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Abstract. We study evolution equations on networks that can be modeled by means of hyperbolic systems.
Weextendour previousfindings inKramar et al. (Linear hyperbolic systemsonnetworks. arXiv:2003.08281,
2020) by discussing well-posedness under rather general transmission conditions that might be either
of stationary or dynamic type—or a combination of both. Our results rely upon semigroup theory and
elementary linear algebra. We also discuss qualitative properties of solutions.

1. Introduction

The present paper represents the second part of our investigations on linear hyper-
bolic systems. Given a metric graph G, i.e., a graph G = (V,E) each of whose edges
e ∈ E is identified with an interval (0, �e) ⊂ R, we are going to study evolution
equations of the form

u̇e(t, x) = Me(x)u′
e(t, x) + Ne(x)ue(t, x), t ≥ 0, x ∈ (0, �e), e ∈ E, (1.1)

where ue is a vector-valued function of size ke ∈ N1 := {1, 2, 3, . . .}, and Me and Ne

arematrix-valued functions of size ke×ke. Hence, each of these equations is supported
on an edge: they are going to be coupled by means of suitable transmission conditions
in the vertices. In [28], we have proposed a parametrization of such conditions that
bears some similarity to the boundary conditions for scalar-valued, multi-dimensional
transport equations studied in [31]. The goal of this paper is to extend it to general
conditions that may be either of stationary, like in [28]; or of dynamic type.
In the case of systems of parabolic equations, dynamic boundary conditions have

been studied at least since [42] and classically interpreted as conditions of Wentzell
type arising in the theory of stochastic processes, see [39] and references therein. For
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hyperbolic systems, however, dynamic boundary condition has been discussed far less
frequently in the literature. Specific classes of problems arising in appliedmathematics
have been investigated in [10,11,16,19,47] (system of first-order problems) and [14,
15,23,24,36] (systems of strings and/or beams with point masses at the junctions). At
a more abstract level, semigroup approach combined with boundary control systems
was used in [18,48] to consider flows in networks with dynamic ramification nodes
and infinite-dimensional port-Hamiltonian systems coupled with finite-dimensional
systems that impose dynamical feedback to the boundary were studied in [7,32,46].
In this paper, we propose a unified formalism to capture hyperbolic systems with

hybrid transmission conditions, including the extreme cases of purely stationary or
purely dynamic conditions; in fact, we can also allow for conditions that are dynamic
only at some vertices and on some of the unknown’s components; as we will see, this
rather general setting is motivated by applications and leads to introducing a block
operator matrix

A :=
(A 0
B C

)

with coupled (i.e., nondiagonal) domain on a suitable direct sumofHilbert spaces:A is
a first-order differential operator encoding the dynamics driving (1.1), while operators
B, C model (possibly nonlocal) damping phenomena in the vertices.

Just like in [28], our main assumptions involve the existence of a Friedrichs sym-
metrizer, an idea that goes back to [20]. The importance of symmetrizable systems
was recognized by many authors (see for instance [21,22] and [34, Chap. 2]) since it
leads to well-posedness and stability results of various equations from mathematical
physics, like Maxwell’s equations of electromagnetism, the wave equation, the Euler
equations of compressible gas dynamics, the shallow water wave equations (see be-
low for other examples). The use of a symmetrizer corresponds to an energy space
re-norming. In comparison with the port-Hamiltonian approach, we have many op-
tions for defining the new scalar product. At a first glance, this might seem physical
incorrect, since the associated norm does not necessary relate to the energy of the sys-
tem. However, we have more flexibility in the choice of the boundary conditions and
those leading to the well-posedness (and especially to contractivity) are a fingerprint
of a correct modeling. We are going to show that unlike in the canonical setting con-
sidered in the literature, however, the Friedrichs symmetrizer of a hyperbolic system
with dynamic boundary condition is an operator matrix, with additional terms that
control the boundary space—a subspace of functions supported on a graph’s vertices,
in the case most relevant for us. Note, finally, that this approach allows to directly
express the boundary conditions in terms of the physical variables, which seems not
always to be the case if the system is transformed into a characteristic form via the
use of Riemann coordinates.
It is known from the theory of parabolic andwave equations with dynamic boundary

conditions that boundary operators of higher order are useful to model close feedbacks
that may stabilize the system. The role of the operator that couples the hyperbolic
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evolutionwith the boundary dynamics—B, in the notation above—is evenmore central
in the present context: indeed, we show that the dimensions of its range and null space
directly impacts on the maximality of A, and hence on the well-posedness of the
associated Cauchy problem, see our main Theorem 3.3; backward well-posedness
as well as energy conservation or decay properties can be characterized in terms of
boundary conditions, too. These results, presented in Sect. 3, contain ourmain findings
from [28] as special cases; they can be regarded as a parametrization of infinitely many
realizations enjoying particularly good properties.
In Sect. 4, we then discuss qualitative properties enjoyed by solutions of our hy-

perbolic systems: in particular, we consider two relevant order intervals of the Hilbert
space and discuss their invariance under the semigroup that governs the system by
presenting sufficient (and, sometimes, necessary) conditions on the boundary condi-
tions.
In Sect. 5, we revisit some known hyperbolic-type equations with dynamic con-

ditions, including transport equations [48], a second sound model [45], and a 1D
Maxwell system [10]. We also consider Dirac equations on networks, for which a
parametrization of infinitely many realizations governed by a unitary group (resp.,
contractive semigroup) was first studied in [12] (resp., [28]); we show that infinitely
many further relevant realizations naturally arise by allowing for dynamic conditions.
We furthermore study qualitative properties of solutions of these equations by apply-

ing our abstract theory. It turns out that the above mentioned conditions for invariance
are rather restrictive: while real-valued initial data give rise to real-valued solutions
in most applications, we see that positivity or a priori estimates in ∞-norm for the
solutions can be seldom observed.

2. General setting

We are going to collect different sets of assumptions that we are going to impose
in the following; roughly speaking, they are of combinatorial, analytic, and operator
theoretical nature, respectively.

Assumption 2.1. G = (V,E) is a nonempty, finite combinatorial graph, (ke)e∈E is
a family of positive integers and (�e)e∈E is a family of positive numbers.

In the following, we adopt the notation

k :=
∑
e∈E

ke and kv :=
∑
e∈Ev

ke,

where Ev is the set of all edges incident in v. Notice that
∑
v∈V

kv = 2k, (2.1)

by the Handshaking Lemma.
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We rakishly turn G into a metric graph (or network) G by identifying each e ∈ E
with an interval [0, �e] ⊂ R; a more precise definition can be found in [37].We further
impose standard assumptions on the coefficient matrices M, N that appear in (1.1);
additionally, we require the existence of a Friedrichs symmetrizer Q. 1

Assumption 2.2. For each e ∈ E, Me, Ne : [0, �e] → Mke(C) are mappings such
that the following hold.

(1) [0, �e] � x 	→ Me(x) ∈ Mke(C) is Lipschitz continuous; and Me(x) is invert-
ible for each x ∈ [0, �e].

(2) [0, �e] � x 	→ Ne(x) ∈ Mke(C) is of class L∞.
(3) There exists a Lipschitz continuous mapping [0, �e] � x 	→ Qe(x) ∈ Mke(C)

such that
(i) Qe(x) and Qe(x)Me(x) are Hermitian for all x ∈ [0, �e] and
(ii) Qe(·) is uniformly positive definite, i.e., there exists q > 0 such that

Qe(x)ξ · ξ̄ ≥ q‖ξ‖2 for all ξ ∈ C
ke and x ∈ [0, �e].

Assumption 2.2 is identical with [28, Assumptions 2.1].
We introduce for each v ∈ V the trace operator γv : ⊕e∈E H1(0, �e)ke → C

kv

defined by

γv(u) := (ue(v))e∈Ev , v ∈ V,

and the kv × kv block-diagonal matrix Tv with ke × ke diagonal blocks

Tv := diag (Qe(v)Me(v)ιve)e∈Ev , v ∈ V, (2.2)

where we recall that the |V| × |E| (signed) incidence matrix I = (ιve) of the graphG
is defined by

I := I+ − I− (2.3)

with I+ = (ι+ve) and I− = (ι−ve) given by

ι+ve :=
{
1 if v is terminal endpoint of e,

0 otherwise,
ι−ve :=

{
1 if v is initial endpoint of e,

0 otherwise.

Unlike in our earlier work [28], our aim is to develop a setting that will eventually
allow us to impose dynamic boundary conditions on a subset of the vertex set V. Ideas
that go back to [1,3,6] suggest to study the relevant evolution equation as a Cauchy
problem on a larger Hilbert space. The necessary formalism can be introduced as
follows.

Assumption 2.3. For each v ∈ V, the following holds.

(1) Y (d)
v ⊂ Yv are subspaces of Ckv ;

1Here and in the following, we denote by Mn,m (K) the space of all n × m-matrices on the field K; and
Mn(K) := Mn,n(K).
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(2) Bv : Yv → Y (d)
v is a linear operator;

(3) Cv is a linear operator on Y (d)
v ;

(4) Qv is a Hermitian and positive definite operator on Y (d)
v .

We stress that the assumptions on Qe and Qv are structurally different. While,
given a system of differential equations, we can only study it by the means of the
theory presented in this paper if we are able to find suitable Friedrich symmetrizers
Qe leading to a Hermitian product QeMe, in the following we are free to take Qv

as we wish. The “lazy” choice of Qv = I is always allowed, but the main results in
Sect. 3 show that it pays off to pick Qv tailored to enforce energy conservation or
decay.
With these objects, we set

L2(G) :=
⊕
e∈E

L2(0, �e)
ke and Y (d) :=

⊕
v∈V

Y (d)
v

and introduce the Hilbert space

L2
d(G) := L2(G) ⊕ Y (d),

equipped with the inner product

((
u
x

)
,

(
v

y

))
d

:=
∑
e∈E

∫ �e

0
Qe(x)ue(x) · ve(x) dx +

∑
v∈V

Qvxv · ȳv,

u, v ∈ L2(G), x, y ∈ Y (d),

(2.4)

which is equivalent to the canonical one. This is the function space setup we are going
to use to deal with dynamic boundary conditions.
We stress that we are not assuming Bv to be surjective, hence Ran Bv does not need

to agree with Y (d)
v . Accordingly, we split up Y (d)

v as

Y (d)
v = Ran Bv ⊕ Ker B∗

v , (2.5)

where the sum is orthogonal with respect to the inner product of Y (d)
v induced by the

Euclidean inner product ofCkv . We shall denote by P(d)
v (resp., P(d,0)

v ) the orthogonal
projector of Ckv onto Y (d)

v (resp. of Y (d)
v onto Ker B∗

v ), of course with respect to said
inner product. In the same spirit, ifU is a vector space included intoCkv (resp. Yv), we
denote by U⊥ (resp. U⊥y ) its orthogonal complement in C

kv (resp. Yv) with respect
to said inner product.

3. Well-posedness of systems with dynamic vertex conditions

Inspired by the discussion in [10, § 8.2], where time-dependent transmission con-
ditions for the 1DMaxwell’s equation are derived by methods of asymptotic analysis,
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we are going to introduce an abstract framework in order to investigate well-posedness
of (1.1) under general transmission conditions of dynamic type.

We first introduce the linear and continuous operators A and B from

Dmax :=
⊕
e∈E

H1(0, �e)
ke

to L2(G) and Y (d)
v , respectively, by

(Au)e := Meu′
e + Neue, e ∈ E,

(Bu)v := Bvγv(u), v ∈ V,

as well as the operator C on Y (d) defined by

(Cx)v := Cvxv, v ∈ V,

and study the operator

A :=
(A 0
B C

)
, (3.1)

with domain

D(A) :=
{(

u
x

)
∈ Dmax ⊕ Y (d) : γv(u) ∈ Yv and xv = P(d)

v γv(u) for all v ∈ V
}

.

(3.2)

The present setting is a strict generalization of the context discussed in our previous
investigation [28], where for all v ∈ V we take Y (d)

v = Ker B∗
v = {0}, Ker Bv = Yv.

In our main well-posedness results there—[28, Thm. 3.7 and Thm. 4.1]—we had
to assume each Yv to be a subspace of the null or nonpositive isotropic cone of the
quadratic form

qv(ξ) := Tvξ · ξ̄ , ξ ∈ C
kv , (3.3)

i.e., qv(ξ) to be identically zero or nonpositive for all ξ ∈ Yv and all v ∈ V (see
[28, App. C] for more details), in order to control the boundary terms that arise from
integration by parts when checking dissipativity of the relevant operator A. In the
present context, these conditions have to be adapted. More precisely, the definition of
A and computations analogous to those at the beginning of [28, §3] show that for any
u := (ux) ∈ D(A),

� (Au,u)d = �
∑
e∈E

∫ �e

0
(QeNeue · ūe) dx − 1

2

∑
e∈E

∫ �e

0
(QeMe)

′ ue · ūe dx

+ 1

2

∑
v∈V

Tvγv(u) · γv(ū)

+ �
∑
v∈V

(
Qv

(
Bv + CvP(d)

v

)
γv(u) · P(d)

v γv(ū)
)

.

(3.4)
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Rearranging the terms and using the fact that

QvBvγv(u) · P(d)
v γv(ū) = P(d)

v QvBvγv(u) · γv(ū) = QvBvγv(u) · γv(ū), (3.5)

since Qv maps to Y (d), we obtain

� (Au,u)d = 1

2

∑
e∈E

∫ �e

0

(
QeNe + N∗

e Qe − (QeMe
)′

)ue · ūe dx

+ 1

2

∑
v∈V

(QvCv + C∗
v Qv)xv · x̄v + 1

2

∑
v∈V

(Tv + QvBv + B∗
v Qv)γv(u) · γv(ū).

(3.6)

We hence have two boundary terms: in Y (d)
v and in the whole Yv, respectively.

As in [28, §3], the maximality property of ±A relies on a basis property of some
specific vectors of Ck . We first need to introduce some notations: we write Iv :=
{1, 2, . . . , dim Y ⊥

v }, J (R)
v := {1, 2, . . . , dim Ran Bv}, J (K )

v := {1, 2, . . . , dimKer B∗
v }

and fix bases {w(v,i)}i∈Iv , {y(v, j)}
j∈J (R)

v
, {w(v,l)

K B∗}l∈J (K )
v

of the subspaces Y ⊥
v , Ran Bv,

and Ker B∗
v , respectively. Furthermore, let w(v, j)

R B∗ := B∗
v y

(v, j), j ∈ J (R)
v . Note that

span{w(v, j)
R B∗ }

j∈J (R)
v

= Ran B∗
v ⊂ Yv (3.7)

and dim Ran Bv = dim Ran B∗
v . Finally, we introduce the space

Zv := Y ⊥
v ⊕ (Ran B∗

v + Ker B∗
v
) ⊂ C

kv (3.8)

which is spanned by the set of vectors

Wv := {w(v,i) : i ∈ Iv} ∪ {w(v, j)
R B∗ : j ∈ J (R)

v } ∪ {w(v,l)
K B∗ : l ∈ J (K )

v }. (3.9)

The choice of this space is guided by the proof of the maximality of the operator A,
see the proof of Theorem 3.3.

Any element w ∈ C
kv can be identified with a vector (we)e∈Ev and we denote by

w̃ ∈ C
k its extension to the whole set of edges, namely,

w̃e :=
{
we, if e ∈ Ev,

0, else.
(3.10)

In the same way, each coordinate of an element of a subset U ⊂ C
kv corresponds

to some e ∈ Ev and, as above, we can extend these sets to C
k by setting a 0 in

each coordinate corresponding to e whenever e /∈ Ev. We denote these extensions by
Ũ ⊂ C

k . Using this notation, we will assume that

the set W̃ :=
⋃
v∈V

W̃v is a basis of C
k . (3.11)



3646 M. K. Fijavž et al. J. Evol. Equ.

Remark 3.1. Let us mention two special cases when condition (3.11) can be reformu-
lated in terms of dimension equation.
(1) First, note that in the case of only stationary boundary conditions, i.e., when
Y (d)
v = {0} and hence Ran Bv = Ran B∗

v = Ker B∗
v = {0} and Ker Bv = Yv—we have

J (R)
v = J (K )

v = ∅ and Zv = Y ⊥
v . By [28, Lemma 3.5], the set W̃ = {w̃(v,i)}i∈Iv,v∈V

is a basis of Ck if and only if

dim
∑
v∈V

Ỹ ⊥
v = k =

∑
v∈V

dim Yv.

(2) Let us nowmore generally consider the case of dynamic boundary conditions with
surjective operator Bv. Then, Zv reduces to the direct sum

Zv := Y ⊥
v ⊕ Ran B∗

v (3.12)

and J (K )
v = ∅. In this case, W̃v is a basis of Z̃v and, by the same reasoning as in the

proof of [28, Lemma 3.5] we see that (3.11) holds if and only if

dim
∑
v∈V

Z̃v = k =
∑
v∈V

dim Z⊥
v .

Observe that Z⊥
v = Yv ∩ (Ran B∗

v )⊥ = Ker Bv. By the surjectivity of Bv, we further
have dimKer Bv = dim Yv − dim Y (d)

v and thus (3.11) is equivalent to

dim
∑
v∈V

Z̃v = k =
∑
v∈V

(
dim Yv − dim Y (d)

v

)
. (3.13)

Remark 3.2. Let us reverse our perspective and assume that we are interested in de-
riving new well-posed systems from known ones, rather than modeling problems with
dynamic conditions stemming from applications; this is similar to the goal of extension
theory in mathematical physics, where one is interested of describing as many realiza-
tions of a given Hamiltonian as possible, subject to the condition that such realizations
are still governing a well-behaved PDE. The condition in (3.13) shows that, in spite of
superficial similarities, the present situation is different from that discussed in [23] in
the context of parabolic equations. Roughly speaking, the findings in [23] show that,
as soon a choice of a family of spaces Yv, v ∈ V, define boundary conditions leading
to well-posedness, each choice of subspaces Y (d)

v of Yv, v ∈ V, will lead to a new
well-posed system. As a matter of fact, modifying a well-posed hyperbolic system in
order to allow for dynamic vertex conditions is a delicate issue: we will see in Sect. 5
that, starting from any well-posed hyperbolic system (say, taken from [28, § 5]) driven
by the operator A with stationary conditions

γv(u) ∈ Y (0)
v

encoded in a space Y (0)
v , switching to a dynamic setting requires to carefully enlarge

these spaces to find suitable Yv and at the same time allow for nontrivial Y (d)
v , if we

want (3.13) to be satisfied.
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Next results extend [28, Thm 3.7 and Thm. 4.1] to the case where both dynamic
and stationary conditions are allowed. We adopt the terminology of [28, Appendix C].
Extending the statement to the case of λ �= 0 might look superfluous, but it will prove
useful when discussing concrete systems of PDEs, cf. Sect. 5.3.

Theorem 3.3. For all v ∈ V, let (3.11) hold and let moreover Yv be a subspace of the
nonpositive isotropic cone of the quadratic form associated with Tv+QvBv+B∗

v Qv−
λP(d)

v QvP(d)
v for some λ ≥ 0. Then, A generates a strongly continuous semigroup on

L2
d(G).

Proof. First of all, let us observe thatA is densely defined by [41, Lemma 5.6]. As the
operator (u, x)� 	→ (Nu, Cx + P(d,0)

v )� is a bounded perturbation of A, the claim
will follow if we can prove that the operator matrix

A0 :=
(

M d
dx 0
B −P(d,0)

)
, D(A0) := D(A),

with (P(d,0)x)v = P(d,0)
v xv, that corresponds to A with the choice N = 0 and

C = −P(d,0), is m-quasi-dissipative.
Formula (3.6) and the assumptions on matrices Qe and Me show that dissipativity

holds for A0 − λI on D(A); let us check maximality.
To this aim, for any f ∈ L2(G) and any g ∈ Y (d), we first look for a solution

u := (u, x)� ∈ D(A) of

A0(u, x)� = ( f,g)�,

namely solution of

Me(x)u′
e(x) = fe(x) for x ∈ (0, �e) and all e ∈ E,

and of

Bvγv(u) − P(d,0)
v xv = gv for all v ∈ V. (3.14)

Such a solution is given by

ue(x) = Ke + unh
e (x) for all x ∈ [0, �e],e ∈ E,

with Ke ∈ C
ke and where

unh
e (x) =

∫ x

0
M−1

e (y)fe(y) dy for all x ∈ [0, �e],e ∈ E.

It remains to fix the vectors Ke. For that purpose, we recall (see [28, §3]) that the
condition γv(u) ∈ Yv at any vertex v ∈ V is equivalent to

(Ke)e∈E · w̃(v,i) = −(unh
e (v))e∈E · w̃(v,i) for all i ∈ Iv. (3.15)
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On the other hand, problem (3.14) is by (2.5) and the definition of basis, equivalent
to

Bvγv(u) · y(v, j) = gv · y(v, j) for all j ∈ J (R)
v , v ∈ V,

−P(d,0)
v γv(u) · w(v,l)

K B∗ = gv · w(v,l)
K B∗ for all l ∈ J (K )

v , v ∈ V,

and hence to

(Ke)e∈E · w̃(v, j)
R B∗ = gv · ỹ(v, j) − (unh

e (v))e∈E · w̃(v, j)
R B∗ for all j ∈ J (R)

v , v ∈ V,

(3.16)

(Ke)e∈E · w̃(v,l)
K B∗ = −gv · w̃(v,l)

K B∗ − (unh
e (v))e∈E · w̃(v,l)

K B∗ for all l ∈ J (K )
v , v ∈ V.

(3.17)

By (3.11), it follows that (3.15)–(3.16)–(3.17) is a k × k linear system in (Ke)e∈E
that has a unique solution. This shows that the operator A0 is an isomorphism from
D(A) into L2

d(G) and, in particular, it is closed. Hence, by dissipativity of A0 − λI, it
is also quasi-m-dissipative. We conclude that A0, and hence also A, generate strongly
continuous semigroup on L2

d(G). �

Repeating the same argument for −A yields the following.

Corollary 3.4. For all v ∈ V, let (3.11) hold and let moreover Yv be a subspace of
the null isotropic cone of the quadratic form associated with Tv + QvBv + B∗

v Qv.
Then, A generates a strongly continuous group on L2

d(G).

Remark 3.5. Because dim Y (d) ≤ dim Y ≤ 2k < ∞, the compact embedding of
each H1(0, �e) in L2(0, �e), and hence of

⊕
e∈E H1(0, �e) in

⊕
e∈E L2(0, �e), di-

rectly implies that A has compact resolvent, regardless of the imposed transmission
conditions at the vertices.

Remark 3.6. (1) Formula (3.6) shows that, in order to obtain dissipativity (rather than
mere quasi-dissipativity) ofA onL2

d(G), hence generation of a contractive semigroup,
the assumptions of Theorem 3.3 shall be complemented by the following:

• Qe(x)Ne(x) + Ne(x)∗Qe(x) − (QeMe)
′(x) is negative semi-definite, for all

e ∈ E and a.e. x ∈ (0, �e); and
• Y (d)

v is for all v ∈ V a subspace of the negative isotropic cone of the quadratic
form associated with QvCv + C∗

v Qv.

(2) If, additionally to the assumptions of Corollary 3.4,

• Qe(x)Ne(x)+ Ne(x)∗Qe(x) = (QeMe)
′(x), for all e ∈ E and a.e. x ∈ (0, �e);

and
• Y (d)

v is for all v ∈ V a subspace of the null isotropic cone of the quadratic form
associated with QvCv + C∗

v Qv,
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then A generates in fact a unitary group on L2
d(G).

In both cases, the quadratic form on Y (d)
v is considered with respect to the Euclidean

inner product. Observe, however, that both contractivity and unitarity—hence decay
or conservation of (an appropriate notion of) energy—hold of course, under the above
assumptions, with respect to the equivalent norm of L2(G) ⊕ Y (d) defined in (2.4),
which depends on the matrices Qe(x) and Qv, x ∈ (0, �e), e ∈ E, v ∈ V.

It turns out that the condition (3.11) is not satisfied in some relevant applications, see,
e.g., Sect. 5.5.We present a different approach that requires proving the dissipativeness
of both A and its adjoint A∗. To begin with, let us elaborate on some ideas presented
in [28, §3] and describe A∗.

Lemma 3.7. The adjoint of the operator A is given by

D(A∗) =
{(

v

y

)
∈ L2

d(G) : v ∈ Dmax such that

(
γv(v)

yv

)
∈ Y

∗
v for all v ∈ V

}
,

A
∗ =

(A∗ 0
B̃ C̃

)
,

where

(A∗v)e := −Mev
′
e − Q−1

e (QeMe)
′ ve + Q−1

e N∗
e Qeve, e ∈ E,

and

(B̃v)v := Q−1
v P(d)

v Tvγv(v), v ∈ V,

(C̃v)v := Q−1
v P(d)

v B∗
v Qvyv + Q−1

v C∗
v Qvyv, v ∈ V,

and, finally, the subspace Y
∗
v of Ckv ⊕ Y (d)

v is defined by

Y
∗
v := Ker

(
P(d),⊥
v Tv P(d),⊥

v B∗
v Qv

)
, (3.18)

where P(d),⊥
v is the orthogonal projector onto (Y (d)

v )⊥y with respect to the Euclidean
inner product.

Proof. First, we notice that D(A) is dense. Indeed, given

(
g
h

)
∈ L2

d(G), by the

surjectivity of the trace mapping, there exists u ∈ Dmax such that

h = P(d)
v γv(u),

andγv(u) ∈ Yv, for all v ∈ V. This in particularmeans that the pair

(
u
h

)
∈ D(A). Now,

since g − u ∈ L2(G), there exists a sequence of elements ϕ(n) ∈ ⊕e∈ED(0, �e)ke

such that

ϕ(n) → g − u in L2(G).
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Since

(
ϕ(n)

0

)
belongs trivially to D(A), we get that

(
u + ϕ(n)

h

)
belongs to D(A) and

satisfies
(

u + ϕ(n)

h

)
→
(

g
h

)
in L2

d(G).

By definition,

(
v

y

)
∈ L2

d(G) belongs to D(A∗) if and only if there exists

(
g
h

)
∈

L2
d(G) such that

(
A

(
u
x

)
,

(
v

y

))
d

=
((

u
x

)
,

(
g
h

))
d

for all

(
u
x

)
∈ D(A)

and in such a case

A
∗v =

(
g
h

)
.

Taking first x = 0 and ue ∈ D(0, �e) (which yields a pair

(
u
x

)
∈ D(A)), we find

that
− QeMev

′
e − (QeMe)

′ ve + N∗
e Qeve = Qege (3.19)

holds in the distributional sense, hence v belongs to Dmax. We can thus apply the
identity

(Au, v) =
∑
e∈E

∫ �e

0
ue · (−QeMev

′
e − (QeMe)

′ ve + N∗
e Qeve

)
dx

+
∑
v∈V

Tvγv(u) · γv(v̄) for all u, v ∈ Dmax

(3.20)

(see the proof of [28, Lem. 3.10]). By (3.19), the definition of A, and inner product
(2.4), we obtain

∑
v∈V

Tvγv(u) · γv(v̄) +
∑
v∈V

(
Qv (Bvγv(u) + Cvxv) · ȳv

)

=
∑
v∈V

Qvxv · h̄v, for all

(
u
x

)
∈ D(A).

As xv = P(d)
v γv(u), we further have

∑
v∈V

Tvγv(u) · γv(v̄) +
∑
v∈V

(
Qv

(
Bv + CvP(d)

v

)
γv(u) · ȳv

)

=
∑
v∈V

QvP(d)
v γv(u) · h̄v, for all u ∈ D(A),



Vol. 21 (2021) Dynamic transmission conditions 3651

that we write equivalently as
∑
v∈V

γv(u) · (Tvγv(v) + (B∗
v + C∗

v ) Qvyv − Qvhv) = 0, for all u ∈ D(A).

By the surjectivity of the trace mapping, since γv(u) ∈ Yv, we find that

PYv

(
Tvγv(v) + (B∗

v + C∗
v
)

Qvyv − Qvhv
) = 0, (3.21)

where PYv is the orthogonal projector onYv with respect to theEuclidean inner product.
Since Yv = Y (d)

v ⊕ (Y (d)
v )⊥y (orthogonal sum), and since C∗

v Qvyv − Qvhv belongs
to Y (d)

v , (3.21) is equivalent to

P(d),⊥
v

(
Tvγv(v) + B∗

v Qvyv
) = 0, (3.22)

and
P(d)
v
(
Tvγv(v) + B∗

v Qvyv
)+ C∗

v Qvyv − Qvhv = 0. (3.23)

Finally, we notice that (3.22) means equivalently that

(
γv(v)

yv

)
∈ Y

∗
v. On the other

hand, (3.23) defines hv, namely, it is equivalent to

hv = Q−1
v P(d)

v
(
Tvγv(v) + B∗

v Qvyv
)+ Q−1

v C∗
v Qvyv.

This concludes the proof. �

Remark 3.8. Observe that (3.22) is a property similar to x = P(d)
v γv(u) and to the

boundary condition γv(u) ∈ Yv, since these two conditions can be compactly written

P(d),⊥⊥
v (γv(u) − x) = 0, (3.24)

where P(d),⊥⊥
v means the orthogonal projector on the orthogonal of (Y (d)

v )⊥ in C
kv

(equal to Y (d)
v ⊕Y ⊥

v ) with respect to the Euclidean inner product. Indeed, (3.24) means
that

γv(u) − x ∈ (Y (d)
v )⊥,

or, equivalently,

γv(u) = x + y

with y ∈ (Y (d)
v )⊥. This gives γv(u) ∈ Yv and taking the projection on Y (d)

v that
x = P(d)

v γv(u).
If in particular Y (d)

v = {0} and hence B∗
v = 0 and the range of P(d),⊥

v is Y ⊥
v , the

assertion in Lemma 3.7 thus agrees with [28, Lemma 3.10].

We are finally in the position to propose a set of sufficient conditions for well-
posedness different from those in Theorem 3.3 and Corollary 3.4.
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Theorem 3.9. For all v ∈ V, let

• Y (d)
v be a subspace of the nonpositive isotropic cone of the quadratic form on

Y (d)
v associated with

Tv + QvBv + B∗
v Qv − λP(d)

v QvP(d)
v

for some λ ≥ 0, and
• Y

∗
v as in (3.18) be a subspace of the nonpositive isotropic cone (with respect

to the Euclidean inner product in C
kv ⊕ Y (d)

v ) of the quadratic form associated
with (

−Tv − 2μ Tv
P(d)
v Tv (P(d)

v B∗
v − μ Id)Qv + Qv(Bv − μ Id)

)

for some μ ≥ 0.

Then, A is a quasi-m-dissipative operator. In particular, A generates a strongly con-
tinuous semigroup on L2

d(G).

Proof. We already know that A is densely defined. Also, it is not difficult to prove
that A is closed: this can be seen invoking [27, Lemma 2.3], since closedness of A
has been already observed in [28], based on computations in [9].

By [17, Cor. II.3.17],m-dissipativity ofAwill follow ifwe can check that bothA and
its adjoint A∗ are dissipative. Similarly to what we have already done in Theorem 3.3,
for the sake of simplicity and without loss of generality we assume in the following
that Ne = Cv = 0.

The proof of Theorem 3.3 shows that A is dissipative under our assumptions. In
order to check dissipativity of A∗, we start from the identity

� (A∗u, u
) = �

∑
e∈E

∫ �e

0

(− (QeMe)
′ ue + N∗

e Qeue
) · ūe dx

+ 1

2

∑
e∈E

∫ �e

0
(QeMe)

′ ue · ūe dx − 1

2

∑
v∈V

Tvγv(u) · γv(ū)

(3.25)

which was derived in the proof of [28, Thm. 3.11] for all u ∈ Dmax. We then find that
for all u = (u, x)� ∈ D(A∗),

� (A∗u, u
)

d = �
∑
e∈E

∫ �e

0

(− (QeMe)
′ ue + N∗

e Qeue
) · ūe dx

+ 1

2

∑
e∈E

∫ �e

0
(QeMe)

′ ue · ūe dx − 1

2

∑
v∈V

Tvγv(u) · γv(ū)

+ �
∑
v∈V

(
P(d)
v
(
Tvγv(u) + B∗

v Qvxv
)) · x̄v.

(3.26)

Hence, A∗ is quasi-dissipative if for some μ ≥ 0 it holds

−1

2
Tvξ · ξ̄ + �

((
P(d)
v
(
Tvξ + B∗

v Qvx
)) · x̄

)
≤ μ

∥∥∥∥∥
(

ξ

Q
1
2
v x

)∥∥∥∥∥
2

Ckv⊕Y (d)
v

for all

(
ξ

x

)
∈ Y

∗
v,
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where the inner product and the norm are the Euclidean ones. This is equivalent to

(( −Tv Tv
P(d)
v Tv P(d)

v B∗
v Qv + QvBv

)(
ξ

x

)
,

(
ξ

x

))
Ckv⊕Y (d)

v

≤ 2μ

∥∥∥∥∥
(

ξ

Q
1
2
v x

)∥∥∥∥∥
2

Ckv⊕Y (d)
v

for all

(
ξ

x

)
∈ Y

∗
v,

and the claim follows. �

Again, repeating the same argument for −A yields the following.

Corollary 3.10. For all v ∈ V, let

• Y (d)
v be a subspace of the null isotropic cone of the quadratic form on Y (d)

v
associated with

Tv + QvBv + B∗
v Qv − λP(d)

v QvP(d)
v

for some λ ≥ 0, and
• Y

∗
v as in (3.18) be a subspace of the null isotropic cone of the quadratic form on

C
kv ⊕ Y (d)

v associated with
(

−Tv − 2μ Tv
P(d)
v Tv (P(d)

v B∗
v − μ Id)Qv + Qv(Bv − μ Id)

)

for some μ ≥ 0.

Then, both ±A are quasi-m-dissipative operators, and accordingly A generates a
strongly continuous group on L2

d(G).

Remark 3.11. We can formulate conditions for dissipativity (rather than mere quasi-
dissipativity) and unitarity of the (semi)group generated by A along the lines of Re-
mark 3.6.

(1)A generates a contractive semigroup onL2
d (G) if the assumptions of Theorem3.9

are complemented by the following:

• Qe(x)Ne(x) + Ne(x)∗Qe(x) − (QeMe)
′(x) is negative semi-definite, for all

e ∈ E and a.e. x ∈ (0, �e); and
• Y (d)

v is for all v ∈ V a subspace of the negative isotropic cone of the quadratic
form associated with QvCv + C∗

v Qv.

(2) If, additionally to the assumptions of Corollary 3.10,

• Qe(x)Ne(x)+ Ne(x)∗Qe(x) = (QeMe)
′(x), for all e ∈ E and a.e. x ∈ (0, �e);

• Y (d)
v is for all v ∈ V a subspace of the null isotropic cone of the quadratic form

associated with QvCv + C∗
v Qv; and

• Y
∗
v is for all v ∈ V a subspace of the null isotropic cone of the quadratic form

associated with (
0 0
0 QvCv + C∗

v Qv

)
,

then A generates a unitary group on L2
d(G).
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Remark 3.12. We can further easily replace local boundary conditions by global ones:
to this purpose, we take the 2k × 2k matrix T given by

T :=
(− diag (Qe(0)Me(0))e∈E 0

0 diag (Qe(�e)Me(�e))e∈E

)
(3.27)

and replace Bv, Cv, Qv byglobally definedoperators B : Y → Y (d),C (d), Q(d) : Y (d) →
Y (d) for some subspaces Y (d) ⊂ Y ⊂ C

2k . With the notation

γ (u) := ((ue(0))e∈E , (ue(�e))e∈E
)�

,

we thus consider operator A defined as in (3.1) with domain

D(A) :=
{(

u
x

)
∈ Dmax ⊕ Y (d) : γ (u) ∈ Y and x = P(d)γ (u)

}
(3.28)

and assume Y to be the appropriate isotropic cone of the quadratic form associated
with T + Q(d) B + B∗Q(d). In this case Z = (Y ⊥ ⊕ Ran B∗) + Ker B∗ ⊂ C

2k and
the well-posedness condition (3.11) becomes

dim Z = dim PK Z = k, (3.29)

where PK is the orthogonal projector onto

K =
{(

(Ke)e∈E , (Ke)e∈E
)� : Ke ∈ C

ke for all e ∈ E
}

with respect to the Euclidean inner product of C2k , see [28, Rem. 3.13]) for details.
In Sect. 5.5, we are going to see that (3.11) and, equivalently, (3.29) may fail to hold
even when the equation can be—by other means—proved to be well-posed.

4. Qualitative properties

We now study when the (semi)group generated by A is, real, positive, or ∞-
contractive. Let C ⊂ C be a closed and convex set; we will denote by PC : C → C

the projector onto C . As in [28, §4], we shall apply to the Hilbert space of C-valued
vectors in L2

d(G), i.e., to

K := L2
d(G; C) := L2(G; C) ⊕ Y (d)

C ,

a generalization (cf. [28, Lemma 4.3]) of a classical result by Brezis for the invariance
of the convex subsets of Hilbert spaces; here

L2(G; C) := {u ∈ L2(G) : ue(x) ∈ Cke for a.e. x ∈ (0, �e) and all e ∈ E}
and

Y (d)
C := {x ∈ Y (d) : xv ∈ Ckv for all v ∈ V}.
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(Observe that the latter might well be trivial, like in the case of Y (d) spanned by the
vector (1,−1)� and C = R+.)
To this end, we first need to relate the minimizing projector PQ

K with respect to
the inner product (·, ·)d in the Hilbert space L2

d(G) defined in (2.4) to the minimizing

projectors PK and P(d)
K with respect to the standard inner products in theHilbert spaces

L2(G) and Y (d), respectively: i.e., the products

〈u, v〉 :=
∑
e∈E

∫ �e

0
ue(x) · ve(x) dx, u, v ∈ L2(G), (4.1)

x · ȳ :=
∑
v∈V

xv · ȳv, x, y ∈ Y (d). (4.2)

By following the steps in the proof of [28, Lemma 4.4] and performing the calculations
for each component of K separately, we obtain the following characterization.

Lemma 4.1. Assume Q
1
2
e (x) and Q

1
2
v to be bijective maps on Cke and Ckv for all

e ∈ E and all x ∈ [0, �e] and for all v ∈ V, respectively. Then, the minimizing
projector PQ

K with respect to the inner product (2.4) onto K = L2
d(G; C) is given by

P
Q
K =

(
Q− 1

2 PK Q
1
2 0

0 (Q(d))− 1
2 P(d)

K (Q(d))
1
2

)
(4.3)

where Q := diag(Qe)e∈E and Q(d) := diag(Qv)v∈V are block-diagonal matrices,
while PK and P(d)

K are the minimizing projectors with respect to the standard inner
products (4.1) and (4.2), respectively.

In the following, we are going to focus on the cases of

• C = R,
• C = R+,
• C = {z ∈ C : |z| ≤ 1}.

Our arguments in the following rely upon [28, Lemma 4.3], which holds for quasi-
m-dissipative operators; but in the first two cases (C = R, C = R+), the relevant
conditions for invariance are equivalent in the quasi-dissipative and dissipative case,
since reality and positivity of a semigroup are not affected by a scalar additive pertur-
bation of its generator.
To begin with, let us consider C = R: then Lemma 4.1 states that if Qv and Qe are

real-valued, then the minimizing projector onto K = L2
d(G;R) is given by

P
Q
K

(
u

x

)
=
⎛
⎝ Q− 1

2 �
(

Q
1
2 u
)

(Q(d))− 1
2 �
(
(Q(d))

1
2 x
)
⎞
⎠ =

(�u

�x

)
,

(
u

x

)
∈ L2

d(G).

This allows for an extension of [28, Prop. 4.5].
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Proposition 4.2. Under the assumptions of Theorem 3.3 or Theorem 3.9, let

�ξ ∈
⊕
v∈V

Yv for all ξ ∈
⊕
v∈V

Yv and �x ∈
⊕
v∈V

Y (d)
v for all x ∈

⊕
v∈V

Y (d)
v , (4.4)

let the matrix-valued mapping Qe be real-valued for all e ∈ E, and let the matrices
Qv, Bv, Cv be real for all v ∈ V. Then, the semigroup generated by A is real if the
matrix-valued mappings Me, Ne are real-valued for all e ∈ E.

Proof. First observe that by [28, Lemma 4.7], (4.4) holds if and only if Yv, Y (d)
v ,

for each v ∈ V, are spanned by entry-wise real vectors only. Thus, the orthogonal
projectors P(d)

v are real matrices for all v (see, e.g., [35, (5.13.3)]). By the assumptions,
we then obtain,

P
Q
K

(
u

x

)
∈ D(A) whenever

(
u

x

)
∈ D(A).

As in the proof of [28, Prop. 4.5], we deduce that the reality of the semigroup is
equivalent to
(
A

(�u

�x

)
,

(�u

�x
))

d
=
(( A�u

B�u + C�x

)
,

(�u

�x
))

d
∈ R for all

(
u

x

)
∈ D(A),

(4.5)
using the notation from (3.1).

Now, the first term reads
∑

e∈E
∫ �e
0 Qe(Me

d
dx + Ne)�u · �ū dx ∈ R for all u ∈

D(A), which by [28, Lemma 4.6] is the case if and only if Me, Ne are real-valued for
all e ∈ E. The boundary term

∑
v∈V

Qv

(
Bv + CvP(d)

v

)
γv(�u) · P(d)

v γv(�ū) ∈ R

if and only if Bv + CvP(d)
v is real for all v ∈ V, since all entries of Qv, P(d)

v are real.
Finally, the reality of Bv, Cv is sufficient to ensure the reality of Bv + CvP(d)

v . �

We continue with the study of positivity. Without loss of generality we restrict
ourselves to the real Hilbert spaceL2

d(G;R) and consider the convex subsetsC = R+.
First, let us recall that by [28, Lemma4.8], a real symmetric and positive definitematrix
is a lattice isomorphism if and only if it is diagonal. Therefore we shall assume that
the matrices Qv and Qe(x) are real and diagonal for all v ∈ V, e ∈ E, and x ∈ [0, �e].
Therefore the minimizing projector PQ

K onto K = L2
d(G;R+) given in Equation 4.3

again takes a simpler form,

P
Q
K

(
u

x

)
=
⎛
⎝ Q− 1

2

(
Q

1
2 u
)+

(Q(d))− 1
2

(
(Q(d))

1
2 x
)+

⎞
⎠ =

(
u+

x+

)
.

Proposition 4.3. Under the assumptions of Theorem 3.3 or Theorem 3.9, let the ma-
trices
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• Ne(x), Qe(x), Qv, Bv, Cv be real-valued,
• Me(x), Qe(x), Qv be diagonal, and
• the projector P+

v onto the positive cone of Rkv commutes with P(d)
v ,

for all e ∈ E, a.e. x ∈ [0, �e], and all v ∈ V. Furthermore, let

ξ+ ∈
⊕
v∈V

Yv for all ξ ∈
⊕
v∈V

Yv and x+ ∈
⊕
v∈V

Y (d)
v for all x ∈

⊕
v∈V

Y (d)
v . (4.6)

If, additionally, all matrices Bv + CvP(d)
v are positive, then the semigroup generated

by A on L2
d(G,R) is positive if for all e ∈ E and a.e. x ∈ [0, �e] all off-diagonal

entries of the matrices Ne(x) are nonnegative. In the special case of Bv = 0 for all
v ∈ V, the semigroup generated by A is positive if all off-diagonal entries of the
matrices Ne(x) and Cv are nonnegative, for all e ∈ E, a.e. x ∈ [0, �e], and all v ∈ V.

We stress that nonnegativity of the off-diagonal entries of Ne and Cv amounts to
asking that the semigroups generated by Ne and Cv are both positive.

Proof. Also in this case, it follows from the assumptions that

P
Q
K

(
u

x

)
∈ D(A) whenever

(
u

x

)
∈ D(A).

By repeating the arguments in the proof of [28, Prop. 4.9], we obtain that the semigroup
is positive if and only if

(
A

(
u+

x+

)
,

(
u−

x−

))
d

≥ 0 for all

(
u

x

)
∈ D(A). (4.7)

We are going to consider the two components separately. For the first one, we have that,
by [28, Lemma 4.11], (Au+, u−) ≥ 0 if and only the matrices Me(x) are diagonal
and all off-diagonal entries of the matrices Ne(x) are nonnegative. Let us turn to the
second component: by surjectivity of γv : D(A) → Yv and (3.5), nonnegativity of

the boundary term
∑

v∈V Qv

(
Bv + CvP(d)

v

)
γv(u+) · P(d)

v γv(u−) for all u ∈ D(A)

is equivalent to

∑
v∈V

Qv

(
Bv + CvP(d)

v

)
y+
v · y−

v ≥ 0 for all y ∈ Yv; (4.8)

or, in the special case B = 0, to
∑
v∈V

QvCvx+
v · x−

v ≥ 0 for all x ∈ Y (d)
v . (4.9)

Now, (4.8) certainly holds whenever Bv + CvP(d)
v is a positive matrix. On the other

hand, by [44, Thm. 2.6] (4.9) is equivalent to positivity of the semigroup generated by
Cv, i.e., to the condition that the real matrix Cv has nonnegative off-diagonal entries.

�
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Let us finally address the question whether our semigroup is ∞-contractive: this is
a natural issue, since the prototypical example of a hyperbolic equation—the transport
equation onR—is governed by a semigroup of isometries on L p(R) for all p ∈ [1,∞].
To this aim, let us introduce the Lebesgue-type spaces

Lp
d (G) := Lp(G) ⊕ Y (d), p ∈ [1,∞],

equipped with the canonical p-norm.

Proposition 4.4. Assume our standing Assumptions 2.2 and 2.3 hold with Qe, Qv

identity matrices. Under the assumptions of Theorem 3.3 and Remark 3.6.(1) or else
of Theorem 3.9 and Remark 3.11.(1), let for all e ∈ E, all x ∈ [0, �e], and all v ∈ V
the matrices

• Me(x) be diagonal and
• Ne(x) generate semigroups on L2(G) that are contractive with respect to the

∞-norm.

Furthermore, let

(1 ∧ |ξ |) sgn ξ ∈
⊕
v∈V

Yv for all ξ ∈
⊕
v∈V

Yv and (1 ∧ |x|) sgn x ∈
⊕
v∈V

Y (d)
v for all x ∈

⊕
v∈V

Y (d)
v .

(4.10)
If additionally the matrix Bv + CvP(d)

v is ∞-contractive for all v ∈ V, then the
semigroup generated by A on L2

d(G) is ∞-contractive.
In the special case of Bv = 0 for all v ∈ V, the semigroup generated by A is

∞-contractive if the semigroup generated by Cv on C
kv is ∞-contractive.

Let us remind that

sgn z := z

|z| , z ∈ C \ {0} and sgn 0 := 0.

The sign of vectors with complex entries are defined accordingly.
We observe that the proof of [38, Lemma 6.1] can be easily seen to extend to

our setting, where the weight matrices Qe, Qv are identity matrices; accordingly, the
semigroups generated by −Ne(x) = (ni, j

e (x))1≤i, j≤ke and −Cv = (ch�
v )1≤h,�≤kv are

∞-contractive if and only if

�ni,i
e (x) ≥

∑
j �=i

|ni, j
e (x)|, �ch,h

v ≥
∑
� �=h

|ch,�
v | for all e ∈ E, a.e. x ∈ (0, �e), and all v ∈ V.

Proof. First of all, observe that A is by assumption m-dissipative in L2
d(G), hence we

can apply [28, Lemma 4.3] in order to study invariance of the unit ball K of L∞
d (G)

under the semigroup generated by A. Furthermore, we can apply Lemma 4.1: (4.10)
now guarantees that D(A) is left invariant underPQ

K and, in view of the known formula
for the minimizing projector onto the unit ball with respect to the ∞-norm and of [44,
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Thm. 2.13], we deduce that the relevant condition for invariance of the unit ball of
L∞

d (G) under the semigroup generated by A is

�
(
A

(
(1 ∧ |u|) sgn u

(1 ∧ |x|) sgn x
)

,

(
(|u| − 1)+ sgn u

(|x| − 1)+ sgn x

))
d

≤ 0 for all

(
u

x

)
∈ D(A). (4.11)

Because d
dx (1 ∧ |u(x)|) sgn u(x), (|ū(x)| − 1)+ sgn ū(x) have disjoint support, by

diagonality of the matrices Me(x) one sees that

�
∫ �e

0

(
Me(x)

d

dx
+ Ne(x)

)
(1 ∧ |u(x)|) sgn u(x) · (|ū(x)| − 1)+ sgn ū(x)dx

= �
∫ �e

0
Ne(x)(1 ∧ |u(x)|) sgn u(x) · (|ū(x)| − 1)+ sgn ū(x)dx

(4.12)
hence the first term in (4.11) is nonpositive if the semigroup generated by the matrix
Qe(x)Ne(x) on the unweighted space Cke is for a.e. x ∈ (0, �e) ∞-contractive, since
in this case the integrand in the second line of (4.12) is a negative function.
Again by [44, Thm. 2.13], the boundary term in (4.11) is nonpositive if in particular

Bv + CvP(d)
v is ∞-contractive; or more generally, cf. the proof of Proposition 4.2,

if—provided Bv = 0—merely the semigroup generated by Cv is ∞-contractive. �

Remark 4.5. The assumption that the matrices Me, Qe, Qv are diagonal is very re-
strictive and hints at the fact that very few linear hyperbolic systems are governed
by an ∞-contractive semigroup. This is not overly surprising: contractive semigroups
onL2

d(G), which are furthermore∞-contractive, too, extrapolate by the Riesz–Thorin
Theorem to all Lp

d (G)-spaces, p ≥ 2. However, Brenner’s Theorem (see
[5, Thm. 8.4.3]) poses a serious limit to L p-well-posedness of even less general sys-
tems than ours.

5. Examples

5.1. Transport equation

Arguably, transport equations represent the easiest settingwhere ourAssumption2.2
is satisfied. Transport equations

u̇e = ceu′
e

on a network consisting of |E| edges of unit length with transmission conditions in
|V| vertices given as

u(t, 1) ∈ Ran(I−
ω )� and I−u(t, 1) = I+

ω u(t, 0)

have been introduced in [29], where their well-posedness in an L1-setting was proved.
Here, ce > 0 are constant velocity coefficients, I+

ω is the Kronecker product of I+
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with a column stochastic |V|×|E|matrixW = (ωve), and I± are the signed incidence
matrices introduced in (2.3); see [48, §2] for details. It is assumed that both signed
incidence matrices are surjective, that is of rank |V|: by [8, Thm. 2.1] this is the case
if and only if the graph contains neither sinks nor sources. As shown in [48, §3], it is
possible to consider dynamic conditions as well, by replacing the second (stationary)
condition above by a dynamic condition of the form

∂

∂t
I−u(t, 1) = I+

ω u(t, 0) + CI−u(t, 1).

Well-posedness of the corresponding abstract Cauchy problem was proved in [48,
Thm. 4.5]. Here, we are adopting a global formalism, assuming

γ (u) :=
(

u(1)
u(0)

)
and T := diag

(− diag(ce)e∈E 0
0 diag(ce)e∈E

)
,

see Remark 3.12. Note that, contrary to our notation, in [48] the initial endpoint of an
edge is assumed to be in 1 and the terminal endpoint is 0. In order to be able to compare
the results, we stick to this terminology in the context of the present Example.
Let us show that the setting in [48] is a special case of ours: we recover the above

boundary conditions letting

Y := Ran(I−
ω )� ⊕ C

|E|� C
|V| ⊕ C

|E| and Y (d) := C
|V|⊕{0}

as well as

B := (0 I+
ω

)
and P(d) := (I− 0

)
.

We simply take identity matrices for Qe and Qv. In this way, γ (u) ∈ Y imposes that
the values ue(v), uf(v) agree for any two edges e, f with common tail v, up to proper
weights:

ue(v)
ωv,e

= uf(v)
ωv,f

.

Observe that dim Ran B = rank(I+
ω ) = |V|, so B is surjective and by Remark 3.12

we have

Z = Y ⊥ ⊕ Ran B∗= Ker(I−
ω ) ⊕ Ran(I+

ω )� ⊂ C
2|E|.

In this case, dim Ran B∗ = dim Ran B = |V| and dim Y ⊥ = dimKer(I−
ω ) = |E|−|V|

by the Rank–Nullity Theorem. Accordingly, condition (3.29) is satisfied. Hence, the
system has the right number of transmission conditions and we recover contractive
well-posedness by our Theorem 3.3. We can easily apply the results in Sect. 4 and
deduce that the semigroup is real (resp., positive) if and only if the matrix C is real
(resp., has nonnegative off-diagonal entries). Furthermore, if the semigroup generated
by C (resp., C∗) on Y (d) is contractive with respect to the∞-norm, then the semigroup
generated by A is contractive on L∞

d (G) (resp., on L1
d(G)), hence on L p

d (G) for all
p ∈ [2,∞] (resp., for p ∈ [1, 2]).
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5.2. Telegrapher’s equations

The 2 × 2 hyperbolic system
{

ṗ + Lq ′ + Gp + Hq = 0 in (0, �) × (0,+∞),

q̇ + Pp′ + K q + J p = 0 in (0, �) × (0,+∞),
(5.1)

on a real interval (0, �) generalizes the first-order reduction of the wave equation
and offers a general framework to treat models that appear in several applications.
The analysis of this system on networks with different boundary conditions has been
performed in [43].
In electrical engineering [10,26,33], p (resp. q) represents the voltage V (resp. the

electrical current I ) at (x, t), H = J = 0, L = 1
C , P = 1

L , G = Ĝ
C , K = R

L , where

C > 0 is the capacitance, L > 0 the inductance, Ĝ ≥ 0 the conductance, and R ≥ 0
the resistance: (5.1) is then referred to as “telegrapher’s equation.”

Also, Maxwell’s equations in tube-like 3D domains can be intuitively reduced to
a system of 1D networks [25] for P = L = −1 and G = H = K = J = 0,
where p (resp. q) represents the electric field E (resp. the magnetic field B). Accurate
asymptotic analysis of the system shows that the 1Dmodel is indeed related to the full
3D model, up to errors that can be estimated [26]; more general settings have been
considered in [10,11]. The 1D Maxwell’s equations are also derived from physical
principles in [49, § 2], thus obtaining again a special instance of (5.1).
Assuming that L , P are two real numbers both positive or both negative, Assump-

tions 2.2 hold for system (5.1) with ue = (pe, qe)� and

Me = −
(
0 L
P 0

)
, Ne = −

(
G H
K J

)
, and Qe =

(|P| 0
0 |L|

)
.

In such a case, we see that

QeMe =
(

0 L|P|
L|P| 0

)
.

Since telegrapher’s equation (5.1) on networks with nondynamic boundary condi-
tions from [13,43] enters into the framework of [28], we here concentrate on dynamic
boundary conditions. We first start with a simple example and then consider a system
set on a star-shaped network.

5.2.1. Maxwell system with dynamic boundary conditions

Let us study the Maxwell system {
ṗ = q ′,
q̇ = p′,

(5.2)

a special case of (5.1), on two adjacent intervals e1 = (−1, 0) and e2 = (0, 1) (with
common vertex v0 ≡ 0). We denote by ui := (pi , qi )

� the unknowns on the edge ei ,



3662 M. K. Fijavž et al. J. Evol. Equ.

i = 1, 2. We impose electric boundary condition at −1 and the magnetic condition at
1 complemented by continuity of p in 0 along with a dynamic boundary condition.
This means that the boundary/dynamic conditions can be written as

p1(t,−1) = q2(t, 1) = 0, (5.3)

p1(t, 0) = p2(t, 0), (5.4)
d

dt
p1(t, 0) = q2(t, 0) − q1(t, 0). (5.5)

To write the system in the formalism introduced in Sect. 3, we define

γv−1(u) := (p1(−1), q1(−1)) ⊂ C
2,

γv1(u) := (p2(1), q2(1)) ⊂ C
2,

γv0(u) := (p1(0), q1(0), p2(0), q2(0)) ⊂ C
4.

In the vertices v−1 and v1, we only have stationary boundary conditions (5.3) which
are satisfied by taking

Yv−1 := {0} ⊕ C and Yv1 := C ⊕ {0}.
In v0, we enforce the stationary condition (5.4) by taking Yv0 := {(1, 0,−1, 0)�}⊥
while for the dynamic condition we take

Y (d)
v0 := span{(1, 0, 1, 0)�} ⊂ Yv0 ,

and define

Bv0 :=

⎛
⎜⎜⎝
0 −1 0 1
0 0 0 0
0 −1 0 1
0 0 0 0

⎞
⎟⎟⎠ .

With this choice, we see that (5.5) is equivalent to

ẋv0 = Bv0γv0(u) where xv0 = P(d)
v0 γv0(u) and γv0(u) ∈ Yv0 . (5.6)

Now, by taking Qv0 = I , we notice that the boundary term in (3.4) corresponding to
v0 is equal to

� (p1(0)q̄1(0) − p2(0)q̄2(0) + (q2(0) − q1(0)) p̄1(0)) ,

which by (5.4) is zero. Similarly, due to the boundary condition at the two endpoints
v−1, v1, their corresponding boundary terms in (3.4) are zero.We are thus in the setting
of Remark 3.6.(2).

So, it remains to check (3.11). But as Bv0 is surjective, Zv0 is given by (3.12) and
since Ran B∗

v0 = span{(0,−1, 0, 1)�}, we find
Z̃v0 = Zv0 = span{(1, 0,−1, 0)�, (0,−1, 0, 1)�}
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For the two endpoints v−1, v1, we only have stationary conditions, hence Zv−1 = Y ⊥
v−1

,

Zv1 = Y ⊥
v1 and

Z̃v−1 = C ⊕ {0} ⊕ {0} ⊕ {0}, Z̃v1 = {0} ⊕ {0} ⊕ {0} ⊕ C.

It is now easy to verify the dimension equation (3.13), hence Corollary 3.4 can be
applied. We finally obtain that the considered problem is governed by a unitary group.

According to Proposition 4.2, the group is real since all involved constants are real,
but we may expect that it does not preserve positivity and is not ∞-contractive since
Me is not diagonal.

5.2.2. Telegrapher’s equations with dynamic boundary conditions

Here, we analyze the electrical formulation of system (5.1) on a Y -shaped structure
with the transmission conditions from [10, §8.2] at the common vertex (called the
improved Kirchhoff condition). Hence, in reference to the electrical interpretation, we
assume that P and L are two positive constants, H = J = G = K = 0, further
p (resp. q) is denoted by V (resp. I ). More precisely, the network consists of three
edges ei , i = 0, 1, 2 identified with (0, 1) having a common vertex v1 ≡ 0, where the
edge e0 plays a specific rule since the transmission conditions at 0 from [10, (8.9)]
are given by

2∑
k=1

L jk İk(t, 0) = V0(t, 0) − Vj (t, 0) for j ∈ {1, 2}, t > 0,

V̇0(t, 0) = −
2∑

j=0

I j (t, 0) t > 0

(5.7)

where L = (L jk)2×2 is a symmetric, real-valued positive definite matrix. Here, for
simplicity we take all the other coefficients equal to 1. At the endpoints, we take the
boundary conditions

I0(t, 1) = Vj (t, 1) = 0 for j = 1, 2. (5.8)

To write the system in our formalism, we define

γv1(u) = (I1(0), I2(0), I0(0), V1(0), V2(0), V0(0))
�,

so that Ckv1 = C
6. Since only dynamic conditions are imposed at v1, we take

Yv1 := C
6, we choose

Y (d)
v1 := span{(1, 0, 0, 0, 0, 0)�, (0, 1, 0, 0, 0, 0)�, (0, 0, 0, 0, 0, 1)�},
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and we define

Bv1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −a11 −a12 a11 + a12
0 0 0 −a12 −a12 a12 + a22
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 −1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where L−1 =
(

a11 a12
a12 a22

)
. With these notations, we see that (5.7) is equivalent to

ẋv1 = Bv1γv1(u) where xv1 = P(d)
v1 γv1(u).

Now, by taking Qv1 = P L diag(L, 1), we notice that the boundary term in (3.4)
corresponding to v1 is equal to 0.
We immediately check that Ran Bv1 = Y (d)

v1 hence, by (3.12), Zv1 = Ran B∗
v1 .

Further, (5.8) yields

w̃(v2,1) = (0, 0, 1, 0, 0, 0)�, w̃(v3,1) = (0, 0, 0, 1, 0, 0)�, w̃(v3,2) = (0, 0, 0, 0, 1, 0)�.

Since the three columns of B∗
v1 and these three vectors form a basis ofC6, Corollary 3.4

shows that the considered problem is governed by a group of isometries.
Note if in (5.1) we allow H, J, G, and K to be different from zero, the considered

problem is governed by a group.
As before, according to Proposition 4.2, the group is real since all involved constants

are real, but we are not able to say anything about positivity or ∞-contractivity since
Me is not diagonal.

5.3. Second sound in networks

A wave-like form of thermal propagation has been conjectured to exist in ultracold
gases by Lev Landau and is now known under the name of “second sound”; it has ever
since been experimentally observed in several molecules. One classical model boils
down to the linear equations of thermoelasticity

⎧⎨
⎩

z̈ − αz′′ + βθ ′ = 0 in (0, �) × (0,+∞),

θ̇ + γ q ′ + δż′ = 0 in (0, �) × (0,+∞),

τ0q̇ + q + κθ ′ = 0 in (0, �) × (0,+∞),

(5.9)

where z, θ , and q represent the displacement, the temperature difference to a fixed
reference temperature, and the heat flux, respectively, and α, β, γ, δ, τ0, κ are positive
constants. Racke has discussed in [45] the asymptotic stability of this system under
three different classes of boundary conditions, including

αz′(0) = βθ(0), θ ′(0) = 0, z(�) = θ(�) = 0.
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While he does not point it out explicitly, this leads indeed to a dynamic condition:
indeed, θ ′(0) is not well defined if θ is merely of class H1, but assuming that the
initial data are smooth enough that the third equation in (5.9) can be evaluated at 0,
yielding

τ0q̇(0) + q(0) + κθ ′(0) = 0

the condition θ ′(0) = 0 leads to

q̇(0) = − 1

τ0
q(0), (5.10)

which can indeed be made sense of even for general initial data, and then studied by
themethod introduced in the previous section. In summary, we now study system (5.9)
with the dynamic boundary condition (5.10) and the stationary ones

αz′(0) = βθ(0), z(�) = θ(�) = 0. (5.11)

We observe that Assumption 2.2 is satisfied taking u = (z′, ż, θ, q),

Me :=

⎛
⎜⎜⎝
0 1 0 0
α 0 −β 0
0 −δ 0 −γ

0 0 − κ
τ0

0

⎞
⎟⎟⎠ , Qe :=

⎛
⎜⎜⎝

αδ 0 0 0
0 δ 0 0
0 0 β 0
0 0 0 βγ τ0

κ

⎞
⎟⎟⎠ , and Ne :=

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 1

τ0

⎞
⎟⎟⎠ .

A direct computation shows that

QeMe =

⎛
⎜⎜⎝

0 αδ 0 0
αδ 0 −βδ 0
0 −βδ 0 −βγ

0 0 −βγ 0

⎞
⎟⎟⎠

with four eigenvalues of the form ±
√

H±2
√

K
2 , where H := α2δ2 + β2δ2 + β2γ 2

and K := H2 − 4α2β2γ 2δ2. Because H2 > K whenever α, β, γ, δ > 0, QeMe has
two positive and two negative eigenvalues. This is consistent with the above choice
(5.10)–(5.11) of boundary conditions in the purely hyperbolic case of τ0 > 0.
If the endpoint 0 (resp. �) is identified with v1 (resp. v2), we take

Yv1 =
{

x ∈ C
4 : x1 = β

α
x3

}
, Y (d)

v1 = {0} ⊕ {0} ⊕ {0} ⊕ C ⊂ Yv1 ,

and

Yv2 = C ⊕ {0} ⊕ {0} ⊕ C.

Observe that γv1(u) = u(0) ∈ Yv1 , γv2(u) = u(�) ∈ Yv2 return all stationary condi-
tions, whereas

d

dt
P(d)
v1 γv1(u) = Cv1 P(d)

v1 γv1(u)
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with

Cv1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 1

τ0

⎞
⎟⎟⎠

corresponds to the dynamic condition (5.10). Also, observe that Bv1 = 0, therefore
by (3.8) we have

Zv1 = Y ⊥
v1 + Ker B∗

v = Y ⊥
v1 + Y (d)

v1 = span{(α, 0,−β, 0)�, (0, 0, 0, 1)�}.
Furthermore,

Zv2 =Y ⊥
v2 = span{(0, 1, 0, 0)�, (0, 0, 1, 0)�},

and it is easy to see that (3.11) applies.
Now, by taking Qv1 = τ0β, we notice that the boundary term in (3.6) corresponding

to v1 is equal to

2βγ�(θ(0)q(0)) − β|θ(0)|2 = −|γ q(0) − βθ(0)|2 + γ 2|q(0)|2
≤ γ 2|q(0)|2 = γ 2|P(d)

v1 γv1(u)|2.
Hence, in view of Theorem 3.3, the system is well-posed. More precisely, the initial
value problem associated with (5.9) with the above boundary conditions is governed
by a strongly continuous semigroup on L2

d(G) ≡ L2(0, �) ⊕ Y (d).
As before, according to Proposition 4.2, the semigroup is real since all involved

constants are real, but again positivity and ∞-contractivity cannot be checked by our
abstract results since Me is not diagonal.
System (5.9) on a networkwith stationary boundary conditions at the nodes, namely

continuity of z and q andKirchhoff-type conditions for z′ and θ , were described in [28,
§ 5.6]. With the method described above, we can, e.g., impose dynamic conditions
on the vertex evaluation of z and/or q at an arbitrary subset of V, while keeping
Kirchhoff-type conditions for z′ and θ , still retaining a well-posed system.

5.4. Wave-type equations

Wave-type equations on graphs have retained the attention of many authors, see
[2,4,30,40] and the references cited there. Here, we show that our framework can be
applied to rather general elastic systems modeled as

üe(t, x) = u′′
e(t, x) + αeu̇′

e(t, x) + βeu̇e(t, x) + γeu′
e(t, x), t ≥ 0, x ∈ (0, �e),

(5.12)
where αe ∈ C1([0, �e]) and βe, γe ∈ L∞(0, �e) are real-valued functions. For the
sake of simplicity, as in [28, §5.23] we restrict ourselves to stars with J ≥ 2 edges
as in Fig. 1, which can be regarded as building blocks of more general networks, but
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Figure 1. A star-shaped network with one incoming and J − 1 out-
going edges

contrary to [28, §5.23] we assume that the edges are connected by a point mass at their
common vertex, see [14,24] for J = 2 and the wave equation, i.e., αe = βe = γe = 0
(see also [36] for a cable with a tip mass).
It turns out that (5.12) is equivalent to

U̇e = MeU ′
e + NeUe,

for the vector function Ue = (u′
e, u̇e)

�, where

Me =
(
0 1
1 αe

)
, Ne =

(
0 0
γe βe

)
.

As Me is symmetric, Assumption 2.2 is automatically satisfied by choosing Qe as the
identity matrix. As before, the boundary conditions at the vertices are related to the
values of Me at the endpoints of the edge e, that generically are given by

Me(v) =
(
0 1
1 αe(v)

)
,

when v is one of the endpoints of e; hence, Me(v) has two real eigenvalues of opposite
sign,

λ± = 1

2

(
αe(v) ±

√
αe(v)2 + 4

)
.

We then need J boundary conditions at the common node v0 and one boundary con-
dition at each endpoint vi , i = 1, . . . , J .
For an exterior vertex vi (i = 1, . . . , J ), we choose Dirichlet boundary condition

uei (vi ) = 0,
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that leads to u̇ei (vi ) = 0, and corresponds to the choice of Yvi spanned by (1, 0)�
that is a totally isotropic subspace associated with Tvi , whereby Tv1 = −Me1(v1) and
Tvi = Mei (vi ) for i = 2, . . . , J . We refer to [28, §5.2] for other boundary conditions
at the exterior vertices.
Now, inspired by [14,24], we impose the following boundary conditions at v0,

namely continuity of ue at v0 and

−
J∑

i=1

u′
ei

(v0)ιv0ei = δüe1(v0), (5.13)

for some positive constant δ. Let us check that such a boundary condition corresponds
to a dynamical one. Indeed, the continuity condition of ue at v0 implies that

γv0(U )∈Yv0 :={(x, y)� : x ∈ C
J , y = α1, α ∈ C} =

(
C

J ⊕ {0�}
)

⊕ span{(0, 1)�},

where we write

γv0(U ) := (u′
e1(v0), . . . , u′

eJ
(v0), u̇e1(v0), . . . , u̇eJ (v0))

�,

and 1, 0 are the row vectors in C
J whose all entries equal 1 and 0, respectively. In

order to formulate (5.13) in our setting, we set

Y (d)
v0 := span{(0, 1)�} ⊂ Yv0 ,

and introduce Bv0 as the 2J × 2J matrix

Bv0 := −1

δ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...

0 0
ιv0,∗ 0
...

...

ιv0,∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ιv0,∗ is the row of the incidence matrix I corresponding to v0. We then readily
see that (5.13) is equivalent to

ẋv0 = Bv0γv0(U ),

where xv0 = P(d)
v0 γv0(U ), recalling the continuity condition of u̇e at v0.

Now, by taking Qv0 = δ, we notice that the boundary term in (3.4) corresponding
to v0 is equal to

|u̇e(v0)|2
2

J∑
i=1

αei (v0)ιvei = |P(d)
v0 γv0(U )|2

2

J∑
i=1

αei (v0)ιvei .
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Finally, we readily check that Ran Bv0 = Y (d)
v0 , hence by (3.12) and since Ran B∗

v0 =
Y (d)
v0 as well, we find

Zv0 = {0�} ⊕ C
J .

Further, as Zvi = Y ⊥
vi

and
∑J

i=1 Ỹ ⊥
vi

= C
J ⊕ {0�}, (3.13) holds for k = 2J and we

conclude that system (5.12) with the previous boundary conditions is governed by a
group.
In conclusion owing to Theorem 3.3, the system is well-posed. More precisely,

the initial value problem associated with (5.9) with the above boundary conditions is
governed by a strongly continuous group on L2

d(G) ≡ L2(0, �) ⊕ Y (d).
As before according to Proposition 4.2, the semigroup is real since all involved

constants are real, but again assessing either positivity or∞-contractive is problematic
since Me is not diagonal.
We have discussed in [28] how our formalism can be used to study networks of

beams under rather general transmission conditions of stationary type. We restrain
from elaborating on this topic, but it should by now be clear to the reader that suit-
able, different choices of Yv (cf. Remark 3.2), and of course suitable choices of Y (d)

v ,
promptly lead to models of networks of beams with dynamic transmission conditions,
which can then be studied by our theory. We mention that comparable well-posedness
results have been recently obtained in [23].

5.5. The Dirac equation

The 1D Dirac equation on a network, as studied in [12], takes on each edge the
form

ı h̄
∂

∂t
ψ =

(
h̄c

(
0 −1
1 0

)
∂

∂x
+ mc2

(
1 0
0 −1

))
ψ

for a C2-valued unknown ψ = (ψ(1), ψ(2)). A parametrization of skew-adjoint real-
izations on a network has been presented in [12] and in [28] we have taken advantage
of our theory and provided further realizations generating (semi)groups, since our
Assumption 2.2 is satisfied letting

Me =
(

0 ıc
−ıc 0

)
, Qe =

(
1 0
0 1

)
, and Ne =

(
−ı mc2

h̄ 0

0 ı mc2
h̄

)
, e ∈ E.

Let us now study the quadratic form qv, cf. (3.3). We first observe that Tv is a 2|Ev| ×
2|Ev| block-diagonal matrix with diagonal blocks equaling Meιve. Hence, if we write

γv(U ) := (ψ
(1)
e (v), ψ(2)

e (v))e∈Ev ,

then (ξ, η)� ∈ C
2|Ev|, with ξ := (ψ

(1)
e (v))e∈Ev and η := (ψ

(2)
e (v))e∈Ev is an isotropic

vector for the associated quadratic form qv if and only if∑
e∈Ev

ιve�(ξeη̄e) = 0. (5.14)
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A somewhat canonical choice is that of conditions of continuity and of Kirchhoff-type
on ψ(1) and ψ(2), respectively, at each v ∈ V; this fits in our abstract framework by
letting

Yv := span{1Ev } ⊕ span
{
ιEv

}⊥
(we recall that ιEv denotes the vector in C

|Ev| whose e-th entry is ιve) and is easily
seen to lead to a hyperbolic system governed by a unitary group. Further instances of
the Dirac equation governed by a unitary group, and hence with a quantummechanical
significance, can be easily produced applying the theory presented above: we will only
focus onone such realization.Bykeeping the continuity property ofψ(1) at the vertices,
we here take

Yv := span{1Ev } ⊕ C
|Ev|, (5.15)

and we let

Y (d)
v := span{1Ev } ⊕ {0Ev } ⊂ Yv.

Let us finally define

Bv : Yv � (ξ, η)� 	→ −ı(η · ιEv )(1Ev ⊕ 0Ev ) ∈ Y (d)
v

and

Cv : Y (d) � (ξ, 0)� 	→ (Cv
(1)ξ, 0)� ∈ Y (d),

for any skew-Hermitian |Ev| × |Ev|-matrix C (1)
v . This corresponds to imposing

• continuity conditions across each vertex on ψ(1) as well as
• dynamic conditions

dψ(1)

dt
(t, v) = −ı

∑
e∈Ev

ψ
(2)
e (t, v)ιve + C (1)

v ψ(1)(t, v), v ∈ V.

Observe that
dim Yv = 1 + |Ev|, dim Y (d)

v = 1, (5.16)

but this is not sufficient to guarantee (3.13) and thus (3.11). As Bv is surjective, simple
calculations show that (using the parametrization of the edges so that for both of them,
v1 is identified with 0 and v2 is identified with 1)

Zv1 = Zv2 = span{(1, 0,−1, 0)�, (0, 1, 0, 1)�},
hence (3.11) cannot hold.
However, by taking Qv := cI at each v ∈ V one can show that A∗ = −A.

Furthermore, the boundary terms in (3.6) vanish. Indeed, this is clear by assumptions
for the term involving C (1), whereas the latter boundary term is equal to

−c
∑
e∈Ev

ιve�(ξeη̄e) − ıc�((η · ιEv )(1Ev · ξ)) = 0 for all v ∈ V,
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since ξe = ξ, for all (ξ, η)� ∈ Yv, and �(z) = −�(ı z), for all z ∈ C. Hence, we can
invoke Corollary 3.10 and Remark 3.11 withα = β = 0 and deduce that A generates
a unitary group on L2

d(G). This is a new unitary realization of the Dirac equation that
does not appear in the classification in [12], as the latter restricts to stationary vertex
conditions.
By Proposition 4.2, this semigroup is not real, hence not positive, either. On the

other hand, Proposition 4.4 does not apply, although—as mentioned in Remark 4.5—
it looks rather plausible that no realization of the Dirac equation is governed by an
∞-contractive semigroup.
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