
 
 
 
 
 
 

   
 

Ljubljana, 2022 
__________________________________________________________________________________ 

Hrbtna stran: STANČIČ LIZA  2022 
 

 Univerza 
 v Ljubljani 
 Fakulteta 
 za gradbeništvo 
 in geodezijo 

 

 

 

LIZA STANČIČ 
 

 

UGOTAVLJANJE SPREMEMB REČNIH PRODIŠČ Z 
DALJINSKIM ZAZNAVANJEM 

DOKTORSKA DISERTACIJA 
 

 

 

MONITORING CHANGES OF FLUVIAL GRAVEL 
BARS WITH REMOTE SENSING 

DOCTORAL DISSERTATION 

 
 

 INTERDISCIPLINARNI DOKTORSKI ŠTUDIJSKI PROGRAM 

VARSTVO OKOLJA 

  



 
 
 
 
 
 

                                                            
 

Ljubljana, oktober 2022 
 

 
 

 Univerza 
 v Ljubljani 
 Fakulteta 
 za gradbeništvo 
 in geodezijo 

 

 

 

 

Doktorandka 

LIZA STANČIČ 
 

 

UGOTAVLJANJE SPREMEMB REČNIH PRODIŠČ Z 

DALJINSKIM ZAZNAVANJEM 
Doktorska disertacija 

 

 

 

MONITORING CHANGES OF FLUVIAL GRAVEL 

BARS WITH REMOTE SENSING 
Doctoral dissertation 

  



 
 
 
 
 
 

   
 

 

 Univerza 
 v Ljubljani 
 Fakulteta 
 za gradbeništvo 
 in geodezijo 

 

 

Mentor: prof. dr. Krištof Oštir, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo. 

Somentor: izr. prof. dr. Žiga Kokalj, Znanstvenoraziskovalni center Slovenske akademije znanosti 

in umetnosti. 

 

 

 

Komisija za spremljanje doktorske študentke:  

doc. dr. Simon Rusjan, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 

prof. dr. Mitja Kaligarič, Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, 

prof. dr. Mathias Schardt, Graz University of Technology in Joanneum Research. 

 





Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. I 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

ERRATA 

Page   Line   Error    Correction  

  



II  Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank.« 

  



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. III 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

ZAHVALA  

Zahvaljujem se mentorju, prof. dr. Krištofu Oštirju, za usmerjanje, spodbudo in vse nasvete med 

doktorskim študijem. Zahvaljujem se somentorju in raziskovalnemu mentorju, izr. prof. dr. Žigu 

Kokalju, za izkazano zaupanje, neprecenljivo podporo in skrbnost med uvajanjem v raziskovalno delo. 

 

Najlepša hvala članom komisije doc. dr. Simonu Rusjanu, prof. dr. Mitji Kaligariču in prof. dr. Mathiasu 

Schardtu za pregled disertacije ter komentarje, ki so jo izboljšali. Thank you very much to the committee 

members doc. dr. Simon Rusjan, prof. dr. Mitja Kaligarič, and prof. dr. Mathias Schardt for reviewing 

the dissertation and for comments that improved it. 

 

Doktorski študij mi je omogočila Javna agencija za raziskovalno dejavnost Republike Slovenije. Hvala 

ZRC SAZU za spodbudno delovno okolje in UL FGG za študijsko podporo. Hvala različnim 

organizacijam in posameznikom, ki so mi omogočili dostop do podatkov, brez katerih bi bilo pričujoče 

delo nemogoče. 

 

Thank you to the Remote Sensing and Geoinformation research group at Joanneum Research for your 

time, interest and support during a period that was most difficult for establishing new personal 

connections. 

 

Iskrena hvala vsem sodelavkam in sodelavcem na Inštitutu za antropološke in prostorske študije za 

nesebično deljenje znanja, bogatenje delovnih dni, navdihujočo odprtost duha in prijateljska druženja. 

 

Hvala družini za spodbudo na tej poti in za potrpežljivost v težkih trenutkih. Hvala prijateljem za pomoč 

na vseh področjih, nalezljiv optimizem in bistrenje misli. Posebna hvala Anžetu za vrnjeno uslugo. 

  



IV  Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank.« 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. V 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

BIBLIOGRAFSKO-DOKUMENTACIJSKA STRAN IN IZVLEČEK 

UDK:   528.8:33.055:553.624(282)(043) 

Avtor:   Liza Stančič, mag. upravljanja z naravnimi viri  

Mentor:  prof. dr. Krištof Oštir  

Somentor: izr. prof. dr. Žiga Kokalj 

Naslov: Ugotavljanje sprememb rečnih prodišč z daljinskim zaznavanjem 

Tip dokumenta: doktorska disertacija 

Obseg in oprema: XXXII, 162 str., 23 pregl., 60 sl., 5 en., 3 pril. 

Ključne besede: analiza vsebnosti spektralnega signala, daljinsko zaznavanje, mehka 

klasifikacija, optični posnetki, plavine, podpikselsko kartiranje, prodišča, 

reke, spremljanje, večspektralni podatki 

 

Izvleček 

Prodišča so dinamična območja odlaganja plavin v rekah. Opravljajo pomembne ekološke funkcije in 

veljajo za pokazatelje sprememb hidroloških značilnosti rek. Satelitski posnetki s kratkim časom 
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odkrivanje prodišč, zlasti na gorskih območjih, kjer so reke in z njimi povezane značilnosti ozke. Zato 

smo razvili podpikselsko metodo kartiranja, ki temelji na analizi vsebnosti spektralnega signala. Za 

referenco smo uporabili letalske ortofote, satelitske posnetke zelo visoke ločljivosti in terensko 

kartiranje. Poleg spektralnih pasov Sentinel-2 in Landsat smo za boljše ločevanje med izbranimi razredi 

pokrovnosti uporabili spektralne indekse. Samodejno izbrani končni piksli so omogočili kartiranje s 

podobno natančnostjo kot ročno izbrani končni piksli. Končne piksle, izbrane na enem posnetku 

študijskega območja med sezono olistanja, lahko uspešno uporabimo za SMA drugih posnetkov istega 

območja, pridobljene z istim sistemom daljinskega zaznavanja na drugi točki sezone olistanosti. Karte 

deležev pokrovnosti so natančnejše od kart, izdelanih s trdo klasifikacijo s Spectral Angle Mapper z 

uporabo istih vhodnih podatkov. Ob upoštevanju teh ugotovitev smo izdelali karte deležev proda, 

vegetacije in vode za Sočo, Savo in Vjoso (Albanija) za obdobje več kot 30 let. Tematska natančnost 

kart je znotraj 90%. Preizkusili smo tudi sposobnost kart deležev pokrovnosti za zaznavanje sprememb 

in ugotovili, da je mogoče natančno zaznati spremembe v obsegu vsaj 400 m2. Časovne vrste lahko 

uporabimo tudi za zaznavanje odstranjevanja proda, kot je vidno na znanih območjih odvzema proda 

pri naselju Dolje na Soči in pri Kranju na Savi. Disertacija prispeva k znanosti z novimi spoznanji o 

uporabi podpikselskega kartiranja za spremljanje naravnih procesov. Razvito metodo lahko uporabimo 

za proučevanje območij, kjer je na voljo manj terenskih podatkov. Na podlagi novo pridobljenega znanja 

je mogoče sprejemati boljše odločitve o upravljanju z vodami in varstvu habitatov.  
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Abstract 

Gravel bars are dynamic areas of bedload deposition in rivers. They perform important ecological 

functions and are considered indicators of changes in the hydrological characteristics of rivers. Satellite 

images with a frequent revisit period and a large area of simultaneous coverage are an ideal data source 

for monitoring many natural features including gravel bars. Openly and freely available remote sensing 

data from the Sentinel-2 and Landsat systems have a spatial resolution that may be too coarse for 

accurate detection of gravel bars, especially in mountainous areas where rivers and related features are 

narrow. We therefore developed a sub-pixel mapping method based on spectral mixture analysis. Very 

high resolution aerial orthophotos and satellite images, as well as field mapping, were used as reference. 

Sentinel-2 and Landsat spectral bands were supplemented with spectral indices to increase the 

separability between land cover classes of interest. Automatically selected endmembers led to results 

with similar accuracy as when manually selected endmembers were used. Endmembers selected on one 

image of the study area during the leaf-on season could be used to analyse another image of the same 

study area acquired with the same remote sensing system at a different time. The fraction maps were 

found to be more accurate than maps produced by hard classification with Spectral Angle Mapper using 

the same input data. Considering these findings, we produced fraction maps of gravel, vegetation, and 

water presence for the Soča and Sava rivers in Slovenia, and the Vjosa river in Albania for a period of 

over 30 years. The thematic accuracy of the maps was within 90%. We also tested the ability of fraction 

maps for change detection and found that changes of at least 400 m2 could be accurately detected. The 

time series plots can also be used to detect gravel removal as demonstrated at known excavation sites 

near the Dolje settlement on Soča and near Kranj on Sava. The dissertation contributes to science with 

new insights about the application of sub-pixel mapping for monitoring natural processes. The 

developed method can be applied to study areas where less in situ data are available. More informed 

management decisions can be made based on newly acquired knowledge.  
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metodami izbora končnih pikslov za izbrane razrede pokrovnosti. 52 
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SLOVAR / GLOSSARY 

Endmember, pure pixel – sl. Končni piksel: Pixel representing the spectral properties of a single land 

cover class. Endmembers may be measured with a spectro-radiometer, found on an actual 

satellite image, or estimated based on image data. 

 

Endmember selection, endmember extraction – sl. Izbor končnih pikslov: Determination of pixels 

representing land cover classes of interest on a satellite image. The selection can be done 

manually with the help of reference data with a higher spatial resolution, or automatically, for 

example with a region growing algorithm to find the extremities of the image feature space. 

 

Fully constrained spectral mixture analysis – sl. Polno omejena analiza vsebnosti spektralnega 

signala: Method for calculating land cover presence where the fraction values within each pixel 

need to sum up to one and must be non-negative. 

 

Hard classification – sl. Trda klasifikacija: Method for recognising features on a satellite image where 

the whole area of each pixel is assigned to a single class. 

 

Image endmember – sl. Končni piksel, izbran na posnetku: Pixel on a satellite image chosen to 

represent the spectral properties of a particular land cover class. Reference data with a higher 

spatial resolution is usually necessary to ensure pixel purity. 

 

Land cover fraction, land cover abundance – sl. Delež pokrovnosti: Share of a pixel covered by a 

particular land cover class. The share is determined based on the degree of similarity of the 

pixel’s spectral signature to the spectral signature of the particular land cover class. 

 

Non-linear spectral unmixing – sl. Nelinearna analiza vsebnosti spektralnega signala: Method for 

calculating the presence of selected land cover classes in a setting where the classes are very 

closely mixed. Each incoming photon therefore interacts with more than one class. Non-linear 

spectral unmixing is necessary, for example, when analysing the materials present in sand or 

soil. 

 

Non-pixel endmember – sl. Končni piksel, ki ni izbran na posnetku: Spectral properties of a selected 

land cover class that are not derived from a single pixel on a satellite image, but estimated based 

on the image data. Non-pixel endmember need to be used when images are highly mixed and 

no pure pixels are present. 
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Soft classification – sl. Mehka klasifikacija: Method for recognising features on a satellite image 

where the cover of each pixel is defined as a mix of different land cover classes. The mix is 

represented by land cover fractions. 

 

Spectral angle mapper – sl. Klasifikacija na podlagi kota med spektri: Method for assigning selected 

land cover classes to pixels based on a comparison of angles between vectors of reference 

spectra and pixels spectra. The smallest calculated angle means the biggest similarity between 

the two spectra under consideration. 

 

Spectral mixture analysis – sl. Analiza vsebnosti spektralnega signala: Method for determining the 

presence of selected land cover classes in a pixel based on the pixel’s spectral properties. 

 

Transferred endmember – sl. Prenesen končni piksel: Pixel chosen to represent the spectral 

properties of a land cover class selected on one satellite image and used to determine land cover 

fractions on another satellite image. 
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1 INTRODUCTION 

Successful nature conservation, sustainable development, and integrated resource management rely on 

accurate monitoring which in turn depends on reliable data. This is underlined by the UN Statistical 

Commission, which defined a comprehensive set of 231 indicators to track progress towards the 

Sustainable Development Goals (SDGs) (UN, 2017). Data used to obtain information on the indicators 

must be collected in a comparable manner worldwide, must be responsive to change, and must provide 

repeatable observations. It is also beneficial if data collection is not very expensive and lengthy. Remote 

sensing can play an important role in seeking global universality of goals, greater objectivity of 

monitoring methods, and reproducibility of the approach (Scott and Rajabifard, 2017). In Earth 

observation (EO), data are collected with sensors that are not in contact with the surface; the data are 

then transmitted to ground stations and processed accordingly. Subsequently, the processed images are 

interpreted and analysed, and the acquired information is used for selected applications (Oštir, 2006). A 

key factor in using satellite images to obtain information about the Earth's surface is resolution 

(Campbell and Wynne, 2011). 

 

Features such as good spatial, radiometric, and spectral resolution, the possibility of multi-level 

assessment (local, regional, global), increasing frequency of imaging, and free access have led to satellite 

images becoming an important source of various environmental data (de Sherbinin et al., 2014). 

International associations and organisations, such as the UN and the Group on Earth Observations 

(GEO) recommend EO data as a primary source of information or as a support for other statistical data 

in monitoring the progress in sustainable development (GEO, 2017). However, there is much room for 

new developments. In hydrology, for example, obtaining data from alternative sources (e.g. remote 

sensing) is considered one of the main challenges (Blöschl et al., 2019). In this doctoral dissertation, we 

investigate the possibility of using satellite images to obtain the data needed to monitor gravel bars in 

rivers. This is related to the SDG indicator of change in the extent of water-related ecosystems over time 

(UN, 2017). 

 

The introductory chapter defines the research problem that motivated the dissertation, describes the 

hypotheses and objectives that guided the workflow, and concludes with an overview of the dissertation 

structure. 

1.1 Definition of the Research Problem 

The main research problem addressed by the proposed dissertation is the mapping of river ecosystems. 

Several remote sensing products show the presence of surface water worldwide (Huang et al., 2018). 

Different applications are available to view the extent of water over time (Donchyts et al., 2016; Pekel 

et al., 2016). Other lines of research have focused on detecting and monitoring specific water-related 
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features, for example, creating global inventories of rivers (Allen and Pavelsky, 2018), lakes (Verpoorter 

et al., 2014), and wetlands (Prigent et al., 2001). These products are based on freely and openly available 

remote sensing data with a spatial resolution of 10 m or less. This resolution is more than sufficient to 

obtain a global overview. However, when focusing on changes that are smaller in size, a spatial 

resolution of 10 m means that some important features may not be detected. This is especially true for 

areas with a high spatial heterogeneity of different land cover classes. Slovenia is generally characterised 

by such spatial fragmentation (Foški, 2017; Hladnik, 2005). When analysing rivers specifically, areas 

close to the river’s source are problematic because rivers are narrow and therefore difficult to detect on 

images with a coarser spatial resolution. To address the spatial resolution problem, we focused on sub-

pixel mapping. Instead of assigning the entire pixel to a single class, the fraction maps created by sub-

pixel mapping indicate the share of each pixel occupied by a particular land cover class. In this way, 

even features smaller than the spatial resolution of a given sensor can be detected and mapped. 

 

There are already applications of sub-pixel mapping in hydrology. Many of them focus on delineating 

smaller features such as wetlands (Kamal and Phinn, 2011; Reschke and Hüttich, 2014) or sharp 

transitions such as coastline mapping (Bishop-Taylor et al., 2019; Liu et al., 2016). However, we applied 

the approach to mapping gravel bars in rivers. We focused on gravel bars that form above the water 

surface and are not overgrown with vegetation. Gravel bars are important features in the fluvial 

environment that provide many crucial ecosystem functions. They are dynamic features that change 

rapidly following changes in hydrological characteristics. Changes in water level lead to changes in 

gravel bar extent. When monitoring gravel bar changes it is therefore crucial to examine dates with 

similar hydrological conditions. Gravel bars in Slovenia are mapped through fieldwork or digitisation 

of aerial photographs (Ranfl, 2010). Field mapping is time-consuming and therefore allows harmonised 

observation only in a small area. Mapping based on aerial photographs provides high spatial resolution, 

but is limited by the execution of aerial surveys. In Slovenia, each location is systematically imaged by 

an aerial survey once every three to four years (Surveying and Mapping Authority of the Republic of 

Slovenia, 2015). Intermittent surveys are rare due to high financial costs. On the other hand, satellite 

images provide a simultaneous overview of a large area, a new image is available every few days, and 

the data can be freely available. Remote sensing data with frequently repeated observations are therefore 

well suited for monitoring gravel bars. However, gravel bars often occur as narrow forms and may be 

missed in whole or in part when mapped using satellite images with a coarser spatial resolution. Sub-

pixel mapping can therefore make an important contribution to more accurate monitoring of gravel bars. 

Existing methods for gravel bar detection using EO are based on manual delineation of aerial 

orthophotos (Geodetic Institute of Slovenia, 2021) or satellite images (Serlet et al., 2018). However, our 

aim was to develop a method that is automated as much as possible. 
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Spectral mixture analysis (SMA) can be used to determine the degree of presence of different selected 

land cover classes within each pixel. This is done by comparing the spectral response of each pixel to 

the spectral responses of the endmembers representing pure pixels that contain only a single land cover 

class of interest. The spectral responses of the pixels can be augmented with spectral indices that increase 

the separability of the different land cover classes. The results of SMA are land cover fractions that 

provide sub-pixel mapping information. 

 

We developed the method for monitoring gravel bars in a study area on the Soča river in Slovenia, for 

which many ancillary remote sensing and in situ data are available. These data were used as a reference 

for validating our results. The availability of reference data allowed us to observe and compare the 

influence of different variables on the final result. In this way, we were able to derive the main 

characteristics of the proposed method that can be transferred for the analysis of other areas. We also 

demonstrated the possibility and accuracy of such transfer with case studies on the Sava river in Slovenia 

and the Vjosa river in Albania. There are several similarities between the Soča, which was used for 

developing the method, and Sava and Vjosa, which were used to further extend and test the method. All 

of the examined rivers spring in young mountains of alpine orogeny. Due to steep slopes they have large 

potential energy. There is also a lot of material available for the rivers to erode. Therefore, all of the 

rivers carry extensive amounts of gravel with Vjosa being particularly well-known for its gravel 

deposits. Soča and Sava have similar average annual discharges of 80 m3/s while that of Vjosa is slightly 

higher at 150 m3/s. The rivers all have nivo-pluvial flow regimes with peaks in spring and autumn and 

lows in summer and winter. 

 

Most existing applications of sub-pixel mapping focus on the analysis of a smaller number of timestamps 

with up to ten different satellite images. Gravel bars are features that are constantly changing, and 

therefore we monitored them using a time series approach. Additionally, satellite images are now 

available openly and freely, with a return period of less than a week and a commitment to maintain 

operational data provision (Berger et al., 2012; Masek et al., 2020; Woodcock et al., 2008). In relation 

to the time series approach, our analysis included several tests regarding the temporal component of 

monitoring, such as the transferability of endmembers, modelling vegetation at different phenological 

stages, and optimal smoothing of time series data to eliminate outliers but maintain meaningful 

discontinuities. 

 

Several constraints must be considered when monitoring natural phenomena using EO. A key limitation 

for optical data is the obstruction of the Earth’s surface by clouds and their shadows. This is particularly 

pressing when trying to determine changes immediately after heavy rain, as it is always necessary to 

wait for clear skies. A second limitation arises from the study’s focus on narrow river valleys framed by 

steep, high slopes. These can be particularly problematic when the Sun incidence angles are low and 
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topographic shadow obscures much of the area under observation. Another important point to consider 

relates to spectral signal analysis. The spectral properties of different land cover classes change 

seasonally, for example in the case of deciduous vegetation, and may also be the result of various 

physical factors, such as water, whose reflectance is affected by depth, turbidity, Sun glint, and other 

factors. Our study addresses many of these considerations using a variety of methods. Nevertheless, 

some of these issues remain as challenges for further research. 

1.2 Research Hypotheses and Objectives 

The aim of the study is to develop a method for monitoring gravel bars in rivers using EO data. Freely 

and openly available data are used, with selected very high resolution (VHR) data used for validation. 

We use sub-pixel mapping to obtain the highest level of mapping detail from the input satellite image. 

Three land cover classes are considered in the analysis: gravel, vegetation, and water. These have 

sufficiently different spectral properties to make the use of a SMA possible and meaningful. We test 

different configurations to produce the most accurate fraction maps possible. These maps are then used 

to monitor gravel bars and detect changes. 

 

The doctoral dissertation examines the following two hypotheses. 

 

Hypothesis 1: Using spectral mixture analysis, it is possible to distinguish gravel bars, surface water, 

and vegetation in fluvial ecosystems. 

Sub-hypothesis 1.1: The land cover of fluvial ecosystems can be determined with a thematic accuracy 

of 90% by analysing the spectral signal composition of freely available satellite images with a spatial 

resolution of up to 10 m. 

 

We test the assumption that SMA can be used to accurately map the land cover classes of interest. 

Different configurations are tested to determine those that lead to the highest accuracy of the resulting 

fraction maps. We examine the influence of the input images applied for the SMA, including the type 

of remote sensing system used for acquisition, geometric and radiometric accuracy, spatial resolution, 

and use of spectral indices. The tests also focus on the characteristics of the endmembers used for SMA 

– the possibility to automatically select accurate and appropriate endmembers, the optimal number of 

endmembers considered, the addition of shade as an endmember, and the transferability of endmembers 

between different images. 

 

The accuracy of the resulting fraction maps is verified both at the pixel level and at the level of the entire 

study area to account for geometric shifts of the input images. Visual interpretation of aerial orthophotos 

and field mapping are used as reference data for pixel-level validation. In the study area-level validation, 

we compare the results based on manual delineation and different land cover classifications based on 
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machine learning. Aerial orthophotos and VHR satellite images are used as input data to produce 

reference classifications. Finally, we compare the fraction maps resulting from the soft classification 

with maps obtained by a hard classification based on the spectral angle mapping approach to investigate 

the contribution of sub-pixel mapping for monitoring gravel bars. 

 

If we can confirm the proposed Hypothesis 1 and Sub-hypothesis 1.1, we may conclude that SMA can 

be used for sub-pixel mapping of fluvial gravel bars. Therefore, the confirmation would allow us to 

proceed with the use of the proposed method for monitoring and change detection. 

 

Hypothesis 2: Time series analysis of sub-pixel land cover maps allows the detection of seasonal 

changes in the extent and location of gravel bars. 

Sub-hypothesis 2.1: In addition to seasonal dynamics, changes in the extent of gravel bars due to 

exceptional anthropogenic and natural events larger than 500 m2 can also be detected. 

 

After successfully developing a sub-pixel mapping method, we test its application on a time series of 

satellite images to monitor changes. The variability of the extent and location of gravel bars can be a 

result of anthropogenic interventions such as in-channel mining and building infrastructure in the 

riparian area. Changes can also be due to natural hydromorphological processes in the river channel. 

Additionally, there are seasonal variations in the extent of gravel bars due to seasonal changes in 

discharge. An increased discharge can lead to gravel bar flooding and thus also a change in the location 

of above-water areas of bedload deposits. These seasonal changes are not the prime focus of our study 

as they do not represent real displacement of gravel bars. Nevertheless, we monitored the seasonality of 

the variability of gravel bar presence to enable the detection of real changes caused by exceptional 

events. 

 

We analyse the annual seasonality of gravel bar presence by examining all available Sentinel-2 images 

within the period 2019-2020. Different aspects of time series development are considered, including 

endmember selection, vegetation modelling at different phenological stages, and temporal smoothing of 

the resulting land cover presences. The validity of the resulting time series data is verified by comparison 

with hydrological data measured in situ at a gauging station. Next, we demonstrate the ability to make 

comparisons between different years and satellite sensors by producing fraction maps of gravel presence 

for three different rivers with a total combined length of over 250 km and observing a time span of over 

30 years using Sentinel-2 and Landsat images. Finally, we test the ability of the proposed method to 

detect changes in gravel bars. Both the precision and sensitivity of change detection based on fraction 

maps are verified using VHR reference data. We also studied the possibility of monitoring gravel bars 

using time series data by observing how known changes manifest themselves on land cover presence 

plots. 
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The confirmation of Hypothesis 2 and Sub-hypothesis 2.1 would allow the proposed sub-pixel mapping 

method to be recommended for monitoring changes in fluvial gravel bars. 

 

We set the following research objectives to reach the aim of the study and verify the proposed 

hypotheses: 

- study and summarise the characteristics of the processes driving gravel bar formation and 

changes, 

- define the reference data and the validation method for an accuracy assessment of the gravel bar 

maps produced, 

- analyse the characteristics of openly and freely available input satellite images that affect the 

accuracy of fraction maps and select the optimal settings that result in the best products, 

- test and validate different strategies for selecting endmembers required for the SMA, 

- produce fraction maps of the fluvial environment based on the SMA and compare them to the 

results of a hard classification performed with the same input data, 

- develop a time series of land cover presence in the fluvial environment based on the created 

fraction maps, 

- produce fraction maps of gravel presence for several hundreds of kilometres of rivers and over 

a time period of several decades, and 

- assess the ability of fraction maps to detect changes in gravel bars, both by comparing two 

timestamps and by observing a time series of presence data. 

 

The expected results of different tests combined with validation will provide new insights into the 

potential of using EO data to monitor the natural environment. The use of EO data that covers large 

areas at the same time allows the method to be deployed over a larger area simultaneously. This can 

overcome technical and logistical limitations often associated with field monitoring methods. In 

addition, EO data enables a faster detection of changes. The focus of the dissertation is on gravel bars, 

but the findings could also apply to other small and dynamic features with a distinct spectral response. 

We develop a pioneering process of sub-pixel mapping for change detection in gravel bars by adapting, 

augmenting, and improving existing SMA approaches. The developed method enables more accurate 

monitoring of the ecologically and socially important ecosystem. The results of the process and new 

insights into algorithm development will be useful to apply the method to other land cover classes in 

different ecosystems for various purposes in the future. The expected results enable more accurate 

mapping and conservation of areas characterised by high spatial fragmentation, such as mountainous 

areas, as the developed method allows the detection of changes that would not be noticeable with input 

EO data due to their spatial resolution. By testing the method in a study area where many reference data 

are available, we aim to develop a workflow that can be applied to other locations with a lower 
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abundance of data. In this way, we hope to contribute to a wider use of EO data for better monitoring 

and understanding of the processes on the Earth’s surface. 

 

In addition to technical and applied considerations, the dissertation includes findings from a variety of 

disciplines, including geodesy, geography, and hydrology, with the goal to strive towards 

interdisciplinarity, and wide dissemination of findings about the benefits of remote sensing. With the 

geographical approach of a holistic view of space, we work to bridge the gap between technical sciences, 

natural sciences, and humanities. 

1.3 Dissertation Structure 

The dissertation has five chapters. 

 

The first (this) chapter is introductory and contains the definition of the research problem, the statement 

of the aim of the dissertation, the hypotheses, the objectives, and the expected results, and concludes 

with an overview of the structure of the dissertation. 

 

The second chapter summarises the existing literature that forms the basis for the dissertation. The first 

part focuses on gravel bars, the geomorphological processes that form them, the different types and 

shapes of gravel bars, and their role in the wider fluvial system. The second part concerns the selected 

method for mapping gravel bars – the SMA. The development of the method is presented, followed by 

a description of the processes, assumptions, and formulations associated with the method. The 

characteristics of endmember selection and spectral unmixing, which are the main steps of SMA, are 

outlined. 

 

The third chapter is central to the dissertation as it describes the tests that were performed to develop 

the workflow that results in the most accurate gravel bar maps. The tests are conducted by mapping a 

selected study area on the Soča river in Slovenia, where the river is narrow and there are many gravel 

bars. First, the data and materials used to produce gravel bar maps are described. Second, the validation 

method applied to compare the different fraction maps is defined. Third, the optimal characteristics 

necessary for the input satellite images are determined. Next, we test the different methods and settings 

for selecting endmembers. Then, land cover fraction maps are developed and compared with the results 

of hard land cover classification using the same inputs. Finally, we produce a time series of land cover 

presence based on the proposed fraction mapping method. 

 

In the fourth chapter, the potential of applying the proposed method for monitoring gravel bars is 

evaluated. Gravel bar maps are produced for more extensive river sections that span several hundred 

kilometres. We test the ability of the proposed gravel bar monitoring method to detect changes in various 
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aspects, including its sensitivity and precision. We also evaluate the detection of change using a 

comparison of selected fraction maps as well as time series plots of gravel presence. The results from 

the fraction maps are also compared with in situ measurements from gauging stations. 

 

The fifth and final chapter discusses the results and verifies the proposed research hypotheses. The 

dissertation is evaluated in terms of its wider context and contribution to science. Identified limitations 

of the proposed method and possible solutions are described. In conclusion, opportunities for further 

research and applications are outlined. 
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2 THEORETICAL BACKGROUND 

This chapter presents the main concepts related to the motivation for the thematic application, as well 

as the background of the method chosen to achieve fluvial gravel bars monitoring. In terms of thematic 

consideration, fluvial gravel bars are described, including the geomorphological processes that form 

them, the patterns of their formation, and their role in the larger river system. The second part of the 

chapter describes the method proposed for mapping and monitoring gravel bars in narrow rivers – 

spectral mixture analysis (SMA). The theoretical framework of the main method components and the 

associated terminology are outlined. 

2.1 Characteristics of Fluvial Gravel Bars 

Gravel bars are areas of temporary sediment deposition in riverbeds (Robert, 2003). They are interesting 

from both a hydromorphological and ecological perspective. Fluvial gravel bars are classified as habitat 

types that should be maintained in a favourable condition as a matter of priority according to the 

European Habitats Directive (EC DG ENVIRONMENT, 2013; OJ L 206, 1992). In Slovenia, their 

importance for environmental conservation was adopted by the Decree on Habitat Types (Official 

Gazette of the Republic of Slovenia, No. 112/03, 2003). Gravel bars are dynamic and unstable habitats 

that are sensitive to hydrological changes and as such are good indicators of disturbances in the fluvial 

environment (Kiss and Andrasi, 2014). They play a role in water filtration, groundwater infiltration, 

mitigation of river bank erosion, and in increasing the river’s attractiveness for recreation (Robert, 

2003). Moreover, as contact areas between water and land, they represent an important habitat type with 

high species diversity and the occurrence of rare species (Langhans and Tockner, 2014; Zeng et al., 

2015). In Slovenia, several animal species, such as the birds little ringed plover (Charadrius dubius) 

and common tern (Sterna hirundo), and plant species, such as Chondrilla chondrilloides, are closely 

associated with gravel bars (Richards, 1990; Snow and Perrins, 1998; Geršič, 2010). Vegetation 

sampling on gravel bars in Slovenia demonstrated the high diversity of species and communities that 

develop in such habitats (Škornik et al., 2016). The notably high vegetation complexity is caused by 

variable flood disturbance and changing soil properties. These findings highlighted the importance of 

preserving gravel bars as an integral part of functioning fluvial ecosystems (Škornik et al., 2017). Almost 

2,300 ha of gravel bars in Slovenia have been identified as potential habitat areas of European 

importance (Jogan et al., 2004). 

 

The existence of gravel bars is threatened due to in-channel mining (Jogan et al., 2004; Klaneček et al., 

2005). In addition to material extraction, the extent of gravel bars is also influenced by other human 

activities, such as the construction of hydropower plants, gravel retention systems, and flood control 

measures (Geršič, 2010). Major interventions in the river environment, such as the construction of dams, 

disturb the balance between inflow and outflow of sediments. Planned removal, excavation, and 
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emptying of sediments from the river channel is necessary in some places due to deposition (Nistor et 

al., 2021; Ranfl, 2010). Decades of studies on impounded rivers have shown that hydropower operations 

result in numerous morphological changes downstream from the dam, including widening of the 

riverbed, reduction in the number of rapids and pools, increase in gravel bars and islands, and increase 

in bedrock outcrops in the riverbed. Daily water discharges result in the removal of finer particles. Fewer 

meanders and sequences of rapids and pools reduce the riverbed roughness and increase the carrying 

capacity of the river, i.e. its ability to transport sediments (Assani and Petit, 2004). 

2.1.1 Geomorphological Processes of Fluvial Sedimentation 

River channels consist of the riverbed, which is permanently or temporally covered with water at normal 

discharge, and river banks, which are the sloping land on the edges of the river channel (Mikoš et al., 

2002a; Szoszkiewicz et al., 2020). Rivers are constantly reshaping their channels. High waters have the 

largest influence on river channel changes. During high water periods, geomorphological processes 

(erosion, transport, and sedimentation) occur with the highest intensity. Erosion actively transforms the 

riverbed, sediments are then transported, and subsequent sedimentation transforms the riverbed 

passively (Ranfl, 2010). Erosion can occur by downcutting when the river deepens its own bed, or 

laterally by wearing away of the outer river banks in bends. Sediment transport in the river occurs in 

solution, in suspension, or by traction or saltation along the riverbed. Minerals, dissolved in water as it 

percolates through the soil, are transported in solution. Particles of clay, silt, and sand are transported in 

suspension as suspended load. The largest proportion of sediment is usually transported in suspension. 

The deposition of suspended load forms sand bars in the lower river courses (Strahler and Strahler, 

2005). Larger, more rounded, and heavier sediments are transported along the bottom of the riverbed by 

bouncing, sliding, and rolling. These are known as bedload and are key for the development of gravel 

bars (Geršič et al., 2014). The amount of transported sediment depends on river discharge and flow 

velocity. The carrying capacity of the river increases with the square of its flow velocity (Tarbuck and 

Lutgens, 2005). Thus, a higher carrying capacity can be achieved by a faster flow velocity, a higher 

discharge, a steeper gradient, finer material, a narrower riverbed, and a steeper river bank slope (Robert, 

2003). 

 

The geomorphological processes that occur in a given river section depend on the relationship between 

the carrying capacity of the river and the amount of sediment present. When the carrying capacity is 

larger than the sediment amount, the riverbed is deepening. When the two quantities are balanced, an 

equilibrium river section is formed. When the sediment amount is larger than the carrying capacity, 

deposition occurs (Ranfl, 2010). 
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Figure 1: Hjulström’s diagram of fluvial geomorphological processes (source: Geršič, 2010; Nichols, 2009). 

Slika 1: Hjulströmov diagram rečnih geomorfoloških procesov (vir: Geršič, 2010; Nichols, 2009). 

 

The relationships between particle erosion, transport, and deposition are shown in the Hjulström diagram 

(Figure 1). Depending on the relationship between water flow velocity and particle size, the diagram 

shows the critical erosion velocity curve and the average fall or settling velocity curve. The areas 

between the curves represent different geomorphological processes (Nichols, 2009). 

 

The carrying capacity of a river can be calculated from average annual discharge duration, slope at the 

riverbed bottom, width of the riverbed bottom, slope of the bank cross-sections, and mean sediment 

grain size (Mikoš et al., 2002b). The average annual discharge duration curve is obtained by arranging 

the chronologically sorted hydrological data on discharges from the hydrogram by size. Data on mean 

sediment grain size are obtained by analysing the grain size of sediments from samples collected in situ 

(Ranfl, 2010). 

2.1.2 Gravel Bar Formation 

To develop a method for gravel bar mapping it is necessary to understand the processes of gravel bar 

formation in order to know where in the river bed gravel bars can be expected. Even more importantly, 

the dynamics help to explain the patterns of their disintegration and re-establishment. This is key for 

successful monitoring and accurate interpretation of results. Robert (2003) distinguishes between 

different gravel bar types based on the processes that formed them. Accordingly, gravel bar types are 

divided into two main categories – unit and complex bars. Complex bars are formed in successive 
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periods of erosion and deposition. Unit bars are formed only by deposition and have a stable 

morphology. Longitudinal, transverse, point, and diagonal bars are different types of unit bars. In 

complex settings, it is difficult to make a clear classification because the bars are formed by different 

combinations of processes. In the case of complex gravel bars, we can distinguish all the above forms 

as well as the medial and lateral bars (Figure 2). In addition to the classification according to the 

formation processes, it is also common to classify gravel bars according to their position in the riverbed. 

In this respect, there are two main types of fluvial gravel bars. The first type includes bars that form in 

the middle of the riverbed. The second type consists of bars along the river bank. Despite different 

specific classifications, it should be noted that one bar type can be transformed into another over time 

(Robert, 2003). 

 

 
Figure 2: Fluvial gravel bar types (source: Robert, 2003). 

Slika 2: Tipi rečnih prodišč (vir: Robert, 2003). 

 

The main reason for gravel bar formation is a local reduction in the carrying capacity of a river. This 

often occurs in the inner part of river bends, where friction losses lead to a reduction in flow velocity 

and thus to a smaller carrying capacity. As a result of the reduced carrying capacity, sediment deposition 
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occurs. The deposited sediments cause further friction, and so the sedimentation process continues 

(Tarbuck and Lutgens, 2005). 

 

Gravel bars can also form in the middle of the river channel. Where the shear force is close to the critical 

force for particle displacement, patches of bedload sediment pushed along the bottom of the riverbed 

may begin to deposit. In the first stage of gravel bar formation, coarser bedload material is deposited in 

the area between individual river flows with higher carrying capacities. Later, finer material is deposited 

behind larger particles in these areas of lower carrying capacity. Other sediments that are being pushed 

along the riverbed bottom continue to accumulate on these areas of deposition, causing the gravel bar to 

grow in width and length (Robert, 2003). Due to the resulting hydro-morphological feature, the river 

flow is divided into two parts (Kiss and Balogh, 2015). 

 

The described deposition in the form of a mid-channel gravel bar is one of the formation mechanisms 

of branched or braided streams. A second characteristic mechanism is the transition of a transverse 

gravel bar to a mid-channel bar, also under the influence of sediment patches pushed along the riverbed. 

Additionally, braided streams may develop through processes of erosion. When a gravel bar is dissected, 

a new river channel is formed by erosion of a side bar. Another erosional process in river braiding is the 

disintegration of bars into a network of channels with intermediate bars due to deposition in the form of 

characteristic sedimentary tongues (Figure 3). There are two other important braiding processes. The 

first is the formation of successive straight and narrow chutes and downstream deposits in the form of 

lobes. The last important branching process is the relatively sudden switching of river flow from one 

channel to another (Robert, 2003). 
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Figure 3: Braiding processes and depositional morphology (source: Robert, 2003). 

Slika 3: Procesi razvejanja in morfologija odlaganja delcev (vir: Robert, 2003). 

 

Gravel bars are normally part of the riverbed. The height of gravel bars is usually lower than the height 

of the top of the river channel. As the height of gravel bars increases and they are covered by permanent 

vegetation, gravel bars can develop into fluvial islands. These represent more stable features as they are 

not removed by regular floods (Kiss and Andrasi, 2014). Despite the different names, gravel bars and 

fluvial islands are features with similar origins and morphological characteristics (Robert, 2003). 

2.1.3 The Role of Gravel Bars in the Fluvial Gravel Regime 

The shape of gravel bars and the size of deposited particles depend on the average slope of the riverbed 

and the river discharge. Sediments at the bottom of the riverbed can be divided in two layers – an upper 

and a subsurface layer. The upper layer has a coarser particle composition because river flow washes 

out the finer particles, while the coarser particles remain in place because of their weight. Generally, 

particles of similar size to those already present at the riverbed bottom remain in place. Thus, the largest 

particles are deposited in erosion pools, coarser material in gravel bar heads, and finer material at bar 

edges. The reason for the removal of particles that have a different size structure than those already 

present is the turbulence of the river flow. Turbulence is low in the pools, then increases until the head 

of the bar and remains high until the next pool. Large deposited particles on the bar head increase 

turbulence, reducing the likelihood of smaller particles being deposited near them (Robert, 2003). The 

diversity of sediment sizes decreases in lower river reaches (Ranfl, 2010). 
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Figure 4: Model of secondary flows, sediment sorting, and downstream deposition of finer particles in a gravel 

bar. The arrows on the image of the gravel bar indicate the direction of bedload transport. The arrows on the cross-

sections indicate the flow direction and secondary circulation (source: Robert, 2003). 

Slika 4: Model sekundarnega toka, sortiranja sedimentov in dolvodnega odlaganja drobnejših delcev na prodišču. 

Puščice na sliki prodišča prikazujejo smer rinjenih plavin. Puščice na prečnih prerezih prikazujejo smer toka in 

sekundarni tok (vir: Robert, 2003). 

 

Based on several sources, Robert (2003) notes that the patterns of flow and deposition of particles in 

channels along the central bars are similar to those in individual meandering riverbeds. In bends, the 

water flow is moved towards the outer bank under the influence of centrifugal force. This leads to an 

increase in water level in the outer part of the riverbed, especially in fast flows and sharp bends. Due to 

the locally unbalanced forces of gradient and gravity, a secondary flow is formed. At the water surface, 

the secondary flow runs towards the outer bank, while at the bottom of the riverbed it flows towards the 

inner bank. Gravel bars form and grow on the inner part of the bend (Figure 4). 

 

The highest carrying capacity of a river is at peak discharge. As discharge increases, material is removed 

from upstream parts of gravel bars, and as discharge decreases, material begins to be deposited. At the 

topographically highest parts of gravel bars, reverse processes occur – deposition when discharge is high 
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and erosion when discharge is low. Although the particular material that makes up gravel bars is changed 

at higher discharges, the location of bars in the riverbed usually does not change (Robert, 2003). 

 

Gravel bars are typical features of braided rivers. Gravel bar head consists of shallow rapids which have 

a higher gradient and roughness in a general area of lower gradient. Rapids form across the riverbed as 

water flows over larger rocks. In an area of rapids, the river flow is shallow and fast. The basic unit of 

braided rivers is the pool, which is located upstream of the gravel bar. The pool is a larger depression in 

the riverbed bottom where the river flow slows down (Ranfl, 2010). Some authors also consider the 

combination of a pool and gravel bar as the basic unit of a riverbed. In braided rivers, pool and bar units 

line up next to each other in parallel rows. The sequence of pools and bars forms the third basic unit of 

braided streams, namely a series of river confluences and bifurcations (Robert, 2003). 

 

The number, location, shape, composition, and size of gravel bars indicate the geomorphological 

processes occurring in the river channel. Gravel bars are also very dynamic features that can be easily 

and rapidly changed. They are therefore good indicators of alterations in the fluvial environment. Gravel 

bars that form above the river flow surface can be observed with optical remote sensing. The wide 

availability of free and open satellite images allows rapid detection of changes in gravel bars and 

monitoring of associated processes. 

2.2 Spectral Mixture Analysis 

To enable the use of free and open data for monitoring narrow rivers in mountainous environments, a 

land cover fraction mapping method, based on the spectral mixture analysis (SMA) is proposed. The 

origins, main concepts, and existing applications of SMA are presented in the next chapters. 

 

The SMA can mitigate mapping limitations associated with the spatial resolution of satellite images 

(Atkinson, 2005; Foody et al., 2005). With SMA, it is possible to perform thematic mapping at sub-

pixel level by determining the proportion of selected land cover classes in each pixel (e.g., Ling et al., 

2016; Mylona et al., 2018). This is done by comparing the spectral signature of each pixel with those of 

the selected land cover classes of interest. The spectral signatures of the target land cover classes are 

therefore key information for the SMA. Pure pixels that contain only one land cover class and represent 

the extreme points in spectral space are referred to as endmembers (Keshava, 2003; Somers et al., 2011; 

Veganzones and Graña, 2008). 

 

The original purpose for developing SMA was to observe rock surface and mineral composition on Mars 

(Adams et al., 1986). The method has since been used for various objectives, including land cover 

mapping (Ling et al., 2016), forest disturbance detection (Hirschmugl et al., 2014), determining land 

cover fractions in urban areas (Kärdi, 2007; Priem et al., 2019), monitoring urban expansion (Aina et 
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al., 2019), soil degradation monitoring (Dubovyk et al., 2015), grassland monitoring (Shao et al., 2018), 

river bank mapping (Niroumand-Jadidi and Vitti, 2017), and coastline mapping (Foody et al., 2005; 

Muslim et al., 2007). Both hyperspectral (Keshava, 2003; Somers et al., 2011) and multispectral images 

have been analysed with SMA, including images acquired by Landsat (Wu, 2004) and Sentinel-2 

(Mylona et al., 2018) that were used in this study. 

2.2.1 Endmember Selection 

Several methods for selecting (also known as extracting) endmembers have been proposed. Both the 

number and the spectral properties of endmembers have to be selected. Determining the sufficient 

number of endmembers to correctly describe the variability in a scene usually involves testing different 

configurations and selecting the one that yields the smallest error (Somers et al., 2011). Endmember 

spectral signatures can be obtained from available spectral libraries, created using laboratory or field 

measurements with spectro-radiometers (Schmidt and Scarth, 2009). Alternatively, endmembers can be 

selected from image pixels themselves. However, this is only possible if the land cover types in the 

analysed image occur in such a formation that pure pixels are present. If all pixels are mixed, non-pixel 

endmembers can be estimated based on the image data (Du, 2018). 

 

We used the N-FINDR algorithm for automatic selection of image endmembers. It is an established 

method that has been shown to be effective in finding distinctive pixels (Du, 2018). The algorithm 

determines the endmembers by searching for the user-defined number of pixels which form the 

extremities of a geometric body with the largest volume in the multidimensional space defined by the 

number of input image bands. 
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Figure 5: An example of endmembers selected as extreme points in a three-dimensional spectral space. 

Slika 5: Primer končnih pikslov, izbranih kot skrajne točke v trodimenzijskem spektralnem prostoru. 

 

To begin with, a random set of pixels is selected and the volume of the geometric body that they outline 

is calculated (Figure 5). Then, one of the pixels is swapped with a different new pixel and the volume 

of the newly formed geometric body is calculated. If the new volume is larger than the previous volume, 

the first pixel is replaced by the second pixel as a potential endmember. This process continues until no 

more pixels can be exchanged (Winter, 1999). 

2.2.2 Spectral Unmixing 

The SMA works by modelling the reflectances of mixed pixels. The method converts the reflectance in 

a satellite image to fractions (also known as abundances) of the selected land cover classes using 

information about the spectral characteristics of endmembers, i.e., the spectral representations of pure 

land cover classes. The methods of modelling can be divided into linear and nonlinear. The choice of 

the model reflects the expected mechanism of spectral signal mixing in the analysed image. Linear 

mixing occurs when different land cover classes exist in a spatially bounded formation. The key physical 

assumption of linear SMA is that each incoming photon reacts with only one land cover type. 

Conversely, nonlinear mixing occurs where different materials are closely intertwined. In such cases, 

spectral signal mixing is more complex because each single incoming photon reacts with numerous 
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different land cover types resulting in multiple scattering effect (Keshava, 2003; Keshava and Mustard, 

2002). 

 

Nonlinear mixing often occurs in analysis of sand or soil when many different materials appear very 

close together. Simplifications and assumptions are often necessary to enable nonlinear mixture 

modelling. The bilinear model is commonly used with the assumption that the product of two or more 

endmembers represent the multiple scattering effect. If we consider p endmembers and only take into 

account scattering between two endmembers a signature matrix M𝑁𝐿 can be defined as [m1, m2, ..., mp, 

m1m2, …, mp−1mp]. A pixel vector r can then be expressed as (Du, 2018): 

 

 r =  M𝑁𝐿 ∝𝑁𝐿 +  ε (1) 

 

with ∝𝑁𝐿 representing an abundance vector combining linear and nonlinear abundances. Subsequently, 

an ordinary least squares solver can be applied to estimate ∝𝑁𝐿 (Dobigeon et al., 2014; Heylen et al., 

2014). 

 

However, in modelling land cover, linear spectral mixing is considered more often as the different land 

cover classes are not as intermixed as for example different materials in soil. In line with the assumptions 

of linear spectral mixing, the mixed pixel signal (r) can be described as a combination of endmember 

spectral signals, weighted by sub-pixel land cover presence. The model is therefore described as follows 

(Adams et al., 1986; Somers et al., 2011): 

 

 r =  Mf +  ε (2) 

 

where M is an array with columns representing the spectral signatures of selected endmembers, f is a 

vector of land cover presence fractions, and ε is noise or signal fraction that cannot be modelled with 

the selected endmembers. 

 

The described equation can be solved if the spectral signals of endmembers are known and the number 

of endmembers is less than the number of spectral bands in the analysed image. Commonly used 

equation solvers are quadratic programming, maximum likelihood method, and least squares method. 

The SMA can be applied without constraints, but to obtain physically meaningful results, the coefficient 

values in Equation (2 are often restricted to positive numbers. An additional condition that can be 

implemented is that the sum of the coefficients must equal one. When the outlined conditions are 

applied, the resulting SMA can be described as fully constrained (Somers et al., 2011). 
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After establishing the theoretical background related to the geomorphological features under observation 

– fluvial gravel bars – this chapter provided an overview of the method proposed for monitoring. The 

method development, the key steps, and examples of existing applications were presented. The next 

chapter describes the main tests and decisions made in relation to the development of an SMA-based 

method for gravel bar monitoring. 

  



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 21 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

3 METHODS 

The chapter describes the process of selecting the most appropriate method for mapping gravel bars with 

SMA. Characteristics of input satellite images and reference data are presented first. Next, the validation 

process for comparing different methods is explained. Then, the most optimal characteristics of input 

satellite images are chosen, followed by an overview of the endmember selection process. The resulting 

soft classification using SMA is then compared to the results of a hard classification. The chapter 

concludes with a description of tests associated with the development of a land cover time series. 

 

 
 

3.1 Data and Materials 

Fluvial gravel bar mapping was performed using Landsat and Sentinel-2 optical satellite images. 

Additionally, a vector layer of water lands was used to delineate the area of analysis. Finally, 

WorldView-2 and Pléiades very high resolution images along with areal orthophotos were used for 

validation. A detailed description of the data used is given below. 

3.1.1 Input Satellite Images 

Passive Landsat and Sentinel-2 optical satellite images were used as input data. Landsat is a system of 

the United States Geological Survey (USGS) that has been in operation since 1972 (Barsi et al., 2014; 

Wulder et al., 2019). Gravel bars can be mapped with images acquired by the Thematic Mapper (TM)1, 

                                                 
1 The TM sensor was carried on board Landsat 4, which was operating from 1982 until 2001, and Landsat 5, 
which was operating from 1984 until 2013. 
 



22 Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

the Enhanced Thematic Mapper Plus (ETM +)2, and the Operational Land Imager (OLI)3 sensors. Since 

1982, Landsat has been providing images with a spatial resolution of 30 m and a temporal resolution of 

16 days. The images consisted of seven bands until the launch of Landsat 7 with the ETM+ which 

introduced the additional panchromatic band. From 2013 onwards, OLI and the Thermal Infrared Sensor 

(TIRS) enable sensing in three additional bands (coastal aerosol, cirrus, and additional thermal band), 

bringing the total number of bands in Landsat images to eleven. 

 

The Sentinel-2 system is operated by the European Space Agency (ESA) for the European Commission. 

Sentinel-2 images acquired with the Multi-Spectral Instrument (MSI) sensor have spectral 

characteristics that are similar to Landsat; Sentinel-2 acquires images in 13 comparable spectral bands 

(Table 1, Figure 6). The images have spatial resolutions of 10 m, 20 m, or 60 m, depending on the 

spectral band. The first satellite – Sentinel-2A – was launched in June 2015 and the second – Sentinel-

2B – in March 2017, increasing the temporal resolution of the system at the equator from ten to five 

days (Drusch et al., 2012; Gatti and Galoppo, 2018). 

 
Table 1: Characteristics of the sensors acquiring images used in the analysis (source: Drusch et al., 2012, Barsi et 

al., 2014, Gatti and Galoppo, 2018). 

Preglednica 1: Značilnosti senzorjev, ki so zajeli posnetke, uporabljene v analizi (vir: Drusch in sod., 2012, Barsi 

in sod., 2014, Gatti in Galoppo, 2018). 
sensor Sentinel-2 MSI Landsat 7 ETM+ Landsat 8 OLI 

name band central 

wavelength 

(nm) 

spatial 

resolution 

(m) 

band central 

wavelength 

(nm) 

spatial 

resolution 

(m) 

band central 

wavelength 

(nm) 

spatial 

resolution 

(m) 

coastal aerosol B1 443 60    B1 443 30 

blue B2 490 10 B1 483 30 B2 483 30 

green B3 560 10 B2 565 30 B3 563 30 

red B4 665 10 B3 660 30 B4 655 30 

pan    B8 710 15 B8 590 15 

red edge 1 B5 705 20       

red edge 2 B6 740 20       

red edge 3 B7 783 20       

NIR 1 B8 842 10 B4 838 30 B5 865 30 

NIR 2 B8A 865 20       

water vapour B9 945 60       

cirrus B10 1 375 60    B9 1 375 30 

SWIR 1 B11 1 610 20 B5 1 650 30 B6 1 650 30 

SWIR 2 B12 2 190 20 B7 2 220 30 B7 2 200 30 

 

                                                 
2 The ETM+ sensor is carried on board Landsat 7, which has been operating since 1999 until present. The scan 
line corrector of the sensor failed in 2003 resulting in approximately 25% data loss for any given scene. 
 
3 The OLI sensor is carried on board Landsat 8, which has been operating since 2013 until present. 
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Figure 6: Spectral bands of Landsat 7, Landsat 8, and Sentinel-2 (source: NASA, 2015). 

Slika 6: Spektralni kanali Landsat 7, Landsat 8 in Sentinel-2 (vir: NASA, 2015). 

 

3.1.2 Water Cadastre 

The Water Lands dataset from the Water Cadastre maintained by the Slovenian Water Agency was 

selected to focus our observation area on riparian zones (Slovenian Water Agency, 2021a). Water lands 

of inland running waters comprise the riverbed up to the first significant geomorphological transition. 

River banks and active gravel bars are therefore included in the analysis. The dataset was developed in 

accordance with the Water Act (Official Gazette of the Republic of Slovenia, No. 67/02, 2002) and is 

based on the map of surface waters. During a pilot study in 2011, surface waters were mapped on 10% 

of the area of Slovenia that included the larger river valleys. The approach was based on stereorestitution 

from cyclic aerial photography of Slovenia (CAS). The main challenge in the pilot approach was the 

detection of water surfaces under canopy, especially because CAS is conducted during the leaves-on 

period due to the requirements of agriculture monitoring. Aerial laser scanning (ALS) data acquired 

during a pilot campaign in 2011 provided a new source for mapping surface water, so the mapping 

method was updated in 2012. The final method used stereo pairs of the latest CAS images as the basis 

for data collection, with ALS acquired in 2014 and 2015 and derived products supporting interpretation 

and mapping in forested areas. In 2015 and 2016, surface waters on the remaining 90% of Slovenia were 

mapped using this method (Geodetic Institute of Slovenia, 2021). The minimum width of the mapped 

running surface water is 1 m. The positional and vertical accuracies of the acquisition are ± 1 m. 

3.1.3 Definition of Land Cover Classes of Interest 

In line with our research question we considered three land cover classes that are most widely present 

in riparian environments – gravel, vegetation, and water. The characteristics of SMA as described above 

require that we consider land cover classes with very different spectral signatures. If we examined 
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classes with similar spectral signatures, it would be very difficult to determine their individual 

contributions to the spectral signal from a particular signal. Thus, we had to make some simplifications 

when selecting the land cover classes to be considered. The gravel class included gravel bars, rocks and 

boulders, sand, and built-up areas. We minimised the intrusion of built-up areas and focused our analysis 

on gravel bars by restricting the area of observation to the extent of water lands with the data set 

described above. The vegetation class included trees, shrubs, and grassland. The water class included 

rivers, streams, and standing water. Shade can sometimes erroneously be mapped as water, therefore we 

tested the possibility of mapping it as a separate class, as described below. 

3.2 Validation of Fraction Maps 

Three different approaches were tested for the validation of land cover fraction maps. First, a pixel-

based approach using aerial orthophotos as reference was implemented. In the second approach, the 

maps were also validated on a per-pixel basis, but using in situ land cover mapping as reference. The 

pixel-based approach can be seen as providing site-specific accuracy (Campbell and Wynne, 2011). We 

also implemented an area-based validation approach which provides non-site-specific accuracy to 

account for possible misalignment of pixels due to errors in satellite image geometry. 
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3.2.1 Case Study Area 

A section of the Soča river in north-western Slovenia, Central Europe, was selected to test different 

methods for mapping and monitoring gravel bars. The selected river section is approximately 15 km 

long and is centred on 46.2° N, 13.6° E. The section is located between the settlements of Kobarid and 

Tolmin (Figure 7). 

 

 
Figure 7: Overview of the study area. a) Location of the study area (red rectangle) in the upper Soča river basin, 

north-western Slovenia, Central Europe, centred on 46.2° N, 13.6° E (data source: Natural Earth, 2020). b) A 

closer view of the study area. The red rectangle indicates the entire study area, while the purple rectangle marks 

the location of the enlarged view in Figure 22 (data source: Surveying and Mapping Authority of the Republic of 

Slovenia, 2016, 2021a, 2021b). 

Slika 7: Pregled študijskega območja. a) Lokacija študijskega območja (rdeč pravokotnik) v porečju zgornje Soče, 

v severozahodni Sloveniji, s sredinskimi koordinati 46.2° severno in 13.6° vzhodno (vir podatkov: Natural Earth, 

2020). b) Bližnji pogled študijskega območja. Rdeč pravokotnik označuje celotno območje, vijolični pravokotnik 

pa lokacijo bližnjega pogleda na Slika 22 (vir podatkov: GURS, 2016, 2021a, 2021b). 

 

The bedrock in the area consists of limestone and dolomite (Geological Survey of Slovenia, 2019). The 

climate is mountainous to temperate Mediterranean with most of the area belonging to the temperate 

climate with no dry season and a warm summer – Cfb – according to the Köppen-Geiger classification 

(Ogrin, 1996; Ogrin and Plut, 2009). The flow regime of the river is nivo-pluvial with the main discharge 

peak in April or May due to snowmelt. There is a secondary discharge peak in November due to heavy 

autumn rainfall. The main low discharge period is in January or February as precipitation is temporally 

stored in the form of snow. The secondary low discharge period is in August when evapotranspiration 

is highest (Ogrin and Plut, 2009). Precipitation is very high in this area, averaging over 2500 mm 

annually for the last 50 years (Slovenian Environment Agency, 2021a). 

 

The terrain in the Soča basin in Slovenia is varied, ranging from 153 to 2864 m above sea level. The 

combined effect of topography and precipitation results in high erosion rates and consequently large 

amounts of river bedload in the Soča. The selected river section contains several gravel bars and is 

therefore very suitable as a test area. In addition, the river is often not wider than 20 m, making the 
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section interesting for the application of SMA. The wider study area was narrowed down to the extent 

of the water lands (Slovenian Water Agency, 2021). Most of the study area is covered by water, followed 

by gravel bars and deciduous forest (Figure 8). 

 

 
Figure 8: Land cover of the study area. The arrows show the viewing direction of photographs (data source: 

Ministry of Agriculture, Forestry and Food of the Republic of Slovenia, 2020; Slovenian Water Agency, 2021a); 

photographs: Liza Stančič). 

Slika 8: Pokrovnost študijskega območja. Puščice kažejo smer fotografiranja (vir podatkov: Ministrstvo za 

kmetijstvo, gozdarstvo in prehrano RS, 2020; Direkcija RS za vode, 2021; fotografije: Liza Stančič). 
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3.2.2 Pixel-Based Validation 

The pixel-based validation method compared land cover fractions obtained by SMA with those observed 

on reference data on a pixel level (Schug et al., 2018). The results of pixel-based validation can be 

considered as site-specific accuracy as they provide the agreement between the fraction maps and 

reference data at specific locations (Campbell and Wynne, 2011). We used aerial orthophotos, very high 

resolution satellite images (WorldView-2, Pléiades), or own field mapping as reference data sources. 

Independent of the reference data, 50 random plots were selected in the study area. Their size 

corresponded to the spatial resolution of satellite images and covered the extent of one pixel. Within 

each plot, a regular grid of 100 points was created and the land cover class at each point was determined. 

Reference land cover fraction values were calculated and compared to fractions obtained from the SMA. 

The comparison was then made by computing the mean absolute error (MAE): 

 

 
MAE =  

1

𝑛
∑ |𝑥𝑖 − 𝑥

𝑛

𝑖=1

| (3) 

 

as the absolute difference between the land cover fractions on the reference data (x) and the land cover 

fractions derived from the SMA (xi) (Demarchi et al., 2012; Okujeni et al., 2018; Li, 2021). The value 

of MAE was calculated for all 50 plots (n = 50). 

3.2.2.1 Aerial Orthophotos 

In the programme of the CAS, aerial orthophotos are acquired each year for about one-third of Slovenia. 

Thus, the same area is imaged once every 2 to 4 years. The timing of the imaging varies depending on 

weather conditions. For the study area, the three most recent orthophotos were acquired on 26 June 2015, 

14 October 2017, and 5 September 2020. Visible spectral bands are available with a spatial resolution 

of 0.25 m and 0.5 m, and a near infrared band is available with a spatial resolution of 0.5 m. All of the 

available products are acquired simultaneously and later pan-sharpened and resampled as needed 

(Surveying and Mapping Authority of the Republic of Slovenia, 2021c). The positional accuracy of 

aerial orthophotos is 0.2 m (Surveying and Mapping Authority of the Republic of Slovenia, 2021c). 

3.2.2.2 Field Mapping 

A field mapping campaign was conducted in the study area from 25 April 2020 to 3 May 2020. We 

randomly selected 50 plots with an extent of 60 m × 60 m. Plots were sized to fit at least one whole pixel 

of each of the analysed satellite images into each mapped plot. The selection of plots to be mapped was 

done by first plotting a grid of 60 m × 60 m over the entire study area. Subsequently, we used the 

Random selection function in the QGIS software (version 3.10) to select 50 plots in the whole study 
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area (QGIS Development Team, 2020). The most recent aerial orthophotos at the time, acquired on 

14 October 2017, were used as background on which changes were recorded. The positional accuracy 

of the field mapping can therefore be considered identical as that of aerial orthophotos (0.2 m). We 

mapped the three land cover classes of interest – gravel, vegetation, and water – at a scale of 1 : 1000. 

The plots selected for field mapping were mostly covered by vegetation (Figure 9). 

 

 
Figure 9: Land cover presence as determined with field mapping on 50 randomly selected plots. 

Slika 9: Prisotnost razredov pokrovnosti, določena s terenskim kartiranjem na 50 naključno izbranih območjih. 

 

3.2.3 Area-Based Validation 

The geolocation accuracy of Sentinel-2 images is known to be within 11 m for 95% of the images (Clerc 

and MPC Team, 2021). However, even small shifts can lead to considerable inaccuracies when analyses 

are performed at the level of single pixels. To account for such potential errors, we also carried out a 

validation of the fraction maps at the scale of the entire study area (Li et al., 2020). This constituted the 

area-based validation. The result of area-based validation is non-site-specific accuracy as it reports the 

agreement between fraction map and reference data in terms of the overall figures and not at specific 

locations (Campbell and Wynne, 2011). The extent of each land cover class of interest was calculated 

using the fraction maps and compared with the extents based on reference data. Different sources for 

obtaining reference data were tested, namely manual digitisation and supervised classification based on 

machine learning (ML). For both methods of obtaining reference data, aerial orthophotos were used as 

input images. Additionally, very high resolution (VHR) satellite images were used for machine learning-

based classification. 

3.2.3.1 Manual Digitisation 

Based on aerial orthophotos acquired on 26 June 2015, we manually digitised three land cover classes 

– gravel, vegetation, water –, and shade. We digitised ten non-contiguous areas along the study river 

section, totalling 0.8 km2. The scale of digitisation was 1 : 1500. The digitisation required approximately 

eight operator hours in total. 
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3.2.3.2 Machine Learning-Based Classification 

Supervised ML-based classification was also used to provide the reference data. Training samples were 

selected from areas with uniform land cover based on either aerial orthophotos or VHR satellite images. 

We compared the Random Forest (RF) and Support Vector Machine (SVM) classification algorithms. 

For classification based on RF, 2000 training samples in the form of random pixels were selected from 

the predefined areas with uniform land cover. Classification models with 500 decision trees and with 

1000 decision trees were built for comparison, one. For the SVM, a kernel with radial basis function 

was chosen. Again, two different models were tested, one based on 1000 training samples and a second 

based on 2000 training samples. Model training and image classification were performed in the R 

programming language (R Core Team, 2021) using the packages randomForest (Liaw and Wiener, 

2002) and e1071 (Meyer et al., 2021). Based on the four classification models described above, we 

produced land cover maps of the water lands in the study area from aerial orthophotos and VHR satellite 

images. 

 
Figure 10: Presence of the different land cover classes of interest in the reference datasets considered. 

Slika 10: Prisotnost izbranih razredov pokrovnosti na različnih referenčnih podatkih. 
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We compared the different area-wise reference datasets based on the detected presence of the land cover 

classes of interest (Figure 10). The area classified by ML was cropped to the extent covered by manual 

digitisation so that exactly the same area was considered. The classification methods based on ML 

performed very similarly, with differences between the various results within 1.5%. The largest 

difference was recorded for the vegetation class, which was also the most widely represented in the 

analysed area. Compared to manual digitisation, ML-based classification performed worst in classifying 

water, which was under-detected. Shade was also under-detected with the ML-based method, while 

gravel and vegetation were over-detected. Oversizing of river bar areas is also in line with existing 

literature (Kryniecka and Magnuszewski, 2021). One possible reason for the misclassifications of gravel 

is that shallow water areas have a very similar spectral signal to gravel because the spectral signal of 

gravel from the riverbed can pass through clear water and be recorded by the sensor. Manual 

classification did not classify single pixels, but took into account connected land cover areas and was 

therefore not influenced by the reflectances of single pixels in shallow water. As for shade, its under-

detection with ML-based methods may be explained by the fact that shade can also be found within 

vegetated areas in small extents and so it could be falsely included within the vegetation class by the 

ML algorithms. Nevertheless, the manual and the ML-based classifications give comparable results. The 

ML-based classification will be used for validation in other areas on the Soča, Sava, and Vjosa rivers, 

because it is faster (Schwarz et al., 2003; Ilsever and Unsalan, 2013; Rastiveis et al., 2013; Hölbling et 

al., 2017) and produces more consistent results (Tarko et al., 2018; Kraff et al., 2020). 

 

As all of the ML-based classifications gave very similar results, the main decision point for selecting 

one of them for further work was speed (computing time). We measured the times required for model 

training and image classification of all tested configurations (Table 2). Classification of an area of 

109.7 km2 with a spatial resolution of 0.5 m took over three hours. The fastest method was the one using 

a RF algorithm with 500 trees, therefore this configuration was selected for further reference 

classifications. 

 
Table 2: Computing time for training different machine learning-based classification models and classification of 

an orthophoto with a spatial resolution of 0.5 m and an area of 109.7 km2. 

Preglednica 2: Trajanje učenja različnih klasifikacijskih modelov na podlagi strojnega učenja in klasifikacije 

ortofota s prostorsko ločljivostjo 0.5 m in površino 109.7 km2. 

model RF 500 trees RF 1000 trees SVM 1000 samples SVM 2000 samples 

train time (h:min:s) 0:00:56 0:01:35 0:11:33 0:38:31 

classification time (h:min:s) 3:06:05 3:12:18 3:01:05 5:48:08 

total time (h:min:s) 3:07:01 3:13:53 3:12:38 6:26:39 
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3.2.3.3 Spatial Resolution of Reference Data 

Aerial orthophotos are available with a spatial resolution of 0.25 m. They need to be classified to be 

used as reference data and this classification is a computationally intensive process. However, 

orthophotos are also available at a 0.5 m resolution. We were interested in whether the different spatial 

resolutions give comparable results in the validation of the fraction maps. We therefore used identical 

training samples and classification algorithms, but applied them to reference data with different 

resolutions. 

 

 
Figure 11: Presence of the land cover classes of interest on reference datasets with different spatial resolutions. 

Slika 11: Prisotnost izbranih razredov pokrovnosti na referenčnih podatkih z različno prostorsko ločljivostjo. 

 

We then calculated the presence of each land cover class of interest in the reference datasets with 

different spatial resolutions (Figure 11). Classification of 0.5 m images was twice as fast as that of 

0.25 m images. We found that the differences in the presence of land cover classes between the two 

maps were within 0.32% and thus can be considered negligible. Based on these findings, 0.5 m reference 

data can be recommended for validation. 
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It is important to note that data used for ground truth cannot be considered error-free (Carlotto, 2009). 

An accuracy assessment of the reference data for the year 2015 showed an overall accuracy of 98%. 

This is reasonable, since we are only considering three land cover classes very different spectral 

characteristics. The accuracy of reference data is thus sufficient for further analysis. Nevertheless, we 

must keep in mind that ground truth contains errors and can be a source of uncertainty when 

benchmarking different results (Chehdi and Cariou, 2019). Indeed, claims have been made that the term 

“ground truth” is inappropriate in itself and should be replaced by terms such as “surface observations” 

or “field measurement” (Woodhouse, 2021). We use another of terms proposed in the literature – 

“reference data”. 

3.2.4 Comparison of Pixel-Based and Area-Based Validation 

We compared the results of pixel-based and area-based validation in terms of which fraction map 

achieved the highest accuracy for each of the land cover classes considered (Table 3). Five different 

land cover fraction maps were considered, each based on different input data: 

- a Sentinel-2 image with endmembers selected on the same image, 

- a Sentinel-2 image with endmembers transferred from a different image, 

- a Landsat 7 image with endmembers selected on the same image, 

- a Landsat 8 image with endmembers selected on the same image, and 

- a Landsat 8 image with endmembers transferred from a different image. 

 
Table 3: Comparison of pixel-based and area-based validation results. The most accurate fraction maps for each 

land cover class are given. 

Preglednica 3: Primerjava rezultatov validacije na podlagi posameznih pikslov in celotne proučevane površine. 

Navedene so najbolj natančne karta deležev pokrovnosti za vsak razred pokrovnosti. 

land cover class 
most accurate fraction map 

pixel-based* area-based** 

gravel Sentinel-2 – same image endmembers Sentinel-2 – transferred endmembers 

vegetation Sentinel-2 – transferred endmembers Sentinel-2 – same image endmembers 

water Sentinel-2 – same image endmembers Sentinel-2 – transferred endmembers 

total Sentinel-2 – transferred endmembers Sentinel-2 – transferred endmembers 

* automatic endmember selection 

** shade areas excluded from samples 
 

Both validation methods show that the most accurate map overall is the one based on the Sentinel-2 

image with transferred endmembers. The transferred endmembers consist of two endmembers 

describing water reflectance, resulting in better separation between gravel and water and consequently 

more accurate fraction maps. Because both validation methods give similar results, they are used 

interchangeably in subsequent tests. 
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3.2.5 Conclusions on Validation Method 

The test area on the Soča between the settlements of Kobarid and Tolmin is a suitable study area for the 

development of gravel mapping methods. Sufficient reference and auxiliary data are available to allow 

validation of the method and interpretation of the results. Two different validation methods were 

developed, one based on comparing pixel-wise land cover fractions and the other evaluating the presence 

of different land cover classes in the study area as a whole. The pixel-based validation method was used 

first and the area-based method was developed later due to concerns related with the geometric accuracy 

of satellite images. The two validation methods produced similar results in selecting the most accurate 

fraction maps. Therefore, the different methods and configurations in the next chapters are validated 

using both proposed methods interchangeably. We followed a pragmatic approach where the tests done 

at the beginning of the study were validated using the pixel-based method while tests conducted later 

were validated using the area-based method. 

 

The next chapter focuses on the investigation of satellite image properties that affect the accuracy of the 

SMA. 

3.3 Characteristics of Satellite Images Used 

Together with endmember spectral signatures, satellite images are the main input to the SMA. Providing 

images with suitable properties is therefore key for accurate results. We first examined the differences 

between Sentinel-2 and Landsat, two of the most commonly used optical EO systems. We then tested 

the influence of different pre-processing corrections. The contribution of different spatial resolutions of 

the input satellite images was also studied. Finally, we explored the influence of complementing the 

spectral bands of the satellite images with different spectral indices. 
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3.3.1 Remote Sensing Systems Used as Sources of Satellite Images 

Sentinel-2 and Landsat have comparable spectral characteristics. However, an important difference 

between the two systems is their temporal resolution as outlined in chapter 3.1.1 above; Landsat provides 

longer time series starting in 1982 with a revisit time of 16 days, while Sentinel-2 has denser time series 

with a revisit time of 5 days but only since 2017. In gravel bar monitoring, long time series enable 

insights into the impacts of many different flood, rockslide, infrastructure interventions, and other events 

in the past which can inform about the possible impacts of similar events in the future. On the other 

hand, denser time series make it possible to observe the process dynamics in greater details and closer 

to the real time. We investigated whether data from the two remote sensing systems produce comparable 

results and if the outputs can be used interchangeably to take advantage of the most favourable 

characteristic of each system. 

 

Two Sentinel-2 images, a Landsat 7, and a Landsat 8 image were used for the comparison. The Sentinel-

2 images were acquired on 11 July 2015 and on 23 April 2020, the Landsat 7 was acquired on 9 July 

2015, and the Landsat 8 image was acquired on 25 April 2020 (Figure 12). 
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Figure 12: Overview of the satellite images used in the analysis; true colour composites (data source: ESA, 2021; 

U. S. Geological Survey, 2021a, 2021b). 

Slika 12: Pregled satelitskih posnetkov, uporabljenih v analizi; naravno barvni kompoziti (vir podatkov: ESA, 

2021, U. S. Geological Survey, 2021a, 2021b). 

 

The endmembers used for SMA of the different images were calculated based on the average reflectance 

values of pure pixels. Pixel selection was done manually, using reference data to ensure pixel purity. 

Four pixels were used to calculate the gravel endmember, nine for surface water, and 20 for vegetation. 

The number of pixels used was identical for the different images and was limited by the number of pure 

pixels that could be detected on the Landsat images. The Landsat images have a lower spatial resolution 

than the Sentinel-2 images and therefore fewer pure pixels.  

 

The resulting land cover fraction maps were validated with the pixel-wise method. Aerial orthophotos, 

acquired on 26 June 2015, were used to validate the 2015 maps, while field mapping was used as 

reference for the 2020 maps. 
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Table 4: Pixel-wise mean absolute error of land cover fraction maps per land cover class for different analysed 

satellite images using manually selected endmembers. The best results per land cover class in bold. 

Preglednica 4: Povprečna absolutna napaka po pikslih za karte deležev pokrovnosti na podlagi različnih 

satelitskih posnetkov z ročno izbranimi končnimi piksli za izbrane razrede pokrovnosti. Najboljši rezultati za vsak 

razred pokrovnosti v krepki pisavi. 

land cover class Landsat 7, 9. 7. 2015 Sentinel-2, 11. 7. 2015 Landsat 8, 25. 4. 2020 Sentinel-2, 23. 4. 2020 

gravel 0.087 0.078 0.069 0.095 

vegetation 0.114 0.111 0.108 0.108 

water 0.124 0.082 0.074 0.080 

total 0.108 0.090 0.084 0.094 

 

The results indicate that comparable fraction map accuracies can be achieved using Sentinel-2, 

Landsat 7, and Landsat 8 images (Table 4). We report the MAE as the selected accuracy measure for 

land cover fraction maps (Schug et al., 2018; Suess et al., 2018). The MAE is less than 0.1 for most of 

the land cover classes of interest on the majority of images which means that the land cover fractions 

are correct within ± 10%. Vegetation is the most problematic, with MAE of 0.11 on all maps. Vegetation 

in the study area occurs in many different forms. We attempted to account for this variability by selecting 

a large number of different pixels from which the vegetation endmember was computed. However, 

certain vegetation types are still spectrally more similar to water or gravel and are therefore 

misclassified. Furthermore, it is apparent that the fraction maps based on Landsat 7 achieve the lowest 

accuracies. Landsat 7 is the oldest of the three remote sensing systems considered, imaging since April 

1999. Compared to Landsat 8, it has a lower radiometric resolution and wider spectral bands (Irons et 

al., 2012; Roy et al., 2016), leading to larger errors in spectral analysis. Nevertheless, in all cases gravel 

fractions are mapped very successfully (Table 4), which means that all tested remote sensing systems 

can be used for monitoring gravel bars. 

3.3.2 Geometric Accuracy of the Input Satellite Images 

The geometric quality of images is important information in time series analysis. Poor geometric quality 

and misalignment of images may cause the detection of false changes which are not a results of actual 

changes on the Earth’s surface, but appear because of a shift in location. It is therefore crucial to ensure 

we are always observing the same location when monitoring processes with EO data. Sentinel-2 Data 

Product Quality Reports state that the absolute geolocation performance is below 11 m for 95% of 

images and the multi-temporal geometric performance is around 12 m (Clerc and MPC Team, 2021). 

This is expected to improve by applying geometric refinement with the use of tie points from the Global 

Reference Image (Clerc and MPC Team, 2021; Dechoz et al., 2015). The additional refinement step has 

not yet been deployed operationally, but preliminary test show that the absolute geolocation of images 

will be better than 8 m and that multi-temporal co-registration accuracy from different orbits will surpass 

5 m (Clerc and MPC Team, 2021). However, these values refer to a global estimate and not many 
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investigations examine the actual geometric performance of the utilised images. We therefore performed 

several tests to study the geometric performance of Sentinel-2 images and investigated if there are any 

factors that have an important influence on the geometric accuracy. 

 

 
Figure 13: Study areas selected for the analyses of the geometric accuracy of Sentinel-2 images (basemap: Bing, 

2021). 

Slika 13: Študijska območja, izbrana za analize geometrijske točnosti posnetkov Sentinel-2 (podlaga: Bing, 

2021). 

 

We conducted the analysis using images processed to Level-1C. Three study areas were selected in 

Kenya, Cyprus, and Slovenia (Figure 13). In each study area, between 10 and 20 reference points were 

selected which could be clearly seen and were assumed to remain stable during the observation period. 

Reference points were mostly crossroads and were verified using VHR data (Bing, 2021; 

OpenStreetMap contributors, 2021; Surveying and Mapping Authority of the Republic of Slovenia, 

2021e). All Sentinel-2 images of the study areas with at most 10% cloud cover acquired between 1 
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January 2017 and 31 December 2020 were analysed. In total, 395 images were analysed in Kenya, 444 

in Cyprus, and 264 in Slovenia. 

 

Geometric shifts in images were analysed by registering all images to a selected reference image. An 

image acquired in April 2020 was selected as reference in all study areas. The visible spectral bands 

were combined in a single image which was then used in the analyses. The registration of different 

images was done using unnormalised cross-correlation (Guizar-Sicairos et al., 2008) as implemented in 

the Python package scikit-image (version 0.18.3) (van der Walt et al., 2014). The resulting shifts in the 

x- and y-directions were plotted for each study area and the resulting average shifts were calculated 

(Figure 14). 
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Figure 14: Geometric shifts of Sentinel-2 images for the selected study areas. 

Slika 14: Geometrijskih premiki posnetkov Sentinel-2 za izbrana študijska območja. 

 

The results show that average shifts of Sentinel-2 images are −2.88 m in the x-direction and −0.02 m in 

the y-direction. Notably, images acquired by the Sentinel-2B satellite are shifted more than those 

acquired by the Sentinel-2A. Average shifts on Sentinel-2B images across the different study areas are 

−4.56 m in the x-direction and 0.91 m in the y-direction compared to −0.86 m in the x-direction and 

−0.46 m in the y-direction observed on Sentinel-2A images. Slight differences can be seen between the 

different study areas, but the overall trends are the same. We found the accuracies to be higher than 

those reported in the literature which range from maximum shifts of 6 m (Vajsova and Åstrand, 2015), 

to 13 m (Pandžić et al., 2016), and 14 m (Rufin et al., 2021). Importantly, however, existing studies have 
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not differentiated between the Sentinel-2 satellites or in cases when they did, the reported differences 

were very small – within 2.5 m (Doshi et al., 2020). Despite the shifts that we found, we concluded that 

they are small and therefore we decided against re-aligning the images in subsequent analyses. 

3.3.3 Influence of Radiometric Corrections on Fraction Map Accuracy 

To reduce the effects of atmosphere and topography on reflectance values, radiometric corrections are 

applied to satellite images before the analysis. Various pre-processing functions for atmospheric and 

topographic corrections can be used for this purpose. We investigated how these image pre-processing 

affects the accuracy of the SMA. To compare and determine the stability of results, tests were performed 

using two Sentinel-2 images acquired in two different time periods with different atmospheric and Sun 

angle characteristics – the summer image, acquired on 11 July 2015, and the autumn image, acquired 

on 16 October 2017. The dates of the images were selected to match the acquisitions of aerial 

orthophotos which were used to generate reference data. We validated the maps based on the area 

covered by each of the land cover classes of interest by comparing the fraction maps to aerial orthophotos 

classified using RF with 2000 samples and 500 trees. The analysis involved three different levels of pre-

processing of the same image: 

- uncorrected image (top of atmosphere), 

- atmospherically corrected image, and 

- topographically corrected image. 

 

Each subsequent pre-processing level included corrections from all previous levels. Atmospheric 

corrections were performed by ourselves using the ATCOR programme (Richter, 1996; Richter et al., 

2006; Richter and Schläpfer, 2019). Topographic corrections were applied with the STORM processing 

chain which combines physical models and the Minnaert approach (Pehani et al., 2016; Zakšek et al., 

2015). 
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Figure 15: Accuracy of land cover fraction maps based on satellite images with different pre-processing levels. 

Slika 15: Natančnost kart deležev pokrovnosti, izdelanih na podlagi satelitskih posnetkov z različnimi nivoji pred-

procesiranja. 

 

The results showed that atmospheric corrections slightly improved the map accuracy compared to the 

top of atmosphere reflectance image (Figure 15). Topographic corrections, on the other hand, introduced 

additional uncertainty that led to an increase in map error even compared to the baseline image. In 

particular, vegetation and gravel were frequently classified as water on the topographically corrected 

image. In subsequent analysis we therefore worked with atmospherically corrected images. The 

omission of topographic correction was not problematic because we focused on flat areas in river 

valleys, whereas topographic error is most pronounced on steep slopes. 

3.3.4 Contribution of Improved Spatial Resolution of Input Satellite Images to Fraction Map 
Accuracy 

The size of the pixel defines the size of area for which the land cover presence fractions are given. We 

investigated whether improved spatial resolution leads to more accurate results on an image acquired by 

the Sentinel-2 system on 11 July 2015. Of the ten Sentinel-2 spectral bands used in SMA, six are 

acquired with a 20 m spatial resolution. In the current pre-processing workflow, the remaining four 

bands with a 10 m resolution were downsampled to 20 m using bilinear interpolation. The resulting land 

cover fraction maps were thus produced with a 20 m spatial resolution. 
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To test the potential contribution of increasing spatial resolution to improve map accuracy, we applied 

the deep learning-based DSen2 algorithm (Lanaras et al., 2018) to resample the Sentinel-2 bands with a 

20 and 60 m spatial resolution to 10 m. All of the 20 m and 60 m spectral bands are included in the 

resampling, apart from the cirrus band (B10) which contains too much noise. 

 

The improvements gained by resampling were assessed by comparing the results with two fraction maps 

based on different input data: 

- four spectral bands originally acquired with a 10 m resolution (blue, green, red, infrared) and 

- ten spectral bands with a 20 m resolution. 

 

Three endmembers for the SMA were selected automatically. The same land cover classes were chosen 

as endmembers on all images, namely gravel, vegetation, and water. With an increase in spatial 

resolution, the number of pixels that needed to be spectrally unmixed increased four-fold and so did the 

time required for the SMA. On the other hand, increasing the number of bands included in the SMA did 

not affect the duration of the SMA (Table 5). 

 
Table 5: Computing time for automatic selection of three endmembers (ASEM) and the spectral mixture analysis 

(SMA) using different input images, derived from a Sentinel-2 image, acquired on 11 July 2015. S2 10 m – 

Sentinel-2 spectral bands acquired with a 10 m spatial resolution; S2 supres – Sentinel-2 image resampled to 10 m 

with the DSen2 algorithm; S2 20 m – Sentinel-2 spectral bands acquired with a 20 m spatial resolution, and the 

spectral bands acquired with a 10 m spatial resolution resampled to 20 m with bilinear interpolation. 

Preglednica 5: Trajanje samodejnega izbora treh končnih pikslov (ASEM) in analize vsebnosti spektralnega 

signala (SMA) pri različnih vhodnih podatkih, pridobljenimi na podlagi posnetka Sentinel-2, zajetega 11. 7. 2015. 

S2 10 m – posnetek Sentinel-2 s spektralnimi kanali, zajetimi z 10-metrsko prostorsko ločljivostjo; S2 supres – 

posnetek Sentinel 2, prevzorčen na 10 m z algoritmom DSen2; S2 20 m – posnetek Sentinel-2 s spektralnimi 

kanali, zajetimi z 20-metrsko prostorsko ločljivostjo, in s spektralnimi kanali, zajetimi z 10-metrsko prostorsko 

ločljivostjo, prevzorčenimi na 20 m z bilinearno interpolacijo.  

image number of bands number of pixels ASEM (min:s) SMA (min:s) total (min:s) 

S2 10 m 4 838,000 00:03 11:06 11:09 

S2 supres 12 838,000 00:07 10:54 11:01 

S2 20 m 10 210,000 00:01 02:35 02:36 
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Validation of the resulting land cover fraction maps was performed using the pixel-based method. The 

reference plot size was adjusted to the map with the coarsest spatial resolution, i.e. 20 m × 20 m. 

Comparison with the results based on the four spectral bands originally acquired in a 10 m resolution 

showed little or no improvement in map accuracy (Table 6). Similarly, no improvement in accuracy was 

observed when considering fraction maps based on the 20 m bands. Apparently, increasing the spatial 

resolution of the images with a deep learning algorithm did not produce sufficient supplementary 

information that could lead to a more successful spectral analysis. 

 
Table 6: Mean absolute error of land cover fraction maps from different images, derived from a Sentinel-2 image, 

acquired on 11 July 2015. Endmembers selected automatically. 

Preglednica 6: Povprečna absolutna napaka izračuna deležev pokrovnosti po razredih pokrovnosti za različne 

vhodne podatke na podlagi posnetka Sentinel-2, zajetega 11. 7. 2015. Končni piksli izbrani samodejno. 

image baseline-10m baseline-20m super-resolution 

number of bands 4 10 12 

spatial resolution (m) 10 20 10 

gravel 0.140 0.110 0.138 

vegetation 0.166 0.161 0.193 

water 0.262 0.225 0.270 

total 0.189 0.165 0.200 

 

The pixel is still the basic unit for which land cover fractions are reported. We expected that by 

considering input satellite images with a higher spatial resolution we could improve the thematic 

accuracy of the produced fraction maps. However, the comparison of Landsat- and Sentinel-2-based 

maps in chapter 3.3.1 and Sentinel-2 10 m- and 20 m-based maps in the current chapter make it apparent 

that spectral resolution of input satellite images is more crucial for fraction map accuracy than spatial 

resolution. Because of the additional disadvantage of the high time intensity first for the super-resolution 

and then for the longer SMA, we decided to use the 20 m images in subsequent analysis. 
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3.3.5 Using Spectral Indices to Improve Fraction Map Accuracy 

To increase the separability between the different land cover classes of interest, we calculated several 

spectral indices and included them along spectral bands reflectance values in the endmember selection 

process. We tested the contribution of the following spectral indices (Table 7): 

- Anthocyanin Reflectance Index 1 (ARI1), 

- Burn Area Index (BAI), 

- Band Ration for Built-up Areas (BRBA), 

- Enhanced Vegetation Index (EVI), 

- Modified Normalised Difference Water Index (MNDWI), 

- Modified Soil Adjusted Vegetation Index 2 (MSAVI2), 

- Normalised Difference Infrared Index (NDII), 

- Normalised Difference Vegetation Index (NDVI), 

- NDVI multiplied by green band (NDVI-GREEN), 

- Normalised Difference Water Index (NDWI), 

- Normalised Pigment Chlorophyll Ratio Index (NPCRI), and 

- Plant Senescence Reflectance Index (PSRI). 
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Table 7: Spectral indices selected to improve the separability of land cover classes. 

Preglednica 7: Spektralni indeksi, izbrani za izboljšanje ločevanja med razredi pokrovnosti. 

name formula reference 

Anthocyanin Reflectance 

Index 1 (ARI1) 
𝐴𝑅𝐼1 =  

1

𝐺𝑅𝐸𝐸𝑁
−

1

𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
 

Gitelson et 

al., 2009 

Burn Area Index (BAI) 𝐵𝐴𝐼 =
1

(0.1 − 𝑅𝐸𝐷)2 + (0.06 − 𝑁𝐼𝑅)2 

Martín, 

1998 cited in 

Chuvieco et 

al., 2002 

Band Ratio for Built-up Areas 

(BRBA) 
𝐵𝑅𝐵𝐴 =

𝑅𝐸𝐷

𝑆𝑊𝐼𝑅
 

Waqar et al., 

2012 

Enhanced Vegetation Index 

(EVI) 
𝐸𝑉𝐼 = 2.5 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸 + 1
 

Huete et al., 

1999, 1997 

Modified Normalised 

Difference Water Index 

(MNDWI) 
𝑀𝑁𝐷𝑊𝐼 =  

𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
 

Du et al., 

2016 

Modified Soil Adjusted 

Vegetation Index (MSAVI2) 𝑀𝑆𝐴𝑉𝐼2 =  
2𝑆𝑊𝐼𝑅 + 1 − √(2𝑆𝑊𝐼𝑅 + 1)2 − 8(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

2
 

Qi et al., 

1994 

Normalised Difference 

Infrared Index (NDII) 
𝑁𝐷𝐼𝐼 =

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 Gao, 1996 

Normalised Difference 

Vegetation Index (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Tucker, 

1979 

NDVI multiplied by green 

band (NDVI-GREEN) 
𝑁𝐷𝑉𝐼𝐺𝑅𝐸𝐸𝑁 = (

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
) ∗ 𝐺𝑅𝐸𝐸𝑁 

Švab 

Lenarčič, 

2018 

Normalised Difference Water 

Index (NDWI) 
𝑁𝐷𝑊𝐼 =  

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

McFeeters, 

1996 

Normalised Pigment 

Chlorophyll Ratio Index 

(NPCRI) 
𝑁𝑃𝐶𝑅𝐼 =

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸
 

Peñuelas et 

al., 1993, 

1994 

Plant Senescence Reflectance 

Index (PSRI) 
𝑃𝑆𝑅𝐼 =

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
 

Merzlyak et 

al., 1999 

 

The potential contribution of each index to improved land cover separability was first assessed by visual 

comparison with reference data. We used Sentinel-2 images to test the contribution of spectral indices 

to SMA accuracy. Images from 2015, 2017, and 2020 were used, in line with the availability of reference 

data. For brevity, only the results based on the image acquired on 23 April 2020 and validated with field 

mapping data are shown. 

 

Following these preliminary tests, a subset of spectral indices was chosen for further analysis. This 

subset of indices consisted of EVI, MNDWI, MSAVI2, NDII, NDVI, NDVI-GREEN, NDWI, and 
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NPCRI. The final selection was made from indices which led to an increase in fraction map accuracy 

(Table 8). 
 

Table 8: Improvement of the spectral mixture analysis by using spectral indices. Mean absolute error of fraction 

maps based on different input data derived from a Sentinel-2 image, acquired on 23 April 2020. Endmembers 

selected automatically. 

Preglednica 8: Izboljšanje analize vsebnosti spektralnega signala z uporabo spektralnih indeksov. Povprečna 

absolutna napaka kart deležev pokrovnosti na podlagi različnih vhodnih podatkov, pridobljenih na podlagi 

posnetka Sentinel-2, zajetega 23. 4. 2020. Končni piksli izbrani samodejno. 

image baseline all indices selected indices 

number of indices 0 8 5 

gravel 0.062 0.058 0.056 

vegetation 0.182 0.124 0.120 

water 0.198 0.125 0.124 

total 0.144 0.102 0.100 
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Figure 16: Values of the selected set of indices for the land cover classes of interest. Connecting lines are added 

for easier identification of values referring to the same land cover class. 

Slika 16: Vrednosti izbranih indeksov za obravnavane razrede pokrovnosti. Povezovalne črte so dodane za lažje 

sledenje vrednostim posameznega razreda pokrovnosti. 

 

We also selected indices with values which showed high separability between the land cover classes of 

interest (Figure 16). The presented endmembers were selected automatically. Two vegetation 

endmembers were selected before water and gravel were selected. Evidently, three endmembers were 

not sufficient to describe all of the land cover classes of interest. In further analysis, the fraction maps 

based on the two vegetation endmembers were added in subsequent analysis to result in a single 

vegetation fraction map. Index values for the different land cover classes of interest are similar to those 

in existing literature (Wu, 2004; Afrasinei et al., 2018). In particular, gravel bars have similar spectral 

index values to built-up areas (Xi et al., 2019). The selected spectral indices, which were thus chosen to 

complement the reflectance of the spectral bands, are EVI, MSAVI2, NDVI, NDWI, and MNDWI. 
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3.3.6 Conclusions on Input Satellite Images 

Tests regarding the input satellite images for a successful SMA to map fluvial gravel bars led to four 

important findings for further analysis: 

- Both Sentinel-2 and Landsat 8 images can be successfully used to produce accurate land cover 

fraction maps. Maps based on Landsat 7 have slightly lower accuracy, but still sufficient to 

provide meaningful information. 

- Atmospheric correction improves the accuracy of fraction maps. Topographic correction 

introduces additional uncertainties and is therefore not recommended. 

- For Sentinel-2, increasing the spatial and spectral resolution of input images to 10 m and 12 

spectral bands using a deep neural network does not improve the accuracy of fraction maps 

compared to the baseline images with a 20 m spatial resolution and 10 spectral bands. 

- The inclusion of spectral indices as input data for the SMA in addition to the spectral band 

information improves fraction map accuracies. The selected indices which lead to the highest 

separability between the land cover classes of interest and the most accurate fraction maps are 

EVI, MSAVI2, NDVI, NDWI, and MNDWI. 

 

The next chapter explores the different methods and settings for endmember selection. 

3.4 Endmember Selection 

Endmembers are crucial for a successful SMA. We explored the impacts of different endmember 

selection strategies, namely a manual or automatic method, various numbers of selected endmembers, 

and diverse numbers of land cover classes for the endmembers to represent. Finally, we assessed the 

transferability of endmembers, i.e., the possibility of selecting endmembers on one image and using the 

same endmembers for the SMA of another image. 
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3.4.1 Manual or Automatic Endmember Selection 

The manual endmember selection method is based on the use of reference data with a higher spatial 

resolution than the analysed satellite images to choose pure pixels where only a single land cover class 

is present. Several different pure pixels can be selected for one land cover class. Their spectral signatures 

and index values are combined by taking the average value, thus obtaining manual endmembers. 

 

In the testing phase, we wanted to use the most representative and the best possible endmembers. At the 

same time, the method had to be comparable across different input satellite images. Therefore, we started 

with manual endmember selection on Landsat images, which have a lower spatial resolution and thus a 

lower probability of having pure pixels containing a single land cover class. For the endmember 

calculation, we selected all available spectrally pure pixels. This amounted to four pixels for gravel, 

twenty for vegetation, and nine for water. The same number of pixels was chosen for manual selection 

of endmembers on Sentinel-2 images. To increase comparability between the two different remote 

sensing systems, we selected endmembers at the same locations in each case. 

 

Automatic endmember selection was done with an implementation of the N-FINDR algorithm in the 

Python package pysptools (version 0.15.0) (Therien, 2018). We started by defining three different 

endmembers. If the selected endmembers did not represent the three land cover classes of interest, we 

increased the number of endmembers until all desired land cover classes were represented with at least 

one endmember. 

 
Table 9: Pixel-wise mean absolute error per land cover class for different images analysed using different 

endmember selection methods. Best results per land cover class in bold. 

Preglednica 9: Povprečna absolutna napaka po pikslih za karte deležev pokrovnosti na podlagi različnih 

satelitskih posnetkov z različnimi metodami izbora končnih pikslov za izbrane razrede pokrovnosti. Najboljši 

rezultati za vsak razred pokrovnosti v krepki pisavi. 

land cover 
class 

Landsat 7, 9. 7. 2015 Sentinel-2, 11. 7. 2015 Landsat 8, 25. 4. 2020 Sentinel-2, 23. 4. 2020 
manual automatic manual automatic manual automatic manual automatic 

gravel 0.087 0.094 0.078 0.082 0.069 0.071 0.095 0.124 
vegetation 0.114 0.140 0.111 0.139 0.108 0.124 0.108 0.157 
water 0.124 0.141 0.082 0.097 0.074 0.097 0.080 0.098 
total 0.108 0.125 0.090 0.106 0.084 0.097 0.094 0.126 

 

The two different endmember selection methods were compared on four satellite images: two 

Sentinel-2, one Landsat 7, and one Landsat 8. The results indicate that manually selected endmembers 

lead to more accurate land cover fraction maps (Table 9). Nevertheless, the accuracy achieved by using 

automatically selected endmembers is within 0.05 of that achieved by manually selected endmembers. 
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Importantly, gravel is mapped very successfully with both manually and automatically selected 

endmembers with little or no difference between the two selection methods. 

 

When observing the errors at pixel level, it is clear that on a single pixel, the same land cover classes 

are frequently problematic for both the manually and the automatically selected pixels. Likewise, the 

direction and magnitude of the error are often very similar across endmember selection methods. 

Regarding the confusion of land cover classes, common misclassifications include the labelling of 

shallow water as gravel. This is not possible to overcome and has important implications, as the Soča is 

rarely over 2 m deep. The shallow depth means that electromagnetic radiation reaches the gravel 

riverbed, leading to reflectance values similar to surface gravel. Overall, gravel is mostly over-estimated, 

vegetation is under-estimated, while results for the water class are mixed. 
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Figure 17: Cumulative distribution functions of pixel-wise errors per land cover class for different analysed images 

and different endmember selection methods. 

Slika 17: Kumulativne porazdelitvene funkcije napak po pikslih za karte deležev pokrovnosti izbranih razredov 

na podlagi različnih satelitskih posnetkov z različnimi metodami izbora končnih pikslov. 

 

The cumulative distribution functions have similar shapes regardless of the method used to select 

endmembers and the input satellite image (Figure 17). Nevertheless, the errors for manual endmember 

selection are generally closer to 0 than the errors for automatic endmember selection. Vegetation is the 

most problematic land cover class with the largest errors. The vegetation fraction is under-estimated in 

most cases. Water is generally well detected, with error values very close to 0, except on the Landsat 7 

image. The Sentinel-2 image, acquired in 2020 and analysed with automatically selected endmembers, 

has the largest error, especially for vegetation and gravel. 
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This is also evident when comparing the average errors of the fraction maps (Table 10, Table 11). The 

errors for gravel are the lowest, except for the Sentinel-2 image acquired in 2020. The standard deviation 

of the errors is comparable for all land cover classes considered. However, in all analysed images, the 

standard deviation of errors is the lowest for gravel, which is important and beneficial for our study. 

 
Table 10: Pixel-wise mean error with standard deviation per land cover class for different analysed images 

acquired in 2015 using different endmember selection methods. 

Preglednica 10: Povprečna napaka s standardno deviacijo po pikslih za karte deležev pokrovnosti na podlagi 

različnih satelitskih posnetkov, zajetih leta 2015, z različnimi metodami izbora končnih pikslov za izbrane razrede 

pokrovnosti. 

land cover 
class 

Landsat 7, 9. 7. 2015 Sentinel-2, 11. 7. 2015 
manual automatic manual automatic 

gravel −0.018 ± 0.140 0.002 ± 0.134 0.013 ± 0.127 0.006 ± 0.132 
vegetation 0.016 ± 0.165 −0.042 ± 0.177 0.001 ± 0.174 0.000 ± 0.189 
water 0.002 ± 0.182 0.040 ± 0.181 −0.015 ± 0.159 −0.006 ± 0.163 

 

 
Table 11: Pixel-wise mean error with standard deviation per land cover class for different analysed images 

acquired in 2020 using different endmember selection methods. 

Preglednica 11: Povprečna napaka s standardno deviacijo po pikslih za karte deležev pokrovnosti na podlagi 

različnih satelitskih posnetkov, zajetih leta 2015, z različnimi metodami izbora končnih pikslov za izbrane razrede 

pokrovnosti. 

land cover 
class 

Landsat 8, 25. 4. 2020 Sentinel-2, 23. 4. 2020 
manual automatic manual automatic 

gravel 0.005 ± 0.109 0.003 ± 0.134 0.062 ± 0.128 0.100 ± 0.113 
vegetation 0.022 ± 0.172 0.061 ± 0.177 −0.038 ± 0.150 −0.070 ± 0.174 
water −0.026 ± 0.149 −0.064 ± 0.181 −0.026 ± 0.133 −0.033 ± 0.153 

 

3.4.2 Different Numbers of Selected Endmembers 

Automatic endmember selection may not result in the desired number of land cover classes when 

selecting the exact number of endmembers equal to the number of land cover classes of interest. In such 

cases, we increased the number of selected endmembers until all desired land cover classes were 

represented. We investigated whether increasing the number of endmembers leads to more accurate 

results covering the full land cover diversity, or whether endmembers tend to cluster around certain 

values. Such clustering would indicate that very similar endmembers are being selected. 
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Figure 18: Values for all spectral bands and indices considered for different numbers of automatically selected 

endmembers. The dashed horizontal line shows the average value for all automatically selected endmembers. The 

solid horizontal line shows the values for manually selected endmembers. 

Slika 18: Vrednosti odboja v vseh obravnavanih spektralnih kanalih in indeksih pri različnih številih samodejno 

izbranih končnih pikslov. Prekinjena vodoravna črta prikazuje povprečno vrednost vseh samodejno izbranih 

končnih pikslov. Neprekinjena vodoravna črta prikazuje vrednost ročno izbranih končnih pikslov. 
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The chosen algorithm for automatic endmember selection is implemented to allow the calculation of a 

maximum of 17 different endmembers. We started with the selection of three endmembers and increased 

this in steps of two up to 17. We looked for a possible clustering with plots of endmember values in 

selected spectral bands and indices (Figure 18, Figure 19). 

 

 
Figure 19: Values for selected spectral bands reflectance and indices for different numbers of automatically 

selected endmembers. The displayed bands and indices show the highest separability between the different land 

cover classes. The dashed horizontal line shows the average value of all automatically selected endmembers. The 

solid horizontal line shows the values for manually selected endmembers. 

Slika 19: Vrednosti odboja v izbranih spektralnih kanalih in indeksih pri različnih številih samodejno izbranih 

končnih pikslov. Prikazana kanala in indeksa najbolje kažejo razlike med obravnavanimi razredi pokrovnosti. 

Prekinjena vodoravna črta prikazuje povprečno vrednost vseh samodejno izbranih končnih pikslov. Neprekinjena 

vodoravna črta prikazuje vrednost ročno izbranih končnih pikslov. 

 

A visual inspection of the plots of endmember values shows that clustering starts at five automatically 

selected endmembers. As the number of endmembers is increased, the newly selected values are 

somewhere between the extreme values already selected with a set of five or even three endmembers. 
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3.4.3 Considering Shade as a Separate Endmember 

Shade is a frequently selected endmember in SMA studies (e.g., Adams, 1995; Dennison and Roberts, 

2003; Amaral et al., 2015). The reflectance of shaded pixels can be similar to that of surface water, so 

the inclusion of a shade endmember has been shown to be particularly important when mapping water 

(Liu et al., 2020). Areas detected as shade would then be masked out from the analysis. We therefore 

conducted a series of tests with shade as an additional endmember. Sentinel-2 satellite images were used 

for the analysis. Two time periods were considered, early summer 2015 and mid-autumn 2017. The 

selected time periods were primarily related to the availability of reference data, but also allowed 

comparison of the effects of different Sun angles and the consequent presence of shade. The resulting 

fraction maps were validated using the area-based approach by comparing the presence of each land 

cover class on the fraction map to that on the reference data (Figure 20). 

 

 
Figure 20: Absolute difference in the presence of land cover classes between the reference data and the satellite 

image-based land cover fraction map with shade as a separate endmember. 

Slika 20: Absolutna razlika v prisotnosti razredov pokrovnosti med referenčnimi podatki in karto deležev 

pokrovnosti na podlagi satelitskih posnetkov s senco kot ločenim končnim pikslom. 

 

The results show that the inclusion of shade as an additional endmember does not lead to more accurate 

fraction maps. Evidently, shade is a difficult class to map, as its detection accuracy is frequently the 

lowest of the classes considered. In both fraction maps examined, the presence of shade is over-

estimated. This is interesting because one of the reference images was acquired earlier in the day and 
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the other later in the day than the analysed satellite images (Table 12). The over-estimation of shade is 

apparently larger than the variability of shade presence due to the different Sun angles. 

 
Table 12: Acquisition times for the remote sensing data considered in the shade analysis (data source: ESA, 2021; 

Surveying and Mapping Authority of the Republic of Slovenia, 2021e). 

Preglednica 12: Čas zajema daljinsko zaznanih podatkov, uporabljenih za analizo senc (vir podatkov: ESA, 2021; 

GURS, 2021e). 

image ID use image system acquisition date acquisition time (UTC) 

1 input Sentinel-2 11. 07. 2015 10:00 

2 reference orthophoto 26. 05. 2015 07:29 

3 input Sentinel-2 16. 10. 2017 10:16 

4 reference orthophoto 14. 10. 2017 11:51 

 

In addition to considering shade as a separate land cover class, we explored the impact of taking it into 

account as part of the training samples for other land cover classes. We included shade in the training 

samples for classifying the reference data to better represent the true spectral composition of the land 

cover class. The already acquired training samples for shade were reclassified to other land cover classes 

of interest, or discarded if they contained mixed land cover. Baseline reference data were produced from 

the remaining land cover classes only, excluding all shade training samples. Results were validated using 

the area-based method (Figure 21). 
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Figure 21: Absolute difference in the presence of land cover classes between the reference data and the satellite 

image-based land cover fraction map. For the reference data, shade is included in the training samples for other 

land cover classes (left) or completely excluded from the training samples (right). 

Slika 21: Absolutna razlika v prisotnosti razredov pokrovnosti med referenčnimi podatki in karto deležev 

pokrovnosti na podlagi satelitskih posnetkov. Pri referenčnih podatkih je senca vključena med učne vzorce za 

druge razrede (levo) ali popolnoma izključena iz učnih vzorcev (desno). 

 

The fraction maps that do not include shade as a separate endmember are more accurate than those that 

do. The best results are obtained when shade is completely excluded from the training samples for the 

reference data. Rather than providing a better representation of the land cover class of interest, shade 

appears to introduce additional variability that leads to confusion between classes and consequently 

lower map accuracy. When selecting training samples for reference data, it is therefore advisable to 

select only pixels that do not contain shade. In our case, the selection was manual so it was easily 

possible to exclude shade by visual interpretation. If applying an automatic training sample selection 

method, potential areas of shade can be masked out in advance, for example using a digital elevation 

model for terrain shadow and a buffer around forested areas for vegetation shade. Despite excluding 

shade from training samples, subsequent analysis classifies land cover classes with a satisfactory 

accuracy, even if they are covered with shade.  

3.4.4 Transferability of Endmembers Selected on One Image for the Analysis of Different 
Images 

We explored the possibility of applying a set of endmembers selected on one satellite image for the 

SMA of another image acquired with the same remote sensing system. In choosing the satellite images 
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to be considered, we followed the availability of reference data, both for the selection of endmembers 

and for the validation of fraction maps. Thus, for testing the Sentinel-2 images we used endmembers 

selected on an image from 23 April 2020 to unmix an image from 11 July 2015 (Table 13). 

 
Table 13: Class-wise mean absolute error with endmembers (EM) chosen on the same or a different image, for 

images acquired with Sentinel-2. Values are deviations from averages. M – manual EM selection method; A – 

automatic EM selection method. Best results per land cover class in bold. 

Preglednica 13: Povprečna absolutna napaka po razredih pokrovnosti, s končnimi piksli (EM), izbranimi na istem 

in na drugem posnetku, za posnetke Sentinel-2. Vrednosti so odstopanja od povprečja. M – ročna metoda izbora 

EM; A – samodejna metoda izbora EM. Najboljši rezultati za vsak razred pokrovnosti v krepki pisavi. 

acquisition date of 

analysed image 

average 

11. 07. 2015 11. 07. 2015 23. 04. 2020 23. 04. 2020 

acquisition date of EM 

selection image 
11. 07. 2015 23. 04. 2020 11. 07. 2015 23. 04. 2020 

EM selection method M A M A M A M A 

gravel 0.093 −0.015 −0.011 −0.013 0.011 −0.009 0.005 0.002 0.030 

vegetation 0.136 −0.025 0.004 −0.037 −0.010 0.024 0.052 −0.028 0.021 

water 0.093 −0.011 0.004 −0.014 −0.011 0.023 0.019 −0.014 0.005 

total 0.108 −0.017 −0.001 −0.021 −0.003 0.013 0.025 −0.013 0.019 

 

We also considered the Landsat 8 system, where endmembers selected on an image from 25 April 2020 

were taken for the SMA of an image from 17 July 2015 (Table 14). Endmembers were selected using 

both the manual and automatic methods. The same number of endmembers was considered for both 

selection methods. For Sentinel-2, we selected one endmember for gravel, two for vegetation, and two 

for water; for Landsat 8, there was one endmember for gravel, three for vegetation, and two for water. 
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Table 14: Class-wise mean absolute error with endmembers (EM) chosen on the same or a different image, for 

images acquired with Landsat 8. M – manual EM selection method; A – automatic EM selection method. Best 

results per land cover class in bold. 

Preglednica 14: Povprečna absolutna napaka po razredih pokrovnosti, s končnimi piksli (EM), izbranimi na istem 

in na drugem posnetku, za posnetke Landsat 8. Vrednosti so odstopanja od povprečja. M – ročna metoda izbora 

EM; A – samodejna metoda izbora EM. Najboljši rezultati za vsak razred pokrovnosti v krepki pisavi. 

acquisition date of 

analysed image 

average 

17. 07. 2015 17. 07. 2015 25. 04. 2020 25. 04. 2020 

acquisition date of EM 

selection image 
17. 07. 2015 25. 04. 2020 17. 07. 2015 25. 04. 2020 

EM selection method M A M A M A M A 

gravel 0.096 −0.022 0.019 −0.017 −0.001 −0.027 0.100 −0.027 −0.025 

vegetation 0.132 −0.035 0.101 −0.049 −0.012 −0.009 0.035 −0.024 −0.008 

water 0.101 −0.016 0.071 −0.021 0.015 −0.022 0.004 −0.026 −0.004 

total 0.109 −0.024 0.063 −0.029 0.001 −0.019 0.046 −0.026 −0.012 

 

The results show that the SMA can achieve high accuracy with transferred endmembers. Transferred 

endmembers can even lead to better results than those selected on the analysed image. The transfer of 

endmember is successful for all land cover classes considered. Mapping accuracy changes the least for 

gravel endmember transfer. Transfer of water endmembers is the most uncertain and results in the largest 

differences in mapping accuracy. Both manually and automatically selected endmembers can be 

successfully transferred. Differences in accuracies due to the transfer of endmembers are smaller when 

using manually selected endmembers. 

3.4.5 Conclusions on Endmember Selection 

In this chapter, several features related to the selection of endmembers for SMA were explored and the 

following observations were made: 

- Automatically selected endmembers can be used to produce fraction maps with similar accuracy 

as manually selected endmembers. However, it is necessary to inspect the automatically selected 

endmembers because various spectral and land cover outliers can inherently be selected as 

endmembers. 

- The optimal total number of endmembers for SMA using multispectral images is between three 

and five. Fraction maps based on endmembers representing the same land cover class can be 

combined after the SMA. Increasing the number of automatically selected endmembers to more 
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than five leads to many different endmembers being considered for a single land cover class of 

interest, and thus to redundant information. 

- The developed method does not allow accurate detection of shade. On the other hand, the 

inclusion of shade pixels in other land cover classes does not seem to affect the accuracy of the 

fraction maps. 

- In the study area during the leaf-on season, the endmembers selected on one satellite image can 

be successfully used for the SMA of another satellite image acquired with the same remote 

sensing system. 

 

Having established the endmember selection process, the next section presents the resulting land cover 

fraction maps and compares their accuracy to the accuracy of land cover maps produced using a hard 

classification method. 

3.5 Soft Image Classification 

In this section, the fraction maps produced using SMA are presented. The maps for different remote 

sensing systems are shown and compared with a hard classification method using the spectral angle 

mapper (SAM) (Kruse et al., 1993). 

 

 
 

3.5.1 Land Cover Fraction Maps 

Using the SMA-based mapping method, we produced land cover fraction maps for the three classes of 

interest – gravel, vegetation, and water. The maps were generated using Sentinel-2, Landsat 7, and 

Landsat 8 satellite images. Upon visual inspection, the maps look informative, with gravel occurring in 

rounded, elongated shapes, resembling gravel bars. Different types of gravel bars can be distinguished, 

including those forming in the middle of the river and those developing along the river bank. Vegetation 

is detected in the riparian zone along the river banks. Water surfaces are linear and connected. 

Comparing the 2015 and 2020 maps, changes in the size and location of gravel bars are evident. The 

dynamics of gravel bars confirm findings from the literature that one type of gravel bar can be 
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transformed into another over time (Robert, 2003). Fraction maps produced with manually and 

automatically selected endmembers show no visible differences (Figure 22). 

 

 
Figure 22: Land cover fraction maps for a section of the study area on the Soča River. a) Observed river section 

on a true colour orthophoto (data source: Surveying and Mapping Authority of the Republic of Slovenia, 2021e). 

b) – c) Resulting fraction maps. Maps produced with manually selected endmembers shown at the top and maps 

produced with automatically selected endmembers shown at the bottom. 

Slika 22: Karte deležev pokrovnosti za izsek študijskega območja na reki Soči. a) Prikaz opazovanega izseka na 

barvnem ortofotu (vir podatkov: GURS, 2021e). b) – c) Izdelane karte deležev pokrovnosti. Karte na podlagi ročno 

izbranih končnih pikslov prikazane zgoraj in karte na podlagi samodejno izbranih končnih pikslov prikazane 

spodaj. 

 

3.5.2 Comparison of Results with Hard Classification 

To additionally assess the proposed soft classification mapping method, we compared it with a hard 

classification method. We selected the spectral angle mapper (SAM) classification (Kruse et al., 1993) 

based on the existing literature and because similar input data can be used, making the two methods easy 

to compare (Dennison et al., 2004). The endmember spectral signatures from SMA were used as input 

spectra for SAM. We compared the two classification methods based on accuracy assessment with 
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reference to VHR data and by comparing their respective error metrics. For SMA, we observed the root-

mean-square error (RMSE), which is a commonly used metric to describe the error of the unmixed signal 

(Dubovyk et al., 2015; Somers et al., 2011). For each pixel, the predicted reflectance values are 

calculated based on the land cover class fraction determined by the SMA. The RMSE is then computed 

as the mean difference between the modelled and observed reflectance. For SAM, we reported the 

spectral angle between the reflectance values of a single pixel and the reflectance values of the 

endmember representing the land cover class as which that pixel was classified. Thus, a large spectral 

angle signifies that the spectral signature of the pixel is very different from the spectral signature of the 

endmember representing the land cover class to which the particular pixel was assigned. To compare 

SMA and SAM, the two respective error values were extracted for 1000 randomly selected pixels. 

Additionally, accuracy was evaluated both pixel-wise and study area-wise. The pixel-wise assessment 

was performed for 50 randomly selected map pixels by comparing their land cover with that obtained 

based on VHR reference images. In this case, we expected the soft classification to perform better, as it 

is able to detect sub-pixel land cover presence fractions. We also assessed the mapping accuracy for the 

whole study area by looking at the detected land cover presence for each class of interest and comparing 

it to the reference data. 
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Figure 23: Comparison of RMSE and spectral angle for different land cover classes, remote sensing systems, and 

endmember selection methods. Values are for land cover maps based on images from 23 April 2020 (Sentinel-2) 

and 25 April 2020 (Landsat 8). 

Slika 23: Primerjava RMSE in spektralnega kota za različne razrede pokrovnosti, sisteme daljinskega zaznavanja 

in metode izbora končnih pikslov. Vrednosti se nanašajo na karte pokrovnosti na podlagi posnetkov, zajetih 23. 4. 

2020 (Sentinel-2) in 25. 4. 2020 (Landsat 8). 

 

We present the comparison of error metrics for images acquired in 2020 (Figure 23). The Sentinel-2 and 

Landsat 8 were compared based on models that use automatically selected endmembers. The two 

different endmember selection methods – manual and automatic – were assessed using Sentinel-2 

images. The results show that the error metrics of the two classification methods are not strongly linearly 

correlated. The highest R2 value (0.352) was obtained for vegetation on the Landsat 8 image. This 
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indicates that, for example, a pixel that was accurately classified by the soft classification was not 

necessarily classified equally well by the hard classification. For the Landsat 8 image, water pixels were 

classified well by SMA, but not by SAM. Both soft and hard classification produced the most accurate 

models for gravel, while water proved the most difficult to classify. Gravel has a uniform spectral 

response that can be modelled well even with few samples. Water appears to have a highly variable 

spectral response which is difficult to model accurately. One of the possible reasons for this variability 

is the non-uniform depth of water, which ranges from a few centimetres to several metres, leading to the 

occasional inclusion of the riverbed in the spectral signal. Additionally, the presence of rapids in the 

river causes whitewater, which has a different spectral response than the less turbulent sections of the 

river. Regarding the endmember selection methods, manually selected endmembers lead to smaller 

spectral angles, but a higher RMSE than automatically selected endmembers. One explanation for this 

lies in the inherent characteristics of the two endmember selection methods. The automatic method 

searches for endmembers with the extreme spectral properties and, consequently, the largest spectral 

angle relative to the spectral responses of other pixels. The manual method, on the other hand, uses 

endmembers that are the average spectra, more similar to a wider range of other pixels and result in 

smaller spectral angles. However, the manually selected endmembers cannot account for the full range 

of spectral variability in the image, which leads to a high RMSE. For gravel, a low RMSE and small 

spectral angles were achieved for the models for both Landsat 8 and Sentinel-2. The hard classification 

of vegetation was slightly better with Landsat 8, possibly due to the larger number of spectral bands in 

the red edge range. Water was modelled with very large spectral angles for Sentinel-2 and even larger 

ones for Landsat 8, again most likely due to the high spectral variability of water surfaces. 

 

The comparison with the hard classification was also made based on the accuracy of the representation 

of the actual land cover. For brevity, only results based on images acquired in 2020 are shown. In situ 

data from field mapping were used as reference. First, we assessed the pixel-wise accuracy using MAE 

(Table 15). As expected, the soft classification performed much better, because the hard classification 

is not able to convey information about land cover at the sub-pixel level. 
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Table 15: Mean absolute error for a pixel-wise comparison of soft and hard classification per land cover class. 

The Sentinel-2 image was acquired on 23 April 2020. The Landsat 8 image was acquired on 25 April 2020. EM – 

endmember. Best results per land cover class in bold. 

Preglednica 15: Povprečna absolutna napaka za primerjavo mehke in trde klasifikacije po pikslih glede na razrede 

pokrovnosti. Posnetek Sentinel-2 je bil zajet 23. 4. 2020. Posnetek Landsat 8 je bil zajet 25. 4. 2020. EM – končni 

piksel. Najboljši rezultati za vsak razred pokrovnosti v krepki pisavi. 

image Sentinel-2    Landsat 8 

EM selection manual  automatic  automatic  

classification soft hard soft hard soft hard 

gravel 0.095 0.254 0.124 0.273 0.071 0.249 

vegetation 0.108 0.131 0.157 0.131 0.124 0.193 

water 0.080 0.159 0.098 0.180 0.097 0.213 

total 0.094 0.181 0.126 0.195 0.097 0.218 

 

Next, we examined the values for validating the area-wise presence of land cover classes (Table 16). 

The soft classification performed much better in modelling the presence of gravel and water. No 

important difference was found between the two classification methods for vegetation. 

 
Table 16: Comparison of soft and hard classification accuracy based on land cover class presence in the validation 

area. Values indicate the difference to reference land cover class presence. The Sentinel-2 image was acquired on 

23 April 2020. The Landsat 8 image was acquired on 25 April 2020. EM – endmember. Best results per land cover 

class in bold. 

Preglednica 16: Primerjava mehke in trde klasifikacije po prisotnosti razredov pokrovnosti na območju validacije. 

Vrednosti prikazujejo razliko od prisotnosti razredov pokrovnosti na referenčnih podatkih. Posnetek Sentinel-2 je 

bil zajet 23. 4. 2020. Posnetek Landsat 8 je bil zajet 25. 4. 2020. EM – končni piksel. Najboljši rezultati za vsak 

razred pokrovnosti v krepki pisavi. 

image Sentinel-2    Landsat 8 

EM selection manual  automatic  automatic  

classification soft hard soft hard soft hard 

gravel 0.062 0.190 0.100 0.210 0.003 0.163 

vegetation −0.038 −0.045 −0.070 −0.045 0.061 0.042 

water −0.026 −0.147 −0.033 −0.167 −0.064 −0.205 

 

3.5.3 Conclusions on Image Classification 

The tests described in the previous chapters can be successfully used to produce land cover fraction 

maps. Both pixel-wise and study-area wise validation showed that such land cover maps derived from 

the so-called soft classification are more accurate than maps produced using hard classification methods. 

The proposed method can therefore be used for the development of a land cover time series and 
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subsequent monitoring of gravel bars. The construction of a land cover time series is presented in the 

next section. 

3.6 Land Cover Time Series Development 

In order to track the changes in land cover we analysed all of the available Sentinel-2 images for the 

study area that had less than 10% cloud cover on the whole image. For clarity, the results of the different 

endmember selection and data smoothing methods are presented based only on data for the time period 

from the years 2019 and 2020. 

 

 
 

3.6.1 Endmember Selection for Time Series Analysis 

We started with one endmember selected automatically for gravel, one for water, and two for vegetation. 

The two fraction maps based on the two vegetation endmembers were combined after the SMA to obtain 

a single fraction map of vegetation presence. Three different approaches were applied to determine 

which endmembers were used for the SMA: 

- Same endmembers for all images: the endmembers selected on the image from 11 July 2015 

were used to unmix all images in the time series. 

- Unique endmembers for every image: endmembers were selected separately for each image, but 

always at the same location. The selected locations were visually inspected to ensure that the 

desired land cover was actually present. 

- Unique vegetation endmembers: only vegetation endmembers were selected separately for each 

image. The gravel and water endmembers were transferred from the image acquired on 11 July 

2015. 
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Land cover class and pixel purity were verified using satellite images and reference aerial orthophotos 

(Figure 24). The endmembers were selected automatically using the N-FINDR algorithm as described 

in Chapter 3.4.1 above. They therefore represent pixels with the most diverse spectral characteristics. In 

future studies, if the selection is done manually, in the case of water endmembers, a pixel closer to the 

centre of the river flow could be selected. In this way, it would be easier to ensure that water is indeed 

present on the selected pixel in different hydrological conditions. 

 

 
Figure 24: Pixels selected for unmixing on the first and last Sentinel-2 image of the time series used and on the 

aerial orthophoto, acquired on 26 June 2015 (basemap: ESA, 2021; Surveying and Mapping Authority of the 

Republic of Slovenia, 2021e). 

Slika 24: Piksli, izbrani za analizo spektralnega signala na prvi in na zadnji sliki uporabljene časovne vrste 

posnetkov Sentinel-2 ter na letalskem ortofotu, zajetem 26.6.2015 (podlaga: ESA 2021; GURS, 2021e). 
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The location of the pixel for which the endmember values were extracted remained the same for all 

different endmember selection methods. However, the endmember values changed in accordance with 

the image reflectance values. For the uniquely selected endmembers, the fluctuations of their values 

over the year were evident (Figure 25). 

 

 
Figure 25: Time series of Sentinel-2 NDVI for the different selected endmembers. 

Slika 25: Časovna vrsta NDVI na podlagi posnetkov Sentinel-2 za izbrane končne piksle. 
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A visual comparison of the time series for the land cover classes of interest shows similar general trends 

and plot shapes, but also considerable differences in magnitude (Figure 26). The time series based on 

the same endmembers transferred to all images analysed appears to be the most stable. 

 

 
Figure 26: Time series of presence of different land cover classes in the study area based on three different 

endmember selection strategies. 

Slika 26: Časovne vrste prisotnosti izbranih razredov pokrovnosti na študijskem območju glede na tri različne 

pristope izbora končnih pikslov. 

 

The high presence of water in the winter months is not only due to the rise in water level, but also due 

to topographic shadow classified as surface water (Figure 27). Topographic shadow is therefore a cause 

for error. However, as described in chapter 3.4.3 above, this problem cannot be solved with the available 

topographic corrections. Moreover, the accuracy of shade detection with the proposed method is much 

lower than the accuracy for other land cover classes of interest. Further shade detection and elimination 

is beyond the scope of this work. 
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Figure 27: Time series of water presence, based on transferred endmembers, and water level measured at a gauging 

station in Kobarid (data source: Slovenian Environment Agency, 2021b). 

Slika 27: Časovni vrsti prisotnosti vode na podlagi prenesenih končnih pikslov in vodostaja, izmerjenega na 

merilni postaji Kobarid (vir podatkov: Agencija RS za okolje, 2021b). 

 

3.6.2 Smoothing Vegetation Endmembers for Time Series Analysis 

A large variability in the presence of land cover classes is observed in the time series plots (Figure 26), 

particularly for vegetation. One possible reason for this could be the continuous change in spectral 

characteristics of vegetation due to phenology, and thus a difficulty in accurately identifying the 

vegetation land cover class on all images. We therefore performed additional tests using two approaches 

of averaging vegetation endmembers to make them more general and appropriate for analysing different 

images (Figure 28): 

- The first method locally smooths the time series of vegetation endmember reflectance and index 

values with a Savitzky-Golay filter and uses the smoothed values for unmixing. We used a 

Savitzky-Golay filter implementation from the R package Signal (Signal developers, 2013). 

- The second method calculates monthly averages of vegetation endmember values and then uses 

these averages to unmix all images acquired in that month. 
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Figure 28: Time series for the different selected endmembers in the Sentinel-2 band 8A. Vegetation endmember 

values smoothed using a Savitzky-Golay filter. Vegetation endmember values averaged for each month shown 

with a dashed line. Unsmoothed vegetation endmember values shown in the background in lighter colours. 

Slika 28: Časovna vrsta izbranih končnih pikslov v spektralnem pasu 8A na podlagi posnetkov Sentinel-2. 

Vrednosti končnih pikslov za vegetacijo zglajene s filtrom Savitzky-Golay. Vrednosti končnih pikslov za 

vegetacijo povprečene po mesecih prikazane s črtkano črto. Nezglajene vrednosti končnih pikslov za vegetacijo 

prikazane v ozadju z večjo prosojnostjo. 
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Plots of the time series data for selected land cover presence show no considerable difference between 

the different smoothing strategies for the vegetation endmembers (Figure 29). Since smoothing 

represents an additional processing step and lengthens the analysis process, we decided to omit it in 

further work. 

 

 
Figure 29: Time series of the presence of the selected land cover class based on different methods for smoothing 

the vegetation endmembers. 

Slika 29: Časovna vrsta prisotnosti izbranih razredov pokrovnosti na podlagi različnih načinov glajenja signala 

končnih pikslov za vegetacijo. 
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3.6.3 Land Cover Time Series Smoothing 

To better detect long-term changes in gravel bars, we attempted to remove outliers with smoothing. We 

used the Savitzky-Golay filter, which is implemented in the R package Signal (Signal developers, 2013). 

The contribution of smoothing was considerable, as significant changes and important trends were much 

easier to detect with visual inspection (Figure 30). 

 

 
Figure 30: Time series of different land cover classes presence smoothed with a Savitzky-Golay filter. Unsmoothed 

values shown in the background in lighter colours. 

Slika 30: Časovna vrsta prisotnosti izbranih razredov pokrovnosti, zglajena s filtrom Savitzky-Golay. Nezglajene 

vrednosti prikazane v ozadju z večjo prosojnostjo. 

 

3.6.4 Conclusions on Land Cover Time Series 

Based on a time series of cloudless Sentinel-2 images acquired in the years 2019 and 2020, we made 

several observations regarding the development of land cover time series from fraction maps: 

- The spectral signatures of endmembers selected on one satellite image can be used to 

successfully unmix a time series of different satellite images acquired in various seasons. 

- When acquired separately for each satellite image, vegetation endmembers show the largest 

variations. However, temporally smoothing or averaging the spectral signatures of the 

vegetation endmembers does not lead to better fraction maps or more stable land cover time 

series. 

- Smoothing the land cover time series using a Savitzky-Golay filter results in a more stable 

dataset where meaningful disruptions can be more easily identified. 
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3.7 Conclusions on the Proposed Method 

We tested various settings to determine the optimal characteristics of a spectral mixture analysis (SMA)-

based method for mapping and monitoring gravel bars. The method was developed and tested on a 

15 km section of the Soča River in Slovenia, between the settlements of Kobarid and Tolmin. The 

different options were validated using either a pixel-wise or a study area-wise accuracy assessment, as 

both were shown to give similar results when comparing different settings. 

 

Regarding the input satellite images, we found that both Sentinel-2 and Landsat 8 images can be used 

to accurately map land cover fractions. Landsat 7 images result in slightly less accurate results, but the 

difference is within 0.02 MAE and thus still acceptable. The atmospheric correction improves the 

mapping accuracy, but the topographic correction introduces additional uncertainty and does not 

contribute to map improvement. Additionally, increasing the spatial and spectral resolution using a deep 

neural network, as tested for Sentinel-2 images, does not lead to more accurate fraction maps. On the 

other hand, the inclusion of selected spectral indices in addition to spectral bands leads to more accurate 

results. 

 

The endmember selection is one of the most important steps in SMA; we therefore tested different 

configurations. The results show that both manual and automatic endmember selection can produce 

accurate fraction maps. Nevertheless, even the automatic method requires manual inspection of the 

selected endmembers to ensure that all of the land cover classes of interest are included. To cover the 

three land cover types of interest, the optimal number of endmembers is between three and five. Based 

on the existing literature, shade is an additional endmember that can lead to better fraction maps. 

However, we found that shade is difficult to detect with the proposed method. Moreover, including 

shade in other land cover classes of interest does not significantly reduce map accuracy. Therefore, we 

did not consider shade as a separate endmember. Finally, we found that the endmembers selected based 

on one satellite image can be successfully transferred to another satellite image to perform SMA. 

 

The land cover fraction maps produced using SMA look informative and show the land cover classes of 

interest well. Compared to a hard classification based on spectral angle mapper, the fraction maps are 

more accurate, which is another incentive for the proposed method. We therefore used the method to 

produce land cover fraction maps for different time points and built a time series of land cover data. 

Tests with different methods for developing time series showed that the same endmembers can be used 

for unmixing all images. Different smoothing and averaging approaches applied to the vegetation 

endmembers, which have the largest annual fluctuations, do not lead to more stable and accurate time 

series. However, visual inspection of land cover presence plots shows that smoothing the entire time 
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series with a Savitzky-Golay filter produces clearer results where disturbances can be more easily 

detected. 

 

These findings were a base for developing the steps of the complete workflow for mapping and 

monitoring fluvial gravel bars as defined in Figure 31. The main contribution of the proposed method 

to the existing body of work on land cover monitoring is the combination of sub-pixel mapping and time 

series analysis. The SMA enables the detection of features and processes that are smaller than the input 

satellite image pixel and cannot be mapped using hard classification. Land cover time series based on 

fraction maps therefore more accurately represent the conditions in the environment and are more 

sensitive to changes in the observed features. 

 

 
Figure 31: Workflow for the proposed method for monitoring fluvial gravel bars. 

Slika 31: Potek predlagane metode za spremljanje rečnih prodišč. 

 

We established the validation method, input data characteristics, endmember selection strategy, satellite 

image classification method, and land cover time series development. The next chapter illustrates the 

application of the method for mapping different study areas as well as detecting changes in gravel bars. 
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4 MONITORING GRAVEL BARS 

This chapter describes the application of the developed land cover fraction mapping method to map and 

monitor fluvial gravel bars. First, land cover fraction maps of water lands for the Soča, Sava, and Vjosa 

rivers are presented. The first proposed hypothesis on the accuracy of the fraction maps is tested. Next, 

the second hypothesis of the ability of the fraction maps to detect changes is verified. Finally, we 

demonstrate the use of fraction maps to develop land cover time series, compare the data to selected 

hydrologic parameters, and explore potential applications of the time series. 

4.1 Fraction Maps of Gravel for Different Rivers 

To validate the SMA-based method for mapping gravel bars that was developed on a smaller study area, 

we applied the method to larger river areas. For this purpose, three different rivers known to transport 

large amounts of gravel were selected. The first river is the Soča, a section of which also served as the 

study area for the development of the method. The second was the upper section of the Sava, which also 

flows through north-western Slovenia. The third river was the Vjosa in southern Albania, which is 

known for extensive gravel bars and natural process dynamics. The combined length of the river sections 

under consideration was over 250 km. 

 

We used Landsat 5 and Landsat 8 images to generate fraction maps in all study sites to gain a temporal 

overview of changes in gravel presence. Three images were chosen for each river for classification over 

a period of 30 – 35 years. All of the selected images were acquired during leaves-on period. Where 

available, the hydrological characteristics during image acquisition time were also checked to minimise 

the effect of water level differences on changes of gravel presence (Slovenian Environment Agency, 

2021b). The resulting gravel fraction maps and their assessment are presented in the next chapters. 

4.1.1 Soča River, Slovenia 

The satellite images used for gravel fraction mapping on the Soča river were a Landsat 5 image from 

12 July 1990, a Landsat 5 image from 27 June 2002, and a Landsat 8 image from 26 June 2019. 

Endmembers used for the SMA of Landsat 5 images were selected on the image from 2002 with 

reference from aerial orthophotos acquired on 18 July 2006, and transferred to the 1990 image. 

Endmembers used for the SMA of the Landsat 8 image were selected on the image based on reference 

from aerial orthophotos acquired on 5 September 2020. The water lands with a 100 m buffer on each 

side of the whole Soča river course in Slovenia were analysed. For a better view of the details, the 

resulting map of the whole river course was split into several sections (Figure 32). 
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Figure 32: Sections of gravel presence maps on the Soča river in Slovenia (data source: Natural Earth, 2020; 

Slovenian Water Agency, 2021c; Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021b). 

Slika 32: Sekcije kart prisotnosti proda na Soči v Sloveniji (vir podatkov: Natural Earth, 2020; DRSV, 2021c; 

GURS, 2016, 2021b). 

 

Each section shows the presence of gravel on fraction maps for three different timestamps (Figure 33). 

Fraction maps of all sections are available in Appendix A. Many different types of gravel bars can be 

observed on the Soča river. Most commonly, gravel bars appear along the banks of the river, but there 

are also some gravels bars in the middle of the river. Gravel bars are complex, formed by a combination 

of erosion and deposition. 
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Figure 33: Gravel presence on the Soča river near the Kamno settlement (Section 14) in three different timestamps 

based on Landsat images. 

Slika 33: Prisotnost proda na Soči v bližini naselja Kamno (sekcija 14) v treh različnih časovnih obdobjih na 

podlagi posnetkov Landsat. 
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4.1.2 Sava River, Slovenia 

The satellite images used for gravel fraction mapping on the Sava river were a Landsat 5 image from 

11 July 1984, a Landsat 5 image from 18 July 2004, and a Landsat 8 image from 30 July 2020. 

Endmembers used for the SMA of Landsat 5 images were selected on the image from 2004 with 

reference from aerial orthophotos acquired on 22 July 2006, and transferred to the 1984 image. 

Endmembers used for the SMA of the Landsat 8 image were selected on the image based on reference 

from aerial orthophotos acquired on 28 July 2020. The water lands with a 100 m buffer on each side of 

the upper section of the Sava river course in Slovenia were analysed. For a better view of the details, the 

resulting map of the river course was split into several sections (Figure 34). 

 

 
Figure 34: Sections of gravel presence maps on the upper Sava river between the spring and the Medvode 

settlement (data source: (Natural Earth, 2020; Slovenian Water Agency, 2021c; Surveying and Mapping Authority 

of the Republic of Slovenia, 2016, 2021b). 

Slika 34: Sekcije kart prisotnosti proda na Zgornji Savi med izvirom in Medvodami (vir podatkov: Natural Earth, 

2020; DRSV, 2021c; GURS, 2016, 2021b). 

 

Each section shows the presence of gravel on fraction maps for three different timestamps (Figure 35). 

Fraction maps of all sections are available in Appendix B. The Sava river has fewer gravel bars than the 

Soča, but a diversity of forms can still be seen. Lateral gravel bars forming along the river bar in a series 

of erosion and deposition processes are the most common. We can also see how one type of gravel can 

be transformed into another over time, for example from a mid-channel bar to a point bar. 
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Figure 35: Gravel presence on the Sava river near the Besnica settlement (Section 28) in three different timestamps 

based on Landsat images. 

Slika 35: Prisotnost proda na Savi v bližini naselja Besnica (sekcija 28) v treh različnih časovnih obdobjih na 

podlagi posnetkov Landsat. 
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4.1.3 Vjosa River, Albania 

The satellite images used for gravel fraction mapping on the Vjosa river were a Landsat 5 image from 

24 July 1984, a Landsat 5 image from 24 June 2002, and a Landsat 8 image from 7 June 2019. We 

analysed an over 60 km long section of the Vjosa river between the Memaliaj settlement and the 

confluence with the Shushica river. As no official map of water lands was at our disposal, an openly 

available polygon of the river delineated based on VHR satellite data with a 100 m buffer on each side 

was used to narrow down the area of observation (OpenStreetMap contributors, 2021). 

 

Endmembers used for the SMA of Landsat 5 images were selected on the image from 2002, and 

transferred to the 1984 image. Endmembers used for the SMA of the Landsat 8 image were selected on 

the image based on the newest openly available VHR data (Bing, 2021; Esri, 2021). For a better view 

of the details, the resulting map of the river course was split into several sections (Figure 36). 

 

 
Figure 36: Sections of gravel presence maps on the Vjosa river between the Memaliaj settlement and the 

confluence with the Shushica river (data source: Natural Earth, 2020; Bing, 2021). 

Slika 36: Sekcije kart prisotnosti proda na reki Vjosi med naseljem Memaliaj in sotočjem z reko Šušico (vir 

podatkov: Natural Earth, 2020; Bing, 2021). 

 

Each section shows the presence of gravel on fraction maps for three different timestamps (Figure 37). 

Fraction maps of all sections are available in Appendix C. An issue that can be seen on fraction maps is 

the presence of single pixels with very low gravel presence in the middle of gravel bars. This is observed 

only on Landsat 5 images. The issue is not present on the Soča and Sava rivers, so it could be related to 

the endmembers used for analysis of the Vjosa river. Additionally, we needed to limit the area of 
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observation to the riparian zone. In absence of other data, we used the openly available river polygon 

with a buffer as described above. However, this polygon is based on recent data and does not take the 

historical river extent into account. Furthermore, the polygon includes the surface water only, and not 

the water lands as a whole. We mapped only gravel that is located within this polygon and so parts of 

gravel bars further from the present-day river were missed. 

 

The Vjosa river is known for its extensive gravel bars (Fouache et al., 2001; Rössler et al., 2018; Spada 

et al., 2018; Schiemer et al., 2020). The fraction maps clearly show this and also highlight the fast speed 

of changes in gravel bar location. The gravel bars on the Vjosa are mostly complex, formed by a 

succession of deposition and erosion. One of the reasons for this abundance and complexity of gravel 

bars is that Vjosa is one of the last large European rivers without a dam that would trap the sediment. 
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Figure 37: Gravel presence on the Vjosa river near the Iliras settlement (Section 4) in three different timestamps 

based on Landsat images. 

Slika 37: Prisotnost proda na reki Vjosi v bližini naselja Iliras (sekcija 4) v treh različnih časovnih obdobjih na 

podlagi posnetkov Landsat. 
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4.1.4 Validation of the Land Cover Fraction Maps of Water Lands 

The most recent fraction maps were validated with VHR remote sensing data. The maps were not 

validated in their whole extent. Instead, parts of the fraction maps that matched the extent of available 

VHR data were taken into consideration. Different sources of VHR data were used. The gravel map of 

the Soča river was validated with a WorldView-2 satellite image with a 2 m spatial resolution, acquired 

on 3 July 2019 and covering the extent between the settlements Kobarid and Tolmin in the length of 

almost 15 km. The gravel map of the Sava river was validated with aerial orthophotos with a 0.5 m 

spatial resolution, acquired on 28 July 2020 and covering the extent between the river spring at Zelenci, 

and the settlements Bohinjska Bela and Posavec. The total length of the validated map is over 60 km. 

The gravel map of the Vjosa river was validated with a WorldView-2 satellite image with a 2 m spatial 

resolution acquired on 16 July 2019. The validated section is located between the settlements Poçem 

and Qesarat with the total length of almost 25 km. 

 

We validated the presence of all of the land cover classes of interest – gravel, vegetation, and water – 

using the area-based approach as described in Chapter 3.2.3 above. Most of the land cover classes of 

interest were mapped with less than a 10% error (Figure 38). Vegetation was an exception with mapping 

errors slightly over 10% for the Sava and Vjosa river maps. Gravel was mapped with maximum errors 

around 5% on all rivers. The results indicate that gravel can be mapped accurately using the proposed 

SMA-based method on diverse rivers. 

 

 
Figure 38: Absolute difference in the presence of land cover classes between reference data and satellite image-

based land cover fraction maps for different rivers. 

Slika 38: Absolutna razlika v prisotnosti razredov pokrovnosti med referenčnimi podatki in kartami deležev 

pokrovnosti za različne reke na podlagi satelitskih posnetkov. 
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4.2 Detection of Changes in Gravel Presence 

We investigated the extent to which fraction maps are able to detect gravel bar changes. Rapid change 

detection is one of the most important advantages of using satellite images from remote sensing systems 

with a revisit time of only a few days. We focused the change detection on the gravel land cover class. 

Gravel bars are dynamic geomorphological features that change rapidly. The reasons for changes may 

be natural, such as increased water levels or fluvial transport ability, or anthropogenic, such as in-

channel gravel mining or dam construction. 

 

To begin with, we evaluated the ability of fraction maps to detect changes using simple image 

differencing. The results were validated with VHR reference data. Aerial orthophotos with a spatial 

resolution of 0.5 m acquired on 14 October 2017 and 5 September 2020 were used as reference data. 

Additionally, a classified VHR WorldView-2 satellite image of the study area, acquired on 3 July 2019, 

with a spatial resolution of 2 m was used as a reference. The reference images were classified into the 

three land cover classes of interest using a random forest (RF) supervised classification. The satellite 

images used for the test were selected as close as possible to the acquisition of the reference data. We 

used Sentinel-2 images acquired on 13 October 2017, 3 July 2019, and 5 September 2020. 

 

The extent of gravel bars changes due to floods and other exceptional events but also due to changes in 

discharge. To make meaningful analysis of change detection, it is therefore important to ensure that 

dates with comparable hydrological conditions are considered. The hydrological conditions on the 

observed dates were similar, with daily discharges ranging from 11.6 to 35.9 m3/s (Table 17). Existing 

research shows that factors such as endmember quality and radiometric, spatial, and spectral resolutions 

of satellite images influence gravel bar mapping accuracy more than observed changes in hydrological 

conditions (Stančič et al., 2021). The differences are particularly negligible when considering that the 

discharge in the study area in the years 2017 to 2020 had a much wider variability – between 7.1 and 

460 m3/s (Slovenian Environment Agency, 2021b). 
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Table 17: Hydrological conditions at the time of input and reference data acquisition (data source: Slovenian 

Environment Agency, 2021b). 

Preglednica 17: Hidrološki pogoji v času zajema vhodnih in referenčnih podatkov (vir podatkov: Agencija RS 

za okolje, 2021b). 

image ID use image system acquisition date discharge (m3/s) 

1 input Sentinel-2 16. 10. 2017 11.6 

2 reference orthophoto 14. 10. 2017 12.3 

3 input Sentinel-2 03. 07. 2019 19.8 

4 reference WorldView-2 03. 07. 2019 19.8 

5 input Sentinel-2 05. 09. 2020 35.9 

6 reference orthophoto 05. 09. 2020 35.9 

 

We first investigated whether the fraction maps were able to detect changes observed on the reference 

data (sensitivity), and then verified whether the changes detected on the fraction maps could be 

confirmed with the reference data (precision). 

4.2.1 Sensitivity of Fraction Maps to Changes in Gravel Presence 

The sensitivity of change detection using land cover fraction maps is defined as the ability of the change 

maps to indicate the processes observed on the reference data. To assess this, we first created a reference 

map of gravel change by differencing the classified reference images. We vectorised the resulting 

change map and calculated the areas of the change polygons. In line with our second hypothesis, we 

selected areas of change larger than 400 m2 which is equal to the size of one pixels of the input satellite 

image. All detected areas of change were validated by visual inspection of the reference data to confirm 

that change had indeed occurred. In parallel, we produced maps of gravel change fractions, again using 

image differencing. We then calculated the mean pixel values of the change maps within the reference 

change polygons. 

 

The calculated values show that a decrease or removal of gravel can be detected well, with negative 

values observed on the fraction change maps (Table 18). The extent of gravel removal was stable and 

evenly distributed from 2017 to 2020. 

 
Table 18: Fraction change for reference data-based areas of gravel decrease. 

Preglednica 18: Spremembe deležev za območja zmanjšanja proda glede na referenčne podatke. 

time period fraction change map mean 

value 

number of change areas total change extent (ha) 

2017–2019 −0.283 15 3.859 

2019–2020 −0.165 26 3.335 

2017–2020 −0.394 31 6.172 
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Gravel increase or deposition can also be detected well with fraction maps, but the change values are 

smaller and therefore less evident (Table 19). Most of the deposition areas formed between 2017 and 

2019. There was very little deposition between 2019 and 2020, and some of the existing deposition areas 

were removed. 

 
Table 19: Fraction change for reference data-based areas of gravel increase. 

Preglednica 19: Spremembe deležev za območja povečanja proda glede na referenčne podatke. 

time period fraction change map mean 

value 

number of change areas total change extent (ha) 

2017–2019 0.106 23 3.676 

2019–2020 0.214 6 0.857 

2017–2020 0.177 14 2.446 
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Figure 39: Reference dataset and fraction map of changes in gravel between the years 2017 and 2020 on a subset 

of the study area on the Soča River (data source: Surveying and Mapping Authority of the Republic of Slovenia, 

2016, 2021a, 2021b, 2021e; Slovenian Water Agency, 2021c). 

Slika 39: Referenčni podatki in karta deležev za spremembe v prisotnosti proda med leti 2007 in 2020 na manjšem 

območju testnega odseka reke Soče (vir podatkov: DRSV, 2021c; GURS, 2016, 2021a, 2021b, 2021e). 

 

The good general overlap between the changes on the reference data and the fraction maps can also be 

seen visually by comparing the two mapped datasets (Figure 39). As can be seen, the areas of change 

are often narrow and do not cover the entire satellite image pixel. This may be a reason for low values 

of fraction change on maps. 

4.2.2 Precision of Changes Detected on Land Cover Fraction Maps 

In a second line of investigation, we tested whether the changes detected by fraction map differencing 

actually occurred and can be confirmed by VHR reference data. The preparation of the input data 

followed the method described above. Namely, we examined a simple image differencing of the various 



90 Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

time steps and compared the results based on fraction maps with those observed on reference data. We 

focused on the period from October 2017 to September 2020. 

 

We selected 62 non-adjacent pixels that were located in the middle of the areas of gravel change detected 

on the fraction maps (Figure 40). Gravel change areas were defined as those with at least ± 10% change 

per pixel. The identified changes were then checked against reference data. 

 

 
Figure 40: An extract of pixels selected to verify the precision of the land cover fraction change map (data source: 

Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 2021e; Slovenian Water 

Agency, 2021b). 

Slika 40: Izrez primera pikslov za preverjanje točnosti karte s spremembami deležev razredov pokrovnosti (vir 

podatkov: DRSV, 2021b; GURS, 2016, 2021a, 2021b, 2021e). 
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Almost 75% of the identified changes were confirmed with reference data (Table 20). The most common 

change was from gravel to water, which accounted for almost half of all changes detected. The 

hydrological conditions on the observed dates were similar, therefore we can assume that the changes 

are not due only to different water levels. The change from water to gravel accounted for only 16% of 

all changes detected. One-tenth of the detected changes was due to gravel overgrowth. A change was 

falsely reported in 16% of cases. Most commonly, an increase of gravel was noted in areas where gravel 

was removed. In 10% of cases, no change could be detected on the reference data even though maps of 

fraction change indicated otherwise. Pixels where no change could be confirmed had the lowest average 

values of fraction change, below 20%. For comparison, pixels where gravel deposition occurred had an 

average fraction change value of 30%. Where gravel removal took place, the average fraction change 

value was −47%. We conclude that values of fraction change above ± 30% are indicative of real change. 

 
Table 20: Fraction change for the analysed areas of change, identified on the land cover fraction change map for 

the period 2017–2020. 

Preglednica 20: Spremembe deležev za analizirana območja sprememb na podlagi karte s spremembami deležev 

razredov pokrovnosti za obdobje 2017–2020. 

type of change number of instances share of instances (%) average fraction change 

map value 

water to gravel 10 16 0.304 

gravel to vegetation 6 10 −0.446 

gravel to water 30 48 −0.479 

gravel to water (error) 9 15 0.254 

gravel to vegetation (error) 1 2 0.127 

no change 6 10 −0.175 

total 62 100 −0.198 

 

4.2.3 Correlation of Observed Changes Between Fraction Maps and Reference Data 

A third and final validation of change detection was the correlation between the change values observed 

on the fraction maps and the reference data. The reference data were first resampled to the spatial 

resolution of the fraction maps, i.e. 20 m. Then, the values were extracted for all the pixels in the 

validation areas and only for the pixels in the change areas that were detected on the VHR reference 

data. The extracted values of the fraction maps and the reference data were then compared using the 

Pearson correlation coefficient. 
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The results show that the change maps are highly correlated, especially in areas of change (Pearson’s 

r > 0.85, p < 0.0001). The lowest correlation is observed for the 2019 to 2020 period with r = 0.469 for 

the whole area and r = 0.663 for the change areas (Table 21). 

 
Table 21: Correlation between fraction and reference change maps. p < 0.0001. 

Preglednica 21: Korelacija med vrednostmi na kartah s spremembami deležev in na referenčnih kartah sprememb. 

p < 0.0001. 

time period whole area  change areas  

 r value number of instances r value number of instances 

2017–2019 0.542 4,691 0.860 250 

2019–2020 0.469 4,691 0.663 199 

2017–2020 0.606 4,691 0.860 254 

 

Monitoring changes of fluvial gravel bars must be carried out at time points with comparable 

hydrological conditions. This can be challenging since the acquisition of input satellite images as well 

as reference remote sensing data is fixed in time. Cloud obstruction further limits the amount of data 

that can be used for monitoring. When validating change detection, the task is particularly complex as 

the hydrological conditions need to be matched between the input satellite images and also the reference 

data. In our study case, the daily discharges ranged from 11.6 to 35.9 m3/s. Reference data were acquired 

very close to the input satellite images, mostly on the same day. When reference data were from a 

different date, the difference in daily discharges between reference and input data was 0.7 m3/s. Such 

fluctuations evidently do not alter the gravel bar extent too significantly, as the overlap between changes 

observed on reference and input data was very high. 

4.3 Assessment of Land Cover Time Series Based on Fraction Maps for Monitoring 

In the following section, we aim to verify whether the land cover fraction maps produced with SMA can 

be used to monitor the presence of land cover classes and whether these data can provide information 

about possible changes in water lands. To this end, we first tested the stability of land cover presence 

data and their correlation with changes in hydrologic data. Next, we examined how known gravel bar 

changes manifest on plots of gravel presence through time. 

4.3.1 Comparison of Land Cover Time Series Based on Fraction Maps with Hydrological Data 

Rising water levels inundate parts of gravel bars, reducing their extent. We checked whether this process 

could be detected in time series of gravel presence based on remote sensing relative to water levels 

measured in situ. The analysis was performed for the study area on the Soča between the settlements of 

Kobarid and Tolmin. Hydrologic data were obtained from a gauging station in Kobarid, located at 

46.247481° N, 13.586414° E. The data are collected by the Slovenian Environment Agency and are 
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publicly available (Slovenian Environment Agency, 2021b). The plotted graphs show a clear negative 

correlation between the area covered with gravel and the water level (Figure 41). This was confirmed 

by the Pearson correlation coefficient of −0.643 (p < 0.0001). 

 

 
Figure 41: Gravel presence in the study area and water level at the Kobarid gauging station. a) Time series of the 

data. b) Scatter plot with the linear regression line and coefficient of determination (data source: Slovenian 

Environment Agency, 2021b). 

Slika 41: Prisotnost proda na študijskem območju in vodostaj na merilni postaji Kobarid. a) Časovna vrsta 

podatkov. b) Razsevni diagram s črto linearne regresije in koeficientom določanja (vir podatkov: Agencija RS za 

okolje, 2021b). 
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After some extreme weather events, abrupt changes in water level may occur. Such changes may happen 

too rapidly to be reflected in the change of gravel bar area and may not even be captured within the 

return period of the remote sensing system. This could reduce the correlation between the water level 

and gravel area datasets. To account for these abrupt processes, we tested the influence of different 

smoothing methods. For water level, we calculated a five-day moving average for each date, with the 

date in question as the last data point in the averaging calculations. We also smoothed the data using a 

Savitzky-Golay filter. The same filter was applied for smoothing the gravel area. We calculated the 

correlation between values measured on the same day. We considered a total of 58 different dates from 

2019. 

 

The results show a good correlation between the non-smoothed gravel area and water level datasets 

(Table 22). Using a Savitzky-Golay filter to smooth either the gravel area or the water level increases 

the correlation between the two datasets. The highest correlation (−0.729) is found when both datasets 

are smoothed with a Savitzky-Golay filter. Taking the five-day average water level instead of the daily 

value decreases the correlation slightly. This supports the body of existing knowledge that the five-day 

moving average provides useful information only in stable conditions without precipitation. 

 
Table 22: Correlation between water level and gravel area in the study area on the Soča River. Data from 58 

different dates in 2019 were considered. p < 0.0001. 

Preglednica 22: Korelacija med vodostajem in pokrovnostjo proda na študijskem območju na reki Soči. Upoštevali 

smo podatke za 58 datumov v letu 2019. p < 0.0001. 

  water level 

  no smoothing five-day average Savitzky-Golay 

gravel area 
no smoothing −0.643 −0.601 −0.724 

Savitzky-Golay −0.656 −0.617 −0.729 

 

From the correlation, we can conclude that the land cover maps are consistent with the expected physical 

processes and can be considered as valid data sources. 

4.3.2 Using Time Series to Detect Changes in Gravel Presence 

In this subchapter we test if known change events could be detected from the time series data of gravel 

presence. The change events considered were selected based on field data and confirmed with reference 

data. Two different change events were chosen, one on the Soča near the settlement of Dolje and another 

on the Sava river near the city of Kranj. 
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4.3.2.1 Case Study at Dolje on the Soča River 

Large gravel bars are present on the left bank of the Soča near the settlement of Dolje (Figure 42). 

Reference images of the area show that large changes in the form of gravel bar removal occurred 

between 31 October 2019 and 5 December 2019. We focused the analysis of land cover presence on the 

smaller study area at Dolje, 15 ha in size, to check whether the changes also manifested in the gravel 

area. 

 

 
Figure 42: Overview of the study area for small-scale gravel change detection on the Soča river near the settlement 

of Dolje (data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 2021e; 

Slovenian Water Agency, 2021c). 

Slika 42: Pregled študijskega območja za zaznavanje sprememb na manjših površinah na Soči v bližini naselja 

Dolje (vir podatkov: DRSV, 2021c; GURS, 2016, 2021a, 2021b, 2021e). 
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We plotted a time series of gravel presence in the Dolje study area for the years 2019 and 2020 (Figure 

43). The average area covered by gravel in the observed period is 4 ha. Reviewing the input satellite 

images, we found that a decrease in gravel presence up to two standard deviations, i.e. by a total of 2 ha, 

indicates actual changes in the size of gravel bars. 

 

 
Figure 43: Presence of gravel in the Dolje study area in 2019 and 2020. 

Slika 43: Prisotnost proda na študijskem območju Dolje v letih 2019 in 2020. 
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The changes can be clearly seen on satellite images (Figure 44). The processes of re-formation of gravel 

bars at similar locations to where they were present before is in line with reports in existing literature 

(Robert, 2003). 

 

 
Figure 44: Sentinel-2 true colour images showing the removal of gravel from the Soča river at the Dolje study 

area and the subsequent formation of new gravel bars. The extent of gravel bars under observation is shown on 

Figure 42 (data source: Modified Copernicus Sentinel data, 2021). 

Slika 44: Naravno barvni kompoziti Sentinel-2, ki prikazujejo odstranjevanje proda na študijskem območju na 

Soči blizu naselja Dolje in kasnejše oblikovanje novih prodišč. Obseg prodišč, ki smo jih opazovali, je prikazan 

na Slika 42 (vir podatkov: Modified Copernicus Sentinel data, 2021). 
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4.3.2.2 Case Study at Kranj on the Sava River 

Extensive gravel deposits are present on the Sava river near the town of Kranj, downstream of a soft 

dam for a hydroelectric power plant (HPP) (Papler and Basej, 2014) (Figure 45). Satellite images of the 

area show that large gravel bar removal took place between 2 July 2020 and 27 July 2020. We focused 

the analysis of land cover presence on the smaller study area at Kranj, 15 ha in size, to check whether 

the changes can be detected in a time series of gravel presence. 

 

 
Figure 45: Overview of the study area for small-scale gravel change detection on the Sava river near the town of 

Kranj (data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 2021e; 

Slovenian Water Agency, 2021c). 

Slika 45: Pregled študijskega območja za zaznavanje sprememb na manjših površinah na Savi v bližini Kranja 

(vir podatkov: DRSV, 2021b; GURS, 2016, 2021a, 2021b, 2021e). 
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We plotted a time series of gravel presence in the Kranj study area for the years 2019 and 2020 (Figure 

46). The average area covered by gravel in the observed period is 2.7 ha. Reviewing the input satellite 

images, we found – similar to the results at the Dolje study area – that a decrease in gravel presence up 

to two standard deviations, indicates actual changes in the size of gravel bars. 

 

 
Figure 46: Presence of gravel in the Kranj study area in 2019 and 2020. 

Slika 46: Prisotnost proda na študijskem območju Kranj v letih 2019 in 2020. 
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The changes can also be confirmed visually on satellite images (Figure 47). 

 

 
Figure 47: Sentinel-2 true colour images showing the removal of gravel from the Sava river at the Kranj study area. 

The extent of gravel bars under observation is shown on Figure 45 (data source: Modified Copernicus Sentinel 

data, 2021). 

Slika 47: Naravno barvni kompoziti Sentinel-2, ki prikazujejo odstranjevanje proda na študijskem območju na 

Savi pri Kranju. Obseg prodišč, ki smo jih opazovali, je prikazan na Slika 45 (vir podatkov: Modified Copernicus 

Sentinel data, 2021).  
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5 DISCUSSION 

The dissertation proposes a method for sub-pixel mapping of fluvial gravel bars based on spectral 

mixture analysis (SMA) using freely available Earth observation (EO) data. We tested several 

configurations to determine the most appropriate method for fraction map validation, optimal 

characteristics of the input satellite image, the most successful process of endmember selection, the 

production of fraction maps, and the final development of a time series of land cover presence. The 

method was developed on a section of the upper Soča river in Slovenia. Subsequently, we transferred 

the method to map gravel bars in multiple timestamps on the whole Soča river in Slovenia, the upper 

Sava river in Slovenia, and the middle Vjosa river in Albania. We also tested the ability of fraction maps 

to detect small-scale changes in the extent of gravel bars. Finally, we evaluated the usefulness of time 

series based on fraction maps to derive information on the hydrological characteristics of rivers and to 

detect the removal of gravel bars. 

 

The final chapter with discussion summarises the tests of the proposed research hypotheses, outlines the 

contribution of the dissertation to science, describes the limitations of the proposed method, and 

highlights opportunities for further work. 

5.1 Hypotheses Testing 

The first part of the dissertation describes the tests that were conducted to develop the method for 

producing accurate land cover fraction maps of fluvial environments. The focus of the dissertation is on 

the gravel land cover class, but to gain an overview of the environment studied, we also mapped surface 

water and vegetation. These land cover classes were considered in accuracy assessments. Validation 

was performed at two different levels, where we first focused on the land cover fractions mapped on 

selected single pixels (pixel-based validation), and then examined the land cover presence on the entire 

study area (area-based validation). We assessed the mapping results based on different input images – 

four-band 10 m Sentinel-2 images, ten-band 20 m Sentinel-2 images, six-band 30 m Landsat images, 

and various spectral indices derived from the input spectral bands. The validation areas ranged in size 

from a 15 km long section on the Soča to a 25 km section on the Vjosa and a 60 km section on the Sava. 

 

The best results of the pixel-based validation showed a total mean absolute error (MAE) of 0.084. That 

means that the presence of all land cover classes of interest was mapped on average with the accuracy 

of ± 8.4% per pixel. The highest total MAE for a different image with a different endmember selection 

strategy was 0.126. The relative variation of MAE between the different fraction maps is low in absolute 

terms (± 4.2%). This indicates the stability and robustness of the proposed method. However, accuracy 

of the mapping varies between the different land cover classes of interest. Gravel is mapped the most 

accurately in all cases, with an average MAE of 0.088 ± 0.016 across different fraction maps. Vegetation 
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is mapped with the least accuracy, with an average MAE of 0.125 ± 0.017. Water is mapped more 

accurately than vegetation, but has a higher standard deviation in mapping accuracy with an average 

MAE of 0.099 ± 0.021. The area-based validation shows similar trends to the pixel-based validation. In 

most maps, gravel presence is mapped the most accurately, followed by water and vegetation. The 

absolute differences in land cover presence between the fraction maps and the reference data are mostly 

within 10%. The only exception is vegetation along the Sava and Vjosa rivers, which is overestimated 

by more than 11%. 

 

Based on the results summarised above, we can therefore confirm the Hypothesis 1: Using spectral 

mixture analysis, it is possible to distinguish gravel bars, surface water, and vegetation in fluvial 

ecosystems. The land cover of river ecosystems can be determined with a thematic accuracy of 90% by 

analysing the spectral signal composition of freely available satellite images with a spatial resolution 

of up to 10 m. Using freely available satellite images with spatial resolutions of 10 m, 20 m, and 30 m, 

an overall mapping accuracy of 90% was achieved. However, some caveats regarding the method need 

to be considered. Namely, vegetation mapping with SMA is less accurate and often does not reach 

accuracies of 90% both on a sub-pixel level and on the study area-wide scale. 

 

In the second part of the dissertation, we investigate the ability of SMA-based fraction maps to monitor 

gravel bars. We first produced fraction maps for river sections up to over 90 km long in three different 

timestamps over a 30-year period. Gravel bars were successfully mapped in all timestamps on different 

rivers. Subsequently, we were interested in the possibilities of change detection on fraction maps. To do 

this, we began by using simple map differencing. First, we tested the sensitivity of fraction maps, also 

known as recall and true positive rate, i.e. whether changes observed on very high resolution (VHR) 

reference data could be detected by fraction maps. We focused on areas of change with a size of at least 

400 m2, which corresponds to one pixel of the selected input satellite image (the 20 m bands of the 

Sentinel-2). The results showed that gravel removal could be successfully detected using fraction maps 

with negative values of gravel presence change. Gravel accumulation could also be detected, but the 

positive change values were smaller in our case and therefore less distinct. Second, we evaluated the 

precision of the fraction maps, i.e. whether the changes detected on the fraction maps could be verified 

with VHR reference data. We examined pixels of the fraction maps that were found to have a change of 

at least ± 10% between 2017 and 2020, and checked whether the change could also be seen on the 

reference data. We were able to confirm almost 75% of the changes reported by the fraction maps. The 

pixels where a change actually occurred showed a gravel presence change of at least ± 30%. From this 

we can infer that a change in gravel presence in a pixel of at least ± 30% indicates definite gravel removal 

or deposition. 

 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 103 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

The second part of the change detection assessment tested the potential of using time series data. We 

plotted the total presence of gravel in a selected smaller study area where gravel removal was known to 

have occurred. The selected study areas were located near the Dolje village on the Soča and near the 

Kranj city on the Sava. The average extent of gravel bars was 4 ha at Dolje and 3 ha at Kranj. The extents 

of gravel bars varied with changes in water level. However, we found that a decrease in gravel bar size 

within two standard deviations of the mean indicated regular variations, while a larger decrease pointed 

to gravel bar removal. In agreement with the outlined results, we can thus also confirm the Hypothesis 

2: Time series analysis of sub-pixel land cover maps allows the detection of seasonal changes in gravel 

bar extent and location. In addition to seasonal dynamics, changes in the extent of gravel bars due to 

exceptional anthropogenic and natural events larger than 500 m2 can also be detected. The extent of 

changes that can be detected is also influenced by the spatial resolution of the input satellite images. 

Nevertheless, we showed that freely available satellite images can be successfully used to detect changes 

in gravel bars down to 400 m2 (one pixel) in size. 

5.2 Contribution to Science 

The application of EO data to collect environmental variables and monitor the state of the natural 

environment is an important field that has also been highlighted in the United Nations 2030 Agenda 

which formulated the Sustainable Development Goals (SDGs) (UN, 2015). The main motivation that 

guided the topic of this dissertation was to contribute to the work on SDG indicator 6.6.1: Change in the 

extent of water-related ecosystems over time (UN, 2017). Fluvial gravel bars are important water-related 

features that are often difficult to map and monitor due to their small extent. Therefore, by applying the 

SMA to map fluvial gravel bars, we contributed to the development of new knowledge and experience 

in using EO data to monitor progress towards the SDGs. 

 

The main contribution of the dissertation to science was the development of a new procedure for rapid 

and accurate mapping of gravel bars and other water-related ecosystems. The proposed workflow uses 

freely available satellite images with a short revisit period, making it well suited for monitoring 

purposes. We have also produced land cover maps of water-related ecosystems that can be used to 

inform planning and management decisions. Comprehensive maps covering a large area are particularly 

useful for managing fluvial ecosystems, where changes in one part of the basin may have effects far 

downstream. 

 

The production of land cover maps for a long period provided a good overview of the dynamics of gravel 

bars in the past. Additionally, with frequently available input satellite images we were able to rapidly 

detect and monitor changes over a short time period. This supplementary information on past 

characteristics and timely information on changes combine to contribute to a better understanding of the 

dynamics of fluvial gravel bars. Our results show that gravel bars are very dynamic with rapidly 
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changing extents. Water level has a major influence on the extent of gravel bars. Despite changes in size 

and shape, the locations where gravel bars occur in a river channel are constant. Even after gravel bars 

are removed, new deposits quickly form at the same location. 

 

The proposed method was developed on river sections for which several different VHR remote sensing 

as well as in situ data were available. This allowed validation of the results and determination of the 

optimal workflow. We analysed the transferability of the workflow to other areas and found that it is 

possible and provides accurate results. The method can be used to study other rivers for which there 

may not be as much data available. Studying different rivers may lead to a new understanding of the 

effects of natural and anthropogenic changes on the land cover of water-related ecosystems. 

5.3 Limitations of the Proposed Method 

The main limitations of the proposed method are related to cloud cover and terrain shadows, which are 

well-known problems of optical images. Mountainous areas, which were the focus of many of our 

observations, are frequently covered by clouds due to rising air masses. Additionally, river valleys are 

located between steep slopes, resulting in shadowing. This issue is particularly pressing during the 

winter months when the Sun incidence angle is low. We mitigated cloud obstruction problems by using 

a cloud masking algorithm (Sinergise, 2021). We attempted to address topographic normalisation with 

radiometric corrections, but the results were not satisfactory. Future work could test different 

radiometric correction algorithms, such as the Teillet regression or the Statistical Empirical model 

(Teillet et al., 1982), the b correction (Vincini et al., 2002), the Modified Sun-Canopy-Sensor correction 

(SCS+C) (Soenen et al., 2005), the Variable Empirical Coefficient Algorithm (VECA) (Gao and Zhang, 

2007), or the Path Length Correction (PLC) (Yin et al., 2018), which have been shown to be successful 

in other studies (Ma et al., 2021). 

 

The difficulty in distinguishing land cover classes is partly due to their physical characteristics. Rivers 

are often shallow in many of the areas observed, so the sensor detects gravel reflectance from the 

riverbed in addition to surface water, which can lead to misclassification. Problems with vegetation 

detection occur primarily when foliage is not fully developed and the sensor detects bare ground or 

shade under trees. 

 

In addition to the limitations that apply generally to land cover classification based on multispectral 

optical images, issues related to SMA in particular are also important. The SMA determines the fraction 

of land cover presence on an individual pixel by examining the spectral signal from the observed pixel 

and comparing it to the spectral signals of the input endmembers. The land cover fractions are 

determined based on the degree of similarity between the spectral signals of the observed pixel and the 

endmembers. The selected endmembers must therefore have sufficiently different spectral properties for 
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the SMA to be able to differentiate between their respective contributions to the spectral signal of the 

observed pixel. It is therefore necessary to make simplifications and generalisations when selecting the 

land cover classes that are considered in the analysis. In our study of mapping gravel bars, the most 

severe simplification was the inclusion of built-up areas in the gravel class. The gravel presence maps 

therefore do not differentiate between gravel bars and built-up areas. We mitigated this problem by 

limiting the study area to water lands in order to include only riparian areas in the analysis. However, 

some built-up is present even in water lands, particularly in larger settlements. This could be addressed 

with the addition of different EO data such as synthetic aperture radar (SAR), or in the post-processing 

stage with the use of auxiliary datasets of buildings and infrastructure for masking. 

 

The accuracy of the SMA depends on the ability of the selected endmembers to represent the land cover 

classes of interest. Validation of our fraction maps indicates that gravel can generally be modelled well 

with the selected endmembers. On the other hand, vegetation and water are more problematic for 

mapping. Vegetation in the study areas occurs in diverse forms, mostly as mixed forest, but also as 

shrubs and grasslands. The general shapes of the spectral signatures are similar across different 

vegetation forms, but each plant species still has slightly different spectral characteristics. These 

differences can lead to errors when a single endmember is used to model all of the different vegetation 

classes. Similarly, water can have different spectral responses depending on Sun glint, surface waves, 

depth, sediment content, microorganisms, and dissolved organic matter (Guneroglu et al., 2013; Japitana 

et al., 2019; Vouvé et al., 2009). Thus, different models could be used to represent water based on 

different endmembers. The model with the smallest RMSE could then be selected as the final model for 

mapping water (Cavanaugh et al., 2011). A similar strategy could be used for vegetation. 

 

Real changes of gravel bars can only be detected with observations during times of similar hydrological 

conditions. Otherwise, the detected changes could be the result of different water levels and not changes 

in bedload. This could be a limitation in studies of rivers with fewer gauging stations. Radar altimetry 

has been shown to provide good ancillary data in the case of ungauged rivers and could be used to inform 

further analysis and allow an unbiased change detection (Bogning et al., 2018). 

5.4 Opportunities for Further Work 

The proposed method can be used to study and monitor other rivers where important gravel bar habitats 

are present. A well-known European example is the Tagliamento river in Italy, which forms extensive 

gravel bars with high biodiversity. The river is also very dynamic and therefore interesting to observe 

frequently (Gurnell et al., 2001; Henshaw et al., 2013). Rivers in different climatic zones and with 

various geologic characteristics of the basins can be studied to learn more about the geomorphological 

processes that shape them. 
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This study explored several characteristics that are important for improving the accuracy of SMA-based 

land cover fraction maps. These findings and the proposed workflow can be used for mapping various 

phenomena. The only limitation in using this method is that the observed land cover classes must have 

very distinct and different spectral properties. This is necessary for the SMA to accurately determine the 

contributions of the different land cover classes to the mixed signal in a single pixel (de Vries et al., 

2021). For example, it is difficult to correctly map different tree species that have a very similar spectral 

signature shape with SMA. However, delineation of bare ground or built-up areas and vegetation or 

water can be successfully performed. Therefore, examples of other possible applications of the proposed 

method are monitoring of urban sprawl, rock-fall, deforestation, and open-pit mining. 

 

Monitoring gravel bars with the proposed method could be complemented with additional data in the 

future. In particular, the use of SAR could lead to better results. The SAR data could be integrated in a 

pre-processing stage, to more accurately delineate the area of observation or in the post-processing stage 

to mask out areas that are not of interest. Differences in texture are picked up well by SAR, which could 

help in differentiating between gravel bars and built-up areas. Data from SAR have been shown to be 

successful in separating water from other land cover classes (Musa et al., 2015). Additionally, SAR is 

not affected by clouds, which is an important consideration when studying mountainous regions where 

cloudy conditions are frequent. The successful use of combined SAR and multispectral data for land 

cover classification has already been demonstrated (Sukawattanavijit et al., 2017). Importantly, with the 

Copernicus programme supporting the operation of the Sentinel-1 SAR system, the long-term 

operational data availability is assured. 

 

Hydrological conditions influence the reliability of monitoring changes of gravel bars. If changes are 

assessed between two time points with very different conditions, the differences in water level could 

induce changes that are not due to flood events or infrastructural interventions. In the present study of 

change detection, we selected images from the same season and thus ensured comparable hydrological 

conditions. However, this aspect of change detection can be developed further with more emphasis 

placed on selecting dates with very similar conditions.  



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 107 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

6 CONCLUSION 

The dissertation proposes a novel method for monitoring gravel bars in rivers using Earth observation 

(EO) data. Gravel bars are dynamic geomorphological features that provide many important ecological 

functions. Natural and anthropogenic changes in the fluvial environment rapidly lead to changes in the 

gravel bar extent and location. Gravel bars can therefore be considered indicators of alterations and 

disturbances in the fluvial environment. Monitoring gravel bars using field mapping is time consuming 

and therefore unfeasible for covering a large area simultaneously to provide an overview of the impact 

on the wider river system. Satellite remote sensing, with its frequent observations, increasingly open 

availability, and uniform, wide-area coverage, provides an ideal data source for monitoring natural 

processes. However, freely and openly available satellite images have a spatial resolution of 10 m at 

best, which may be too coarse to accurately detect gravel bars. We therefore tested soft classification as 

a method to observe features smaller than the spatial resolution of the EO sensor. Sub-pixel mapping 

was performed using spectral mixture analysis (SMA). We set several research objectives to develop a 

SMA-based mapping method for fluvial gravel bars that is transferable to different locations and requires 

only openly available data. The study area used for method development and related testing was located 

on the Soča river in northwestern Slovenia between the settlements of Kobarid and Tolmin. 

 

Gravel bars can form in different parts of the river channel by both deposition and erosion processes. 

Once formed, their general location remains relatively stable, but their extent varies depending on the 

water level. Even where gravel bars are completely removed during resource excavation operations, 

they usually re-form quickly in the same location and with a similar extent. These characteristics of 

gravel bar development were also confirmed by our observations. We were able to obtain this 

information from time series of fraction maps showing the presence of gravel bars. The development of 

these maps was the result of many different tests that allowed us to gain a better understanding of the 

SMA and the features that define its accuracy. 

 

We used very high resolution (VHR) aerial orthophotos and satellite images and classified them into the 

land cover types of interest using a Random Forest classifier with 500 trees. These classifications were 

used as reference data for validating the land cover fraction maps. We used two different validation 

methods, one focusing on pixel-level accuracy and a second evaluating the accuracy of land cover 

detection across the entire study area. The input data for the sub-pixel mapping were openly available 

satellite images from the Sentinel-2 and Landsat programmes. When working with Sentinel-2, we used 

the 20 m spectral bands because the majority of bands are acquired at this spatial resolution. The bands 

originally acquired at 10 m were resampled to 20 m. Detailed and abundant spectral information is 

critical for a successful SMA. Therefore, we supplemented the information from the spectral bands with 

selected spectral indices to better discriminate between gravel, vegetation, and water. 
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As described in the literature, appropriate endmembers are key to accurate fraction maps. We tested 

several configurations to determine the optimal characteristics for endmember selection for mapping 

gravel bars. Automatic endmember extraction was found to result in products with similar accuracy as 

using manually selected endmembers. However, even with automatic endmember extraction, operator 

intervention is required to ensure that the selected endmembers actually represent the land cover of 

interest and are not outliers. The approach that produces the most accurate fraction maps must therefore 

be semi-automatic. We found that three to five endmembers per SMA are optimal and that, contrary to 

results from the literature, adding shade as a separate endmember does not contribute to the accuracy of 

the fraction maps. In addition, endmembers selected on one satellite image can be used for the SMA of 

another satellite image from a similar geographic zone and phenological phase. 

 

We compared the produced fraction maps of gravel bars with the results of a hard classification using 

the Spectral Angle Mapper with the same input data to determine the contribution of soft classification 

to increased accuracy of gravel bar monitoring. The results showed that the soft classification more 

accurately represents the land cover of the selected riparian environment in a mountainous area. After 

confirming the suitability of the fraction maps, we further developed and applied the proposed method. 

We produced time series of land cover presence in the study area based on fraction maps. The time 

series were smoothed using a Savitzky-Golay filter to minimise outliers but maintain distinct changes. 

The fraction mapping method was then extended to the upper and middle sections of the Soča river in 

Slovenia, the upper section of the Sava river in Slovenia, and the middle section of the Vjosa river in 

Albania. The total length of the combined river course mapped was over 250 km. We used Landsat 

images to produce fraction maps of gravel bars over the last 35 years. 

 

Finally, we evaluated the ability of the fraction maps produced to detect changes in gravel bars. First, 

we tested simple image differencing of two fraction maps. To ensure that the observed changes resulted 

from flood events, gravel mining, or other interventions, and not just changes in water level, we selected 

dates with similar hydrologic conditions. We were able to show that change detection using this method 

had high sensitivity, detecting areas of change with an extent of at least 400 m2 or one pixel of input 

satellite images. The change maps also showed satisfactory precision, with nearly 75% of detected 

changes confirmed by VHR reference data. Next, we investigated whether time series of gravel presence 

could also be used to detect change. The extents of water and gravel can vary following changes in water 

level. However, we found that a decrease in gravel bar size within two standard deviations of the mean 

indicated regular variations, while a larger decrease pointed to gravel bar removal. 

 

Additionally, we compared the EO-based time series of land cover presence with in situ hydrological 

data. We found a high statistically significant negative correlation between the gravel presence and the 

water level measured at a gauging station in the study area. This suggests that remote sensing results 
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can be used to provide information about processes in areas where accurate and long-term in situ 

measurements are not established. 

 

Thus, we achieved the research objectives set at the beginning of the study and obtained the expected 

results. These results can serve as a starting point for mapping different land cover types, such as built-

up areas, bare ground, or anything else with distinct spectral properties and a tendency to occur at extents 

too small to be detected with openly available satellite images. In the case of extending the method to 

other land cover types, the tests defined by the workflow for deriving the method proposed in this 

dissertation would need to be repeated to determine the optimal mapping method for the particular land 

cover type under observation. The questions relating to endmembers are particularly important to 

accurately detect the land cover type of interest. Nevertheless, we believe that our study provides a good 

framework for further research and extension of the method to other land cover types. 

 

A well known axiom in nature conservation is that processes which cannot be observed cannot be 

understood and features which cannot be monitored cannot be protected. Increasing volumes of EO data 

offer an opportunity to address such concerns about data gaps. We hope that the workflow that was 

developed in the scope of our research in addition to our findings will contribute to leverage the available 

data. The sub-pixel mapping method ensures that smaller features, which may have an important 

influence on environmental functions, are also considered in monitoring programmes. New insights into 

gravel bar dynamics may inform future efforts in protecting natural river ecosystems and restoring 

altered ecosystems closer to their natural state. This will enable a full functioning of river ecosystems 

with all the social and ecological benefits that they bring. Additionally, the developed method is opening 

several intersting possibilites for further technical solutions and thematic applications. There is therfore 

ample space to use available data in improved workflows to increase our understanding about the world 

and consequently lead a more responsible existence.  
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7 SUMMARY 

Earth observation (EO) has been established as an important source of environmental information. A 

globally uniform coverage of openly available data and a new observation every few days make EO data 

well suited for a variety of monitoring tasks. Despite advances in the field, there are many opportunities 

to expand the application of EO data, for example in sustainable development and hydrology. In this 

study, we explore the potential for monitoring gravel bars in rivers using freely available satellite 

images. Gravel bars are areas of sedimentation formed by deposition, but they can be transformed and 

reformed during successive periods of erosion and deposition. They are characteristic of braided river 

systems and may form in the middle of the riverbed or along the bank. Gravel bars are usually reshaped 

by events of high water level. As they become higher and are overgrown with vegetation, they are 

transformed into more stable fluvial islands. Gravel bars consist of underwater parts with rapids and 

deposits that form above the water surface. Our study focused on bare, non-vegetated gravel bars, which 

are the most dynamic, and their parts that extend above the water surface and can be observed with 

optical satellite images. 

 

The habitats of several plant and animal species are tied to gravel bars. Filtration of water, infiltration 

into ground water, and mitigation of riverbank erosion are influenced by gravel bars. Their conservation 

importance has been recognised in several international and national directives. The most direct process 

that damages gravel bars is the in-channel mining of material for use in construction. The construction 

of dams, flood protection, and riverbed regulation also affect the sediment balance and consequently the 

extent of gravel bars. To better understand the impacts of these various processes on gravel bars, we 

developed a mapping and monitoring method based on openly available optical satellite images. We 

used data acquired since 1982 with the Landsat system in six (Landsat 4, Landsat 5, Landsat 7) or seven 

(Landsat 8) spectral bands with a spatial resolution of 30 m and a revisit time of 16 days. For more 

recent events, we used data from the Sentinel-2 system, which has been in operation since 2015. In 2017, 

the first Sentinel-2 satellite was complemented by a second satellite, increasing the revisit time to the 

current five days. Sentinel-2 acquires ten spectral bands – in similar wavelengths to the Landsat system – 

with a spatial resolution of 10 m or 20 m, depending on the band. 

 

The spatial resolution of the input satellite images is adequate for many applications, but may be too 

coarse for observing rivers in their upper sections where they are still narrow. Gravel bars also often 

take forms that are narrower than the spatial resolution of the input images. A hard image classification, 

where each pixel is assigned one land cover class, may therefore not capture the full extent of gravel 

bars. Thus, we based the gravel bar mapping on soft classification, which reports the fractions that 

different land cover classes occupy in each pixel. The classification is based on linear spectral mixture 

analysis (SMA). The SMA calculates the degree to which the spectral response of a particular pixel 
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matches the spectral responses of the input endmembers, i.e. pure pixels containing only one land cover 

class. In this way, features that have distinct spectral characteristics, but are smaller than the spatial 

resolution of the input images can be detected. Based on the SMA results, fraction maps of land cover 

class presence can be produced and plotted as time series for monitoring. 

 

The SMA has been used for a variety of applications, from forest disturbance detection and soil 

degradation monitoring to urban expansion mapping. The principal input for a successful SMA are 

endmembers that accurately represent the land cover classes of interest. The endmember selection, also 

known as endmember extraction, can be done directly from the input satellite images, resulting in what 

are known as image endmembers. If the image contains a very heterogeneous landscape and all pixels 

are mixed, the endmembers can be modelled based on the image data. A third possibility is to obtain 

endmembers by field or laboratory measurements with spectroradiometers. We used image endmembers 

in our analyses, but selected them both manually and automatically. Manual selection was done with 

reference to very high resolution (VHR) aerial orthophoto or satellite images, or field mapping to ensure 

that only pure pixels were selected. Automatic selection was performed using the N-FINDR algorithm, 

which begins with a predefined number of pixels and replaces them until they outline a geometric body 

with the largest possible volume in the multidimensional space defined by the number of input image 

bands. Using the defined endmembers, we modelled the reflectances of the input mixed pixels with 

linear unmixing. Linear spectral unmixing occurs when different land cover classes are present in 

patches smaller than the instantaneous field of view (IFOV) of the remote sensing sensor, but 

nevertheless form distinct and separate forms. Non-linear spectral mixtures, on the other hand, are 

characteristic of formations where different materials are very closely intertwined, such as when 

analysing the composition of sand or soil. However, in gravel bar mapping, we assumed a linear spectral 

mixing mechanism. We use linear spectral unmixing to model the land cover class fractions or 

abundances in each pixel to produce sub-pixel maps of the fluvial environment. 

 

The study consists of two main parts. The first part contains various tests to establish the workflow for 

the most accurate sub-pixel mapping. The tests are conducted in a study area on the Soča river in north-

western Slovenia on a 15 km long river section between the settlements of Kobarid and Tolmin. This 

section was chosen because it contains many gravel bars, but also because there is a lot of ancillary data 

available that can be used for the development and validation of the method. The study focused on the 

river and riparian environment as defined by the official Water Lands spatial dataset, which comprises 

the riverbed and banks up to the first geomorphological change. The resulting maps were validated at 

both the pixel level and the entire study area level. Pixel-level validation involves a close-up view of the 

fraction maps, while the study area-wide validation was implemented to account for possible geometric 

shifts in the input images that would wrongly manifest as errors on the pixel level. The two validation 
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methods address different aspects of classification accuracy, but have been shown to produce similar 

results when comparing fraction maps with different configurations. 

 

We first investigated different characteristics of the input satellite images that affect the accuracy of the 

fraction maps. We found that both Landsat and Sentinel-2 images can be used for accurate mapping. 

The geometric accuracy of the Sentinel-2 images was within 3 m on average, which is better than what 

is reported in the literature. The high geometric accuracy is a possible explanation for the minimal 

discrepancies between the pixel- and area-wide accuracy assessments. Atmospheric corrections improve 

the accuracy of the fraction maps, but topographic corrections introduce new uncertainties and do not 

result in better mapping. Super resolution of the 20 m Sentinel-2 bands to 10 m also did not result in 

more accurate fraction maps. Spectral indices are important to improve differentiation between the land 

cover classes of interest and increase the accuracy of fraction maps. This improvement has an upper 

limit after which additional indices no longer have a positive contribution. We supplemented the spectral 

bands with five different indices, namely Enhanced Vegetation Index (EVI), Modified Normalised 

Difference Vegetation Index 2 (MSAVI2), Normalised Difference Vegetation Index (NDVI), 

Normalised Difference Water Index (NDWI), and Modified Normalised Difference Water Index 

(MNDWI). 

 

We showed that the automatically selected endmembers can produce comparable results to the manually 

selected endmembers. Despite the automation, it is necessary to review the selected endmembers to 

ensure that they represent the land cover classes of interest and not spectral or land cover outliers. The 

optimal number of all endmembers used for SMA is between three and five. Multiple endmembers can 

be used to represent the same land cover class and combine their fractions after SMA, e.g. forest and 

grassland pixels used to determine vegetation fractions. We considered three different land cover classes 

– gravel, vegetation, and water. Several studies in the existing literature include shade as a separate 

endmember. We assumed that this would improve the mapping accuracy because topographic shadow 

in a narrow river valley surrounded by steep slopes and vegetation shadows obscuring underlying 

surface water and gravel are common in our study area. However, shade was not accurately mapped by 

the proposed method, and including shade into other land cover classes did not improve fraction maps. 

Finally, we found that endmembers selected on one image of the study area during the leaf-on season 

could be accurately used for the SMA of another image of the same area acquired with the same remote 

sensing system at a different time during the leaf-on period. 

 

Once the input data and workflow for endmember selection were established, we produced fraction 

maps of the study area using Sentinel-2, Landsat 7, and Landsat 8 images at different timestamps. Gravel 

bars are easily distinguished on the maps and their changes over the years are evident. The fraction maps 

produced using the soft classification were compared with the maps resulting from the hard classification 
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with the Spectral Angle Mapper (SAM). The same satellite images and endmember spectra were used 

for SAM as for the SMA. Different input images and endmembers were tested. Gravel was mapped 

more accurately by the soft classification than by the hard classification in all cases. 

 

Next, we produced a time series of land cover class presence based on available satellite images. We 

focused on the Sentinel-2 data because they have a higher temporal density. When analysing a series of 

different satellite images, one of the main questions is which endmembers to use. First, three different 

configurations for the selection of endmembers for all land cover classes of interest were tested. In the 

first configuration, the same set of endmembers was applied for the analysis of all images. In the second 

configuration, endmembers were selected separately for each image. In the third configuration, only 

vegetation endmembers were selected separately for each image, while for gravel and water the same 

set of endmembers was used for all images. The general trends shown by the land cover time series were 

similar for all configurations. The time series with the same set of endmembers transferred for analysis 

of all images was the most stable with the least fluctuations, therefore this method was recommended 

for further analysis. To account for seasonal variations in vegetation reflectance, we performed tests to 

smooth the vegetation endmembers selected separately on each input satellite image. In the first method, 

the time series of vegetation endmembers were smoothed using a Savitzky-Golay filter, while in the 

second method monthly averages of vegetation endmember values were calculated. The differences in 

the resulting time series are negligible. Because smoothing and averaging of vegetation endmembers 

require additional processing time, we do not recommend them. Finally, we attempted to remove the 

outliers in land cover presence using a Savitzky-Golay filter. The smoothed time series more clearly 

showed meaningful changes in the environment. 

 

The mapping method established on the study area was then applied for the analysis of more extensive 

river sections and over longer time periods. We mapped a total of over 250 km on the Soča and Sava 

rivers in Slovenia and on the Vjosa river in Albania. Landsat images were used as input to cover a time 

period of over 30 years. The gravel fraction maps provide an overview of changes in the extent and 

location of gravel bars. We used VHR reference data to validate the fraction maps produced. The gravel 

class was detected with 95% accuracy for all rivers considered. 

 

We then investigated the most important characteristic of the produced fraction maps – their ability to 

detect change. First, we examined the capabilities of simple image differencing. We compared three 

fraction maps produced from Sentinel-2 images from a three-year time span and validated the detected 

changes with VHR reference data from the same timestamps. We paid attention to the hydrological 

conditions during the time of input and reference data acquisition to ensure that the detected changes 

arise from actual changes in river processes and not just different water levels. The change maps were 

assessed in terms of sensitivity, i.e. the ability to detect actual changes on the ground as observed in the 
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reference data, and precision, i.e. that the changes shown on the change maps actually occurred and 

could be confirmed with the reference data. The evaluation of sensitivity focused on areas of change 

that were at least 400 m2 in size, which is equal to the extent of one pixel of the input satellite image. 

We verified the values of the fraction change maps in the reference change areas. A total of 72 areas 

with gravel removal (decrease in gravel fraction) and 43 areas with gravel deposition (increase in gravel 

fraction) were considered. Both removal and deposition of gravel were detected well on the change 

maps. Deposition occurred in narrower strips that often did not reach the width of an entire pixel. 

Therefore, the change values in the areas of deposition were lower than the change values in the areas 

of removal. This could be a specificity of the study area. The assessment of change detection precision 

focused on 62 non-adjacent pixels where a change of at least ± 10% was detected. Reference data were 

then used to verify that a change had indeed occurred on these selected pixels. Almost 75% of the 

detected changes were confirmed, with half of them showing a change from gravel to water. In 10% of 

the cases, no change could be detected on the reference data, while in 15% a false change was reported. 

An examination of the change values in areas with true changes showed that the values were much 

higher than in areas with false or no changes. Values of fraction change higher than ± 30% were 

indicative of a true change. Final validation of the simple fraction change maps was performed by 

correlation with change maps based on reference data. The reference change maps were resampled to 

the spatial resolution of fraction change maps, i.e. 20 m. The pixel values of the fraction maps and the 

reference maps were then compared at the level of the entire study area and also only in the areas of 

change detected in the reference data. The results confirmed that the two datasets are highly correlated, 

especially in the areas of change (Pearson’s r > 0.85, p < 0.0001). 

 

In addition to fraction change maps produced by image differencing, we tested whether time series of 

data of land cover presence could be used to monitor gravel bars. First, we compared the time series of 

gravel presence in the study area on the Soča river with in situ water level data from a gauging station 

in the study area. There was a significant negative correlation between the two datasets (Pearson’s r < 

−0.64, p < 0.0001), showing agreement of the fraction maps with the expected physical processes on the 

ground. Next, we investigated whether time series of gravel presence could be used to detect change. 

We focused on two known gravel removal sites, one on the Soča near the settlement of Dolje and another 

on the Sava near the city of Kranj. We plotted the time series of gravel presence at a smaller study area 

encompassing the gravel removal sites over a period of 2019 and 2020. All available Sentinel-2 images 

with cloud cover of 10% or less were used to produce fraction maps. The presence of gravel at the study 

sites varied with relation to the water level, and these fluctuations were substantial. However, we found 

that a decrease in gravel presence of more than two standard deviations below the value of the average 

gravel presence in the study area indicated gravel removal. For example, in the Dolje study area, the 

average gravel presence during the two years of observation was 4 ha with a standard deviation of 1 ha. 
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A decrease of 2 ha therefore indicated removal. The same process was observed in Kranj. Thus, the time 

series of gravel presence can be used to detect changes that are above the specified threshold in size. 

 

The tests and applications of the proposed method for gravel bar mapping on different rivers confirmed 

our first hypothesis that using SMA it is possible to distinguish gravel bars, surface water, and vegetation 

in fluvial ecosystems with a thematic accuracy of 90%. In particular, gravel was mapped very accurately, 

while vegetation was more problematic, sometimes not achieving 90% accuracy. The change detection 

evaluation also confirmed the second proposed hypothesis that sub-pixel land cover maps can be used 

to monitor changes in gravel bars that are at least 500 m2 in size. The extent of change that can be 

detected depends on the spatial resolution of the input satellite images, but we showed that Sentinel-2 

images with a spatial resolution of 20 m can detect changes of 400 m2, i.e. the area equal to the size of 

one pixel of the input image. By using SMA, we aimed to contribute to new knowledge in the use of EO 

data for monitoring natural processes. The main contribution of the dissertation to science is the 

development of a new workflow for mapping gravel bars and other water-related features using freely 

available satellite images. The method was developed on a river section for which an abundance of 

ancillary data is available, which enabled validation of the results and development of an optimal 

mapping configuration. We also studied the transferability of the method and confirmed that it can be 

used to study areas where not as much data is available. This could lead to new insights into river 

dynamics and better management of the fluvial environment. 

 

The main limitations of the proposed method are related to the use of optical satellite images. Cloud 

obstruction and terrain shadow prevent observation and monitoring of processes on the ground and are 

particularly problematic in mountainous areas surrounded by steep slopes and frequent cloud cover. 

Gravel is generally detected very well, but detection of water is difficult in areas with rapids and shallow 

sections where gravel reflectance from the riverbed can be detected by the sensor. Vegetation mapping 

is problematic when foliage is not fully developed and the sensor detects bare ground under trees. The 

SMA can successfully map land cover classes that have very different spectral signatures. 

Generalisations of diverse land cover classes with similar spectral signatures into a single land cover 

class are therefore necessary. The most problematic generalisation in our case is the inclusion of built-

up areas in the gravel class. The gravel presence maps therefore do not differentiate between gravel bars 

and built-up. This is mitigated by focusing the analysis on water lands but remains problematic 

particularly in settlements. The accuracy of SMA depends on the quality of the endmembers used. It is 

difficult to select endmembers that accurately reflect the spectral properties of land cover classes that 

are very diverse. Water can have very different spectral responses depending on Sun glint, surface 

waves, depth, sediment content, presence of microorganisms, and dissolved organic matter, making it 

difficult to always accurately map it with SMA. This is even more pressing for vegetation, which occurs 

in many different forms in the area under observation. While the general shapes of the spectral signatures 
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of different vegetation forms are similar, there are some discrepancies depending on the plant species 

present. These differences could lead to errors if a single endmember is used to model all vegetation 

forms. Therefore, further work could explore the possibility of using several different models to 

represent water and vegetation based on different endmembers and selecting the model with the least 

error for further mapping. Monitoring of gravel bars could also be supplemented with synthetic aperture 

radar (SAR), which is not affected by clouds and is known for successful water detection. Further studies 

could also be done using the currently developed sub-pixel mapping method, extending it to other river 

systems. Several other phenomena and land cover classes could also be mapped using the proposed 

workflow, such as deforestation and urbanisation. The abundance of openly available satellite images 

with frequent revisit times allows monitoring of diverse processes and making more informed decisions. 
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8 RAZŠIRJEN POVZETEK 

Opazovanje Zemlje se je uveljavilo kot pomemben vir podatkov o okolju. Enotna pokritost vseh 

svetovnih kopnih površin s prosto dostopnimi podatki vsakih nekaj dni pomeni, da so podatki 

opazovanja Zemlje primerni za različne naloge spremljanja spremembe. Kljub dosedanjemu napredku 

na tem področju obstaja še veliko možnosti za razširitev, na primer z vidika trajnostnega razvoja in 

hidrologije. Pričujoča raziskava proučuje možnosti za spremljanje rečnih prodišč z uporabo prosto 

dostopnih satelitskih posnetkov. Najboljša prostorska ločljivost prosto dostopnih satelitskih posnetkov 

je 10 m, to pa pogosto ni dovolj dobro za natančno zaznavanje prodišč, ki so lahko zelo ozka. Za 

izboljšanje kartiranja in spremljanja prodišč smo razvili metodo za podpikselsko kartiranje na podlagi 

analize vsebnosti spektralnega signala (ang. Spectral Mixture Analyis, SMA). 

 

V doktorski disertaciji smo preverili naslednji dve raziskovalni hipotezi. 

 

Hipoteza 1: Z analizo sestave spektralnega signala je mogoče ločiti prodišča, vodo in vegetacijo v rečnih 

ekosistemih. 

Podhipoteza 1.1: Pokrovnost rečnih ekosistemov je mogoče z analizo sestave spektralnega signala 

prosto dostopnih satelitskih posnetkov prostorske ločljivosti do 10 m določiti z 90% tematsko 

natančnostjo. 

 

Testirali smo različne pristope za določitev postopka, ki vodi do najbolj natančnih kart deležev 

pokrovnosti. Preverili smo različne značilnosti vhodnih satelitskih posnetkov, ki vplivajo na natančnost 

kartiranja – uporabljen sistem daljinskega zaznavanja, geometrijska in radiometrična natančnost, 

prostorska ločljivost in uporaba spektralnih indeksov. Poleg tega smo proučili lastnosti končnih pikslov, 

ki prav tako določajo natančnost kartiranja – možnost samodejnega izbora končnih pikslov, optimalno 

število izbranih končnih pikslov, senca kot dodaten končni piksel in premos končnih pikslov, izbranih 

na enem posnetku, za analizo drugega posnetka. Pri preizkusih smo za referenco uporabili terensko 

kartiranje, letalske ortofote in satelitske posnetke zelo visoke ločljivosti (ang. very high resolution, 

VHR). 

 

Hipoteza 2: Z analizo časovne vrste tematskih kart podpikselske pokrovnosti lahko določimo sezonske 

spremembe v obsegu in lokaciji prodišč. 

Podhipoteza 2.1: Ob sezonski dinamiki lahko zaznamo spremembe v površini prodišč zaradi izrednih 

antropogenih in naravnih dogodkov, ki so večje od 500 m2. 

 

Razvito metodo za podpikselsko kartiranje smo preizkusili na časovni vrsti satelitskih posnetkov. Pri 

tem smo preverili vpliv različnih pristopov pri razvoju časovne vrste – izbor končnih pikslov, 
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modeliranje vegetacije v različnih fenoloških fazah in časovno glajenje izračunane prisotnosti izbranih 

razredov pokrovnosti. Časovno vrsto izračunane prisotnosti razredov pokrovnosti smo primerjali s 

hidrološkimi podatki merilne postaje. V nadaljevanju smo izdelali karte deležev prisotnosti proda za 

odseke na treh izbranih rekah v skupni dolžini prek 250 km in s časovnim obsegom prek 30 let. Nazadnje 

smo preverili sposobnost predlagane metode za zaznavo sprememb prodišč z vidika občutljivosti in 

natančnosti na podlagi referenčnih VHR posnetkov. Z opazovanjem vpliva sprememb na grafični prikaz 

prisotnosti proda smo proučili tudi možnost za spremljanje prodišč s podatki časovnih vrst. 

8.1 Značilnosti rečnih prodišč 

Prodišča so območja začasne sedimentacije v rečnih koritih, ki nastanejo z odlaganjem, vendar so lahko 

tudi preoblikovana v zaporednem delovanju erozije in odlaganja. Značilna so za pramenaste rečne 

sisteme in lahko nastanejo na sredini struge ali ob bregu. Gorvodno nad prodiščem se navadno nahaja 

tolmun, poglobitev rečnega dna, kjer se vodni tok upočasni. Na čelu prodišča prečno na strugo nastanejo 

plitve brzice ali brazde, kjer vodni tok plitev in hiter. Glavni razlog za nastanek prodišč je lokalno 

zmanjšanje transportne moči vodnega toka. Do tega pogosto pride tudi na notranjem delu rečnih 

meandrov (Tarbuck in Lutgens, 2005). Oblika prodišč in velikost odloženega zrna sta odvisni od 

povprečnega strmca vodnega telesa in od pretoka. Ob povečanih pretokih se sestavni material prodišč 

navadno zamenja, njihova lokacija v strugi pa se ne spreminja. Obstaja več različnih klasifikacij tipov 

prodišč (npr. glede na komplekstnost ali glede na mesto nastanka v strugi), vendar lahko en tip prodišča 

s časom preide v drugega. Dogodki z visokim vodostajem običajno preoblikujejo prodišča. Z 

odlaganjem dodatnega material postanejo prodišča višja, poraste jih vegetacija in tako se s časom 

preoblikujejo v stabilnejše rečne otoke (Robert, 2003). Prodišča so sestavljena tudi iz delov pod vodno 

gladino, kot so brzice in podvodni sedimenti, naša raziskava pa se je osredotočila na gola, neporasla 

prodišča, ki so najbolj dinamična, in specifično na njihove nadvodne dele, ki jih je mogoče opazovati z 

optičnimi satelitskimi posnetki. 

 

Prodišča so habitati za več rastlinskih in živalskih vrst. Kot območja na stiku vodnega in kopnega sta za 

njih značilni velika vrstna pestrost in prisotnost redkih vrst (Langhans in Tockner, 2014; Zeng in sod., 

2015). V Sloveniji imamo primere živalskih vrst, kot je ptica mali deževnik (Charadrius dubius), in 

rastlinskih vrst, kot je prodiščna hrustavka (Chondrilla chondrilloides), ki so vezane na rečna prodišča. 

Poleg tega prodišča vplivajo na filtracijo vode, vnos vode v podtalnico in blažitev erozije rečnih bregov. 

Različne mednarodne in državne direktive poudarjajo pomen ohranjevanja prodišč (OJ L 206, 1992; 

Uradni list RS št. 112/03, 2003; EC DG ENVIRONMENT, 2013). Gre namreč za habitat, ki je 

spremenljiv, nestabilen in občutljiv na hidrološke spremembe ter kot tak dober pokazatelj motenj v 

fluvialnem okolju. 
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Dejavnost, ki najbolj neposredno uničuje prodišča, je izkop materiala za uporabo v gradbeništvu (Jogan 

in sod., 2004). Gradnja jezov, protipoplavne zaščite in ureditev struge vplivajo tudi na ravnovesje v 

količini sedimenta ter posledično na obseg prodišč. Večdesetletno proučevanje zajezenih rek je 

pokazalo, da delovanje hidroelektrarn lahko povzroči razširitev rečne struge, zmanjšanje števila brzic in 

tolmunov in povečanje števila izdankov matične podlage v strugi. Dnevni izpusti vode vodijo do 

odnašanja drobnejših delcev. Zaradi zmanjšane vijugavosti in zaporedij brzic ter tolmunov se zmanjša 

hrapavost dna in poveča premestitvena zmogljivost vodotoka, kar lahko vodi do poglabljanja rečnega 

korita (Assani in Petit, 2004; Kiss in Andrasi, 2014). 

 

Prodišča skupaj s tolmuni in brazdami sestavljajo osnovno enoto razvejanih rek. Njihovo število, 

lokacija, oblika, sestava in velikost nakazujejo potek geomorfoloških procesov v rečnem koritu. Za 

boljše razumevanje vpliva različnih procesov na prodišča smo razvili metodo kartiranja in spremljanja, 

ki temelji na prosto dostopnih optičnih satelitskih posnetkih. 

8.2 Osnove analize vsebnosti spektralnega signala 

Prostorska ločljivost prosto dostopnih satelitskih posnetkov je dobra za številne aplikacije, vendar je 

lahko preveč groba za opazovanje rek v njihovih zgornjih delih, kjer so navadno ozke. Tudi prodišča so 

pogosto ožja od prostorske ločljivosti vhodnih satelitskih posnetkov. Trda klasifikacija posnetkov, pri 

kateri je vsakemu pikslu (slikovnemu elementu) dodeljen en razred pokrovnosti, zato morda ne zazna 

celotnega obsega prodišč. Kartiranje prodišč smo zato zasnovali na uporabi mehke klasifikacije, ki 

opredeli deleže pristnosti različnih razredov pokrovnosti na vsakem pikslu. Klasifikacija temelji na 

linearni SMA. Metoda SMA izračuna stopnjo ujemanja spektralnega signala določenega piksla s 

spektralnimi signali vhodnih končnih pikslov (ang. endmembers), to je čistih pikslov, ki vsebujejo samo 

en razred pokrovnosti (Keshava 2003; Veganzones in Graña, 2008). Na ta način je mogoče zaznati 

pojave, ki imajo značilne spektralne lastnosti, vendar so manjši od prostorske ločljivosti vhodnih 

posnetkov. Na podlagi rezultatov SMA je mogoče izdelati karte deležev prisotnosti izbranih razredov 

pokritosti in z njimi izrisati časovne vrste za spremljanje stanja na površju. 

 

Metoda SMA je bila razvita za opazovanje kamnin in mineralov na Marsu (Adams in sod., 1986) ter 

kasneje uporabljena za različne namene – od odkrivanja poškodb gozdov (Hirschmugl in sod., 2014) in 

spremljanja degradacije tal (Dubovyk in sod., 2015) do kartiranja širitve mest (Aina in sod., 2019). 

Ključni vhodni podatki za uspešno SMA je zadostno število primernih končnih pikslov, ki natančno 

predstavljajo spektralne lastnosti izbranih razredov pokrovnosti. Določitev primernega števila končnih 

pikslov, s katerimi lahko opišemo značilnosti opazovanega območja, navadno vključuje preizkušanje 

različnih možnosti in izbor tiste, ki vodi do najmanjše napake (Somers in sod. 2011). Izbor spektralnih 

značilnosti končnega piksla lahko naredimo neposredno na vhodnih satelitskih posnetkih. Če posnetek 

vsebuje zelo heterogeno pokrajino in so vsi piksli mešani, lahko končne piksle modeliramo na podlagi 
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podatkov o posnetku in tako dobimo končne piksle, ki niso izbrani na posnetku (ang. non-pixel 

endmembers). Tretja možnost je pridobitev končnih pikslov s terenskimi ali laboratorijskimi meritvami 

s spektro-radiometri (Du, 2018). V naših analizah smo uporabili končne piksle, izbrane na posnetku 

(ang. image endmembers), vendar smo jih izbrali tako ročno kot samodejno. Ročni izbor smo naredili 

glede na letalski ortofoto, podatke VHR ali terensko kartiranje. S tem smo zagotovili izbor resnično 

čistih pikslov, ki so vsebovali le en razred pokrovnosti. Samodejni izbor smo opravili z uporabo 

algoritma N-FINDR, ki se začne z vnaprej določenim željenim številom pikslov. Algoritem začetne 

izbrane piksle nato zamenjuje z drugimi, dokler ne začrtajo geometrijskega telesa z največjim možnim 

volumnom v večdimenzionalnem prostoru, določenem s številom spektralnih kanalov na vhodnem 

posnetku (Slika 48). 

 

 
Slika 48: Primer končnih pikslov, izbranih kot skrajne točke v trodimenzijskem spektralnem prostoru. 

Figure 48:  An example of endmembers selected as extreme points in a three-dimensional spectral space. 

 

Tako definirane končne piksle smo uporabili za modeliranje odbojnosti vhodnih linearno mešanih 

pikslov. Linearne spektralne mešanice so prisotne, ko se različni razredi pokrovnosti pojavljajo v 

oblikah, ki so manjše od trenutnega vidnega polja (ang. instantaneous field of view, IFOV) senzorja, 

vendar so kljub temu jasno zamejene. Po drugi strani so nelinearne spektralne mešanice značilne za 
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oblike, kjer so različni materiali zelo tesno prepleteni, na primer pri analizi sestave peska ali prsti. V 

primeru kartiranja prodišč smo predpostavili linearni spektralni mehanizem mešanja. V tem primeru je 

spektralni signal mešanega piksla (r) določen kot kombinacija spektralnih signalov končnih pikslov, 

obteženih s podpikselsko prisotnostjo razredov pokrovnosti. Model opiše spodnja enačba 

 

 r =  Mf +  ε (4) 

 

kjer je M matrika v kateri stolpci predstavljajo spektralne podpise izbranih končnih pikslov, f je vektor 

deležev prisotnosti razredov pokrovnosti in ε je šum ali delež signala, ki ga ni mogoče opisati z izbranimi 

končnimi piksli. 

 

Za reševanje enačbe lahko uporabimo kvadratno programiranje, metod največje verejtnosti ali metodo 

najmanjših kvadratov. Metodo SMA lahko izvedemo brez omejitev, a če želimo pridobiti fizikalno 

smiselne rezultate, vrednosti koeficientov v enačbi 4 pogosto omejimo na pozitivna števila. 

Implementiramo lahko tudi pogoj, da mora biti seštevek vrednosti koeficientov enak ena. Na ta način 

dobimo polno omejeno analizo vsebnosti spektralnega signala (ang. fully constrained spectral mixture 

analysis), ki smo jo izvedli tudi v tej raziskavi. Uporabili smo torej linearno SMA za modeliranje deležev 

(ang. fractions, abundances) razredov pokrovnosti na vsakem pikslu in tako naredili podpikselske karte 

rečnega okolja. 

8.3 Razvoj metode za podpikselsko kartiranje prodišč 

Disertacija je sestavljena iz dveh glavnih delov. V prvem delu smo se ukvarjali z različnimi testi za 

vzpostavitev pristopa za najbolj natančno podpikselsko kartiranje. Za kartiranje prodišč smo uporabili 

podatke, pridobljene s sistemom za daljinsko zaznavanje Landsat od leta 1982 v šestih (Landsat 4, 

Landsat 5, Landsat 7) ali sedmih (Landsat 8) spektralnih kanalih s prostorsko ločljivostjo 30 m in novim 

posnetkom istega območja vsakih 16 dni (Barsi in sod., 2014). Pri opazovanju novejših dogodkov smo 

uporabili podatke sistema Sentinel-2, ki deluje od leta 2015. Leta 2017 je bil prvi satelit Sentinel-2 

dopolnjen z drugim satelitom, s čimer se je čas ponovnega obiska skrajšal na zdajšnjih pet dni. Satelit 

Sentinel-2 opazuje Zemljo v desetih spektralnih kanalih – v podobnih valovnih dolžinah kot Landsat – 

s prostorsko ločljivostjo 10 ali 20 m, odvisno od kanala (Drusch in sod., 2012). 

 

Pri kartiranju smo se osredotočili na obvodna območja, kakor jih določa sloj vodnih zemljišč. Gre za 

prosto dostopne vektorske podatke, ki so dostopni v vodnem katastru Direkcije RS za vode (DRSV, 

2021). Vodno zemljišče obsega rečno korito do prve večje geomorfološke spremembe. Rečni bregovi 

in prodišča so tako vključeni v območje analize. Podatkovni sloj je bil pripravljen v skladu z Zakonom 

o vodah (Uradni list RS št. 67/02, 2002) na podlagi ortofotov iz Cikličnega aerofotografiranja Slovenije 

in podatkov Laserskega skeniranja Slovenije. 
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V analizi smo se ukvarjali s tremi različnimi razredi pokrovnosti, ki sestavljajo večino obrečnega 

okolja – prod, vegetacija in voda. Za uspešno SMA morajo imeti obravnavani razredi čim bolj različne 

spektralne podpise. Če bi obravnavali razrede z zelo podobnimi spektralnimi podpisi, bi bilo zelo težko 

ločiti doprinose posameznih razredov k spektralnemu signalu opazovanega piksla. Zato je bilo pri izboru 

obravnavanih razredov potrebno narediti določene poenostavitve. Razred prod je vključeval prodišča, 

skale, pesek in pozidana območja. Mešanje prodišč in pozidanih območij smo zmanjševali z omejitvijo 

opazovanega območja na vodna zemljišča. Razred vegetacija je vključeval drevesa, grmišča in travišča. 

Razred voda je vključeval reke, potoke in stoječo vodo. V izogib mešanju osenčenih površin z vodo smo 

testirali smo tudi kartiranje sence kot ločenega razreda. 

 

Preizkuse smo izvedli na študijskem območju na reki Soči v severozahodni Sloveniji na 15 km dolgem 

rečnem odseku med Kobaridom in Tolminom (Slika 49). Ta odsek smo izbrali, ker vsebuje veliko 

prodišč, pa tudi zato, ker je za to območje na voljo veliko dodatnih podatkov, ki smo jih lahko uporabili 

pri razvoju in validaciji različnih metod. 

 

 
Slika 49: Pregled študijskega območja. a) Lokacija študijskega območja (rdeč pravokotnik) v porečju zgornje 

Soče, v severozahodni Sloveniji, s sredinskimi koordinati 46.2° severno in 13.6° vzhodno (vir podatkov: Natural 

Earth, 2020). b) Bližnji pogled študijskega območja. Rdeč pravokotnik označuje celotno območje, vijolični 

pravokotnik pa lokacijo bližnjega pogleda na Slika 52 (vir podatkov: GURS, 2016, 2021a, 2021b). 

Figure 49: Overview of the study area. a) Location of the study area (red rectangle) in the upper Soča river basin, 

north-western Slovenia, Central Europe, centred on 46.2° N, 13.6° E (data source: Natural Earth, 2020). b) A 

closer view of the study area. The red rectangle indicates the entire study area, while the purple rectangle marks 

the location of the enlarged view in Figure 52 (data source: Surveying and Mapping Authority of the Republic of 

Slovenia, 2016, 2021a, 2021b). 

 

Rezultate v obliki kart smo ovrednotili tako na ravni pikslov kot na ravni študijskega območja. Ocena 

kakovosti na ravni pikslov proučuje karte deležev pokrovnosti od blizu. Deleže prisotnosti razredov 

pokrovnosti na podlagi SMA primerjamo z deleži zaznanimi na referenčnih podatkih (Schug in sod., 

2018). Za referenčne podatke smo uporabili letalske ortofote, VHR satelitske posnetke (WorldView-2, 
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Pléiades) in lastno terensko kartiranje. Primerjavo smo naredili z izračunom povprečne absolutne napake 

(ang. mean absolute error, MAE): 

 

 
MAE =  

1

𝑛
∑ |𝑥𝑖 − 𝑥

𝑛

𝑖=1

| (5) 

 

kot absolutna razlika med deleži pokrovnosti na referenčnih podatkih (x) in deleži pokrovnosti na 

podlagi SMA (xi). Vrednosti MAE smo izračunali za 50 naključno izbranih območij v velikosti enega 

piksla satelitskega posnetka na študijskem območju (n = 50). 

 

Glavni doprinos ocene kakovosti na ravni celotnega študijskega območja je omilitev vpliva možnih 

geometrijskih premikov vhodnih posnetkov, ki bi jih lahko napačno zaznali kot napake na ravni pikslov. 

Za referenco smo uporabili klasifikacijo letalskih ortofotov in VHR satelitskih posnetkov. Preizkusili 

smo različne metode klasifikacije, vključno z ročno digitalizacijo in strojnim učenjem z različnimi 

algoritmi ter raznovrstnimi značlinostmi. Kot najboljši pristop tako z vidika natančnosti produktov kot 

tudi časovne in računske učinkovitosti smo izbrali klasifikacijo z algoritmom naključnih dreves (ang. 

random forest, RF) s 500 drevesi. 

 

Obe metodi ocene kakovosti obravnavata različne vidike natančnosti klasifikacije, vendar se je 

pokazalo, da dajeta podobne rezultate pri primerjavi različnih kart deležev pokrovnosti. V nadaljevanju 

smo zato izmenično uporabljali tako validacijo na nivoju pikslov kot na nivoju celotnega študijskega 

območja. 

8.3.1 Značilnosti vhodnih satelitskih posnetkov 

V raziskavi smo naprej preverili značilnosti vhodnih satelitskih posnetkov, ki vplivajo na natančnost 

kart deležev pokrovnosti. Primerjali smo natančnost klasifikacije na podlagi različnih sistemov za 

daljinsko zaznavanje. Uporabili smo posnetke Sentinel-2, zajete 11.7.2015 in 23.4.2020, posnetek 

Landsat 7, zajet 9.7.2015 ter posnetek Landsat 8, zajet 25.4.2020 (Slika 50). Ugotovili smo, da se lahko 

posnetki Landsat in Sentinel-2 uporabljajo za natančno kartiranje. 
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Slika 50: Pregled satelitskih posnetkov, uporabljenih v analizi. Naravno barvni kompoziti s posnetkov, 

uporabljenih v analizi (vir podatkov: ESA, 2021, U. S. Geological Survey, 2021a, 2021b). 

Figure 50: Overview of the satellite images used in the analysis. True colour composites of the images used in the 

analysis (data source: ESA, 2021; U. S. Geological Survey, 2021a, 2021b). 

 

Pri primerjavi satelitskih posnetkov, iskanju sprememb in analiza časovnih vrst je dobra geometrijska 

natančnost ključna lastnost posnetkov. Želeli smo preveriti realno geometrijsko natančnost posnetkov 

Sentinel-2. Za to smo izbrali tri različna študijska območja – v Sloveniji, na Cipru in v Keniji. Na vsakem 

območju smo izbrali 10 do 20 referenčnih točk, večinoma cestnih križišč, ki so služile za primerjavo 

različnih posnetkov. V analizo smo vključili vse posnetke, zajete med 2017 in 2020 z največ 10% 

oblačnosti. Rezultati so pokazali, da je bila geometrijska natančnost posnetkov Sentinel-2 v povprečju 

manjša od 3 m, kar je bolje, kot navaja literatura (Vajsova in Åstrand, 2015; Pandžić in sod., 2016; Rufin 

in sod., 2021). Z visoko geometrijsko natančnostjo lahko razlagamo tudi minimalna odstopanja med 

ocenami kakovosti na ravni pikslov in celotnega študijskega območja. 
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Radiometrični popravki so pomemben korak v pred-procesiranju za analizo satelitskih posnetkov. 

Zmanjšajo vpliv atmosfere in reliefa na odbojnost površja in s tem omogočajo bolj natančne analize brez 

učinka artefaktov in boljšo primerjavo različnih posnetkov. Proučili smo doprinos atmosferskih in 

topografskih popravkov k natančnosti SMA. Atmosferske porpavke smo naredili s programom ATCOR 

(Richter in Schläpfer, 2019), topografske pa s procesno verigo STORM (Zakšek in sod., 2015; Pehani 

in sod. 2016). Rezultati so pokazali, da atmosferski popravki izboljšajo natančnost kart deležev 

pokrovnosti. Topografski popravki v posnetke vnašajo dodatne negotovosti in ne vodijo do boljšega 

kartiranja. 

 

Velikost piksla satelitskega posnetka določa velikost površine, za katero z SMA izračunamo deleže 

prisotnosti razredov pokrovnosti. Preverili smo, ali bi izboljšanje prostorske ločljivosti satelitskih 

posnetkov lahko vodilo do bolj natančnih kart deležev pokrovnosti. Za izboljšanje prostorske ločljivosti 

smo uporabili algoritem DSen2, ki temelji na globokem učenju (Lanaras in sod., 2018). Teste smo 

naredili na posnetku Sentinel-2, zajetem 11.7.2915. Vse spektralne kanale, ki so bili zajeti z 20 m ali 

60 m ločljivostjo, smo z globokim učenjem prevzorčili na 10 m. Izvzeli smo le 10. kanal (cirus), ki 

vsebuje preveč šuma. Rezultate kartiranja z izboljšanimi posnetki smo primerjali z rezultati na podlagi 

a) štirih spektralnih kanalov, ki so v izhodišču zajeti v 10 m, in z rezultati na podlagi b) kombinacije 

šestih spektralnih kanalov, ki so zajeti v 20 m ter štirih 10 m kanalov, prevzorčenih na 20 m z bilinearno 

interpolacijo. Izboljšanje prostorske ločljivost ni vodilo do natančnejših kart deležev pokrovnosti, 

zahteva pa dodaten čas za izvedbo, zato smo v nadaljevanju uporabili kanale v 20 m ločljivosti (opcija b, 

opisana zgoraj). 

 

Spektralni indeksi so pomembni za boljše razlikovanje med različnimi razredi pokrovnosti in izboljšanje 

natančnosti karte deležev pokrovnosti. To izboljšanje ima zgornjo mejo, po kateri dodatni indeksi 

nimajo več pozitivnega vpliva na natančnost. Testirali smo zmožnost 12 različnih spektralnih indeksov 

za razločevanje izbranih razredov pokrovnosti in med njimi izbrali pet indekov z največjim doprinosom 

k boljši natančnosti kartiranja (Preglednica 23). Spektralne kanale smo tako dopolnili z naslednjimi 

indeksi: izboljšani vegetacijski indeks (ang. Enhanced Vegetation Index, EVI), spremenjen vegetacijski 

indeks, prilagojen za odbojnost prsti 2 (ang. Modified Soil Adjusted Vegetation Index 2, MSAVI2), 

normiran diferencialni vegetacijski indeks (ang. Normalised Difference Vegetation Index, NDVI), 

normiran diferencialni vodni indeks (ang. Normalised Difference Water Index, NDWI) in spremenjen 

normiran diferencialni vodni indeks (ang. Modified Normalised Difference Water Index, MNDWI). 
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Preglednica 23: Spektralni indeksi, izbrani za izboljšanje ločevanja med razredi pokrovnosti. 

Table 23: Spectral indices selected to improve the separability of land cover classes. 

indeks enačba vir 

izboljšani vegetacijski indeks 

(EVI) 
𝐸𝑉𝐼 = 2.5 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸 + 1
 

Huete in 

sod., 1999, 

1997 

spremenjen normiran 

diferencialni vodni indeks 

(MNDWI) 
𝑀𝑁𝐷𝑊𝐼 =  

𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
 

Du in sod., 

2016 

spremenjen vegetacijski 

indeks, prilagojen za 

odbojnost prsti 2 (MSAVI2) 
𝑀𝑆𝐴𝑉𝐼2 =  

2𝑆𝑊𝐼𝑅 + 1 − √(2𝑆𝑊𝐼𝑅 + 1)2 − 8(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

2
 

Qi in sod., 

1994 

normiran diferencialni 

vegetacijski indeks (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Tucker, 

1979 

normiran diferencialni vodni 

indeks (NDWI) 
𝑁𝐷𝑊𝐼 =  

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

McFeeters, 

1996 

 

8.3.2 Izbor končnih pikslov 

Končni piksli so ključni za uspešno SMA, zato je njihov izbor pomemben korak v analizi. Preverili smo 

vpliv različnih strategij izbora končnih pikslov na natančnost kartiranja deležev prisotnosti izbranih 

razredov pokrovnosti. Najprej smo proučili zmožnosti samodejnega izbora končnih pikslov. Samodejni 

izbor smo naredili z implementacijo algoritma N-FINDR v Python paketu pysptools (verzija 0.15.0) 

(Therien, 2018). Rezultate smo primerjali s kartiranjem na podlagi enakega števila končnih pikslov, ki 

smo jih ročno izbrali z vizualno interpretacijo referenčnih podatkov z visoko prostorsko ločljivostjo. 

Analizirali smo posnetke Sentinel-2, Landsat 7 in Landsat 8. Pokazali smo, da lahko samodejno izbrani 

končni piksli vodijo do rezultatov, primerljivih z ročno izbranimi končnimi piksli. Kljub samodejnosti 

je potrebno ob koncu analize ročno pregledati izbrane končne piksle in se s tem prepričamo, da 

predstavljajo izbrane razrede pokrovnosti in ne različnih osamelcev. 

 

V nadaljevanju smo preverili, koliko končnih pikslov je smiselno uporabiti, preden pride do gručenja in 

podvajanja spektralnih informacij zaradi zelo velike podobnosti med razredi pokrovnosti. Ugotovili 

smo, da je optimalno število vseh končnih pikslov, ki se uporabljajo za SMA, med tri in pet (Slika 51). 

Za modeliranje prisotnosti enega izbranega razreda pokrovnosti lahko uporabimo več končnih pikslov 

in njihove deleže združimo po končani SMA. Tako lahko na primer uporabimo piksla gozdov in 

travnikov ter z njima določimo delež vegetacije. 
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Slika 51: Vrednosti odboja v izbranih spektralnih kanalih in indeksih pri različnih številih samodejno izbranih 

končnih pikslov. Prikazana kanala in indeksa najbolje kažejo razlike med obravnavanimi razredi pokrovnosti. 

Prekinjena vodoravna črta prikazuje povprečno vrednost vseh samodejno izbranih končnih pikslov. Neprekinjena 

vodoravna črta prikazuje vrednost ročno izbranih končnih pikslov. 

Figure 51: Values for selected spectral bands reflectance and indices for different numbers of automatically 

selected endmembers. The displayed bands and indices show the highest separability between the different land 

cover classes. The dashed horizontal line shows the average value of all automatically selected endmembers. The 

solid horizontal line shows the values for manually selected endmembers. 

 

Obravnavali smo tri različne razrede pokrovnosti – prod, vegetacijo in vodo. Več študij v obstoječi 

literaturi k izbranim razredom pokrovnosti dodajajo senco kot ločen končni piksel (npr. Adams, 1995; 

Dennison in Roberts, 2003; Amaral in sod., 2015). Pričakovali smo, da bo to izboljšalo natančnost 

kartiranja, saj so topografske sence v ozki rečni dolini s strmimi pobočji in sence vegetacije, ki zakrivajo 

vodo in prod, pogosti pojavi na našem študijskem območju. Analizirali smo posnetke Sentinel-2, zajete 

11.7.2015 in 16.10.2017. Izbrali smo časovna obdobja z različnimi koti Sonca nad obzorjem in 

posledično različnimi obsegi senc. Rezultati so pokazali, da sence niso bile natančno kartirane s 

predlagano metodo, poleg tega vključevanje senčnih vzorcev v druge razrede pokrovnosti ni izboljšalo 
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kart deležev pokrovnosti. V nadaljnjih analizah smo zato obravnavali le tri izhodiščne razrede 

pokrovnosti – prod, vegetacijo in vodo. 

 

Nazadnje smo v testih izbora končnih pikslov preverili, ali lahko končne piksle, izbrane na enem 

satelitskem posnetku, uporabimo za analizo drugega satelitskega posnetka. Prenosljivost končnih 

pikslov smo preverili na posnetkih Sentinel-2 in Landsat 8 iz let 2015 in 2020. Ugotovili smo, da lahko 

končne piksle, izbrane na enem posnetku študijskega območja med sezono olistanja, uspešno uporabimo 

za SMA drugih posnetkov istega območja, pridobljene z istim sistemom daljinskega zaznavanja na drugi 

točki sezone olistanosti (ang. leaf-on period). 

8.3.3 Karte pokrovnosti na podlagi mehke klasifikacije 

Po določitvi najbolj primernih vhodnih podatkov in procesa za izbor končnih pikslov, smo izdelali karte 

deležev pokrovnosti za celotno študijsko območje na podlagi posnetkov Sentinel-2, Landsat 7 in 

Landsat 8 za različne časovne točke (Slika 52). Prodišča je na kartah enostavno razločiti; njihove 

spremembe skozi leta so očitne. Med kartami na podlagi ročno in samodejno izbranih končnih pikslov 

ni vidnih razlik. 
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Slika 52:  Karte deležev pokrovnosti za izsek študijskega območja na reki Soči. a) Prikaz opazovanega izseka na 

barvnem ortofotu (vir podatkov: GURS, 2021e). b) – c) Izdelane karte deležev pokrovnosti. Karte na podlagi ročno 

izbranih končnih pikslov prikazane zgoraj in karte na podlagi samodejno izbranih končnih pikslov prikazane 

spodaj. 

Figure 52: Land cover fraction maps for a section of the study area on the Soča River. a) Observed river section 

on a true colour orthophoto (data source: Surveying and Mapping Authority of the Republic of Slovenia, 2021e). 

b) – c) Resulting fraction maps. Maps produced with manually selected endmembers shown at the top and maps 

produced with automatically selected endmembers shown at the bottom. 

 

Karte deležev pokrovnosti, izdelane z uporabo mehke klasifikacije, smo primerjali s kartami, izdelanimi 

s trdo klasifikacijo na podlagi kota med spektri (ang. Spectral Angle Mapper, SAM). Za SAM smo 

uporabili iste satelitske posnetke in spektre končnih pikslov kot za SMA. Preizkusili smo različne 

vhodne posnetke in končne piksle. V vseh primerih je bil prod natančneje kartiran z mehko klasifikacijo 

kot s trdo. Primerjali smo tudi napake na nivoju pikslov za mehko in trdo klasifikacijo. Obstoječe 

raziskave so namreč pokazale močno povezanost med napakami različnih pristopov klasifikacije 

(Dennison in sod., 2004). V našem primeru na vzorcu 1000 pikslov nismo zaznali visoke korelacije med 

različnima metrikama napak; najvišji R2 je znašal le 0.352. To pomeni, da piksel, ki je bil natančno 

klasificiran z mehko klasifikacijo, ni bil nujno enako natančno klasificiran s trdo klasifikacijo in obratno. 
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8.3.4 Razvoj časovne vrste podatkov o pokrovnosti 

V naslednjem koraku smo na podlagi razpoložljivih satelitskih posnetkov izdelali časovno vrsto 

prisotnosti izbranih razredov pokrovnosti. Osredotočili smo se na podatke Sentinel-2 zaradi njihove 

večje časovne gostote. Pri analizi časovne vrste različnih satelitskih posnetkov je eno glavnih vprašanj, 

katere končne piksle uporabiti. Najprej smo preizkusili tri različne pristope za izbor končnih pikslov za 

vse izbrane razrede pokrovnosti. V prvem pristopu smo uporabili isti nabor končnih pikslov za analizo 

vseh posnetkov. V drugem pristopu smo končne piksle izbrali ločeno za vsak posnetek posebej. V 

tretjem pristopu smo za vsak posnetek posebej izbrali samo končni piksel za vegetacijo, medtem ko je 

bil za prod in vodo uporabljen isti nabor končnih pikslov za vse posnetke. Splošni trendi časovnih vrst 

pokrovnosti so bili podobni pri vseh različnih pristopih. Časovna vrsta z istim naborom končnih pikslov, 

prenesenih za analizo vseh posnetkov, je bila najbolj stabilna z najmanj nihanji, zato to metodo 

priporočamo za nadaljnjo analizo. Za upoštevanje sezonskih razlik v odbojnosti vegetacije, smo naredili 

dodatne teste za glajenje končnih pikslov za vegetacijo, izbranih na vsakem vhodnem satelitskem 

posnetku posebej. Pri prvem testu smo zgladili časovno vrsto končnih pikslov za vegetacijo s filtrom 

Savitzky-Golay, pri drugem testu pa smo izračunali mesečna povprečja vrednosti končnih pikslov za 

vegetacijo. Razlike v nastalih časovnih vrstah so bile zanemarljive. Glajenje in povprečje končnih 

pikslov za vegetacijo podaljša čas obdelave brez očitnih koristi, zato teh pristopov ne priporočamo. 

Nazadnje smo s filtrom Savitzky-Golay skušali odstraniti osamelce v časovni vrsti prisotnosti razredov 

pokrovnosti (Slika 53). Ugotovili smo, da je zglajena časovna vrsta bolj stabilna in bolj jasno kaže 

pomembne spremembe v okolju. 

 
Slika 53: Časovna vrsta prisotnosti izbranih razredov pokrovnosti, zglajena s filtrom Savitzky-Golay. Nezglajene 

vrednosti prikazane v ozadju z večjo prosojnostjo. 

Figure 53: Time series of different land cover classes presence smoothed with a Savitzky-Golay filter. Unsmoothed 

values shown in the background in lighter colours. 
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Na podlagi navedenih testov smo oblikovali postopek za kartiranje in spremljanje prodišč s satelitskimi 

posnetki (Slika 54). 

 

 
Slika 54: Potek predlagane metode za spremljanje rečnih prodišč. 

Figure 54: Workflow for the proposed method for monitoring fluvial gravel bars. 

8.4 Uporaba razvite metode za spremljanje prodišč 

Metodo kartiranja, ki smo jo razvili na študijskem območju, smo nato uporabili za analizo večjih rečnih 

odsekov v daljših časovnih obdobjih. Nato smo preverili, kako dobro lahko z razvito metodo zaznavamo 

spremembe, tako s primerjavo dveh različnih kart, kot z opazovanjem nihanj v časovni vrsti prisotnosti 

proda. 

8.4.1 Karte deleža proda za izbrane reke 

Kartirali smo območja v skupni dolžini preko 250 km na Soči in Savi v Sloveniji ter na reki Vjosa v 

Albaniji. Uporabili smo posnetke Landsat, ki so zajemali časovno obdobje 35 let. Karte deleža proda, 

ki smo jih naredili, omogočajo pregled sprememb obsega in lokacije prodišč (Slika 55). Karte prodišč 

na Soči so v prilogi A, karte prodišč na Savi v prilogi B in karte prodišč na Vjosi v prilogi C. 
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Slika 55: Prisotnost proda na Savi v bližini naselja Besnica v treh različnih časovnih obdobjih (podlaga: GURS, 

2021e). 

Figure 55: Gravel presence on the Sava river near the Besnica settlement in three different timestamps (basemap: 

Surveying and Mapping Authority of the Republic of Slovenia, 2021e). 
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Za validacijo izdelanih kart deležev pokrovnosti smo uporabili referenčne podatke VHR. Na vseh 

obravnavanih rekah je bil prod zaznan s 95% natančnostjo (Slika 56). 

 

 
Slika 56: Absolutna razlika v prisotnosti razredov pokrovnosti med referenčnimi podatki in kartami deležev 

pokrovnosti za različne reke na podlagi satelitskih posnetkov. 

Figure 56: Absolute difference in the presence of land cover classes between reference data and satellite image-

based land cover fraction maps for different rivers. 

 

8.4.2 Zaznavanje sprememb v prisotnosti proda 

V nadaljevanju smo preverili sposobnost zaznavanja sprememb na izdelanih kartah deležev pokrovnosti. 

Najprej smo proučili zmožnosti preprostega izračuna razlike kart. Primerjali smo karte deležev 

pokrovnosti, izdelane s posnetki Sentinel-2 iz časovnega obdobja treh let, in preverili zaznane 

spremembe z referenčnimi podatki VHR z istih časovnih točk. Pri izbiri posnetkov za primerjavo smo 

se prepričali, da so bili hidrološki pogoji na datume zajema primerljivi. Dnevni srednji pretoki, izmerjeni 

znotraj proučevanega območja na hidrološki postaji Kobarid, so se gibali med 11.6 in 35.9 m3/s 

(Agencija RS za okolje, 2021b). Referenčni podatki so bili v dveh primerih zajeti na isti dan kot vhodni 

satelitski posnetki, le enkrat so bili zajeti z zamikom dveh dni in 0.7 m3/s razlike v dnevnem srednjem 

pretoku. S primerljivostjo hidroloških pogojev smo zagotovili, da so opažene spremembe rečnih prodišč 

posledica poplav, odvzema proda ali drugih izjemnih dogodkov in ne zgolj rezultat spremembe pretoka. 

 

Karte sprememb smo ocenili z vidika občutljivosti (ang. sensitivity), to je zmožnosti zaznavanja 

dejanskih sprememb na terenu, ki smo jih določili z referenčnimi podatki, in natančnosti (ang. 

precision), to je, da so se spremembe, prikazane na kartah sprememb, zgodile v resnici in jih je bilo 

mogoče potrditi z referenčnimi podatki. V oceni občutljivosti smo se osredotočili na območja sprememb 

v obsegu vsaj 400 m2, kar je enako velikosti enega piksla vhodnih satelitskih posnetkov Sentinel-2. Nato 



136 Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

smo za izbrana referenčna območja sprememb preverili vrednosti kart sprememb deležev pokrovnosti. 

Skupno smo opazovali 72 območij odstranitve proda (zmanjšanje deleža proda) in 43 območij odlaganja 

proda (povečanje deleža proda). Tako odstranjevanje kot odlaganje proda je bilo na kartah sprememb 

dobro zaznano (Slika 57). Odlaganje je potekalo v ožjih pasovih, ki pogosto niso dosegli širine celotnega 

piksla, zato so bile vrednosti sprememb na območjih odlaganja nižje od vrednosti sprememb na 

območjih odstranitve. Tu gre lahko za posebnost študijskega območja. 

 

 
Slika 57: Referenčni podatki in karta deležev za spremembe v prisotnosti proda med leti 2007 in 2020 na manjšem 

območju testnega odseka reke Soče (vir podatkov: DRSV, 2021c; GURS, 2016, 2021a, 2021b, 2021e). 

Figure 57: Reference dataset and fraction map of changes in gravel between the years 2017 and 2020 on a subset 

of the study area on the Soča River (data source: Surveying and Mapping Authority of the Republic of Slovenia, 

2016, 2021a, 2021b, 2021e; Slovenian Water Agency, 2021c). 

 

V oceni natančnosti zaznavanja sprememb smo se osredotočili na 62 pikslov, ki niso bili v sosedstvu in 

na katerih je bila zaznana najmanj ± 10% sprememba. Z referenčnimi podatki smo nato preverili, ali je 

na izbranih pikslih res prišlo do spremembe. Potrdili smo skoraj 75% zaznanih sprememb pokrovnosti, 
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pri čemer je pri polovici šlo za spremembo iz proda v vodo. V 10% primerov na referenčnih podatkih 

ni bilo mogoče opaziti nobene spremembe, v 15% pa je bila zaznana napačna sprememba. Pregled 

vrednosti sprememb na območjih s potrjenimi spremembami je pokazal, da so bile vrednosti veliko višje 

kot na območjih z napačno zaznanimi spremembami ali brez vsakršnih sprememb. Vrednosti 

spremembe deležev pokrovnosti, višje od ± 30%, so nakazovale resnično spremembo. 

 

Končno oceno kakovosti preprostih kart sprememb deležev pokrovnosti smo naredili s primerjavo s 

kartami sprememb deležev na podlagi referenčnih podatkov VHR. Referenčne karte sprememb smo 

prevzorčili na prostorsko ločljivost kart sprememb deležev pokrovnosti na podlagi satelitskih posnetkov, 

to je 20 m. Vrednosti pikslov kart deležev pokrovnosti in referenčnih kart smo primerjali na ravni 

celotnega študijskega območja in nato na območjih sprememb, zaznanih na referenčnih podatkih. 

Rezultati so potrdili, da sta karti močno povezani, zlasti na območjih sprememb (Pearsonov r > 0,85, 

p < 0,0001). 

8.4.3 Ocena časovnih vrst podatkov o pokrovnosti za spremljanje prodišč 

Poleg kart sprememb deležev pokrovnosti, izdelanih z izračunom razlike posnetkov, smo preverili, ali 

je mogoče časovne vrste podatkov o prisotnosti razredov pokrovnosti uporabiti za spremljanje prodišč. 

Najprej smo časovno vrsto prisotnosti proda na proučevanem območju na Soči primerjali s podatki o 

vodostaju s hidrološke postaje, ki se nahaja na študijskem območju (Slika 58). Podatkovna niza sta 

statistično značilno negativno povezana (Pearsonov r = −0,64, p < 0,0001), kar kaže na skladnost kart 

deležev pokrovnosti s pričakovanimi procesi na terenu. 
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Slika 58: Prisotnost proda na študijskem območju in vodostaj na merilni postaji Kobarid a) Časovna vrsta 

podatkov. b) Razsevni diagram s črto linearne regresije in koeficientom določanja (vir podatkov: Agencija RS za 

okolje, 2021b).  

Figure 58: Gravel presence in the study area and water level at the Kobarid gauging station. a) Time series of the 

data. b) Scatter plot with the linear regression line and coefficient of determination (data source: Slovenian 

Environment Agency, 2021b). 

 

V nadaljevanju smo preverili, ali je mogoče časovne vrste prisotnosti proda uporabiti za zaznavanje 

sprememb. Osredotočili smo se na dve znani lokaciji odvzema proda, eno na Soči pri naselju Dolje in 
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drugo na Savi pri Kranju. Izrisali smo časovno vrsto prisotnosti proda na manjšem študijskem območju, 

ki je zajemalo mesta odvzema proda v letih 2019 in 2020 (Slika 59). Za izdelavo kart deležev 

pokrovnosti smo uporabili vse razpoložljive posnetke Sentinel-2 z največ 10% oblačnosti na celotnem 

posnetku. 

 

 
Slika 59: Prisotnost proda na študijskem območju Dolje v letih 2019 in 2020. 

Figure 59: Presence of gravel in the Dolje study area in 2019 and 2020. 

 

Prisotnost proda na proučevanih območjih je močno nihala v skladu s spremembami vodostaja. Kljub 

velikim nihanjem smo ugotovili, da zmanjšanje prisotnosti proda za več kot dva standardna odklona pod 

vrednostjo povprečne prisotnosti proda na proučevanem območju pomeni odvzem proda. Na študijskem 

območju Dolje, na primer, je bila povprečna prisotnost proda v letih 2019 in 2020 4 ha s standardnim 

odklonom 1 ha. Zmanjšanje za 2 ha je torej kazalo na odvzem (Slika 60). Enak proces smo opazili v 

Kranju. Časovne vrste prisotnosti proda se torej lahko uporabijo za odkrivanje sprememb nad 

omenjenim velikostnim pragom. 
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Slika 60: Naravno barvni kompoziti Sentinel-2, ki prikazujejo odstranjevanje proda na študijskem območju na 

Soči blizu naselja Dolje in kasnejše oblikovanje novih prodišč (vir podatkov: Modified Copernicus Sentinel data, 

2021). 

Figure 60: Sentinel-2 true colour images showing the removal of gravel from the Soča river at the Dolje study area 

and the subsequent formation of new gravel bars (data source: Modified Copernicus Sentinel data, 2021). 

8.5 Razprava in zaključki 

Uporaba in preverjanje predlagane metode kartiranja prodišč na različnih rekah so potrdili našo prvo 

hipotezo, da je z uporabo SMA mogoče razlikovati prod, površinsko vodo in vegetacijo v rečnih 

ekosistemih z 90% tematsko natančnostjo. Predvsem prod je bil kartiran z zelo visoko natančnostjo, 

medtem ko je bila vegetacija bolj problematična in včasih ni dosegla 90% natančnosti. Ovrednotenje 

zaznavanja sprememb je potrdilo tudi drugo hipotezo, da je mogoče s podpikselskimi kartami 

pokrovnosti spremljati spremembe prodišč, ki so velike vsaj 500 m2. Na obseg sprememb, ki jih je 

mogoče zaznati, vpliva prostorska ločljivost vhodnih satelitskih posnetkov. Pokazali smo, da lahko 

posnetke Sentinel-2 s prostorsko ločljivostjo 20 m uporabimo za zaznavanje sprememb v velikosti 

400 m2, kar je velikost enega piksla vhodnih posnetkov. Z uporabo SMA smo želeli prispevati k novemu 

znanju o uporabi podatkov daljinskega zaznavanja za spremljanje naravnih procesov. Glavni prispevek 

disertacije k znanosti je razvoj novega postopka za kartiranje prodišč in drugih oblik, povezanih z vodo, 

z uporabo prosto dostopnih satelitskih posnetkov. Metodo smo razvili na rečnem odseku, kjer je bilo na 

voljo veliko referenčnih podatkov, s katerimi smo lahko ocenili kakovost rezultatov in tako določili 
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najboljši pristop kartiranja. Proučili smo tudi prenosljivost metode in potrdili, da jo je mogoče uporabiti 

za opazovanje območij, kjer morda ni na voljo toliko pomožnih podatkov. Razširjena uporaba razvitega 

postopka kartiranje bi lahko pripeljala do novih ugotovitev o dinamiki rek in do boljšega upravljanja z 

rečnim okoljem. 

 

Glavne omejitve predlagane metode so povezane z uporabo optičnih satelitskih posnetkov. Oblaki in 

topografske sence onemogočajo opazovanje in spremljanje procesov na površju ter so še posebej 

problematični v gorskih območjih z visokimi strmimi pobočji in pogosto oblačnostjo. Prod je na splošno 

zelo dobro zaznan, po drugi strani pa je zaznavanje vode težavno na območjih brzic in plitvin, kjer lahko 

senzor zazna odboj proda z rečnega dna. Kartiranje vegetacije je problematično, če listje ni v celoti 

razvito in senzor zazna golo površje pod drevesi. Iz značilnosti SMA izhaja, da moramo za obravnavo 

izbrati razrede s kar najbolj različnimi spektralnimi značilnostmi. V nasprotnem primeru je težko 

določiti vpliv posameznih razredov na spektralni signal opazovanega piksla. Pri izboru obravnavanih 

razredov smo zato morali narediti poenostavitve. Z vidika spremljanja prodišč je najhujša poenostavitev, 

da smo v razred prod vključili pozidana območja. Karte prisotnosti proda tako ne razlikujejo med 

prodišči in pozidanimi območji. To težavo smo naslovili z zamejitvijo območja opazovanja na vodna 

zemljišča, kjer je pozidave manj. Vseeno pa so tudi na vodnih zemljiščih posamezna pozidana območja, 

sploh v večjih naseljih. V nadaljnih analizah bi lahko poskusili z ločevanjem proda in pozidanih območij 

z dodatnimi podatki daljinskega zaznavanja, na primer z umetno odprtinskim radarjem (ang. Synthetic 

Aperture Radar, SAR), lahko pa bi tudi v postopku poobdelave karte prodišč maskirali s pomožnimi 

sloji stavb in infrastrukture. Natančnost SMA je odvisna od kakovosti uporabljenih končnih pikslov. 

Težko je izbrati končne piksle, ki natančno predstavljajo spektralne lastnosti zelo raznolikih razredov 

pokrovnosti. Voda ima lahko zelo različen spektralni odzivi glede na sončno bleščanje, površinske 

valove, globino, vsebnost sedimentov, prisotnost mikroorganizmov in raztopljene organske snovi, zato 

jo je težko vedno natančno kartirati s SMA. Ta težava je še bolj pereča pri vegetaciji, ki se na 

opazovanem območju pojavlja v različnih oblikah. Čeprav so oblike spektralnih podpisov različnih 

vegetacijskih oblik podobne, obstajajo razlike med posameznimi rastlinskimi vrstami. Te razlike lahko 

povzročijo napake, če za modeliranje vseh vegetacijskih oblik uporabimo en sam končni piksel. V 

prihodnjih raziskavah bi zato lahko proučili možnost uporabe več različnih modelov za zaznavanje vode 

in vegetacije na podlagi različnih končnih pikslov. Za nadaljnje kartiranje bi nato izbrali model z 

najmanjšo napako. Spremljanje prodišč bi lahko dopolnili tudi s SAR, ki lahko prodre skozi oblake in 

je znan po uspešnem zaznavanju vode. Dodatne raziskave bi lahko opravili tudi s kartiranjem dodatnih 

rečnih sistemov s predlagano podpikselsko metodo. Z razvitim postopkom bi lahko kartirali tudi druge 

razrede pokrovnosti in pojave, kot so krčenje gozdov in urbanizacija. Veliko število prosto dostopnih 

satelitskih posnetkov s kratkim časom ponovnega obiska omogočajo spremljanje različnih procesov in 

sprejemanje bolj utemeljenih odločitev. 
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 : Gravel Fraction Maps of the Soča River 

 
Figure A-1: Sections of the gravel presence maps on the Soča river in Slovenia (data source: Natural Earth, 2020; 

Slovenian Water Agency, 2021b; Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021b). 

Slika A-1: Sekcije kart prisotnosti proda na Soči v Sloveniji (vir podatkov: Natural Earth, 2020; DRSV, 2021b; 

GURS, 2016, 2021b). 
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Figure A-2: Gravel presence on the Soča river in Slovenia in three different timestamps based on Landsat images. 

Slika A-2: Prisotnost proda na Soči v Sloveniji v treh različnih časovnih obdobjih na podlagi posnetkov Landsat. 
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Figure A-3: Gravel presence on the Soča river on section 1 in three different timestamps based on Landsat images. 

Slika A-3: Prisotnost proda na Soči na sekciji številka 1 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-4: Gravel presence on the Soča river on section 2 in three different timestamps based on Landsat images. 

Slika A-4: Prisotnost proda na Soči na sekciji številka 2 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-5: Gravel presence on the Soča river on section 3 in three different timestamps based on Landsat images. 

Slika A-5: Prisotnost proda na Soči na sekciji številka 3 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-6: Gravel presence on the Soča river on section 4 in three different timestamps based on Landsat images. 

Slika A-6: Prisotnost proda na Soči na sekciji številka 4 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 

 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing.  A-7 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 
Figure A-7: Gravel presence on the Soča river on section 5 in three different timestamps based on Landsat images. 

Slika A-7: Prisotnost proda na Soči na sekciji številka 5 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-8: Gravel presence on the Soča river on section 6 in three different timestamps based on Landsat images. 

Slika A-8: Prisotnost proda na Soči na sekciji številka 6 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-9: Gravel presence on the Soča river on section 7 in three different timestamps based on Landsat images. 

Slika A-9: Prisotnost proda na Soči na sekciji številka 7 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-10: Gravel presence on the Soča river on section 8 in three different timestamps based on Landsat images. 

Slika A-10: Prisotnost proda na Soči na sekciji številka 8 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-11: Gravel presence on the Soča river on section 9 in three different timestamps based on Landsat images. 

Slika A-11: Prisotnost proda na Soči na sekciji številka 9 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-12: Gravel presence on the Soča river on section 10 in three different timestamps based on Landsat 

images. 

Slika A-12: Prisotnost proda na Soči na sekciji številka 10 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-13: Gravel presence on the Soča river on section 11 in three different timestamps based on Landsat 

images. 

Slika A-13: Prisotnost proda na Soči na sekciji številka 11 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-14: Gravel presence on the Soča river on section 12 in three different timestamps based on Landsat 

images. 

Slika A-14: Prisotnost proda na Soči na sekciji številka 12 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-15: Gravel presence on the Soča river on section 13 in three different timestamps based on Landsat 

images. 

Slika A-15: Prisotnost proda na Soči na sekciji številka 13 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-16: Gravel presence on the Soča river on section 14 in three different timestamps based on Landsat 

images. 

Slika A-16: Prisotnost proda na Soči na sekciji številka 14 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-17: Gravel presence on the Soča river on section 15 in three different timestamps based on Landsat 

images. 

Slika A-17: Prisotnost proda na Soči na sekciji številka 15 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-18: Gravel presence on the Soča river on section 16 in three different timestamps based on Landsat 

images. 

Slika A-18: Prisotnost proda na Soči na sekciji številka 16 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing.  A-19 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 
Figure A-19: Gravel presence on the Soča river on section 17 in three different timestamps based on Landsat 

images. 

Slika A-19: Prisotnost proda na Soči na sekciji številka 17 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-20: Gravel presence on the Soča river on section 18 in three different timestamps based on Landsat 

images. 

Slika A-20: Prisotnost proda na Soči na sekciji številka 18 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-21: Gravel presence on the Soča river on section 19 in three different timestamps based on Landsat 

images. 

Slika A-21: Prisotnost proda na Soči na sekciji številka 19 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-22: Gravel presence on the Soča river on section 20 in three different timestamps based on Landsat 

images. 

Slika A-22: Prisotnost proda na Soči na sekciji številka 20 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing.  A-23 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 
Figure A-23: Gravel presence on the Soča river on section 21 in three different timestamps based on Landsat 

images. 

Slika A-23: Prisotnost proda na Soči na sekciji številka 21 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-24: Gravel presence on the Soča river on section 22 in three different timestamps based on Landsat 

images. 

Slika A-24: Prisotnost proda na Soči na sekciji številka 22 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-25: Gravel presence on the Soča river on section 23 in three different timestamps based on Landsat 

images (basemap: Surveying and Mapping Authority of the Republic of Slovenia, 2021e). 

Slika A-25: Prisotnost proda na Soči na sekciji številka 23 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat (podlaga: GURS, 2021e). 
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Figure A-26: Gravel presence on the Soča river on section 24 in three different timestamps based on Landsat 

images. 

Slika A-26: Prisotnost proda na Soči na sekciji številka 24 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-27: Gravel presence on the Soča river on section 25 in three different timestamps based on Landsat 

images. 

Slika A-27: Prisotnost proda na Soči na sekciji številka 25 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-28: Gravel presence on the Soča river on section 26 in three different timestamps based on Landsat 

images. 

Slika A-28: Prisotnost proda na Soči na sekciji številka 26 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure A-29: Gravel presence on the Soča river on section 27 in three different timestamps based on Landsat 

images. 

Slika A-29: Prisotnost proda na Soči na sekciji številka 27 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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 : Gravel Fraction Maps of the Sava River 

 
Figure B-1: Sections of the gravel presence maps on the upper Sava river between the spring and the Medvode 

settlement (data source: Natural Earth, 2020; Slovenian Water Agency, 2021b; Surveying and Mapping Authority 

of the Republic of Slovenia, 2016, 2021b). 

Slika B-1: Sekcije kart prisotnosti proda na Zgornji Savi med izvirom in Medvodami (vir podatkov: Natural Earth, 

2020; DRSV, 2021b; GURS, 2016, 2021b). 
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Figure B-2: Gravel presence on the upper Sava river between the spring and the Medvode settlement in three 

different timestamps based on Landsat images. 

Slika B-2: Prisotnost proda na Zgornji Savi med izvirom in Medvodami v treh različnih časovnih obdobjih na 

podlagi posnetkov Landsat. 
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Figure B-3: Gravel presence on the Sava river on section 1 in three different timestamps based on Landsat images. 

Slika B-3: Prisotnost proda na Savi na sekciji številka 1 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-4: Gravel presence on the Sava river on section 2 in three different timestamps based on Landsat images. 

Slika B-4: Prisotnost proda na Savi na sekciji številka 2 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-5: Gravel presence on the Sava river on section 3 in three different timestamps based on Landsat images. 

Slika B-5: Prisotnost proda na Savi na sekciji številka 3 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-6: Gravel presence on the Sava river on section 4 in three different timestamps based on Landsat images. 

Slika B-6: Prisotnost proda na Savi na sekciji številka 4 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-7: Gravel presence on the Sava river on section 5 in three different timestamps based on Landsat images. 

Slika B-7: Prisotnost proda na Savi na sekciji številka 5 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 



B-8 Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing. 
  PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 
Figure B-8: Gravel presence on the Sava river on section 6 in three different timestamps based on Landsat images. 

Slika B-8: Prisotnost proda na Savi na sekciji številka 6 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-9: Gravel presence on the Sava river on section 7 in three different timestamps based on Landsat images. 

Slika B-9: Prisotnost proda na Savi na sekciji številka 7 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-10: Gravel presence on the Sava river on section 8 in three different timestamps based on Landsat images. 

Slika B-10: Prisotnost proda na Savi na sekciji številka 8 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-11: Gravel presence on the Sava river on section 9 in three different timestamps based on Landsat images. 

Slika B-11: Prisotnost proda na Savi na sekciji številka 9 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-12: Gravel presence on the Sava river on section 10 in three different timestamps based on Landsat 

images. 

Slika B-12: Prisotnost proda na Savi na sekciji številka 10 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-13: Gravel presence on the Sava river on section 11 in three different timestamps based on Landsat 

images. 

Slika B-13: Prisotnost proda na Savi na sekciji številka 11 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-14: Gravel presence on the Sava river on section 12 in three different timestamps based on Landsat 

images. 

Slika B-14: Prisotnost proda na Savi na sekciji številka 12 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-15: Gravel presence on the Sava river on section 13 in three different timestamps based on Landsat 

images. 

Slika B-15: Prisotnost proda na Savi na sekciji številka 13 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-16: Gravel presence on the Sava river on section 14 in three different timestamps based on Landsat 

images. 

Slika B-16: Prisotnost proda na Savi na sekciji številka 14 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-17: Gravel presence on the Sava river on section 15 in three different timestamps based on Landsat 

images. 

Slika B-17: Prisotnost proda na Savi na sekciji številka 15 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-18: Gravel presence on the Sava river on section 16 in three different timestamps based on Landsat 

images. 

Slika B-18: Prisotnost proda na Savi na sekciji številka 16 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-19: Gravel presence on the Sava river on section 17 in three different timestamps based on Landsat 

images. 

Slika B-19: Prisotnost proda na Savi na sekciji številka 17 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-20: Gravel presence on the Sava river on section 18 in three different timestamps based on Landsat 

images. 

Slika B-20: Prisotnost proda na Savi na sekciji številka 18 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-21: Gravel presence on the Sava river on section 19 in three different timestamps based on Landsat 

images. 

Slika B-21: Prisotnost proda na Savi na sekciji številka 19 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-22: Gravel presence on the Sava river on section 20 in three different timestamps based on Landsat 

images. 

Slika B-22: Prisotnost proda na Savi na sekciji številka 20 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-23: Gravel presence on the Sava river on section 21 in three different timestamps based on Landsat 

images. 

Slika B-23: Prisotnost proda na Savi na sekciji številka 21 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-24: Gravel presence on the Sava river on section 22 in three different timestamps based on Landsat 

images. 

Slika B-24: Prisotnost proda na Savi na sekciji številka 22 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-25: Gravel presence on the Sava river on section 23 in three different timestamps based on Landsat 

images. 

Slika B-25: Prisotnost proda na Savi na sekciji številka 23 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-26: Gravel presence on the Sava river on section 24 in three different timestamps based on Landsat 

images. 

Slika B-26: Prisotnost proda na Savi na sekciji številka 24 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-27: Gravel presence on the Sava river on section 25 in three different timestamps based on Landsat 

images. 

Slika B-27: Prisotnost proda na Savi na sekciji številka 25 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-28: Gravel presence on the Sava river on section 26 in three different timestamps based on Landsat 

images. 

Slika B-28: Prisotnost proda na Savi na sekciji številka 26 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-29: Gravel presence on the Sava river on section 27 in three different timestamps based on Landsat 

images. 

Slika B-29: Prisotnost proda na Savi na sekciji številka 27 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-30: Gravel presence on the Sava river on section 28 in three different timestamps based on Landsat 

images. 

Slika B-30: Prisotnost proda na Savi na sekciji številka 28 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-31: Gravel presence on the Sava river on section 29 in three different timestamps based on Landsat 

images. 

Slika B-31: Prisotnost proda na Savi na sekciji številka 29 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-32: Gravel presence on the Sava river on section 30 in three different timestamps based on Landsat 

images. 

Slika B-32: Prisotnost proda na Savi na sekciji številka 30 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-33: Gravel presence on the Sava river on section 31 in three different timestamps based on Landsat 

images. 

Slika B-33: Prisotnost proda na Savi na sekciji številka 31 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-34: Gravel presence on the Sava river on section 32 in three different timestamps based on Landsat 

images. 

Slika B-34: Prisotnost proda na Savi na sekciji številka 32 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-35: Gravel presence on the Sava river on section 33 in three different timestamps based on Landsat 

images. 

Slika B-35: Prisotnost proda na Savi na sekciji številka 33 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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Figure B-36: Gravel presence on the Sava river on section 34 in three different timestamps based on Landsat 

images. 

Slika B-36: Prisotnost proda na Savi na sekciji številka 34 v treh različnih časovnih obdobjih na podlagi posnetkov 

Landsat. 
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 : Gravel Fraction Maps of the Vjosa River 

 
Figure C-1: Sections of the gravel presence maps on the Vjosa river between the Memaliaj settlement and the 

confluence with the Shushica river (data source: Natural Earth, 2020; Bing, 2021). 

Slika C-1: Sekcije kart prisotnosti proda na reki Vjosi med naseljem Memaliaj in sotočjem z reko Šušico (vir 

podatkov: Natural Earth, 2020; Bing, 2021). 
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Figure C-2: Gravel presence on the Vjosa river between the Memaliaj settlement and the confluence with the 

Shushica river in three different timestamps based on Landsat images. 

Slika C-2: Prisotnost proda na reki Vjosi med naseljem Memaliaj in sotočjem z reko Šušico v treh različnih 

časovnih obdobjih na podlagi posnetkov Landsat. 
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Figure C-3: Gravel presence on the Vjosa river on section 1 in three different timestamps based on Landsat images. 

Slika C-3: Prisotnost proda na reki Vjosi na sekciji številka 1 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-4: Gravel presence on the Vjosa river on section 2 in three different timestamps based on Landsat images. 

Slika C-4: Prisotnost proda na reki Vjosi na sekciji številka 2 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-5: Gravel presence on the Vjosa river on section 3 in three different timestamps based on Landsat images. 

Slika C-5: Prisotnost proda na reki Vjosi na sekciji številka 3 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-6: Gravel presence on the Vjosa river on section 4 in three different timestamps based on Landsat images. 

Slika C-6: Prisotnost proda na reki Vjosi na sekciji številka 4 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-7: Gravel presence on the Vjosa river on section 5 in three different timestamps based on Landsat images. 

Slika C-7: Prisotnost proda na reki Vjosi na sekciji številka 5 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-8: Gravel presence on the Vjosa river on section 6 in three different timestamps based on Landsat images. 

Slika C-8: Prisotnost proda na reki Vjosi na sekciji številka 6 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-9: Gravel presence on the Vjosa river on section 7 in three different timestamps based on Landsat images. 

Slika C-9: Prisotnost proda na reki Vjosi na sekciji številka 7 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-10: Gravel presence on the Vjosa river on section 8 in three different timestamps based on Landsat 

images. 

Slika C-10: Prisotnost proda na reki Vjosi na sekciji številka 8 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-11: Gravel presence on the Vjosa river on section 9 in three different timestamps based on Landsat 

images. 

Slika C-11: Prisotnost proda na reki Vjosi na sekciji številka 9 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-12: Gravel presence on the Vjosa river on section 10 in three different timestamps based on Landsat 

images. 

Slika C-12: Prisotnost proda na reki Vjosi na sekciji številka 10 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-13: Gravel presence on the Vjosa river on section 11 in three different timestamps based on Landsat 

images. 

Slika C-13: Prisotnost proda na reki Vjosi na sekciji številka 11 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-14: Gravel presence on the Vjosa river on section 12 in three different timestamps based on Landsat 

images. 

Slika C-14: Prisotnost proda na reki Vjosi na sekciji številka 12 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 



Stančič, L. 2022. Monitoring Changes of Fluvial Gravel Bars with Remote Sensing.  C-15 
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Environmental Protection. 

 

 
Figure C-15: Gravel presence on the Vjosa river on section 13 in three different timestamps based on Landsat 

images. 

Slika C-15: Prisotnost proda na reki Vjosi na sekciji številka 13 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-16: Gravel presence on the Vjosa river on section 14 in three different timestamps based on Landsat 

images. 

Slika C-16: Prisotnost proda na reki Vjosi na sekciji številka 14 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-17: Gravel presence on the Vjosa river on section 15 in three different timestamps based on Landsat 

images. 

Slika C-17: Prisotnost proda na reki Vjosi na sekciji številka 15 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-18: Gravel presence on the Vjosa river on section 16 in three different timestamps based on Landsat 

images. 

Slika C-18: Prisotnost proda na reki Vjosi na sekciji številka 16 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-19: Gravel presence on the Vjosa river on section 17 in three different timestamps based on Landsat 

images. 

Slika C-19: Prisotnost proda na reki Vjosi na sekciji številka 17 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-20: Gravel presence on the Vjosa river on section 18 in three different timestamps based on Landsat 

images. 

Slika C-20: Prisotnost proda na reki Vjosi na sekciji številka 18 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-21: Gravel presence on the Vjosa river on section 19 in three different timestamps based on Landsat 

images. 

Slika C-21: Prisotnost proda na reki Vjosi na sekciji številka 19 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 
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Figure C-22: Gravel presence on the Vjosa river on section 20 in three different timestamps based on Landsat 

images. 

Slika C-22: Prisotnost proda na reki Vjosi na sekciji številka 20 v treh različnih časovnih obdobjih na podlagi 

posnetkov Landsat. 


