ENVINet5, the
threshold was increased. U-Net provided more balanced results, a recall of 0.65 and a precision of
0.41, compared to ENVINet5 recall of 0.84 and a precision of 0.35. Programming-based deep learning
provides a more flexible yet complex approach to boundary mapping than software-based, which is
rigid and does not require programming. The predicted visible land boundaries can be used both to
speed up the creation of cadastral maps and to automate the revision of existing cadastral maps and
define areas where updates are needed. The predicted boundaries cannot be considered final at this
stage but can be used as preliminary cadastral boundaries.

Keywords: land; cadastral mapping; visible boundary; UAV; deep learning

1. Introduction

Accelerating cadastral mapping to establish a complete cadastre and keeping it up-
to-date is a contemporary challenge in the domain of land administration [1,2]. Cadastral
mapping is considered the first step in establishing cadastral systems and serves as the
basis for defining the boundaries of land units to which land rights refer [3]. Mapping
the boundaries of land rights in a formal cadastral system helps to increase land tenure
security [4]. More than 70% of land rights are unregistered globally and are not part of any
formal cadastral system [1]. The challenge of accelerating the creation of cadastral maps
is present mainly in developing regions with low cadastral coverage [5]. Cadastral maps
are usually defined as spatial representations of cadastral records, showing the extent and
ownership of land units [6]. An effective cadastral system should provide up-to-date land
data [7]. In countries with complete cadastral coverage, this is considered one of the major
challenges. To overcome the challenge of accelerating cadastral mapping while providing
up-to-date land data, low-cost and rapid cadastral surveying and mapping techniques are
required [5,8].
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The proposed cadastral surveying techniques are indirect rather than direct surveying.
Indirect cadastral surveying is based on the delineation of visible cadastral boundaries from
high-resolution remote sensing imagery. In contrast, direct or ground-based surveying
techniques are based on field survey and are often considered slow and expensive [1,5].
The application of image-based cadastral mapping is based on the recognition that many
cadastral boundaries coincide with visible natural or man-made boundaries, such as
hedgerows, land cover boundaries, building walls, roads, etc., and can be easily detected
from remote sensing imagery [2,9]. The detection of such boundaries from data acquired
with sensors on unmanned aerial vehicles (UAVs) has gained increasing popularity in
cadastral applications [10–12].

In cadastral applications, UAVs have gained prominence as a powerful technology
that can bridge the gap between slow but accurate field surveys and the fast approach
of conventional aerial surveys [13]. Sensors on UAVs provide low-cost, efficient and
flexible systems for high-resolution spatial data acquisition, enabling the production of
orthoimages, digital surface models and point clouds [14]. Overall, UAVs have shown
a high potential for detecting land boundaries in both rural and urban areas [8,15]. In
addition, UAV-based orthoimages have been considered as base maps for the creation of
cadastral maps and for updating or revising existing cadastral maps [10,12,16]. Besides
the high visibility of cadastral boundaries on UAV imagery, manual delineations have
been reported in many previous case studies [8]. The contemporary approach to cadastral
mapping aims to simplify and speed up image-based cadastral mapping by automating
the detection of visible cadastral boundaries from images acquired with high-resolution
optical sensors [15,17,18].

1.1. Deep Learning for Cadastral Mapping

Only a limited number of studies have investigated the automatic approach to detect
visible cadastral boundaries from UAV imagery. Mainly, tailored workflows using image
segmentation and edge detection algorithms have been applied to automate cadastral
mapping and thus provide more efficient approaches [8,15]. Multi-resolution segmentation
(MRS) and globalized probability of boundary (gPb) are among the most popular segmen-
tation and edge detection algorithms used in the cadastral mapping [15]. Early algorithms,
such as Canny edge detection, extract edges by computing gradients of local brightness,
which are then combined to form boundaries. However, the approach is characterized by
the detection of irrelevant edges in textured regions [19]. Furthermore, gPb provides more
accurate results compared to other approaches on edge detection (e.g., Canny detector and
Prewitt, Sobel, Roberts operator) [20]. MRS, gPb and Canny are unsupervised techniques.
Unsupervised techniques include methods that require segmentation parameters to be
defined. The challenge is to define appropriate segmentation parameters for features that
vary in size, shape, scale and spatial location. Then, the image is automatically segmented
according to these parameters [19]. With respect to modern methods for automatic bound-
ary detection in cadastral mapping, deep learning is becoming increasingly important—as
a supervised technique [21]. However, the deeper understanding is challenging, so the
abstraction of the process offers a solution.

Deep learning methods such as convolutional neural networks (CNNs) are very effec-
tive in extracting higher-level representations needed for classification or detection from
raw input [22,23]. Moreover, recent studies indicate that deep learning ensures higher accu-
racy in delineating visible land boundaries than some object-based methods [15,17,24]. In
the study by Crommelinck et al. [17], it was reported that CNNs, namely the VGG19 archi-
tecture, provide a more automated and accurate approach for detecting visible boundaries
from UAV imagery than the machine learning approach random forest (RF). Further-
more, the study highlighted that the model based on VGG19 architecture provides more
promising loss and accuracy metrics compared to other CNN architectures such as ResNet,
Inception, Xception, MobileNet and DenseNet. The study conducted by Xia et al. [15]
investigated the potential of fully CNNs for cadastral boundary detection in urban and
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semiurban areas. The results showed that fully CNNs outperformed other state-of-the-art
machine learning techniques, including MRS and gPb. The results indicated 0.37 in recall,
0.79 in precision and 0.50 in F1 score. The study by Park and Song [25] aims to identify the
inconsistencies between the existing land use information from existing cadastral maps
and the current land use in the field. The proposed method involves updating the existing
land cover attributes of cadastral maps using UAV hyperspectral imagery classified with
CNNs and then creating a discrepancy map showing the differences in land use. CNNs
bring innovative capabilities to cadastral mapping that can facilitate and accelerate the de-
lineation of visible cadastral boundaries. In line with these studies, improving the accuracy
of automatic visible boundary detection remains a challenge in contemporary image-based
cadastral mapping [15].

One CNN architecture that has not been satisfactorily investigated for visible bound-
ary detection in cadastral applications is U-Net. U-Net was originally developed for
biomedical image segmentation and is considered a revolutionary architecture for semantic
segmentation tasks [26–30]. Generally, it is claimed that the main challenge in CNNs is
a large amount of training data preparation and computational requirements [26]. Thus,
providing thousands of UAV training data can be considered as a limitation for visible land
boundary detection with CNNs, especially when a model is trained from scratch. However,
the U-Net architecture is designed to work with fewer training images preprocessed by
an intensive data augmentation procedure and still provide precise segmentation [26]. In
addition, a software-based module, ENVI deep learning, has recently been developed
to simplify and perform deep learning procedures with geospatial data. The number
of studies that have tested its potential is very small [31]; in particular, it has not been
sufficiently explored for the detection of visible cadastral boundaries from UAV imagery.

1.2. Objective of the Study

The main objective of this study is to investigate the potential of CNN architecture,
namely U-Net, based on UAV imagery training samples, as a deep learning-based de-
tector for visible land boundaries. In addition, we wanted to evaluate the advantages
and disadvantages of programming-based, e.g., custom, deep learning compared to a
commercial software-based solution. Here, we compared the results of U-Net with those
of the recently released software-based ENVI deep learning by focusing on the boundary
mapping approaches and their conformity in the land administration domain.

2. Materials and Methods
2.1. UAV Data

It is argued that the number of visible cadastral boundaries is higher in rural areas
than in dense urban areas (an example of a visible cadastral boundary in Figure 1b). A
rural area in Odranci, Slovenia, was selected for this study. UAV images were acquired
at a flight altitude of 90 m, resulting in 997 images to cover the study area. The images
were acquired in September 2020, at midday, under clear skies. The UAV images were
indirectly georeferenced using a uniform distribution of 18 ground control points (GCPs).
The GCPs were surveyed with real-time kinematic (RTK) using the global navigation
satellite system (GNSS) receiver Leica GS18. In addition, the GCPs were also surveyed
with RTK, using a multifrequency low-cost GNSS instrument (base and rover), namely
ZED-F9P receiver with u-blox ANN-MB-00 antenna—as a cheaper alternative to geodetic
GNSS receivers (Figure 1b). The differences were insignificant for 2D cadastral mapping
(RMSEx,y = 0.019 m). The obtained ground sampling distance (GSD) from the UAV or-
thoimage was 0.02 m. The study site had an area of 63.9 ha and was divided into areas for
training and testing the CNNs (Figure 1a).
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Figure 1. (a) UAV imagery of 0.25 ground sample distance (GSD) for Odranci–Slovenia, divided into areas for training and
testing; (b) low-cost instrument ZED-F9P and example of visible cadastral boundaries. (c) UAV imagery of 0.25 (GSD) for
Ponova vas—Slovenia, used for training; (d) UAV imagery of 0.25 (GSD) for Tetovo—North Macedonia, used for training.

With the aim of increasing the number and diversity of training data, additional UAV
images with a rural scene from Ponova vas (Slovenia) and Tetovo (North Macedonia) were
used (Figure 1c,d). The UAV data in Ponova vas was acquired at an altitude of 80 m and
had a GSD of 0.02 m. The UAV data in Tetovo have a GSD of 0.03 m and were acquired at
an altitude of 110 m. Figure 1a,c,d shows the UAV orthoimages of the study areas.

The selected areas contain agricultural fields, roads, fences, hedges and tree groups,
which are assumed to represent cadastral boundaries [8]. The cadastral reference bound-
aries were derived from the UAV orthoimages by manual land delineation on-screen in all
three study areas. All UAV images were acquired using a rotary-wing UAV, namely the DJI
Phantom 4 Pro. Table 1 shows the specifications of the data acquisition.

Table 1. Specification of unmanned aerial vehicle (UAV) dataset for the selected study areas.

Location UAV Model Camera/Focal
Length (mm)

Overlap For-
ward/Sideward

Flight
Altitude

GSD
(cm)

Coverage
Area (ha) Purpose

Odranci, Slovenia
DJI Phantom 4

Pro
1′ ′

CMOS/24 mm
80/70

90 m 2.35 63.9 Training and Testing
Ponova vas, Slovenia 80 m 2.01 25.0 Training

Tetovo, North
Macedonia 110 m 2.85 24.3 Training
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2.2. Detection of Visible Land Boundaries

In general, the workflow of this study consists of three main parts, namely data
preparation, visible land boundary detection and accuracy assessment. The specific steps
for both the U-Net and ENVI deep learning boundary mapping approaches are described
in the following subsections.

2.2.1. U-Net

In deep learning, CNNs can be trained in two approaches, from scratch or via transfer
learning [17,32]. In our case, the U-Net model was trained from scratch based on UAV images.

The UAV orthoimages of the selected study areas (Figure 1a–c) were randomly tiled
in 256 pixels × 256 pixels. To increase the field of view for each tile, the original spatial
resolution of the UAV orthoimages had to be converted to a larger GSD, from 2–3 to 25 cm.
The results were 219 original tiles, namely 144 tiles for training and 75 tiles for testing
(Figure 1a,c,d). In addition, corresponding label images (also called ground truth images)
were created for each UAV image. The label images, with a size of 256 × 256 × 1, were
created from the manually digitized reference boundaries, which were initially in the vector
format. The reference boundaries were buffered to 50 cm and later rasterized using GRASS
GIS tools [33]. Additionally, the UAV tiles were then rotated, flipped and scaled to improve
generalization and increase the number of training samples. This technique is known in
deep learning as data augmentation and is used to supplement original training data. Once
the data preparation and augmentation were completed, the next step was to train the
U-Net model.

The CNN based on U-Net is symmetric and contains encoding and decoding parts,
which gives it the U-shaped form. U-Net is described in detail in [26]. The left part,
the encoding path, is a typical convolutional network that contains repetitive usage of
3 × 3 convolutions, each followed by a rectified linear unit (ReLU) and a max-pooling
operation, i.e., 2 × 2 convolutions. During the encoding path, the contextual information
(depth) of the images was increased while the resolution of the images was reduced. The
right part, the decoding path, merged the contextual and resolution information of the
images through a sequence of 2 × 2 up-convolutions. The goal of the decoding path is
to provide precise localization using the contextual information from the encoding path.
During the decoding path, the resolution of the image was upconverted to its original size.
The U-Net architecture implemented in this study is shown in Figure 2.
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Overall, training a CNN model requires a powerful graphics processing unit (GPU),
lots of memory and efficient computations. To overcome this requirement while providing
a cost-effective and fast approach for visible boundary detection and hence cadastral
mapping, the training of U-Net was performed by Google Collaboratory [34]. U-Net was
implemented in the high-level neural network API Keras [35]. The process was written
in Python in combination with the TensorFlow library [36]. The implementation of the
model in Keras was done by modifying and referencing to [37], which is an implementation
for grayscale biomedical images. In this study, the U-Net model was adapted to work
with three-band images, namely RGB UAV images, as input and produce a single band
boundary map as output with the same image size as the input. However, the predicted
boundary maps were not georeferenced.

Considering that georeferencing is the key component in cadastral mapping, further
improvements were made. In this study, we considered two additional steps, namely
georeferencing the predicted boundaries and merging the georeferenced tiles to obtain
the boundary map for the entire extent of the test area. The processing and analysis were
done using open-source modules, including Rasterio [38], GDAL [39] and Numpy [40].
The workflow and boundary mapping approach used in this study are shown in Figure 3.
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2.2.2. ENVI Deep Learning

ENVI deep learning [41] can be categorized as software-based deep learning technol-
ogy that offers its own U-Net-like model. The model is called ENVINet5 and is described
in detail in [42]. In this study, the ENVINet5 model was used to compare it with the U-Net
model—both the results and the land boundary mapping approach.

The training approach is patch-based, i.e., the entire extent of the training UAV data
can be used as input, and the model can learn based on the pixels specified in the patch.
Considering this, a patch size of 256 pixels× 256 pixels was used for training and validating
the ENVINet5 as a single-class model. Moreover, the training of the ENVINet5 model is
based on a labelled raster that should be created within the software. Generally, there are
two approaches: by on-screen manual digitizing or by directly uploading features in vector
format. In our case, we uploaded the shapefile (.shp) of reference cadastral boundaries
(buffered to 50 cm), defined as the region of interest (ROI), from which the label raster
was created. We used the recently released version of ENVI deep learning, i.e., version
1.1.2, which has an option for data augmentation, unlike the previous version where data
augmentation was not possible. Data augmentation is performed by rotating and scaling
the original UAV training data.

The training of the ENVINet5 model was done using the toolbox deep learning guide
map. Before starting the training, it was necessary to initialize a TensorFlow model, which
defines the structure of the model, including the architecture (ENVINet5 for a single class),
the patch size (256 × 256), and the number of the bands that are used for training (3 bands,
RGB). After the model was initialized, the training data was uploaded. In the following,
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the values for the training parameters are required, such as the number of epochs, the
number of patches per epoch, the number of patches per batch, class weight, etc. For the
number of patches per epoch and per batch, it is suggested to leave them blank so that
ENVI automatically determines the most appropriate values. For saving the model and
the trained weights (output model), ENVI uses the HDF5 (.h5) format. The generated
land boundary maps were georeferenced, and no post-processing step was required. The
boundary mapping approach and workflow used in this study are shown in Figure 4.
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However, there were some hardware and software requirements, such as NVIDIA
GPU driver version 410.x or higher and NVIDIA graphics card with CUDA compute
capability 3.5–7.5. Additionally, it is recommended to have at least 8 GB GPU memory
to perform the training of the models with the GPU. If this requirement is not met, the
training will be performed with the central processing unit (CPU), which is too slow for a
large number of images.

2.3. Accuracy Assessment

The accuracy assessment in this study investigates two aspects—the evaluation of the
two models U-Net and ENVINet5 and the evaluation of the detection quality of the visible
land boundaries for the test UAV data (Figure 1a).

Both CNN models, U-Net and ENVINet5, were monitored with loss and accuracy
during the training process. Loss is defined as the sum of errors for each sample in
training between labels and predictions. To maximize the efficiency of the model, loss
should be minimized. For this purpose, we used the cross-entropy loss expressed by the
following formula:

cross− entropy loss = −(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

where:
yi—actual label value,
ŷi—predicted value.
To assess the performance of the models, overall accuracy was used as the evaluation

metric. The overall accuracy was calculated by summing the percentages of pixels correctly
identified as land boundaries by the model compared to the labelled reference boundaries
and dividing by all boundaries. Overall accuracy is expressed with the following equation:

overall accuracy =
TP + TN

TP + FP + FN + TN
(2)

where true positive (TP), true negative (TN), false positive (FP) and false negative (FN) are
shown in Table 2, which is the confusion matrix used to evaluate the detection quality of
the visible land boundaries.
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Table 2. Confusion matrix.

Ground Truth

Boundary No Boundary

Prediction
Boundary TP FP

No boundary FN TN

The detection quality of the visible land boundaries was evaluated by computing the
F1 score derived from the confusion matrix. F1 score was calculated for test UAV data (not
seen by the model during training) and represented the harmonic mean between recall and
precision (Equations (3) and (4)). Larger values indicate higher accuracy.

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

The recall is the ratio of correctly predicted visible boundaries to all reference cadastral
boundaries. The precision is the ratio of correctly predicted visible boundaries to all
predicted positive visible boundaries. The F1 score combines precision and recall and is
expressed with the following equation:

F1 score = 2 ∗ recall ∗ precision
recall + precision

(5)

3. Results
3.1. CNN Architecture

In our study, the labelled images and RGB UAV images were used to train the deep
CNN models.

For the U-Net, the randomly cropped tiles (Figure 1a,c,d) were the candidate training
datasets. The greater the variety of images used in the training data, the more robust
the network and the better the detection of visible land boundaries. Data augmentation
was applied to the provided images to increase the number of UAV images available for
training the U-Net model. Of the data used for training, 30% was used for validation. Once
the U-Net model was trained, we applied it to the test UAV images (Figure 1a).

The architecture was based on the original architecture of the U-Net, considering
the number of layers (network depth) and the size of the convolutional filters. However,
to avoid the resizing of the output image by the max-pooling operation, the padding
was set to ‘same’. In addition, a dropout rate of 0.8 was used as an optional function.
The dropout rate aims to avoid overfitting the model, which means that the training and
validation accuracy curves are less likely to diverge, then the model is more robust. To
avoid under-fitting, the layer depth was set to 1024. The larger the layer size, the higher
the probability that the curve for validation will be close to the training accuracy. We
used sigmoid instead of softmax as the final activation layer to retrieve the predictions,
which is good for binary classification. The main point is that when using sigmoid, the
probabilities were independent and did not necessarily sum to one. This is because the
sigmoid considers each raw output value separately. During training, the optimization
algorithm stochastic gradient descent (SGD) was used as the optimizer, and the momentum
was set to 0.9. The learning rate in the optimization defines the speed of learning, which
makes the network training converge. We used an adjusted learning rate of 0.001. Table 3
shows the adjusted settings and parameters.
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Table 3. Settings and adjusted parameters for our fine-tuned CNN based on the U-Net architecture.

Settings Parameters

Trainable layers

pooling layer maxpooling 2D

connected layer layer depth = 1024
activation = ReLU

dropout layer dropout rate = 0.8

logistic layer activation layer = sigmoid

Learning optimizer SGD optimizer learning rate = 0.001
momentum = 0.9

Training

UAV images
256 × 256 × 3, data

augmentation, validation
split 0.3

number of epochs = 100
batch size = 32

steps per epoch = training
samples/number of epochs

The model was trained with a batch size of 32 for 100 epochs. An early stop function
was also used to monitor validation loss. The number of steps per epoch was calculated by
dividing the total number of training images by the batch size. Deep learning by the U-Net
model was performed in Google Collaboratory, which provided a GPU with 25 GB of RAM.
A total of 4768 samples, i.e., augmented images, were used for training and 2044 samples
for validation. Training the model for 100 epochs took 4 h. The best model was saved
at epoch 92 by achieving an overall accuracy of 0.978 and a loss of 0.058. The training
performance of the U-Net is visualized in Figure 5.
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In this study, we also used ENVI deep learning to compare the results obtained with
the U-Net model. In this study, ENVI deep learning is considered a ‘black box’. The
information we had is that ENVINet5 is based on U-Net architecture, and it uses the same
layer size and the same number of convolution layers.

The ENVINet5 model was trained with a patch size equal to the total extent of the
training UAV data. In addition, the training data shown in Figure 1a,c,d were also processed
as UAV images for validation. The adapted training parameters of ENVINet5, namely
patch size of 256 × 256, number of epochs 50 and class weights min. 1 and max. 2, data
augmentation ‘yes’, resulted in a fine-tuned model for visible boundary detection. The
values of the other parameters were automatically filled by ENVI deep learning as they are
suggested to be left blank. The model with the best performance was saved at epoch 24,
where the validation loss reached its lowest value. The overall accuracy of the model was
0.946 and with a loss of 0.234. The training performance of the CNN model ENVINet5 is
shown in Figure 6.
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All experiments with ENVI deep learning were performed on an Intel® Core ™ i7-4771
CPU 3.5 GHz machine with an NVIDIA GeForce GTX 650 GPU with 2 GB of RAM. The
training time for 50 epochs was 6 h.

3.2. Detection of Visible Land Boundaries by U-Net

After training the CNN model, we evaluated its performance by applying it to the test
area (Figure 1a). We applied the trained U-Net model to the test UAV tiles of size 256 × 256
to predict the visible land boundaries. Some results of the predicted boundary maps based
on UAV tiles are shown in Figure 7.
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The next step was to georeference the predicted visible land boundaries and merge
them into a single land boundary map (Figure 8c). Considering that the predicted values
were in the range of 0–1, in order to assess the accuracy and thus match the ground truth
class values, it was necessary to reclassify the predicted values to 0 and 1, namely to
‘boundary’ and ‘no boundary’. In this study, few boundary map reclassifications were
performed, e.g., ‘boundary’ ≤ 0.9; ‘boundary’ ≤ 0.7; ‘boundary’ ≤ 0.5. The predicted
boundary maps for the test area showed a good match with the labelling image (ground
truth). The results of the georeferenced and merged predictions along with the reclassified
boundary maps are shown in Figure 8c–f.
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For a quantitative description of the predicted boundary maps, overall accuracy, F1
score, recall and precision are summarized in Table 4. Overall accuracy represents a general
metric by counting true positives/negatives and false positives/negatives, i.e., it considers
both ‘boundary’ and ‘no boundary’ classes. All predicted boundary maps resulted in
an overall accuracy of over 94%. To get a better insight into the detection quality, F1
score, recall and precision were calculated for the class’ boundary’ or ‘0’ as a positive class.
The results showed that more relevant visible land boundaries were detected when the
predicted boundary map was reclassified with the threshold ‘boundary’ ≤ 0.9, resulting
in an F1 score of 0.51. More balanced scores were retrieved for the boundary map with
‘boundary’ ≤ 0.7, resulting in an F1 score of 0.52. Higher precision was obtained for the
boundary map with the reclassification threshold ‘boundary’ ≤ 0.5, resulting in an F1 score
of 0.46.

Table 4. Accuracy assessment of visible land boundary detection with U-Net.

Predicted Boundary Map Overall Accuracy (%) Recall Precision F1 Score

Boundary ≤ 0.9 94.5 0.654 0.413 0.506
Boundary ≤ 0.7 96.2 0.480 0.565 0.519
Boundary ≤ 0.5 96.5 0.348 0.675 0.459

3.3. Comparison with ENVI Deep Learning—ENVINet5

The predicted land boundary map for the test area (Figure 8a) retrieved using EN-
VINet5 model was already georeferenced, so no further post-processing step was required.
In addition, the retrieved boundary map contained predicted values of 0 and 1, and no
additional reclassification step was performed to compare the results to the ground truth
map and to assess accuracy. The predicted boundary is visualized in Figure 9b.
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Figure 9. Comparison of predicted land boundary map: (a) predicted boundary map retrieved with U-Net, threshold
‘boundary’ ≤ 0.9; (b) predicted boundary map retrieved with ENVINet5.

Considering that all predictions retrieved with ENVINet5 were assigned the prediction
value 0 for the class’ boundary’, we selected the boundary map for the comparison of
results with U-Net, where all predictions ≤0.9, were reclassified as 0—‘boundary’. With
this, we wanted to compare predictions from U-Net that were as close as possible to
the predictions of ENVINet5. The overall accuracy was 94.5% for U-Net and 96.2% for
ENVINet5. However, in terms of detection quality for the ‘boundary’ class, ENVINet5
showed higher recall and lower precision than U-Net. In short, F1 score showed a slightly
higher value for U-Net, i.e., 0.51 compared to ENVNet5, where the value was 0.49. The
confusion matrices are shown in Table 5 and the quantitative results in Table 6.
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Table 5. Confusion matrices based on the number of pixels.

Ground Truth

Boundary No Boundary

U-Net
Boundary 137,056 195,156

No boundary 72,524 8,966,912

ENVINet5
Boundary 175,559 325,076

No boundary 34,021 8,836,992

Table 6. Accuracy assessment and comparison with ENVINet5.

Predicted Boundary Map Overall Accuracy (%) Recall Precision F1 Score

U-Net 94.5 0.654 0.413 0.506
ENVINet5 96.2 0.838 0.351 0.494

4. Discussion

Deep learning is a relatively new research area and offers great potential for feature
detection from remote sensing imagery [21,24]. The application of CNNs for detecting
visible land boundaries is becoming increasingly important, especially for UAV-based
cadastral mapping. In this work, we presented a deep learning application using Python
with Keras to implement U-Net, and software-based ENVI deep learning for visible land
boundary detection from UAV imagery. The research obtained encouraging and reasonable
results that can help to automate the process of cadastral mapping.

4.1. CNN Architecture and Implementation

In both network models, the loss was constantly decreasing from the first epoch until
the end. This indicated that the model was still learning on training samples. However,
the training of the models was monitored with the validation loss to avoid overfitting. The
training performance of the network models was shown in Figures 5 and 6. The validation
loss for U-Net was decreasing until epoch 92 and for ENVINet5 until epoch 24. This was a
good sign that the model did not lose the ability to generalize predictions for test datasets
that were not seen by the model during training. The evaluation metric showed relatively
high accuracies, 0.978 for U-Net and 0.946 for ENVINet5. The high accuracy of the network
models, including the first epochs, is mainly due to the unbalanced pixels of the classes. The
land boundaries occupy a minimal number of pixels compared to the background pixels.

In this study, we used a deep learning-based visible land boundary detector. Here,
providing balanced pixels for ‘boundary’ and ‘no boundary’ is a bit challenging, especially
for UAV imagery. UAV imagery usually has a small GSD (2–5 cm) and a limited coverage
area beside the efficient and flexible data acquisition system [14]. Moreover, the number
of background pixels in cadastral maps is always much higher than the number of pixels
representing the course of the cadastral boundaries themselves (line-based). The imbalance
of pixels per class is even more evident in randomly cropped tiles from UAV imagery.
Resampling the original GSD to a larger GSD contributed somewhat to an increase in the
field of view and balance between classes. However, the size of the GSD and the number of
training tiles is limited by the coverage area. To increase the amount of training data, we
applied data augmentation. Data augmentation has proven to be an efficient technique to
supplement original UAV training data, especially when training the U-Net model from
scratch. However, it remains a challenge to confirm what should be a sufficient variety of
UAV training data to learn a robust network model for visible cadastral boundary detection.

The problem of unbalanced classes could be solved by rebalancing the class weights,
using additional evaluation metrics besides overall accuracy, or performing deep learning
with multiple classes for land cover (polygon-based). In addition, other remote sensing
imagery can be used for the training data, e.g., aerial or satellite imagery; imageries can be
cropped in a way to cover more balanced pixels for ‘boundary’ and ‘no boundary’ and may
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not be limited with the coverage area. This can be applied if the deep learning model is
to be trained using only cadastral data that requires manual data preparation, such as the
creation of image tiles and corresponding ground truths. Instead, the CNN model could be
trained via transfer learning, similar to [17]. To avoid ambiguity, the detection quality for
UAV test data in this study was evaluated using recall, precision and F1 score for the class
‘boundary’. Thus, we had two indicators, overall accuracy, which includes both ‘boundary’
and ‘no boundary’ classes and one that is specific only to the ‘boundary’ class. Although
both models performed well, there were significant differences in implementation and
training, as one approach is customized, e.g., U-Net, and is offered as an API, while the
other, e.g., ENVINet5, is software-based, where we have fewer parameters available but
can still achieve good results.

Training a deep learning model requires more memory, a stronger GPU and efficient
computation. Training of the U-Net model was performed in Google Collaboratory, which
is open-source and can be considered as an alternative for the hardware costs to get more
memory and a more powerful GPU. On the other hand, ENVI deep learning had some
hardware and software requirements to perform the training of the network model. Google
Collaboratory allowed faster training compared to our machine. For 100 epochs, the
training time was 4 h with Google Collaboratory and three times the training time with
ENVI deep learning since it was run on a local machine with less computational power. It
should be emphasized that ENVI deep learning provided more stable training in terms of
a training session interruption, which occasionally happened with Google Collaboratory.

4.2. Detection of Visible Land Boundaries

The network models, both U-Net and ENVINet5, generally performed well in detect-
ing visible land boundaries, with some exceptions in the forest area. The results of the
quality of visible land boundary detection are shown in Figures 8 and 9 and quantitatively
in Tables 4 and 6. The results show that most visible land boundaries were correctly de-
tected, which demonstrates the ability of the UAV imagery and network models to detect
these types of land boundaries, especially in rural areas.

U-Net generated boundary maps with low recall and high precision when the thresh-
old for ‘boundary’ was set ≤0.5. This resulted in a recall of 0.35 and a precision of 0.68.
More balanced results and a higher F1 score were obtained when the threshold for ‘bound-
ary’ was set ≤0.7, namely a recall of 0.48, precision of 0.57 and F1 score of 0.52. The
boundary map with high recall and low precision was generated when the threshold was
set almost to the maximum, namely ‘boundary’ ≤ 0.9. This boundary map was used for
comparison with the new map obtained with ENVINet5, since nearly all predictions were
reclassified to the ‘boundary’ class, which is in accordance with the output of ENVINet5.

The results show an overall accuracy of 94% and 96% for U-Net and ENVINet5,
respectively. However, for the ‘boundary’ class, U-Net gave 0.51 F1 score and ENVINet5
0.49. This is mainly because U-Net provided more balanced scores, namely 0.65 in recall
and 0.41 in precision. On the other hand, ENVINet5 provided higher recall (0.84) and lower
precision (0.35), which means that the ‘boundary’ class is well detected, but the model also
includes points of the background class in it.

U-Net provided boundary maps that were in the range of 0–1. This is due to the
chosen sigmoid function as the activation function of the output layer, where the output
values obtained are estimates of the probability that the input belongs to class ‘boundary’.
Then, we set a threshold to decide whether the input belongs to class ‘boundary’ or class
‘no boundary’. The results maintain a balance; the lower the threshold, the lower the recall
and the higher the precision. The significant point of the threshold is that the same can be
used as a filtering method for boundary maps, depending on the need and purpose of the
application. For example, a low threshold provided high precision, while a high threshold
provided high recall. The recall is also referred to as completeness, while the precision
is referred to as correctness [15]. Imbalanced classes are common in cadastral maps, and
when it comes to specific use cases, more importance should be given to the metrics recall
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and precision, and how a balance between them can be achieved—which in our case was
supported by filtering the predicted boundary maps (Figure 8e). Unlike U-Net, ENVINet5
provided all predictions with values 0 and 1, and no further thresholding or filtering could
be applied.

In cadastral mapping, it is desirable that the relevant or candidate boundaries are cor-
rectly extracted since the correct determination of the location of the cadastral boundaries
is the core of the cadastre itself (correctness). On the other hand, increasing the number of
possible boundaries increases the cadastral coverage (completeness). Considering this, a
model that provides a balance between recall and precision is preferable. In short, a model
that provides a high F1 score.

The comparison of the results obtained with U-Net with other studies, in particu-
lar [15,17,25], which deal with the automation of cadastral mapping using different CNN
architectures, is not possible at this stage. This is mainly because the training approach of
the network models along with the input training data differs from study to study. Thus, a
reliable and qualitative comparison is not possible.

4.3. Boundary Mapping Approach

This section refers to the visible land boundary detection workflows applied in custom-
based U-Net and software-based ENVI deep learning. In general, boundary mapping ap-
proaches are quite different, starting from data preparation to the final predicted boundary
map. However, these differences provide advantages and disadvantages for each boundary
mapping approach used in this study.

In general, programming-based deep learning is open-source and offers a more flexible
but complex approach compared to software-based deep learning. Software-based deep
learning, e.g., ENVI deep learning, is simpler but at the same time more rigid. For example,
U-Net can be trained in a machine and in online platforms such as Google Collaboratory,
where the hyperparameters can be configured individually. In contrast, ENVI deep learning
has no implementation choices, but it also requires no additional configuration. The latter
can be considered a very important aspect as not all land administrators are experts in
programming, and this can be an option for them to perform deep learning. The main
challenge with CNNs is the preparation of a large amount of training data [26], especially
when the goal is to train the network only cadastral data [17]. In order to increase the
amount of training data for the U-Net, it was necessary to decompose the UAV orthoimages
in tiles before data augmentation. Moreover, for each UAV tile, a corresponding label image
(ground truth) was manually created using additional software for rasterisation. In contrast,
training in ENVI deep learning was patch-based, and the entire extent or a larger UAV
tile can be used as input for training. In addition, the labelling images were created
quite quickly within the software—directly by uploading reference boundaries as ROIs.
The boundary maps retrieved using U-Net were the same size as the input but were not
georeferenced. Considering that georeferencing is the key element in cadastral mapping,
it was necessary to georeference and merge predicted boundary maps from the test UAV
tiles. In ENVI deep learning, the prediction boundary map was already georeferenced, and
the predictions had values of 0 and 1. Therefore, further filtering of the predicted boundary
maps was not possible. The advantages and disadvantages of the U-Net and ENVI deep
learning mapping approaches used in this study are summarized in Table 7.
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Table 7. Summarized advantages (pros) and disadvantages (cons) for boundary mapping approaches used in this study.

U-Net ENVI Deep Learning

pros cons pros cons

• open-source • programming • no programming • commercial

• impl. online or on machine • additional
georeferencing step • georeferencing • impl. on machine only

• hyper-parameter
configuration

• label image manually • label image by
software

• hyper-parameter
configuration

• prediction values in range;
filtering of boundary maps • fixed predictions

4.4. Application of Detected Visible Boundaries

Cadastral boundaries are often demarcated by objects visible in remote sensing im-
agery [2,8]. Automatic detection of cadastral boundaries based on remote sensing imagery,
especially UAV imagery, has rarely been investigated. Automatic extraction of visible land
boundaries, i.e., property boundaries, offers the potential to improve current approaches to
cadastral mapping. The boundary mapping approaches investigated are based on deep
learning and offer improvements in terms of time and cost.

Both boundary mapping approaches, i.e., U-Net and ENVI deep learning, can help
to facilitate and accelerate cadastral mapping, especially in areas where large parts of the
cadastral boundaries are continuous and visible. In terms of delineation effort per parcel,
automatic delineation approaches (including post-alignments) require up to 40% less time
in rural areas compared to manual delineation, based on [17]. However, in areas where
cadastral boundaries are not visible in the image, manual delineation remains superior.
Overall, it can be said that manual methods provide slower but more accurate delineations,
while automatic methods are faster but less accurate (once the model is trained).

In countries with low cadastral coverage, deep learning-based mapping approaches
can be used to produce cadastral maps. In countries with full cadastral coverage, the de-
tected visible boundaries can be used to automate the process of revising the up-to-dateness
of existing cadastral maps. In this way, areas requiring updating and improving cadastral
boundary maps can be automatically identified. Notwithstanding the advances in cadastral
mapping, the automation of cadastral boundary detection is still ongoing [15,17,18]. This
is due to the nature of cadastral boundaries, which may have a simple geometry but are
very complex to interpret. Consequently, automatically detected visible land boundaries
should be considered as preliminary cadastral boundaries. Verification of automatically de-
tected land boundaries should be aligned with the existing technical, legal and institutional
framework of land administration. Moreover, not every cadastral boundary is demarcated
with visible objects. In this study, boundary mapping approaches were tested in rural areas.
It is argued that the number of visible cadastral boundaries is higher compared to urban
areas [2].

Automating the detection of invisible cadastral boundaries remains a challenge in land
administration, which has already been highlighted in [17]. Future work could investigate
and analyze the applicability of deep learning for invisible cadastral boundaries that are
marked prior to the UAV survey. It should be further investigated which type and size of
land boundary markers are more appropriate for demarcating the invisible boundaries.

5. Conclusions

Deep learning is becoming increasingly important in cadastral applications as a
state-of-the-art method for automatic boundary detection. The aim of this study was
to investigate the potential of CNN architecture, namely U-Net, based on UAV imagery
training samples—as a deep learning-based detector for visible land boundaries. The
results and land boundary mapping approach using U-Net were compared with software-
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based ENVI deep learning. The overall accuracy for both CNN models was higher than
95%. This indicates that deep learning-based land boundary detection usually faces an
unbalanced distribution of pixels per class, namely for ‘boundary’ and ‘no boundary’.

Regarding the quality of recognition for the class ‘boundary’ in the case of U-Net,
we obtained low recall and high precision when the threshold ‘boundary’ ≤ 0.5 was set.
This resulted in a recall of 0.35 and a precision of 0.68. Prediction reclassification can be
considered as a tool to filter the predicted boundary maps. For example, to compare the
results with ENVINet5, the threshold had to be set almost to its maximum. Here, U-Net
provided a recall of 0.65 and a precision of 0.41. For ENVI deep learning, we obtained a
recall of 0.84 and a precision of 0.35. Based on the F1 score (U-Net 0.51 and ENVI deep
learning 0.49), U-Net provided slightly better and more balanced results. The predicted
land boundary maps obtained with U-Net were georeferenced and merged in an additional
post-processing step. This was not an issue with ENVI deep learning—the output boundary
maps were already georeferenced. Overall, U-Net is a programming-based solution and
provides a more flexible boundary mapping approach in terms of hyperparameters and
CNN model setting. On the other hand, it can be somewhat complex and demanding
for the practice as not all land administrators are skilled in programming. In contrast,
ENVI deep learning does not require any programming and deep learning is guided by
the software process.

While programming-based deep learning is challenging due to the complexity of
the processes and their control, commercial software-based deep learning brings some
abstraction but at the same time has limitations in terms of influencing the processes
flow. Both land boundary mapping approaches investigated in our study can be used
to accelerate and facilitate cadastral mapping in rural areas. However, the automatically
detected visible land boundaries should be considered as preliminary boundaries for
cadastral map production and updating. The results should be further aligned with
technical, legal and institutional framework of land administration.
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Abstract: One of the main concerns of land administration in developed countries is to keep the
cadastral system up to date. The goal of this research was to develop an approach to detect visible land
boundaries and revise existing cadastral data using deep learning. The convolutional neural network
(CNN), based on a modified architecture, was trained using the Berkeley segmentation data set 500
(BSDS500) available online. This dataset is known for edge and boundary detection. The model was
tested in two rural areas in Slovenia. The results were evaluated using recall, precision, and the F1
score—as a more appropriate method for unbalanced classes. In terms of detection quality, balanced
recall and precision resulted in F1 scores of 0.60 and 0.54 for Ponova vas and Odranci, respectively. With
lower recall (completeness), the model was able to predict the boundaries with a precision (correctness)
of 0.71 and 0.61. When the cadastral data were revised, the low values were interpreted to mean
that the lower the recall, the greater the need to update the existing cadastral data. In the case of
Ponova vas, the recall value was less than 0.1, which means that the boundaries did not overlap. In
Odranci, 21% of the predicted and cadastral boundaries overlapped. Since the direction of the lines
was not a problem, the low recall value (0.21) was mainly due to overly fragmented plots. Overall, the
automatic methods are faster (once the model is trained) but less accurate than the manual methods.
For a rapid revision of existing cadastral boundaries, an automatic approach is certainly desirable for
many national mapping and cadastral agencies, especially in developed countries.

Keywords: land; visible boundary; cadastre; maintenance; UAV; deep learning

1. Introduction

Mapping the boundaries of land rights, creating a complete cadastre and being able
to keep it up to date is a major concern for land administration. Considering that three-
quarters of the world’s land rights are not recognised and registered, it is necessary to speed
up the process of cadastral mapping [1]. The challenge of creating a complete cadastre
usually arises in developing countries—with low cadastral coverage [2,3]. Mapping and
registering land rights in a formal cadastre is supposed to increase land tenure security [4,5].
However, an effective cadastre should also provide up-to-date information on people and
land relationships beyond the adjudication stage [6,7]. Updating, in most cases, refers
to the comparison of two datasets—one reflecting the state of the cadastral database and
one newly acquired [8]. In view of this, the term “revision” is used as a synonym—since
“updating” (as an act of formal change) is based on “revisions”.

In countries that already have a complete cadastre, providing up-to-date land data is
a top priority [9]. It has taken decades for the cadastre to be complete in these countries,
where conventional techniques such as ground-based surveying techniques or analogue
aerial photogrammetry have typically been used [10]. Both methods are considered labour
intensive and time-consuming [11,12]. The result was the creation of analogue cadastral
maps and land records that later had to be digitised and integrated into a geographic infor-
mation system (GIS) or broader land information systems. Although complete cadastres
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were created, many national mapping and cadastral agencies (NMCAs) failed to properly
maintain the cadastres [13]. The reality that cadastres attempt to depict is complex and
dynamic [14,15], and underestimating the dynamics of the relationships between people
and land, in reality, has led to outdated cadastral maps. Apart from the advances in sur-
veying and mapping technologies, most of which have already been tested in developing
countries [16–19], cadastral surveying and boundary data maintenance in developed coun-
tries continued to be carried out using ground-based techniques such as tacheometry and
global navigation satellite systems (GNSS) methods [10,12]. This approach presents many
challenges in terms of mapping efficiency, which can be overcome by low-cost and rapid
cadastral surveying and indirect mapping techniques.

Indirect mapping techniques rely on delineating visible cadastral boundaries from
high-resolution remote sensing imagery. The application of image-based cadastral mapping
is based on the recognition that many cadastral boundaries coincide with natural or man-
made structures that are readily visible on remote sensing imagery [3,17]. In cadastral
applications, unmanned aerial vehicles (UAVs) have shown great potential for mapping
land parcel boundaries in both rural and urban areas [18,20–22]. In addition, UAV-based
orthoimagery has been considered as a basemap for the creation of cadastral maps and for
the revision of existing cadastral maps [23–25]. Apart from the high visibility of spatial
units on UAV imagery relevant to cadastral mapping, many previous case studies have
reported the manual delineation of spatial units [16], but only a limited number of studies
have investigated the automatic mapping approach. The innovative approaches aim to
simplify and speed up image-based cadastral mapping by automating the delineation of
visible boundaries. Mainly, customised image segmentation and edge detection algorithms
have been used to automatically adjust cadastral mapping [23,26].

Modern methods for automatic boundary detection in cadastral mapping also include
deep learning [27–30]. Recent studies indicate that deep learning such as convolutional
neural networks (CNNs) ensure a higher accuracy in delineating visible land boundaries
than some of the state-of-the-art machine learning or object-based techniques [27,28]. CNNs
can be trained in two ways: from scratch or by transfer learning [31]. When training the
model from scratch, remote sensing data have to be provided, i.e., images and labels. In
transfer learning, the model is pre-trained, usually with a large amount of data with more
abstract features, and the last convolutional layer is trained with the specific features of the
new application. Crommelinck et al. [27] pre-trained the model using transfer-learning and
reported that VGG19, i.e., 19 layers deep CNN, provides a more automated and accurate
detection of visible boundaries from UAV imagery than random forest. The pre-training
was based on aerial imagery, which also had to be provided. Furthermore, the study
highlights that the model based on VGG19 provides more promising metrics than some
other architectures (such as ResNet, MobileNet, and DenseNet). Xia et al. [28] investigated a
fully CNN for cadastral boundary detection in urban and semi-urban areas. The model was
trained from scratch using UAV tiles, and the results show that the approach outperformed
object-based techniques, including global probability boundary (gPb) and multi-resolution
segmentation (MRS). Park and Song [32] aimed to detect the changes between existing
cadastral maps and current land use boundaries in the field. The model was trained from
scratch using hyperspectral UAV imagery. However, providing thousands of UAV training
data can be considered a limitation, especially when a model is trained from scratch, as
highlighted in [29]. This can be overcome with a CNN architecture that requires less training
data, for instance, U-Net, followed by data augmentation prior to processing [29,33]. The
challenge here remains to confirm what should be a sufficient variety of UAV training data
to learn a robust network model.

Objective of the Study

In general, it is argued that the main challenge with CNNs supporting cadastral
mapping is the processing of a large amount of remote sensing training data and the
computational requirements. Therefore, an important condition for any deep learning
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method is that the total time required to detect the final boundaries, including pre- and
post-processing, should not be longer than the total time of a manual method [10]. This
serves as a justification and allows the objective of this study to be defined.

The main objective of this study was to develop an efficient and cost-effective approach
for mapping visible land boundaries using CNN. The mapping approach is based on
the detection of visible land boundaries that coincide with large parts of the cadastral
boundaries—especially in rural areas. Automation of visible land boundary detection can
be used to revise existing cadastral maps and to automatically identify areas where updates
are needed. At this point, it should be emphasised that not all cadastral boundaries are
visible and that some of them are difficult to detect on UAV imagery.

2. Materials and Methods

The workflow of this study was comprised of four core parts, i.e., the training approach,
visible boundary detection, accuracy assessment, and vectorisation of boundary maps. The
individual steps and details are described in the following subsections. The generalised
workflow is shown in Figure 1.
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2.1. Training Approach and Dataset

Considering the main objective, a CNN that requires a smaller amount of training
data is preferable. U-Net is a CNN architecture that provides fast and precise localisation
of features from images. The U-Net consists of an encoding path and a decoding path,
giving it a U-shape. The encoding path is a convolutional network consisting of repeated
convolutions (3 × 3), each followed by a ReLU and max-pooling (2 × 2) operation. During
the encoding path, spatial resolution is decreased while feature information is increased.
The decoding path combines spatial and feature information through a sequence of up-
convolutions (2 × 2) and merging with high-resolution features from the decoding path,
where the size of the images is converted to their original size. A detailed description of the
original U-Net architecture can be found in [33]. In this study, the U-Net was considered as
a deep learning-based detector for visible boundaries.

Given the complexity of our domain problem, namely the detection of visible land
boundaries to revise existing cadastral maps, the original architecture was customised
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and is shown in Figure 2. The customisation included the removal of the first level of
the original U-Net. This reduces the number of parameters that can be trained and was
sufficient in terms of complexity for our domain problem.
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Figure 2. Convolutional neural network (CNN) based on customised U-Net architecture.

The model was trained using the Berkeley segmentation data set 500 (BSDS500) and
is available at [34]. BSDS500 is an accessible dataset and a standard benchmark for image
segmentation and edge or boundary detection tasks that can be used to train the CNN
while matching the domain problem of this study. The dataset consists of 500 everyday
images and their corresponding labels. The approach is intended to be transferable to
images of other scenes and contexts—for example, UAV images. The data is organised in
training, validation, and test subsets. Each image has hand-labelled boundaries that come
from an average of five annotators, or about 2500 samples in total. To increase the number
of training samples and to improve the flexibility of the validation split, the images of the
training and validation subsets were merged into one. In addition, the target image size
was set to 256 × 256 pixels.

Training a CNN requires a lot of memory and a powerful graphics processing unit
(GPU) to perform efficient computations. To combat this, the training of the customised U-
Net with the BSDS500 dataset was performed in Google Collaboratory [35]. The model was
implemented in Keras [36], and the process was written in Python using the TensorFlow
library [37]. The trained model was tested using UAV images with a size of 256 × 256 pixels.

2.2. Visible Boundary Detection from UAV Data

Two rural areas were selected to test the U-Net model, one in Ponova vas and the
other in Odranci, both in Slovenia. The rural areas were chosen because the number of
visible cadastral boundaries in these areas is higher than in dense urban areas.

In Ponova vas, the flight altitude was set to 80 m, and 354 images were acquired to
cover the study area (Figure 3a). The UAV images were indirectly georeferenced using
12 ground control points (GCPs) evenly distributed over the field. The GCPs were surveyed
with real-time kinematic (RTK) using the global navigation satellite system (GNSS) and
Leica Viva receiver. The study area had an area of 25 ha, and an orthoimage with ground
sampling distance (GSD) of 2.0 cm was produced from UAV images.
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Figure 3. Manually delineated visible land boundaries; (a) UAV orthoimage with ground sampling
distance (GSD) of 0.25 m Ponova vas, Slovenia; (b) UAV orthoimage with GSD of 0.25 m for Odranci,
Slovenia; (a,b) (EPSG 3794).

In Odranci, UAV images were acquired at the altitude of 90 m, and 997 images were
acquired to cover the study area (Figure 3b). A total of 18 GCPs were used to georeference
the UAV images. The GCPs were surveyed using RTK with the Leica GS18 GNSS receiver.
The GSD of the produced orthoimage was 2.3 cm, and the study area had an area of 63.9 ha.

All UAV data were acquired using a rotary-wing drone, the DJI Phantom 4 Pro. The
selected rural areas included agricultural fields, roads, tree groves, and hedgerows. Table 1
shows the specifications of the UAV data.

Table 1. Specification of the unmanned aerial vehicle (UAV) dataset for the selected study areas.

Location UAV Model Camera/Focal
Length [mm]

Overlap For-
ward/Sideward

Flight
Altitude

GSD
[cm]

Coverage
Area [ha]

Ponova vas,
Slovenia DJI Phantom 4

Pro 1” CMOS/24mm 80/70
80 m 2.01 25.0

Odranci,
Slovenia 90 m 2.35 63.9

UAV orthoimages for Ponova vas and Odranci were randomly tiled in 256 × 256 pixels.
To increase the field of view for each tile, the original spatial resolution of the UAV orthoim-
ages had to be converted to a larger GSD, from 2 cm to 25 cm, using the nearest neighbour
resampling method. In addition, corresponding ground truth images (also called label
images) were created for each UAV image. The 256 × 256 × 1 ground images were created
from the manually digitised visible land boundaries, which were originally in the vector
format (Figure 3a,b). Since the predicted boundary maps were in the raster format, the
reference boundaries were buffered by 50 cm and later rasterised using tools from GRASS
GIS [38]. Comparison of the predicted boundaries with the manually vectorised boundaries
allowed the CNN model to be evaluated, i.e., the ability of the model to produce boundary
maps for visible land boundaries.

In addition, cadastral boundaries were also used as reference data. The cadastral
boundaries were rasterised using the same tool and buffer size as the manual boundaries.
Unlike the manual approach, by comparing the predicted boundaries with the cadastral
boundaries, the number of cadastral boundaries that overlap with the visible land bound-
aries can be determined. This approach allowed existing cadastral maps to be revised. The
current cadastral boundaries were retrieved from the e-portal of the Slovenian NMCA, an
online platform for requesting official cadastral data [39].
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The predicted boundary maps were not georeferenced. Since georeferencing is a key
component in cadastral mapping, further edits were made. First, the predicted boundary
maps (for each UAV tile) were georeferenced. Second, the georeferenced tiles were merged
to obtain the boundary map for the entire extent. The analysis and further processing were
performed using GDAL [40], Rasterio [41], and Numpy [42]. After georeferencing, the
merged boundary maps were used to evaluate the accuracy and to quantify the overlap
between visible and cadastral boundaries.

2.3. Accuracy Assessment

The accuracy assessment refers to the evaluation of the CNN model and the evaluation
of the detection quality of the visible land boundaries for the UAV data.

The CNN model, namely the customised U-Net model, was monitored with accuracy
and loss during the training. The loss represents the difference between the boundaries
predicted by the model and the reference boundaries. In this study, cross-entropy loss was
used—the most common loss function used in CNNs. The performance of the model was
measured using overall accuracy. Overall accuracy as an evaluation metric is defined as the
sum of correctly predicted boundaries by the model divided by all predicted boundaries.
The definitions and equations for cross-entropy and overall accuracy can be found in [43].

Boundary detection based on CNNs falls into the domain of binary classification. Here,
it is a challenge to find balanced pixels for the classes “boundary” and “no boundary”. The
reason is that the number of background pixels (class “no boundary”) in predicted boundary
maps or cadastral maps is always much higher than the number of pixels representing
the boundaries themselves. For this reason, detection quality (i.e., the degree of correctly
detected visible boundaries compared to reference data) was evaluated by calculating the
F1 score, recall, and precision—more appropriate metrics for unbalanced classes. In such a
calculation, the “boundary” pixels were defined as a positive class since this was the focus
of our study.

Table 2 shows the confusion matrix used to evaluate the detection quality of visible
land boundaries and the overlap between visible and cadastral boundaries. The confusion
matrix classifies pixels into true positive (TP), false positive (FP), true negative (TN), and
false negative (FN).

Table 2. Confusion matrix.

Ground Truth

Boundary No boundary

Prediction
Boundary TP FP

No boundary FN TN

Based on the number of pixels in the confusion matrix, recall and precision are calculated
with the following equations:

recall = TP/(TP + FN) (1)

precision = TP/(TP + FP) (2)

Recall can be interpreted as completeness, while precision means correctness, and both
are important for cadastral mapping. The F1 score is composed of recall and precision and is
expressed by the following equation:

F1 score = 2 ∗ (recall ∗ precision)/(recall + precision) (3)

2.4. Vectorisation of Predicted Boundary Maps—Hough Transform

Current cadastral maps are in the vector format and are usually integrated into the
GIS environment. To obtain cadastral compliant output data, an automatic vectorisation
process was implemented. The predicted boundary maps were available in the raster
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format, with pixel values from 0 to 1—for each UAV tile as the input. Once georeferenced,
the predicted boundaries were automatically vectorised using the Hough transform [44,45].
Vectorisations were performed for binary predicted maps, with a threshold “boundary”
≥0.3 and “boundary” ≥0.5. Thresholds were chosen based on an assessment of the accuracy
of detected visible land boundaries.

The Hough transform extracts straight lines or curves from images and can be used
for digitising cadastral maps [46], or for the extraction of land boundaries [47]. The feature
extraction technique was implemented in Matlab. Here, the technique was designed to
detect lines, using the parametric representation of a line:

ρ = x cosθ + y sinθ (4)

where:
ρ—the distance from the origin to the line along a vector perpendicular to the line,
θ—the angle between the x-axis and this vector.
Various parameters for vectorisation were tested and empirically confirmed that the

following parameters generally gave the best results: the resolution for ρ and θ was set to 2
and 0.05, respectively, and lines with a length of at least 10 pixels and filled gaps of 10 pixels
between segments of a straight line were searched for. Vectorisation of relatively small tiles
using Hough transform is not computationally demanding, which allowed us to implement
it iteratively. After vectorising the straight line which corresponded to the highest value
of Hough transform, the pixels in the binary image within a distance of 3 pixels from the
vectorised line were set to 0. Then the Hough transformation was performed again. With
the implemented method, the lines were simplified and avoided the vectorisation of doubly
adjacent lines.

3. Results
3.1. CNN and Training Approach

Based on the custom U-Net architecture, the CNN was trained with the BSDS500
dataset, with the target size set to 256 × 256 pixels. The training images were in RGB, and
30% of the training data was used for validation. This resulted in 1505 samples for training
and 645 samples for validation.

After some testing, the training parameters were adjusted to fine-tune the model. To
avoid changing the size of the predicted boundary maps for each input image, a max-
pooling method with equal padding was specified. In addition, a dropout rate of 0.5 was
used. The dropout rate is used to ignore randomly selected neurons to avoid overfitting
the model. The layer depth was set to 1024, and a sigmoid was used as the final activation
layer. During training, the Adam optimiser was used with a learning rate of 10−4.

The model was trained with a batch size of 16 for 50 epochs. The early stop function
with the patience of 10 epochs was activated. This feature stops training when the perfor-
mance of the model in a validation dataset stops improving. The number of steps per epoch
was calculated by dividing the total number of training samples by the batch size. Training
was performed in Google Collaboratory. The service provides access to different GPUs
that affect the training time. In this study, the service provided a GPU with 12.7 GB RAM.
The early stop ended the training at epoch 18, which took 1.5 h. With a more powerful
GPU, e.g., 25 GB, training the model for 100 epochs took 82 min (with a batch size of 32 and
without early stop). The training performance of the adapted U-Net is shown in Figure 4.
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3.2. Visible Boundary Detection from UAV Imageries

Once the model was trained, it was applied to 256 × 256 × 3 UAV images to detect
visible land boundaries. A prediction boundary map was created for each UAV tile. The
boundary maps were georeferenced and merged to determine the total extent of the test
area. The results of the predicted boundary maps based on georeferenced and merged UAV
tiles are shown in Figures 5 and 6. In addition, the results obtained with the customised
CNN were compared with the original U-Net.
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Predicted boundary map with (b) customised CNN, and (c) original U-Net architecture.

The predicted boundary maps, shown in Figures 5 and 6, had pixel values ranging
from 0 to 1. To evaluate the detection quality of the visible land boundaries, the predictions
were compared to the ground truth data on land boundaries that had been manually
digitised from the UAV imagery. The ground data consisted of two classes, i.e., “boundary”
and “no boundary” with values of 1 and 0, respectively, so the predicted boundary maps
were reclassified into two classes with threshold values of 0.3 and 0.5. The results of the
reclassified boundary maps are shown in Figures 7 and 8.
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Figure 8. (a) Ground truth image for Odranci, Slovenia. (b,c) Reclassified boundary maps obtained
with customised CNN: (b) with threshold 0.3, and (c) with threshold 0.5.

Next, we evaluated the accuracy of the reclassified boundaries for both models, i.e.,
the customised model and the original U-Net model. The results of the accuracy evaluation
are shown in Tables 3 and 4.
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Table 3. Assessment of the detection quality of visible land boundaries and comparison of
approaches—Ponova vas.

Test Area Predictions Customised U-Net (CNN) Original U-Net (CNN)

Ponova vas
threshold recall precision F1 score recall precision F1 score

0.3 0.600 0.597 0.598 0.565 0.520 0.542
0.5 0.454 0.714 0.555 0.412 0.624 0.496

Table 4. Assessment of the detection quality of visible land boundaries and comparison of
approaches—Odranci.

Test Area Predictions Customised U-Net (CNN) Original U-Net (CNN)

Odranci
Threshold recall precision F1 score recall precision F1 score

0.3 0.534 0.549 0.598 0.495 0.494 0.494
0.5 0.438 0.615 0.511 0.355 0.592 0.444

3.3. Revision of Existing Cadatral Data on Land Boundaries

The predicted land boundary maps with the highest F1 score, obtained with customised
CNN (Tables 3 and 4), were used to further revise the existing cadastral maps for the two
test areas, Ponova vas and Odranci. In addition, the manually vectorised visible boundaries
were compared with the existing cadastral data on land boundaries to obtain reference
values for the overlap of the two geospatial data layers. The revision of the existing cadastral
maps was based on the same metrics used to evaluate accuracy in the previous section. The
existing cadastral maps were compared to the automatically detected visible boundaries,
as shown in Figures 9 and 10. The accuracy assessment is shown in Tables 5 and 6.
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vectorised visible boundaries; and (c) predicted visible boundaries with customised CNN; (a–c)
overlaid on UAV imagery.
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UAV imagery.

Table 5. Assessment of the overlap between cadastral boundaries and land visible boundaries—
Ponova vas.

Cadastral Map

Boundary Map recall precision F1 score
Ponova vas Manually 0.051 0.090 0.065

Predicted 0.055 0.095 0.070

Table 6. Assessment of the overlap between cadastral boundaries and land visible boundaries—
Odranci.

Cadastral Map

Boundary Map recall precision F1 score
Odranci Manually 0.372 0.627 0.467

Predicted 0.207 0.491 0.291

The predicted boundaries were vectorised to match the format of the current cadastral
data. Vectorisation was performed using the Hough transform. The fill gap of 10 was
applied because it was considered more appropriate, and we thus avoided the possibility
of bias in the predicted boundaries. This approach not only vectorised the pixels defined as
the “boundary” but also produced straight lines, which are crucial for cadastral mapping.
This can be considered a vectorisation and simplification step. Once the vectorisation
was complete, we also created an overlapping (discrepancy) map, which can be seen in
Figure 11.
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4. Discussion

The discussion is divided into three parts: (i) CNN and training approach for visible
land boundary mapping; (ii) detection of visible land boundaries using UAV imagery
and deep learning and (iii) revision of existing cadastral maps based on the detected and
digitised visible land boundaries, addressing the objectives of our study.

4.1. CNN and Training Approach

In general, deep learning is a relatively new research area in the geospatial domain
and offers great potential for feature recognition from remote sensing imagery [30]. The up-
scaling deep learning solutions, including CNNs, for visible land boundary detection is be-
coming increasingly important, especially for UAV-based cadastral mapping [27,29]. Deep
learning requires processing a large amount of training data and powerful computations.
In this study, an efficient and cost-effective deep learning approach was developed that
provides reasonable results and helps to further automate the cadastral mapping process.

The CNN model is based on the U-Net architecture [33]. Since our research problem
was binary classification, the original U-Net architecture was simplified (Figure 2) to reduce
the number of training parameters and training time. This led to a more efficient and, at
the same time, more accurate result compared to the original architecture (Figures 5 and 6
and Tables 3 and 4).

Training of the CNN model was based on the BSDS500 dataset [34]. This dataset is well
known for edge or boundary detection tasks and already fitted the purpose of the study.
The CNN model was trained from scratch, and no additional preparation of the training
data was completed since the dataset contained both images and labels. Typically, CNNs
are trained from scratch or by transfer learning. Both approaches require the preparation
of custom training data, including images and labels, which usually takes some time and
has already been highlighted in [27–29]. However, the amount of training data depends on
the type of CNN architecture used. For example, the U-Net is an architecture that requires
less training data and still provides accurate localisations [33]. In this study, the model was
trained with 1505 samples, which can be considered a small amount of training data, but the
model still provided satisfactory results. In addition, the model was trained for 18 epochs
and required a total of 1.5 h to complete the training, which can also be considered a
fast approach. The CNN model was trained in Google Collaboratory [35]. This approach
reduces the cost of strong GPUs and RAM and can be considered a low-cost approach. The
only bottleneck is the provided RAM memory, which varies from 12.7 GB to 25 GB. These
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variations also affect the training time. In addition, there were some interruptions during
the training, so a local computer is beneficial in this area and can be considered a more
stable solution.

Model performance during training was monitored by loss, overall accuracy, and F1
score (Figure 4). The loss decreased steadily from the first epoch to the end of training. The
early stop function monitored the validation loss to stop the training before the model was
over-fitted. The overall accuracy had high values from the beginning of the training, mainly
due to the unbalanced pixels for the “boundary” and “no boundary” classes. In addition,
the F1 score was applied. At this point, it should be emphasised that the overall accuracy
cannot be considered as a suitable metric to monitor the performance of the model during
training. The reason is that the main problem in boundary detection tasks is the unbalanced
number of pixels per class. Normally, the boundary pixels occupy a small number of pixels
compared to the background pixels. For this reason, the model was additionally monitored
with the F1 score, which was calculated only for pixels of the class “boundary”.

4.2. Visible Boundary Detection from UAV Imageries

In this study, deep learning was used as a detector for visible land boundaries. Once
the model was trained, it was applied to the UAV test data. First, the original UAV or-
thoimages were resampled from 2 cm to 25 cm GSD. This was performed to increase the
field of view for each test UAV tile with a size of 256 × 256 pixels. A map of visible
land boundaries was created for each tile. Second, the predicted boundary maps were
georeferenced and later merged, as this is essential for cadastral mapping.

To evaluate the quality of the predicted boundary maps, they were compared with
manually digitised boundaries from UAV orthoimagery. The evaluation was based on
recall, precision, and F1 score, as this is considered a reasonable and unambiguous approach.
Boundary maps were buffered (with 50 cm) and rasterised, and a value of 0 was set for
the “no boundary” class and a value of 1 for the “boundary” class. The boundary maps
generated by the CNN model originally ranged from 0 to 1. Therefore, the boundary maps
were reclassified with a threshold value where “boundary” ≥ 0.3 and “boundary” ≥ 0.5.

Boundary maps with a threshold of 0.3 generated more balanced values for recall and
precision (and at the same time a higher F1 score) compared to predictions with a threshold
of 0.5 (Tables 3 and 4). For Ponova vas, we obtained an F1 score of 0.60 for a threshold of 0.3
and an F1 score of 0.55 for a threshold of 0.5. In the case of Odranci, the results showed an
F1 score of 0.54 and 0.51 for a threshold of 0.3 and 0.5, respectively. It is worth highlighting
here that the higher the threshold for the “boundary” class, the higher the precision and the
lower the recall. For cadastral mapping, both values can be considered relevant since recall
represents completeness (the number of detected boundaries compared to the reference
data), while precision represents the correctness of the detected boundaries. Considering
this, an F1 score as high as possible would have been desirable. The threshold can be used
as an aid or balance between recall and precision and can be used depending on the purpose
or requirement. In short, the higher the completeness or the detected boundaries, the lower
the correctness and vice versa.

Boundary maps created using a customised CNN (basically a simplified U-Net) were
additionally compared to a CNN based on the original U-net architecture [33]. This was
used to evaluate our adapted approach. The results obtained with the original U-Net for
both thresholded boundary maps showed worse results compared to our adapted model.
The best results were obtained for reclassified boundary maps with a threshold of 0.3,
namely an F1 score of 0.54 for Ponova vas and an F1 score of 0.49 for Odranci.

What would be a perfect F1 score for cadastral mapping is not easy to determine. First
of all, not all cadastral boundaries are visible. Second, it depends on the area where the
CNN model is tested and the scenes it covers, for example, rural, urban, or mixed. This is
also true when comparing the results of one study to another, as methods and case studies
differ, thus making reliable comparison impossible [27,28]. However, for further analyses,
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such as revising existing cadastral boundaries, an F1 score of 60 is considered sufficient for
rapid analysis, especially in rural areas.

4.3. Revision of Existing Cadatral Data on Land Boundaries

Predicted visible land boundaries were compared with official data, i.e., cadastral
boundaries, to revise current cadastral maps [39]. The cadastral boundaries were buffered
and rasterised in the same manner as the manually delineated boundaries. The boundary
maps that provided a higher F1 score were selected to revise the existing cadastral maps in
Ponova vas and Odranci, both in Slovenia. The revision was based on the same metrics,
namely recall, precision, and F1 score. Before comparing the predicted boundaries with
the cadastral boundaries, reference values were generated by comparing the cadastral
boundaries to the manually delineated visible land boundaries on the same UAV imagery
(Tables 5 and 6). This was undertaken because the manually digitised boundaries were
assumed to have complete and correct data and were defined as ground truth data.

In the case of Ponova vas, it was obvious even from visual interpretation that the
cadastral map was outdated (Figure 9a). The currently visible land boundaries (the bound-
aries that define the use of the land on site) did not match the cadastral boundaries. This
was also confirmed by the accuracy assessment. The results presented in Table 5 showed
very low values, namely a recall of 0.06, a precision of 0.10 and an F1 score of 0.07 compared
to the predicted boundaries. Almost the same results were obtained when comparing with
the ground truth data (recall: 0.05, precision: 0.09, F1 score: 0.07). In this case, very low
metrics, specifically low recall, can be interpreted as an indicator of the identification of
specific areas where cadastral updates are needed. In addition, the metrics generated when
compared to the predictions also did not indicate any overlap between the visible and
cadastral boundaries (regardless of the fact that not all visible boundaries were automat-
ically generated). A very low recall indicates that there must also be a problem with the
directions of the cadastral boundaries and that they do not correspond to the situation on
the ground. In order to align the land possession and (legal) cadastral data, a complex
revision of cadastral data is required in Ponova vas, using legal cadastral instruments,
such as the setting up cadastral data or restructuring of land parcels through complex land
consolidation. For these purposes, the provided data on visible land boundaries can serve
as important input data, for creating or updating cadastral maps [16,20].

In the case of Odranci, the situation is a little different since the direction of the
cadastral boundaries matched the direction of the visible land boundaries (Figure 10a). The
results yielded a recall of 0.21, a precision of 0.49, and an F1 of 0.29, compared to reference
values of 0.37, 0.63, and 0.47. From these metrics, 37% of the visible land boundaries
overlapped with the cadastral boundaries, which corresponded to a correctness of 63%
(based on ground truth data). Our CNN provided a lower F1 score, which was to be
expected, but at the same time, it was sufficient to determine boundary overlaps [3]. The
values of recall and precision indicated that the direction and location of the cadastral
boundaries were consistent with the visible boundaries. The low values for overlap could
be due to excessive fragmentation. Many parcels were fragmented into small pieces while
they were shown under the same land cover in the UAV imagery. This was also evident
from the visual interpretation. A simplified land consolidation merging land units would
have been preferable in Odranci, where, again, the provided data on visible land boundaries
can serve as important input data.

For both study areas, the predicted boundary maps were also vectorised using the
Hough transform (Figure 11). In addition to vectorisation, the Hough transform provided
straight lines and filled some gaps—this can also be considered a simplification approach.
In this study, a filling gap of 10 was used so as not to bias the predicted results. Moreover,
increasing the value for filling the gaps sometimes led to undesirable results. Vectorisation
is crucial for cadastral mapping because it allows for further analysis. In this study, the
evaluation of accuracy was performed on a pixel basis. Further studies could focus on
comparing pixel-based methods with object-based methods to evaluate accuracy, such as
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the buffer overlay method [48], once the predicted boundaries are vectorised. In the buffer
overlay method, the buffer can be increased around the cadastral data, which is called
a tolerance in cadastral applications; this may not affect the assessment of completeness
because the approach is based on the length that falls within the buffer. In the pixel-based
method, if the width or buffer of the reference data is increased while the predictions are
thinner, this would lead to a bias in completeness and correctness.

5. Conclusions

In the last decade, much attention has been given to the creation of cadastral maps
and the establishment of cadastral systems, including innovative surveying and mapping
techniques, but less to the maintenance and sustainability of the cadastral systems. This
article focused on data maintenance by revising existing cadastral maps using deep learn-
ing. The whole workflow was developed and presented, starting with training the CNN,
detecting the visible land boundaries, georeferencing, evaluating the model and vectorising
the predicted boundary maps, and revising the existing cadastral maps. The model was
tested with UAV imagery, but the developed approach could also be used for satellite or
aerial imagery.

The approach can be considered efficient and cost-effective in automatically iden-
tifying areas where updates of cadastral maps are needed. In addition, the identified
visible land boundaries could be used as input data for updating cadastral data or other
cadastral procedures that can be applied for cadastral mapping, including for land parcel
restructuring. The identified visible land boundaries did not represent final cadastral
boundaries. They can be considered as preliminary boundaries for quick analysis and
public presentations of the current state of the art.

One of the main land administration problems in developed countries is to keep the
cadastral system up to date. Here, an automated approach that identifies the areas where
such updates are needed would highlight and narrow down this challenge for NMCAs.
Overall, it can be said that automatic methods are faster but less accurate (once the model is
trained), while manual methods provide slower but more accurate boundary delineations.
Combining automatic methods with manual corrections can reduce the user effort and
still provide high accuracy. However, when revising existing cadastral boundaries, an
automatic approach is certainly desirable for many NMCAs. It should also be reiterated
that not all cadastral boundaries are visible in remote sensing imagery and not all can be
automatically detected or extracted. Therefore, automating invisible cadastral boundaries
by tagging them prior to UAV or satellite imagery acquisition could be an interesting and
challenging task for further research.
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