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Abstract We present a novel consistent singularity-

free strain-based finite element formulation for the anal-

ysis of three-dimensional frame-like structures. Our

model is based on a geometrically exact finite-strain

beam theory, quaternion parametrization of spatial ro-

tations, assumption that the strain measures are con-

stant along the length of the element and a proper

choice of basis for the translational strain vector rep-

resentation. As it is common for strain-based elements,

the present formulation does not suffer from shear lock-

ing. A comparison of our results with the results from

the literature and a commercial finite element analysis

software demonstrates the advantages of the proposed

formulation, especially when the structure is subjected

to larger shear deformations. This stems from the fact

that our model ensures a mathematically consistent up-
dating procedure for all the quantities describing the

beam. This aspect is often overlooked, since most of

the numerical cases from other studies on this topic en-

gage rather small-shear strains for which the consistent

update is not crucial as the number of elements is in-

creased.
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1 Introduction

Nonlinear spatial beam theory is indispensable in

many different fields of science; ranging from struc-

tural engineering [1, 2], microbiology [3], nanotechnol-

ogy [4], computer graphics [5,6] to photogrammetry [7]

and robotics [8]. Under various constrains and theo-

retical assumptions, the problems from these diverse

fields demand advanced formulations solution proce-

dures to effectively solve them. Beam formulations dif-

fer in the way the kinematics of a beam-like structure

is approximated. An important milestone in the evolu-

tion of the beam models is the geometrically exact the-

ory of plane beams by Reissner [9] as it represents the

beginning of the revival of research on this topic. Suc-

ceding the classical Cosserat beam theory [10], Reissner

[11] and Simo [12] developed exact kinematic relations

between displacements and deformations for a spatial

beam through the use of virtual work principle without

the constraints on the magnitudes of strains, internal

forces, displacements and rotations. Later, Simo and

Vu-Quoc [13] presented numerical implementation of

the theory using the finite element method. These clas-

sical works have motivated many other researchers de-

veloping the modern beam finite element formulations,

see e.g. Cardona and Géradin [14], Ibrahimbegović [15],

Jelenić and Saje [16], Smolénski [17], etc.

We can classify beam formulations according to:

the kinematic assumptions used, how the rotations are

parametrized and which variables are chosen as pri-

mary. Rotations are often a member of the primary

variables in three-dimensional beam formulations, even

though they require a special treatment. Several math-

ematical models to describe rotations have been pro-

posed, such as Euler angles, rotation matrix, rotational

vector, direction cosine matrix, rotational quaternion,
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etc., see e.g. Argyris [18], Argyris and Poterasu [19],

Géradin and Rixen [20], Spring [21], Atluri and Caz-

zani [22], Zupan et al. [23]. Among them, the rotational

vector is often preferable over other parametrizations

of rotations because the rotation axis and the angle

of rotation can be compacted into only three param-

eters (see also [13–17, 24, 25]). But utilizing minimal

number of parameters to describe rotations may result

in singular points, as shown by Stuelpnagel [26] and

Atluri [22]. However, singularities can be avoided by us-

ing updated-Lagrangian schemes where the incremen-

tal rotations are interpolated and not total rotations,

as seen e.g. in [27,28]. A detailed comparative analysis

of these models can be found in [20–22,29]. They iden-

tify and evaluate the most important aspects, such as

number of parameters needed, programming simplicity,

reliability, comprehensibility, etc. Since rotational vec-

tors are non-additive quantities, a special interpolation

of rotations has to be used. Crisfield and Jelenić [31]

outlined that using standard rotational-vector based

formulations usually leads to non-objectivity and path-

dependency. Ibrahimbegović [29] presented the short-

comings of total rotational vector when describing ro-

tations greater than 2π. On the other hand, incremental

rotational vector [29] and orthogonal tensor represen-

tation of finite rotations [13] as upgrades are proven to

give correct results even for large rotations. The same

conclusions were obtained by Battini and Pacoste [32]

with their co-rotational beam elements employing in-

cremental rotational vectors. Furthermore, it appears

that using four parameters (which inherently increases

the number of degrees of freedom) avoids the singu-

larity and increases computational efficiency, as shown

by McRobie and Lasenby [33] in their rod formulation

based on Clifford algebra. Further studies by Zupan et

al. [34, 36, 37] show that using rotational quaternions,

more efficient, stable and robust numerical formulations

of beams for dynamic analysis can be obtained.

The resultant strains in the geometrically exact

beam model can be treated as additive. With this in

mind, many authors e.g. Tabarrok et al. [38], Češarek

et al. [24], Zupan and Saje [25, 39] interpolate strain

measures. Such choice of primary variables leads to a

straightforward proof of objectivity and invariance of

rigid-body motion. Considering the physical nature of

strain measures, they are expressed in material basis to

fit into constitutive equations.

In this contribution, we formulate a strain-based

finite element for the analysis of three-dimensional

beams. We allow the beam to deform by flexure, torsion,

extension, and shear without any restrictions on the

magnitudes of displacements and rotations. The com-

putational model is based on the geometrically exact

beam theory and structured to be consistent and math-

ematically accurate. To ensure a singularity-free for-

mulation, we adopt quaternion algebra to parametrize

spatial rotations and employ coordinate system trans-

formations. Strain measures are chosen here as the pri-

mary unknowns, while their additive nature is preserved

using the correct choice of bases. We use a local basis for

rotational strain vector κ and a global (fixed) basis for

the translational strain vector γ. Although our choice

for the component description of translational strain

vector is different than in conventional strain-based nu-

merical models, we prove that it ensures mathemati-

cally consistent update procedure. Moreover, the strain

vectors are assumed constant along the length of the

beam in order to analytically integrate kinematic equa-

tions and avoid the need for any additional approxi-

mation or source of error. The influence of the chosen

description of transverse strains is carefully analysed

and tested with a variety of numerical examples. These

include a thick cantilever beam, shear loaded double

asymmetric tapered beam, a right-angle cantilever and

a beam bent into a helical form. All examples are also

modeled with a commercial finite element analysis soft-

ware and compared to our results. The final section

summarizes the work done in this study.

2 Theoretical formulation

In this section we present the components needed to de-

velop the formulation. We apply quaternion algebra to

describe spatial rotations, most suitable component de-

scription and variational formalism to express the strain

measures. Combined with equilibrium and constitutive

relations, we structure a set of governing equations,

which we later solve numerically.

2.1 Parametrization of rotations

We choose Euler-Rodrigues parameters in a form of unit

quaternions for parametrization of rotations and give a

brief summary of the most important ingredients. (For

a detailed review on quaternion algebra and its applica-

tions see e.g. Ward [40] and Zupan et al. [23].) We will

denote quaternions with a hat symbolˆand the quater-

nion multiplication with a symbol ◦. As spatial vectors

and scalars form the subspace in the space of quater-

nions, the rules of vector and scalar algebra also apply

in quaternion manipulation.

A quaternion â is a combination of a scalar and a

vector, formally presented as:

â = a0 + a, a0 ∈ R, a ∈ R3, (1)
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with the norm |â| =
√
a20 + |a|2, where |a| =

√
a · a.

Its conjugated form is â∗ = a0 − a. The quater-

nion multiplication is associative, distributive and non-

commutative; and is defined as

â ◦ b̂ = (a0b0 − a · b) + (b0a+ a0b+ a× b), (2)

where · denotes the scalar product and × the cross

product. A rotational quaternion q̂ = q0 + q has a unit

norm |q̂| = 1. Moreover,

q̂ ◦ q̂∗ = 1̂. (3)

Due to the non-commutative nature of the quaternion,

it is convenient to introduce two linear operators for

left and right multiplication of unit quaternion q̂ with

an arbitrary quaternion x̂:

q̂ ◦ x̂ = φL(q̂)x̂, (4)

x̂ ◦ q̂ = φR(q̂)x̂, (5)

where

[φL(q̂)] =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 ,

[φR(q̂)] =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

 ,

with [q̂] = [q0, q1, q2, q3]
T

and [x̂] = [x0, x1, x2, x3]
T

rep-

resenting a component one-column form of quaternions

q̂ and x̂. When q̂ has a unit norm, φL(q̂) and φR(q̂) are

orthogonal; thus φL(q̂)T = φR(q̂) and φR(q̂)T = φL(q̂).

Therefore operators φL and φR represent rotations in

four-dimensional space as they conserve the length,

the angle and the orientation of x̂. But in the case of

three-dimensional rotations, when vectors (pure quater-

nions) are involved, operators φL and φR do not map

pure quaternions (vectors) into pure quaternions. Con-

sequently, an appropriate combination of two operators

that preserves the length of the mapped vector in R3

has to be defined. A combination of two consecutive ro-

tations is again a rotation, [40]. Here, a left and right

quaternion multiplication is used to construct operator

Q as follows

q̂ ◦ x̂ ◦ q̂∗ = Q(q̂)x̂, (6)

Q(q̂) = φL(q̂)φR(q̂∗) = φR(q̂∗)φL(q̂), (7)

which reads in matrix notation:

[Q] =

[
1 01×3

03×1 R

]
, (8)

[R] = 2

 q20 + q21 − 1
2 q1 q2 − q0 q3 q0 q2 + q1 q3

q1 q2 + q0 q3 q20 + q22 − 1
2 −q0 q1 + q2 q3

−q0 q2 + q1 q3 q1 q0 + q2 q3 q20 + q23 − 1
2

 .
(9)

Here, [R] denotes a submatrix that is often found in the

literature (see e.g. Argyris [18]) and is called a standard

rotation matrix in three-dimensional rotation space. It

has to be mentioned that each of φR(q̂∗) and φL(q̂)

represent one half of the rotation. For this reason, the

polar form of a quaternion representation of the rota-

tional vector ϑ takes the following form:

q̂ = cos
ϑ

2
+ n sin

ϑ

2
= exp

(
ϑ

2

)
, (10)

where n = ϑ/ϑ is the unit vector that represents the

axis of rotation and ϑ is the angle of rotation. The rota-

tional quaternion can also be defined with an exponen-

tial map [35]. This expression follows from the Taylor

series expansion of the sine and cosine functions in Eq.

(10) and reads

q̂ =

(
1− 1

2!

(
ϑ

2

)2

+
1

4!

(
ϑ

2

)4

− . . .

)

+ n

(
ϑ

2
− 1

3!

(
ϑ

2

)3

+
1

5!

(
ϑ

2

)5

− . . .

)

= 1̂ +
ϑ

2
+

1

2!

ϑ

2
◦ ϑ

2
+

1

3!

ϑ

2
◦ ϑ

2
◦ ϑ

2
+ . . .

= exp

(
ϑ

2

)
.

(11)

2.2 Geometry, kinematics

Let g = {g1, g2, g3} denote a set of fixed orthonormal

vectors, here called the global basis. A material curve

L0 is defined by a vector function r0g to each point s

on the material curve with respect to the origin of the

coordinate system O. Here, s represents the arc-length

parameter of the undeformed curve. If the beam is of

initial length L, then s ∈ [0, L]. Furthermore, let L0

connect the centroids of the beam’s cross-sections and

let the tangent to the curve define their orientation of

the undeformed configuration of the beam (see Fig. 1).

Then a local orthonormal basis G0 = {G0
1,G

0
2,G

0
3} can

be defined such that the base vector G0
1(s) = dr0g(s)/ds

is normal to the cross-section, and G0
2 and G0

3 are

vectors directed along the principal axes of the sec-

ond moment of area of the cross-section. Obviously,



4 Damjan Lolić et al.

 

Fig. 1 Model of a spatial beam in initial and deformed con-
figuration. Fixed, local initial and local deformed bases are
related via transformation matrices Q0(q̂0), Z(k̂) and Q(q̂).

G0
2 × G0

3 = G0
1. As the coordinate system defined by

G0 follows the material curve L0, we call G0 a material

base. Vector G0
1(s) is in general tangent to material

curve L0 only when the initial configuration is unde-

formed.

The deformed configuration of the beam is described

in a similar manner with rg(s), G1(s), G2(s) and

G3(s). As the shear strains are allowed, vector G1(s)

is not necessary tangent to the material curve L. We

additionally assume that the deformed cross-sections

remain planar and have the same shapes and areas as

in the initial configuration.

In order to apply quaternion algebra to the formu-

lation, mathematical configuration space is expanded

into four-dimensions. Every vector from the three-

dimensional space is expanded with a zero scalar

part to form a pure quaternion. A unit quaternion

1̂ is also introduced to supplement the three base

vectors. Local and global bases now consist of four

quaternions Ĝ0, Ĝ1, Ĝ2, Ĝ3 and ĝ0, ĝ1, ĝ2, ĝ3, respec-

tively. Here Ĝ0 = ĝ0 = 1 + 0 = 1̂ and Ĝi = 0 + Gi,

ĝi = 0 + gi, for i ∈ {1, 2, 3}. A spatial rotation, as well

as the coordinate transformation can be obtained by

the linear operator Q. Both, fixed and moving bases

are thus associated via relation

Ĝi = Qĝi = q̂ ◦ ĝi ◦ q̂∗, i ∈ {1, 2, 3}. (12)

The total rotation can be separated into an initial

rotation and a relative rotation, which is in quaternion

notation expressed as:

q̂(s) = k̂(s) ◦ q̂0(s). (13)

Here, the rotational quaternion q̂0 represents the trans-

formation between the global gi and local G0
i basis,

while the rotational change from the initial to the de-

formed configuration is described by rotational quater-

nion k̂. The rotation matrix Q is similarly replaced

by a product of rotation matrices: Q = ZQ0, where

Z(k̂) = φL(k̂)φR(k̂∗) and Q0(q̂0) = φL(q̂0)φR(q̂∗0).

An arbitrary pure quaternion â can be expressed

in global [â]g = [0, ag1, ag2, ag3]T or local [â]G =

[0, aG1, aG2, aG3]T basis. The transformation between

both representations is obtained through rotation Q:

âg = QâG = φL(q̂)φR(q̂∗)âG = q̂ ◦ âG ◦ q̂∗. (14)

Since Q is orthogonal, we can also write an inverse

transformation as,

âG = QT âg = φTL(q̂)φTR(q̂∗)âg = φR(q̂)φL(q̂∗)âg

= q̂∗ ◦ âg ◦ q̂.
(15)

2.3 Variation of rotational quantities

Three-dimensional rotations can be chosen as primary

unknowns of the spatial beam. With rotations not being

additive quantities, we have to look into their variation

prior to the linearization process. We write the variation

of Eq. (12) as follows

δĜi = δq̂ ◦ ĝi ◦ q̂∗ + q̂ ◦ ĝi ◦ δq̂∗

= δq̂ ◦ q̂∗ ◦ Ĝi + Ĝi ◦ q̂ ◦ δq̂∗

= δq̂ ◦ q̂∗ ◦ Ĝi − Ĝi ◦ δq̂ ◦ q̂∗.

In the above derivation, we take into account the vari-

ation of a conjugated quaternion as defined in Eq. (3),

δq̂∗ = −q̂∗ ◦ δq̂ ◦ q̂∗. (16)

Left multiplication leads to q̂ ◦ δq̂∗ = −δq̂ ◦ q̂∗, which is

a common property for all pure quaternions. Therefore,

by using quaternion multiplication according to Eq. (2),

we can write

δĜi = 2δq̂ ◦ q̂∗ ◦ Ĝi = δϑ̂ ◦ Ĝi, (17)

where δϑ̂ denotes a non-unit pure quaternion 2δq̂ ◦ q̂∗.
It represents the variational part of a rotated vector.
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2.4 Equilibrium and strain measures

It is convenient to express the equilibrium equations in

the global frame,

ng(s) = −N ′g(s), (18)

mg(s) = −M ′
g(s)− r′g(s)×Ng(s). (19)

Here, n and m are external distributed force and mo-

ment vectors per unit length of the undeformed config-

uration, and N and M are the stress resultant force

and moment vectors, respectively.

A three-dimensional finite-strain beam theory intro-

duces two strain vectors: a translational strain vector γ

and a rotational strain vector κ. In the material frame

description, the components of these vectors represent:

extensional strain γG1, shear strains γG2 and γG3, tor-

sional strain κG1 and bending strains κG2 and κG3.

Following the approach of Reissner [11], the virtual

work principle is applied,∫ L

0

(NG · δγG +MG · δκG)ds

=

∫ L

0

(ng · δrg +mg · δϑg)ds+ [Fg · δrg + Pg · δϑg]L0 .

(20)

Here, force and moment vectors NG, MG and virtual

strains δγG, δκG are expressed with respect to the lo-

cal basis, while external distributed loads ng, mg, vir-

tual displacements δrg and rotations δϑg, and bound-

ary point forces and moments Fg(0), Pg(0), Fg(L) and

Pg(L) are written with respect to the global basis. The

generalized virtual work principle can be expanded into

four dimensions with a substitution of a rotational vec-

tor with rotational quaternion, as presented in the work

by Zupan et al. [41]. After inserting equilibrium equa-

tions (18) and (19) into the principle of virtual work

and following the calculus of variation, we obtain lin-

earized kinematic relations between virtual strains, vir-

tual displacements and virtual rotational quaternions.

We write the result in quaternion form as follows:

δγ̂G = q̂∗ ◦ δr̂′g ◦ q̂ + 2q̂∗ ◦ (r̂′g ◦ (δq̂ ◦ q̂∗)) ◦ q̂, (21)

δκ̂G = 2q̂∗ ◦ (δq̂ ◦ q̂∗)′ ◦ q̂. (22)

For the integration of Eqs. (21) and (22), a special

attention is needed. We recognize the term 2δq̂◦q̂∗ = δϑ̂

in Eq. (21) from Eq. (17). This means that δγ̂G is a

measure for the rate of change of vector q̂∗ ◦ r̂′g ◦ q̂ due

to the variation of the rotational quaternion. We can

write:

γ̂G = q̂∗ ◦ r̂′g ◦ q̂ + ĉG. (23)

With further application of quaternion algebra, Zupan

et al. [23] provide the relationship between the curva-

ture vector and the rotational quaternion:

κ̂G = 2q̂∗ ◦ q̂′ + d̂G, (24)

where the unknown variational constants ĉG(s) and

d̂G(s) are vector functions to be determined from the

known strain and kinematic measures in the initial con-

figuration of the beam. The initial curvature and twist

along the length of the beam can be introduced through

these constants, but they do not change throughout the

loading process. In the initial state of the beam, its

cross-sections are usually considered to be orthogonal

to the centroid axis, i.e. orthogonal to the tangent vec-

tor dr0g(s)/ds. If we further assume that the beam is

initially undeformed, i.e. that the strains and rotations

are zero: γ̂0G ≡ 0̂, κ̂0G ≡ 0̂ and q̂ ≡ q̂0, [k̂] = [1, 0, 0, 0]T ,

the variational constants ĉG and d̂G are

ĉG = γ̂0G − q̂∗0 ◦ r̂0′g ◦ q̂0 = −Ĝ0
1, (25)

d̂G = κ̂0G − 2q̂∗0 ◦ q̂′0 = −2q̂∗0 ◦ q̂′0. (26)

If the beams are curved in the undeformed config-

uration, we can separate the influence of the initial ge-

ometry from the rotational deformations. Inserting Eq.

(13) for the total rotation into Eq. (24) splits the total

curvature into two parts: the rotational strain κ̂G(k̂)

and the initial curvature κ̂0G(q̂0),

κ̂G(q̂) = 2q̂∗0 ◦ k̂∗ ◦ (k̂ ◦ q̂0)′ + d̂G

= 2q̂∗0 ◦ k̂∗ ◦ k̂′ ◦ q̂0 + 2q̂∗0 ◦ q̂′0 + d̂G

= q̂∗0 ◦ κ̂G(k̂) ◦ q̂0 + κ̂0G(q̂0) + d̂G

= Q0(q̂0)κ̂G(k̂).

We can notice that the initial curvature κ̂0G(q̂0) van-

ishes when we add variational constant d̂G. The total

curvature vector is simply obtained by multiplying ini-

tial rotation matrix and rotational strain. Therefore,

the split of the total rotational quaternion (13) further

simplifies the expressions.

Finally, we can write the curvature and translational

strain vectors with respect to both bases by employing

Eqs. (14) and (15):

γ̂g = r̂′g − q̂ ◦ Ĝ1 ◦ q̂∗, (27)

γ̂G = q̂∗ ◦ r̂′g ◦ q̂ − Ĝ1 (28)

and

κ̂g = 2k̂′ ◦ k̂∗, (29)

κ̂G = 2q̂∗0 ◦ k̂∗ ◦ k̂′ ◦ q̂0. (30)
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We will choose the strain vectors as the primary

unknowns of the problem and assume them to be con-

stant along the length of beam. For the reasons which

will become evident later, we will express the trans-

lational strain vector in global basis and denote γ̂
L/2
g ,

while the rotational strain vector will be expressed in

the local basis and denoted by κ̂
L/2
G . In accord with the

discretization scheme that follows, they will be evalu-

ated at the mid-length and are thus denoted with upper

index L/2. After assuming constant strain measures, we

can directly integrate kinematic equations (27) and (30)

and express the position vector r̂g(s) and the relative

rotational quaternion k̂(s) with respect to translational

strain and curvature:

r̂g(s) = r̂g(0) + γ̂L/2
g s+

∫ s

0

Q(s̃)Ĝ1(s̃)ds̃, (31)

k̂(s) = k̂(0) ◦ exp
(
Q0(0)κ̂

L/2
G s/2

)
. (32)

Equation (32) is derived by following the work by Zu-

pan et al., [35]. The above formulae determine the shape

functions of displacement and rotation field of our el-

ement. Note, that such an element gives exact results

for constant strains.

2.5 Constitutive equations

Constitutive forces and moments are evaluated from a

linear constitutive law as,

N̂C
G = CN (γG, κG) = ĈNγ γ̂G + ĈNκ κ̂G, (33)

M̂C
G = CM (γG, κG) = ĈMγ γ̂G + ĈMκ κ̂G, (34)

where the operators CN (γG, κG) and CM (γG, κG) are

represented with the following 4× 4 matrices

[ĈNγ ] =


1 0 0 0

0 EA 0 0

0 0 GAs 0

0 0 0 GAs


and

[ĈMκ
] =


1 0 0 0

0 GJ1 0 0

0 0 EJ2 0

0 0 0 EJ3

 .
Young and shear moduli are here denoted by E and

G, respectively, A is an area of the cross-section and

As is the effective shear area, torsional moment of in-

ertia is denoted with J1 and second moments of area

about corresponding principal axes with J2 and J3. In

a more general case, where the beam axis does not

pass through the centroid and shear center, off-diagonal

terms, including deviatoric and static moment of area

would appear in constitutive matrices. Note, that the

accuracy of N̂C
G and M̂C

G is the same as that of the pri-

mary unknowns, which allows us to elegantly avoid the

shear-locking (see also [25]).

From the equilibrium equations it is also suitable to

express the resultant stresses in fixed basis, as follows:

N̂C
g = q̂ ◦ N̂C

G ◦ q̂∗ = QN̂C
G

= QĈNγQ
T γ̂g +QĈNκ κ̂G,

(35)

M̂C
g = q̂ ◦ M̂C

G ◦ q̂∗ = QM̂C
G

= QĈMγQ
T γ̂g +QĈMκ

κ̂G.
(36)

2.6 Governing equations

External loads n̂g(s) and m̂g(s) are assumed to be

known analytical functions of the arc-length parameter

s. With this at hand, equilibrium Eqs. (18) and (19)

can be directly integrated

N̂g(s) = N̂g(0)−
∫ s

0

n̂g(s̃)ds̃, (37)

M̂g(s) = M̂g(0)−
∫ s

0

m̂g(s̃)ds̃−
∫ s

0

r̂′g(s̃)× N̂g(s̃)ds̃.

(38)

Using a skew-symmetric operator As (see [42]), we re-

place a vector product with a matrix multiplication as

v × u = As(v)u = −As(u)v, (39)

[As(v)][u] =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

u1u2
u3

 , (40)

and rewrite Eq. (19) accordingly,

M̂g(s) = M̂g(0) +

∫ s

0

(
As
(
N̂g(s̃)

)
r̂′g(s̃)− m̂g(s̃)

)
ds̃

= M̂g(0) +

∫ s

0

(
As
(
N̂g(s̃)

)(
γ̂L/2
g

+Q(s̃)Ĝ1(s̃)
)
− m̂g(s̃)

)
ds̃.

(41)

The set of governing equations consists of constitu-

tive Eqs. (35), (36), equilibrium Eqs. (37), (41), kine-

matic Eqs. (31), (32) and boundary conditions. Con-

stitutive relations are evaluated at the mid-point of

the beam. To put the beam into physical space (three-

dimensional Euclidean space R3), we evaluate the kine-

matic equations at s = L, resulting in discrete rela-

tions between primary unknowns at s = 0, s = L and
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s = L/2.

1ê = N̂C
g (L/2)− N̂g(L/2) = 0̂, (42)

2ê = M̂C
g (L/2)− M̂g(L/2) = 0̂, (43)

3ê = r̂Lg − r̂0g − γ̂L/2
g L−

∫ L

0

Q(s)Ĝ1(s)ds = 0̂, (44)

4ê = k̂L − φL
(
k̂0
)

exp
(
L
2Q0κ̂

L/2
G

)
= 0̂, (45)

5ê = F̂ 0
g + N̂0

g = 0̂, (46)

6ê = P̂ 0
g + M̂0

g = 0̂, (47)

7ê = F̂L
g − N̂g(L) = 0̂, (48)

8ê = P̂L
g − M̂g(L) = 0̂. (49)

Here, F̂ 0
g and F̂L

g denote external forces, while P̂ 0
g and

P̂L
g denote external moments at the beginning and the

end of the beam element. Constitutive and equilib-

rium equations are evaluated at the mid-length of the

beam. In this way, the (left-right) orientation of the cen-

troidal axis becomes irrelevant, resulting in orientation-

independent finite elements that are symmetrical with

respect to the mid-length point. Primary variables of

this formulation r̂0g , r̂Lg , k̂0, k̂L, N̂0
g , M̂0

g , γ̂
L/2
g and κ̂

L/2
G

are denoted with indices 0, L and L/2 to determine

their position on the beam with respect to the arc-

length parameter s of the undeformed beam.

3 Numerical implementation

3.1 Linearization

Before we linearize the system of non linear equations

(42)-(49), it is suitable to prepare some terms first.

Variational form of Eqs. (14) and (15) is:

δQâG = δk̂ ◦ k̂∗ ◦ k̂ ◦ q̂0 ◦ âG ◦ q̂∗0 ◦ k̂∗

− k̂ ◦ q̂0 ◦ âG ◦ q̂∗0 ◦ k̂∗ ◦ δk̂ ◦ k̂∗

=
(
φR(ZQ0âG)− φL(ZQ0âG)

)
φR(k̂∗)δk̂,

(50)

δQT âg = −q̂∗0 ◦ k̂∗ ◦ δk̂ ◦ k̂∗ ◦ âg ◦ k̂ ◦ q̂0
+ q̂∗0 ◦ k̂∗ ◦ âg ◦ k̂ ◦ k̂∗ ◦ δk̂ ◦ q̂0

= QT
0

(
φL(ZT âg)− φR(ZT âg)

)
φL(k̂∗)δk̂,

(51)

where the variation of total rotation δq̂ = δk̂ ◦ q̂0 was

taken into account.

Variational form of Eqs. (31) and (32) reads:

δr̂g(s) = δr̂0g + sδγ̂L/2
g +

∫ s

0

δQ(s̃)Ĝ1(s̃)ds̃

= δr̂0g + sδγ̂L/2
g +

∫ s

0

(
φR
(
Q(s̃)Ĝ1(s̃)

)
− φL

(
Q(s̃)Ĝ1(s̃)

))
φR
(
q̂∗(s̃)

)
δq̂(s̃)ds̃,

(52)

δk̂(s) = δk̂0 ◦ exp
(
Q0κ̂

L/2
G s/2

)
+ k̂0 ◦ δ

(
exp(Q0κ̂

L/2
G s/2)

)
= φR

(
exp(Q0κ̂

L/2
G s/2)

)
δk̂0

+ φL(k̂0)Tδκ̂
L/2
G ,

(53)

where a variation of an exponential map is replaced

by δ
(

exp(Q0κ̂
L/2
G s/2)

)
= T (s)δκ̂

L/2
G . The derivation of

this relation is based on the directional derivative:

δ
(

exp(Q0κ̂
L/2
G s/2)

)
=

d

dε

(
exp(Q0(κ̂

L/2
G + εδκ̂

L/2
G )s/2)

)∣∣∣
ε=0

,

which after a short derivation leads to a compact for-

mula

T = Q0a0I − a0K0s/2 +Q0a1K1,

where I corresponds to a 4 × 4 identity matrix, while

K0, K1, a0 and a1 correspond to

[K0] =


0 κG1 κG2 κG3

0 0 0 0

0 0 0 0

0 0 0 0

 ,

[K1] =


0 0 0 0

0 κG1κG1 κG1κG2 κG1κG3

0 κG2κG1 κG2κG2 κG2κG3

0 κG3κG1 κG3κG2 κG3κG3

 ,
a0 = κ−1G sin(κGs/2)

and

a1 = κ−2G cos(κGs/2)s/2− κ−3G sin(κGs/2).

After inserting Eq. (53) into Eqs. (50) and (51), we

see that every rotation or basis transformation depends

upon the rotational quaternion at the beginning of the

beam and its mid-length curvature. Therefore, the lin-

earization of constitutive resultant forces and moments
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can be expressed with variations of strains and rota-

tions as

δN̂C
g = δQN̂C

G +QδN̂C
G

= δQN̂C
G +QĈNγ δQ

T γ̂g

+QĈNγQ
T δγ̂g +QĈNκδκ̂G

=
(
φR(QN̂C

G )− φL(QN̂C
G )
)
φR(k̂∗)δk̂

+QĈNγ

(
φL(QT γ̂g)− φR(QT γ̂g)

)
φL(k̂∗)δk̂

+QĈNγQ
T δγ̂g +QĈNκδκ̂G,

(54)

δM̂C
g = δQM̂C

G +QδM̂C
G

= δQM̂C
G +QĈMγ

δQT γ̂g

+QĈMγ
QT δγ̂g +QĈMκ

δκ̂G

=
(
φR(QM̂C

G )− φL(QM̂C
G )
)
φR(k̂∗)δk̂

+QĈMγ

(
φL(QT γ̂g)− φR(QT γ̂g)

)
φL(k̂∗)δk̂

+QĈMγ
QT δγ̂g +QĈMκ

δκ̂G.

(55)

Variations of equilibrium internal forces and mo-

ments, that follow from Eqs. (37) and (41), are:

δN̂g(s) = δN̂0
g , (56)

δM̂g(s) = δM̂0
g −

∫ s

0

(
As
(
r̂′g(s̃)

)
δN̂g(s̃)

−As
(
N̂g(s̃)

)
δr̂′g(s̃)

)
ds̃

= δM̂0
g −

∫ s

0

(
As
(
γ̂L/2
g +Q(s̃)Ĝ1(s̃)

)
δN̂0

g

−As
(
N̂g(s̃)

)
(δγ̂g + δQ(s̃)Ĝ1(s̃))

)
ds̃.

(57)

After these preparations, the system of equations

(42)-(49) can be written in a compact linearized form

as follows

δ1ê = δN̂C
g (L/2)− δN̂g(L/2), (58)

δ2ê = δM̂C
g (L/2)− δM̂g(L/2), (59)

δ3ê = δr̂Lg − δr̂g(L), (60)

δ4ê = δk̂L − δk̂(L), (61)

δ5ê = δN̂0
g , (62)

δ6ê = δM̂0
g , (63)

δ7ê = −δN̂0
g , (64)

δ8ê = −δM̂g(L). (65)

3.2 Numerical solution procedure

With linearized equations at hand, we can construct

a tangent stiffness matrix K [n] and a residual f [n] for

the current configuration in iteration n. Let δy de-

note a vector of corrections of the primary unknowns:

δr̂0g , δk̂0, δr̂Lg , δk̂L, δN̂0
g , δM̂0

g , δγ̂
L/2
g and δκ̂

L/2
G . Since

our configuration space is a four-dimensional space of

quaternions, the total number of degrees of freedom per

each element is 26 (2 rotational quaternions and 6 pure

quaternions). Corrections of the primary unknowns are

obtained in each iteration as the solution of a system

of linear equations K [n]δy = −f [n].
Position vectors at boundaries of the element, in-

ternal forces, moments and translational strains are ex-

pressed in the fixed global basis. Therefore, updated

values in new iteration n + 1 are obtained by simply

adding the corrections to the values at the current it-

eration n:

r̂p[n+1]
g = δr̂pg + r̂p[n]g , (66)

N̂0[n+1]
g = δN̂0

g + N̂0[n]
g , (67)

M̂0[n+1]
g = δM̂0

g + M̂0[n]
g , (68)

γ̂L/2[n+1]
g = δγ̂L/2

g + γ̂L/2[n]
g , (69)

where p ∈ {0, L}.

Note that due to the non-standard choice of the

component form of the translational strain vector, the

exactness of the update Eq. (69) needs some additional

explanation. To prove Eq. (69) we first rearrange Eqs.

(27) and (21) and insert them into the derivative of Eq.

(66):

δr̂′g + r̂′[n]g = 2δq̂ ◦ q̂∗ ◦ r̂′g + q̂ ◦ δγ̂G ◦ q̂∗

+ q̂[n] ◦ γ̂[n]G ◦ q̂
∗[n] + q̂[n] ◦ Ĝ1 ◦ q̂∗[n]

= 2δq̂ ◦ q̂∗ ◦ (q̂ ◦ γ̂G ◦ q̂∗ + q̂ ◦ Ĝ1 ◦ q̂∗)

+ q̂ ◦ δγ̂G ◦ q̂∗ + q̂[n] ◦ γ̂[n]G ◦ q̂
∗[n]

+ q̂[n] ◦ Ĝ1 ◦ q̂∗[n].

(70)

Following the same procedure as for Eq. (17) we can

replace the term q̂ ◦ δγ̂G ◦ q̂∗+ 2δq̂ ◦ q̂∗ ◦ q̂ ◦ γ̂G ◦ q̂∗ with

δγ̂g. Since the vectors expressed in a fixed basis can

be directly summed, the sum of the transformed cross-

sectional normal vector q̂[n] ◦ Ĝ1 ◦ q̂∗[n] and its variation

is equal to the update of the same vector

q̂[n] ◦Ĝ1 ◦ q̂∗[n]+δ(q̂[n] ◦Ĝ1 ◦ q̂∗[n]) = q̂[n+1] ◦Ĝ1 ◦ q̂∗[n+1].

(71)

Inserting Eq. (71) into (70), leads to

r̂′[n+1]
g = q̂[n+1] ◦ γ̂[n+1]

G ◦ q̂∗[n+1] + q̂[n+1] ◦ Ĝ1 ◦ q̂∗[n+1]

= δγ̂g + q̂[n] ◦ γ̂[n]G ◦ q̂
∗[n] + q̂[n+1] ◦ Ĝ1 ◦ q̂∗[n+1]

(72)
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and considering the coordinate transformation, finally

gives

γ̂[n+1]
g = δγ̂g + γ̂[n]g . (73)

On the other hand, rotational quaternions and cur-

vature vectors are non-additive. Boundary nodal rota-

tion corrections δk̂p, for p ∈ {0, L} at each element are

expressed in the tangent space, which is not a space of

unit quaternions. The tangential correction δk̂ is first

mapped onto the space of unit quaternions:

∆k̂p = cos|δk̂p ◦ k̂∗p|+ [δk̂p ◦ k̂∗p]R3

|δk̂p ◦ k̂∗p|
sin|δk̂p ◦ k̂∗p|, (74)

and then multiplied to the current rotational quater-

nion

k̂p[n+1] = ∆k̂p ◦ k̂p[n]. (75)

For further details see Zupan et al. [23].

Using Eq. (75) we can express the update of rota-

tional strains. In the fixed basis, we have

κ̂[n+1]
g (k̂[n+1]) = 2

(
∆k̂ ◦ k̂[n]

)′ ◦ k̂∗[n] ◦∆k̂∗
= 2∆k̂′ ◦∆k̂∗ + 2∆k̂ ◦ k̂′[n] ◦ k̂∗[n] ◦∆k̂∗

= ∆κ̂g +∆k̂ ◦ κ̂[n]g ◦∆k̂∗.
(76)

Moreover, the transformation of the above expression

into the local frame yields

κ̂
[n+1]

G[n+1] = q̂∗[n+1] ◦∆κ̂g ◦ q̂[n+1]

+ q̂∗[n+1] ◦∆k̂ ◦ κ̂[n]g ◦∆k̂∗ ◦ q̂[n+1]

= q̂∗[n+1] ◦∆κ̂g ◦ q̂[n+1] + q̂∗[n] ◦ κ̂[n]g ◦ q̂[n]

= ∆κ̂G[n+1] + κ̂
[n]

G[n] .

(77)

4 Numerical examples

A thick cantilever beam, shear loaded double asymmet-

ric tapered beam, a right-angle cantilever and a beam

bent into a helical form are chosen to test our element.

The numerical implementation of the code was done in

Matlab [43]. The Gaussian quadrature rule is used to

evaluate all integrals, in all our examples, 3 integration

points were used. A tolerance 10−8 for Euclidean norm

of corrections was chosen to exit the iteration loop. The

quadratic convergence was observed in all our examples,

so we do not display it separately.

Our finite element has a total of 26 degrees of free-

dom. Therefore, a beam consisting of ne elements has

19ne + 7 degrees of freedom. The internal degrees of

freedom, strain vectors γ
L/2
g , κ

L/2
G and boundary stress

resultants N0
g , M0

g are not involved in the stiffness ma-

trix construction process, as they are condensed at an

element level. The matrix parts Ka, Kb, Kc and Kd

and the vector parts fa and fc are extracted from the

element stiffness matrix Kel and the element residual

vector fel,[
Ka Kb

Kc Kd

] [
δyext
δyint

]
= −

[
fa
fc

]
. (78)

The vector of corrections is divided into two parts;

external [δyext] = [δr̂0g , δk̂
0, δr̂Lg , δk̂

L] and internal

[δyint] = [δN̂0
g , δM̂

0
g , δγ̂

L/2
g , δκ̂

L/2
G ] degrees of freedom,

which we calculate separately. All steps within an iter-

ation loop are represented in pseudo-code 1.

Pseudo-code 1 Iteration n
1: while norm(f [n]) > tolerance do
2: for element = 1 to ne do
3: evaluate fel; . Eqs. (42)-(49)
4: evaluate Kel; . Eqs. (58)-(65)

5: Kcond = Kc −Kd(K−1
b Ka);

6: fcond = fc −Kd(K−1
b fa);

7: Kconst(elDOF, elDOF )+ = Kcond;
8: fconst(elDOF )+ = fcond;
9: end for

10: delete(Kconst(fixDOF, fixDOF ));
11: delete(fconst(fixDOF ));

12: δyext = −K−1
constfconst;

13: δyint = K−1
b (fa −Kaδyext);

14: evaluate update procedure; . Eqs. (66)-(69), (77)
15: end while

The results are evaluated and compared in the form

of a displacement vector and its components in the

global basis [u]g = [u1, u2, u3]T . All four examples were

also modeled in a commercial finite element software

Ansys [44] using a two-node three-dimensional beam

element B188.

4.1 Thick cantilever beam subjected to free-end

transverse force

A thick cantilever beam is subjected to a concentrated

force at the free end, as shown in Fig. 2. The force vector

is composed of two equal transverse components, which

in matrix notation with respect to global basis g reads

[F (L)]g = F [0, 1, 1]T .

We obtained these results by employing the pre-

sented model and also its modification, in which γG
(translational strain in local basis) is a primary un-

known and a simple additive update of γG is used. Note

that a detailed derivation involving γG (which is not
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Table 1 Free-end displacement vector components for different number of finite elements. All results are in millimeters.

ne = 4 ne = 10

γg γG B188 B31 γg γG B188 B31

u1 -39.9843 -39.9808 -41.5599 -42.0672 -40.7568 -40.7563 -42.4987 -42.5348
u2 37.7694 37.7670 40.7048 41.1169 38.3319 38.3315 41.5264 41.6201
u3 119.8349 119.8292 122.0192 122.928 121.1590 121.1580 122.5417 122.6921

ne = 20 ne = 50

γg γG B188 B31 γg γG B188 B31

u1 -40.8675 -40.8674 -42.8238 -42.6723 -40.8985 -40.8985 -42.6746 -42.6951
u2 38.4128 38.4127 41.6851 41.7168 38.4354 38.4354 41.6876 41.7022
u3 121.3469 121.3467 122.8596 122.652 121.3995 121.3994 122.6329 122.6430

ne = 100 ne = 200

γg γG B188 B31 γg γG B188 B31

u1 -40.9030 -40.9030 -42.6801 -42.6982 -40.9041 -40.9041 -42.6556 -42.6992
u2 38.4387 38.4387 41.7072 41.7437 38.4395 38.4395 41.7324 41.7445
u3 121.4070 121.4070 122.6341 122.6420 121.4089 121.4089 122.6164 122.6420

Fig. 2 A cantilever beam subjected to a concentrated force
at the free end.

given in this paper but was also fully integrated in our

computer code), can be found e.g. in papers by Zupan et

al. [23,24]. To distinguish between both formulations we

will use labels γg and γG. The results are compared to

the ones obtained by commercially available finite ele-

ment B188 in Ansys and B31 element from Abaqus [45].

Even though it is a fairly simple example, different re-

sults can be observed for various finite element codes.

From the convergence analysis, shown in Tab. 1 we

notice that all elements converge quite rapidly. Our for-

mulations needed 6 iterations in one step to exit the

loop, while B188 elements converged in two load steps.

For a system of 50 or more elements, the difference be-

tween γg and γG elements is only present at the fifth

decimal place. The absolute difference is approximately

linear in logarithmic scale, which means that the error

decreases exponentially with the number of elements.

Figure 3 illustrates deformed configurations for 4 load

steps to show the evolution of the deformation.

In order to observe the convergence rate of all quan-

tities involved in both (γg and γG) formulations, we

present a convergence plot in Fig. 4. Relative error is

calculated with respect to the value at the final (con-

Fig. 3 Deformed configurations of the cantilever beam sub-
jected to transverse loads.

verged) iteration. After 6 iterations, all degrees of free-

dom reached their precision limits, while exhibiting

quadratic convergence behaviour. Afterwards, there is

no significant difference in the convergence of the two

formulations.

4.2 Double asymmetric tapered beam

Although a thick beam theory accounts for shear defor-

mation, numerical examples found in the literature are

surprisingly often restricted to relatively small shear de-

formations. To fill this gap, we propose a double asym-

metric tapered beam. The geometry, material proper-

ties, boundary conditions and loads are defined such

that large shear deformation is observed (see Fig. 5

for details). The beam is clamped at one side while

all rotation and longitudinal displacement components

are restrained on the other side. The beam is sub-

jected to a distributed load, defined with a vector ng.
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Fig. 4 Relative error convergence evolution of distinct kinds
of degrees of freedom. Solid line represents γg elements, while
dashed line represents γG elements. Model is constructed with
50 elements.

For one half of the length of the beam, its value is

[n(s)]g = ng[0, 1, 1]T , 0 < s < L/2 and for the other

[n(s)]g = ng[0,−1,−1]T , L/2 < s < L. The height and

Fig. 5 Geometrical model of a thick double asymmetric
tapered beam subjected to distributed loads. One end is
clamped, while the other is connected to a rigid panel through
rollers restraining all rotations and axial displacement.

width of the cross-section follow linear relations

B(s) = B0+
BL −B0

L
s and H(s) = H0+

HL −H0

L
s.

Results, given in Table 2, demonstrate the conver-

gence of the problem for γg and γG elements, the B188

element from Ansys and the B31 element from Abaqus.

All results are obtained with 1 load step.

Although the cross-sections are non-uniform, a sym-

metry of the problem can be observed from the results

of Abaqus element B31 and our formulation. Results,

obtained with commercial software Ansys converge to

different values for displacement u2(L) and u3(L), be-

ing 2.91% and 0.13% apart from our results. Conver-

gence difficulties were noticed for γG formulation and

the default loop termination criterion (10−8) was not

reached. The solution (the norm of a residual vector)

was trapped approximately between 10−5 and 10−6.

For this reason, the procedure with γG elements was

stopped after 15 iterations of error norm fluctuation,

while γg elements needed only 6 on average to converge

altogether. Nonetheless, we notice that values of both,

γg and γG elements yield very similar results and have

better convergence rate than both commercial software

elements.

Figure 6 depicts a relative error convergence plot for

all primary unknowns of the γg and γG formulations.

Note that γg elements reach lower precision limit within

less iterations than γG elements.

Fig. 6 Relative error convegrence evolution of primary un-
knowns. Solid line represents γg and dashed line γG elements.
Model is constructed with 50 elements.

When shear deformation is large, the error accu-

mulates in every load step. Figure 7 portrays the dif-

ference between displacements calculated with both

formulations, γG and γg, for various ratios of shear

G and Young modulus E. As the load increases, the

results grow apart, which is even more evident for

cases with smaller rigidity in shear, i.e. where larger

shear strains are developed. The displacement differ-

ence |ug2(L)−uG3(L)| decreases exponentially with the

number of elements for all cases. The last case with

extremely large shear modulus (grey curve) represents

the shear rigid case which corresponds to the Euler-
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Table 2 Right-end displacement vector components for different finite elements. All results are in millimeters.

ne = 4 ne = 10

γg γG B188 B31 γg γG B188 B31

u2 15.79574 15.77233 15.12098 16.56631 15.85471 15.85122 15.34776 16.72924
u3 15.79574 15.77233 15.36293 16.56631 15.85471 15.85122 15.75427 16.72924

ne = 20 ne = 50

γg γG B188 B31 γg γG B188 B31

u2 15.86215 15.86128 15.37514 16.75163 15.86418 15.86404 15.40146 16.78049
u3 15.86215 15.86128 15.80817 16.75163 15.86418 15.86404 15.84070 16.78049

ne = 100 ne = 200

γg γG B188 B31 γg γG B188 B31

u2 15.86447 15.86444 15.40256 16.78132 15.86454 15.86453 15.40283 16.89724
u3 15.86447 15.86444 15.84285 16.78132 15.86454 15.86453 15.84339 16.89724

Bernoulli hypothesis on perpendicular cross-sections.

Even in this case, the differences are still present.

Fig. 7 Displacement difference for various shear moduli. We
use 4 elements and 10 load steps.

Figure 8 depicts shear and bending strain for every

element. Given that the norm of the curvature vector

is substantially smaller than that of the translational

strain vector, we can conclude that this problem is gov-

erned mainly by shear deformation (see the top right

inset on both figures).

4.3 L-shaped cantilever beam

A beam with right angle between its segments of equal

length is often studied in the literature [17,25,30]. Due

to its geometry it is suitable for tests of beam formu-

lations on torsion-bending coupling. With very slender

segments (h/b = 1/50), instabilities can occur during

specific loadings. Figure 9 illustrates one such case, in

which one end is fixed and the other is subjected to a

force acting in the g1-g2-plane. We also apply an out-

of-plane perturbation force in the direction of the unit

vector g3. Hence, the matrix form of the force vector

is [F (2L)]g = F [0, 1, 0.001]T . Geometrical and material

properties given in the Fig. 9 are taken from Ref. [17].

Fig. 9 Schematic of a right-angle cantilever beam.

Results presented in Fig. 10 are obtained with 10

elements (197 degrees of freedom) and 100 load steps.

We compared them with the results from Smolenski

[17] (20 two-node elements) and Zupan and Saje [25]

(12 elements with 5 interpolation points; 510 degrees

of freedom). An excellent agreement can be observed

between our results and the results of these authors. In

this case, both elements, based on γg and γG converge

and yield practically the same result, since there is no

substantial shear deformation, as shown in Fig. 11.

4.4 Beam bent into a helical form

An example, introduced by Ibrahimbegović [29] is often

used to illustrate element’s ability to withstand large

rotations. A cantilever beam is subjected to a concen-

trated force F and a bending momentM at the free end,

as shown in Fig. 12. With moment M acting alone, the
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Fig. 8 Deformed configuration for λ = 1 and G = E/2.6. Every element has the color coresponding to the Euclidean norm of
a) translational strain vector and b) rotational strain vector.

Fig. 10 Lateral post-buckling region of a right angle beam
subjected to an in-plane load.

beam would bend into a circular shape with several rev-

olutions in g1-g3-plane, whereas a simultaneous action

of force F and bending moment M produces a helical

shape.

Fig. 12 A cantilever beam subjected to an end force and
moment.

To test the convergence of finite elements, we vary

the number of elements and compare displacements u2
for F = 50 and M = 200π, see Tab. 3 for both γg and

γG formulations. End force and moment are controlled

by a load factor λ, increasing incrementally from 0 to

1 in 200 steps.

During loading, the height of such composed helix

oscillates around zero value. Interestingly, the shape ob-

tained in the final load step lies on the negative side of

g1-g3-plane. This effect is visible on the out-of-plane

displacement u2 diagram in Fig. 13 a).

Figure 13 b) presents a plot of displacement u2 ver-

sus load factor λ. Results of both element types coincide

with the ones found in [23,24,29]. Our construction with

79 elements (1508 degrees of freedom) is in very good

agreement with result from [25], which was obtained

with 25 elements with 8 interpolation points (1506 de-

grees of freedom).

Since the beam in this case is mainly undergoing

bending deformations, the differences between formu-

lations are negligible. With the norm of translational

strain vectors being relatively small, so is the error
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Fig. 11 Deformed axis and rotated cross-sections for F = 1.9 N where every element has the color coresponding to the
Euclidean norm of a) translational strain vector and b) bending strain vector.

Table 3 Free-end displacement vector components for different number of elements.

ne = 50 ne = 79 ne = 100

γg γG γg γG γg γG

u1 -9.982863 -9.983047 -9.99502 -9.995034 -9.995140 -9.995147
u2 -0.089889 -0.090060 -0.083702 -0.083703 -0.080564 -0.080564
u3 -0.002437 -0.002397 -0.000090 -0.000091 -0.000075 -0.000075

ne = 200 ne = 500 ne = 1000

γg γG γg γG γg γG

u1 -9.995181 -9.995183 -9.995194 -9.995194 -9.995196 -9.995196
u2 -0.077480 -0.077480 -0.076608 -0.076608 -0.076483 -0.076483
u3 -0.000073 -0.000073 -0.000073 -0.000073 -0.000073 -0.000073

Fig. 13 a) Deformed configuration with 100 elements and b) free end displacements u2.

of the update. On average, one additional iteration

is needed to reach the convergence criteria. Increasing

the number of elements, their length becomes smaller

and thus the difference in rotations between loading

steps leads to better results. For example, Češarek et

al. [24] used 1000 load steps in finite element model

composed of 200 constant strain elements, with trans-

lational strain expressed in local basis. Failure of com-

mercial software finite elements to withstand large ro-

tations was also reported in [24].

5 Conclusions

The present finite element formulation is based on a

geometrically exact beam theory. In the derivation of

our computational model, the emphasis is given to



A consistent strain-based beam element with quaternion representation of rotations 15

consistency and mathematical accuracy, which inher-

ently results in a numerically stable formulation. Spa-

tial rotations of cross-sections are parametrized using

quaternion algebra in order to provide a singularity-

free model, capable of describing large rotations. We

choose strain measures as the primary unknowns and

assume them to be constant along the length of an el-

ement. This is the only approximation regarding the

derivation of governing equations. The choice of com-

ponent description for the strain vector is supported

by mathematical argument on accurate updating pro-

cedure given in Sec. 3.2. The strain measures are now in

fully consistent relationship with the current configura-

tion, regardless the magnitude of strains, rotations and

displacements. Linearization process is obtained within

variational framework, while the implementation into

the finite element model involves numerical integration

(we applied Gaussian quadrature rule).

In the present model, the interpolation and collo-

cation points coincide, thus we avoid the interpolation

error. The only way to obtain more accurate results

is by employing more elements in the model. Due to

our efficient formulation, this process is not computa-

tionally demanding. The performance of the numerical

model is tested on one custom and three standard nu-

merical examples found in literature. We showed that

even small number of elements yields satisfactory re-

sults when compared to other beam finite element for-

mulations.

The update of translational strains can be a source

of error in strain based formulations. Compared to the

models where strains are updated in local basis our ap-

proach is consistent with the configuration space. The

differences are more evident for cases with large shear

deformation. This effect is often overlooked in the lit-

erature, since vast number of the beam finite element

numerical examples undergo rather small shear strains.

For this reason, we devised an example of shear loaded

double asymmetric tapered beam. In this case, shear de-

formation is characteristically larger than bending de-

formation, which consequently results in convergence

difficulties for the elements with inconsistent update

of translational strains. Although the difference in re-

sults reduces exponentially with the number of elements

used, the present approach requires less iterations for

the same accuracy.
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29. Ibrahimbegović A (1997) On the choice of finite rotation
parameters. Comput Method Appl M 149(1-4):49–71
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