
Experimental and numerical analysis of stiffened curved plates as bottom 

flanges of steel bridges 

 

Sara Piculina, Primož Možea 

a Faculty of Civil and Geodetic Engineering, University of Ljubljana, Slovenia 

 

Corresponding author: 

Sara Piculin 

Faculty of Civil and Geodetic Engineering, University of Ljubljana 

Jamova 2 

1000 Ljubljana, Slovenia 

Tel: +386 1 4768 672 

Email address: spiculin@fgg.uni-lj.si 

 

ABSTRACT  

This paper deals with the experimental and numerical evaluation of the buckling behaviour and ultimate 

resistance of stiffened transversally curved panels subjected to uniform axial compression. Furthermore, 

a verification procedure for curved stiffened panels is proposed that gives a good estimation of the 

maximum loads obtained from experimental and numerical tests. The procedure is in line with the design 

methodology of EN 1993-1-5, accounting also for panel curvature. Nine large-scale tests were 

performed on longitudinally and transversally stiffened plates made of high strength steel, namely S500 

and S700. They were subjected to compressive stresses up to collapse. The nine specimens comprised 

of flat and curved plates that differed in material grade and geometric parameters, such as panel 

thickness, aspect ratio, size and shape of stiffeners. The effects of different parameters on the plate’s 

resistance to pure compression are discussed. Moreover, a numerical model built in the general-purpose 

code ABAQUS is presented and verified against the test results regarding initial stiffness, ultimate 

resistance and failure mode. Numerical simulations (FEA), based on the test panel geometry, the 

measured initial geometric imperfections and elasto-plastic material characteristics from tensile tests, 

demonstrate very good agreement with experimental results.  

Keywords: stiffened curved plates; experimental investigation; FEM; initial imperfections; steel 

bridges; uniform compression. 
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1 Introduction 

New aesthetic forms of modern steel and steel-concrete composite bridges increased the interest in the 

research of cylindrically curved plates. Furthermore, curved plates as structural elements are widely 

used in many other applications, such as marine, offshore and fibre composite fuselage structures. In 

practical bridge design, curved plates usually represent the lower flange and are longitudinally welded 

to vertical or inclined web plates in order to form a closed box-section. In contrast to the classic 

approach, where the box girder is composed of stiffened flat plate elements and designed according to 

EN 1993-1-5 [1], the design of curved plates is not covered by the Structural Eurocodes. A recent survey 

by Biscaya da Graça et al. [2] identified almost 20 roadway, railway and pedestrian bridges, where 

curved shapes of bottom flange plates were adopted. In most of the aforementioned cases, the curvature 

of the identified bridges falls out of the scope of the design code EN 1993-1-5 that is limited to flat 

plates. Plate elements may be considered as flat, if the radius of curvature R satisfies a given limit Rlim 

depending on panel width b and plate thickness t:  

2

lim /R b t   (1) 

The cable-stayed Escaleritas Viaduct [3] and the case study by Reis et al. [4] on a continuous girder 

bridge (see Fig. 1) represent typical applications of a transversally curved plate in a bridge box cross-

section. In both cases, the geometry exceeds considerably the limit from Eq. (1). In addition, it has been 

proven by several authors that curved panels have different characteristics compared to the flat ones 

[5,6]. In fact, in most cases, the increased cross-sectional moment of inertia leads to a higher resistance 

compared to flat plates [7]. Therefore, a sophisticated FEM analysis is necessary in order to properly 

calculate the ultimate resistance of curved plates as individual members of box cross-sections.  
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Fig. 1. Cross-section with transversally curved bottom flange [4]. 

In general, plate elements as parts of box girders are predominantly subjected to in-plane loading. A 

uniform compressive stress distribution arising from longitudinal bending is a typical loading situation 

for bottom plates of box girders near internal supports. Furthermore, plate-like and shell-like structures 

are usually designed as slender (cross-section class 4 acc. to EN 1993-1-1 and design acc. To EN1993-
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1-5 and EN1993-1-6, respectively) and are therefore prone to stability phenomenon, in this case 

specifically to buckling due to direct compressive stresses. Although some interaction between shear 

and compressive stresses may be expected due to the curved shape of the lower flange, this study focuses 

on plates subjected to uniform axial compression. The “effective width method” approach from EN 

1993-1-5, where direct and shear stresses are checked separately, is followed. For ultimate shear 

resistance of curved steel panels, reference is given to Ljubinković et al. [8]. 

The design of plated structures should meet several requirements, such as weight minimization and 

maximization of the buckling resistance. As shown by Oliveira Pedro et al. [9], in the design of highway 

bridges steel weight can be reduced up to 25 % by using high strength steel (HSS) instead of mild 

strength steel, although the plate thickness reduction leads to decks more susceptible to local buckling. 

In order to increase the buckling resistance by a small addition of weight, curved plates are usually 

stiffened with evenly spaced longitudinal stiffeners. When the stiffeners possess sufficient flexural 

stiffness, only local buckling of subpanels between stiffeners develops. Otherwise, for weaker stiffeners, 

the panel fails predominantly in a global buckling form, where the longitudinal stiffeners are involved 

in the overall buckling of the panel between transverse stiffeners. For a stiffener with medium stiffness, 

a combination of local and global buckling occurs. Note that transverse stiffeners have to be rigid enough 

to give support to the longitudinal stiffeners [10]. For flat plates, EN 1993-1-5 defines global buckling 

as a combination of plate-like and column-like buckling of the stiffened plate. Depending on the 

interaction between the two behaviours, a reductions factor is defined that reduces the cross-section area 

of the stiffened panel together with the reduction factor related to local buckling of subpanels. The 

background information is given in [11].  

The lack of practical design rules for stiffened and unstiffened curved plates under in-plane stresses 

drove several authors to study their behaviour with a scope of proposing methods for the calculation of 

elastic buckling stress and ultimate resistance. A detailed review of these studies and the proposed 

methods for curved plates under generalized in-plane stresses is given by Martins et al. [12]. Herein, a 

few more recent ones are exposed. Seo et al. [13] derived closed-form expressions to predict the ultimate 

compressive strength of curved stiffened plates for marine and offshore applications. Similarly to other 

studies in this field, authors in [14] performed a parametric study on a so-called double span/double bay 

model with one stiffener that does not account for the effects of global buckling. In bridge engineering 

applications, Martins et al. [15,16] studied unstiffened cylindrically curved panels under compressive 

stresses and proposed design approaches in accordance with the current rules from EN 1993-1-5. Tran 

et al. [7,17] proposed two methods to compute the ultimate strength of stiffened curved panels under 

uniform compression and concluded that curvature increases the second moment of inertia, which leads 

to higher elastic buckling stress and higher ultimate resistance. They proposed a simple and rather 

conservative methodology for the estimation of the ultimate strength [7] that relies on a column-like 

approach derived from the model of resistance of stiffened flat plates. The second method [17] follows 



4 

 

a statistical approach based on a design of experiment method. The proposed formula for computing the 

ultimate load factor is limited to open section stiffeners. Later in this paper, the methods from Martins 

et al. [15,16] and Tran et al. [7] are explained in detail and compared to maximum loads obtained from 

experimental tests.  

However, none of the above mentioned studies and proposed methods has any experimental background. 

Unlike slender flat plates with stiffeners, where quite some experimental work has been done recently, 

e.g. [16–19], experimental tests on curved plates are not so numerous. Cho et al. [22] performed axial 

compression test on six curved stiffened plates representing the bilge strikes of container ships and found 

positive effects of curvature on the ultimate strength. Nevertheless, due to the specific geometry and 

material of the specimens that were based on a ship survey, the results of the study are not directly 

applicable to bridge design. To the author’s knowledge, the recent experimental investigations by 

Ljubinkovic et al. [23,24] are the only dealing with curved plates for bridge application. They performed 

compression test on cylindrically curved panels and bending tests on two bridge segments with 

transversally curved bottom flanges. It is important to point out that in bridge segments, failure was 

concentrated in the curved bottom flange close to the mid-support where the highest compressive 

stresses develop. All the aforementioned statements underline the need for an experimental evaluation 

of axially loaded stiffened curved plates as parts of bridge deck cross-sections. 

Hence, this paper presents experimental tests on nine large size stiffened curved plates subjected to 

uniform compressive stresses together with numerical simulations. Based on of two methodologies 

recently published by Martins et al. [15,16] and Tran et al. [7], a verification procedure for curved 

stiffened panels is proposed that is in line with the design methodology of EN 1993-1-5, accounting also 

for the positive effects of panel curvature.  The tests are part of an extensive research project aiming to 

verify the proposed design methodology through a comprehensive parametric study performed on the 

numerical model calibrated on test results.  

The article is organised as follows. In Section 2, the specimen geometry, experimental test setup and 

measuring techniques are described together with the main test results. Subsequently, in Section 3, the 

numerical simulations of experimental tests are presented with emphasis placed on modelling the initial 

geometric imperfections and residual stresses. Finally, Section 4 presents two methodologies for the 

calculation of the ultimate resistance for flat plates from EN1993-1-5 and for curved plates from 

literature. Comparison between verification procedures, numerical and experimental results is made.  
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2 Experimental tests 

Experimental tests on large-scale specimens are aimed at examining the ultimate resistance and 

structural behaviour of longitudinally stiffened curved panels in compression. Within the experimental 

investigation, nine isolated stiffened steel plates made of high strength steel, namely S500 and S700, 

were tested, two of them were flat and the other seven were curved. They were loaded in uniaxial 

compression in the vertical direction. Specimens with different parameters were included in the 

investigations in order to examine their effects on the ultimate resistance. Finally, the experimental 

results were the basis for the validation of the numerical model. 

2.1 Geometry and material properties 

The basis for the test specimen geometry definition was a bridge case study performed by Reis et al. 

[4], where a box girder was adopted, formed from a curved bottom flange with a radius of 2.5 m and 

longitudinally stiffened with flat stiffeners. The dimensions of the bridge were chosen within the rules 

of common engineering practice for bridge design. The tested specimens represent a part of the lower 

flange and are scaled down approximately five times with respect to the case study, due to the limited 

piston capacity and laboratory height limitations. The scaling factor was defined based on preliminary 

numerical calculations considering increased yield strength of material and did not affect the plate 

slenderness.  

For practical reason, to avoid changing the test setup, the overall test specimen geometry was the same 

for all tests. The general specimen geometry is presented in Fig. 2 together with the relevant parameters 

required for the definition of the stiffened plate, both flat and curved. Additionally, the curvature of a 

cylindrically curved panel is denoted with global curvature parameter Z that was first proposed by 

Batdorf [25] and later adopted by several authors [7,15], by removing the Poisson's coefficient: 

2b
Z

Rt
=   (2) 

In case of stiffened plates, the local curvature parameter for unstiffened subpanels is defined by the 

following expression: 

2

loc
loc

b
Z

Rt
=   (3) 

Some of the parameters were kept constant for all specimens, namely, panel width b = 612 mm, panel 

height L = 1764 mm and the transverse stiffeners height and thickness, hst / tst = 90 mm / 4 mm. Seven 

curved and two flat panels were tested, all stiffened with two longitudinal and one or three transverse 

stiffeners, resulting in two different aspect ratios of longitudinally stiffened panels between transverse 

stiffeners α = a / b. Cut-outs were made in the transverse stiffeners to allow for the continuity of the 
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longitudinal stiffeners. The varying parameters are listed in Table 1, where specimens are denoted with 

C for curved panels and F for flat panels. Specimen 6C is stiffened with T-shaped longitudinal stiffeners 

(Fig. 3), all other specimens have flat stiffeners. Longitudinal stiffeners are continuous as they pass 

through the openings in transverse stiffeners. For all specimens, subpanels between stiffeners are 

classified as slender class 4 cross-sections with relative slenderness λp  ranging between 0.8 and 1.4. 

 

Fig. 2. Test specimen geometry. 

 

Fig. 3. Dimensions of T stiffener in [mm]. 

Table 1. Nominal values of geometric and material properties of test specimens. 

  Plate Subpanel Longitudinal stiff. 

 Specimen 

 

Material R [mm] t [mm] a [mm] α λp Zloc hsl/tsl [mm] Material 

cu
rv

ed
 

1C-1 S-1 500 6 432 0.71 0.81 12 50/5 S-3 

1C-2 S-1 500 6 432 0.71 0.81 12 50/5 S-3 

2C* S-4 500 6 432 0.71 0.81 12 50/4 S-5 

3C S-2 500 4 432 0.71 1.22 18 50/5 S-3 

4C S-5 500 4 432 0.71 1.44 18 50/4 S-5 

5C S-2 500 4 876 1.43 1.22 18 50/6 S-1 

6C S-2 500 4 876 1.43 1.22 18 T S-2 

fl
at

 1F-1 S-1  6 432 0.71 0.81  50/5 S-3 

1F-2 S-1  6 432 0.71 0.81  50/5 S-3 

* Specimen 2C was designed as S700. After the fabrication, material tests were performed, and the plate turned 

out to be S500. Hence, the stiffeners are S700 and the plate is S500.  

a

bloc
b

subpanel

longitudinal

stiffener

transverse

stiffener h
sl

tsl

h
st

bloc

A A

Cross section A-A

t

R

O

L

• Curved plate

• Flat plate

b

t

b
bloc

h
st

h
sl

tsl

Front view

4

t

4
0



7 

 

The test specimens were fabricated from five different steel plates. The standard tensile tests according 

to [26] were carried out to determine the elastic-plastic stress-strain relation for each plate in order to 

obtain more accurate material characteristics for the successive numerical simulations. Two tensile 

coupons were extracted from each plate according to [26]. The results of tension tests are summarized 

in Table 2, where tm denotes the actual measured thickness of the plate, Rp0,2 denotes the characteristic 

plastic strength at the strain of 0.02%, ReH the high static value of the yielding strength, Rm the ultimate 

tensile strength, εu the uniform strain and εf the fracture strain.  

Table 2. Measured material properties for all five steel plates. 

 Material  tm [mm] Rp0,2 [N/mm2] ReH [N/mm2] Rm [N/mm2] εu [%] εf [%] 

S-1 S500MC 
1 5.84 542 - 653 10.06 21.48 

2 5.84 539 - 653 10.02 21.18 

S-2 S500MC 
1 3.87 - 576 642 12.00 23.76 

2 3.87 - 581 647 13.15 24.66 

S-3 S500MC 
1 4.84 - 553 642 11.73 23.01 

2 4.84 - 554 647 11.56 23.16 

S-4 S500MC 
1 5.85 542 - 659 11.78 22.03 

2 5.84 541 - 658 10.30 22.18 

S-5 S700MC 
1 4.05 - 768 828 11.27 21.93 

2 4.06 - 767 827 11.48 22.23 

 

2.2 Test setup and procedure 

The test setup indicated in Figs. 4 and 5 was carefully designed to achieve uniform compression in the 

panel and to avoid any eccentricity during load application that would result in an additional edge 

bending moment. The hydraulic piston was installed on the main testing frame together with the 

vertically positioned test specimen. The curved edges of the specimen were fixed; longitudinal edges 

were simply supported. For this purpose, the curved edges of the specimens were welded to stiff, 30 mm 

thick end plates (Fig. 6) and bolted to stiff HEM300 girders that served for uniform load and reaction 

distribution. The girders were supported out-of-plane to the reaction wall with support arms. A cast 

nylon (PA6G) low friction plate was used on the upper girder to enable the free vertical movement of 

the specimen. The bottom girder distributed the reaction forces to the floor through a concrete block. 

The specimen’s vertical edges with a width of 1 mm were positioned into linear rotational supports that 

were designed in order to restrain only the out-of-plane displacement and to allow the vertical and the 

lateral displacement together with the rotation around the vertical axis. The linear supports were similar 

to those used by Zizza [27] and Pourostad et al. [28]. They were connected to vertical columns that were 

adequately supported in the lateral and out-of-plane direction. 

The axial compression load was applied directly on the geometric centre of the specimen’s cross-section 

area using a hydraulic piston with maximum capacity of 3000 kN. The load was uniformly distributed 
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to both the panel and the longitudinal stiffeners. The tests were displacement controlled, with 

monotonously increased displacement up to collapse. After the elastic preloading phase, where the 

specimen was loaded in elastic range up to approximately 10% of the anticipated maximum load and 

then unloaded, the rate of displacement was 0.01 mm/s. During stops, photos were taken for the 

photogrammetric measurements.  

 

Fig. 4. Schematic representation of the test layout. 
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Fig. 5. Laboratory test setup with specimen 1C-1 in position. 

 

Fig. 6. Specimen 1C-1 with end plates welded to curved edges.  

 

2.3 Measurements 

For the purpose of numerical simulations, the initial geometry of the specimens was measured by a 

structured light portable 3D scanner, namely ATOS Compact Scan 5M by GOM. The measured out-of-

plane imperfections for specimens 1C-1 and 1C-2 at two different heights are plotted in Fig. 7. The 

measurements were further used for the interpolation of initial geometric imperfections in the finite 

element model.  
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Fig. 7. Measurements of initial imperfections of specimens 1C-1 and 1C-2 at two heights. 

 

During the tests, the following quantities were measured:  

• applied load F measured by a load cell (Fig. 8), 

• one-dimensional strains of 18 characteristic points of the panel and the stiffeners (for the 

positions, see Fig. 9), 

• lateral and out-of-plane displacements of the supporting structure measured continuously with 

linear transducers (LVDTs) in 8 discrete points, 

• vertical displacement v and out-of-plane displacement w of the panel measured continuously 

with LVDTs in 2 discrete points (Fig. 8), 

• displacement field of the panel in the out-of-plane direction calculated from the 

photogrammetric measurements.  
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a) Specimens with α = 0.76  b) Specimens with α = 1.52 

Fig. 8. Position of applied force F and measured displacements v and w; notations of subpanels. 

 

Fig. 9. Position of strain gauges on the back and front sides of the specimen with α = 0.76. 

For the photogrammetric measurements, an artificial texture was applied by paint to the stiffened face 

of each specimen to produce a dense point cloud. In addition, 40 coded targets were attached to the 

panel. The load application was paused according to a predefined protocol. During each pause, a block 

of 4 × 3 images of the specimen was taken using Nikon D610 DSLR camera. From each image block, 

the coordinates of the coded targets were calculated. This enabled tracking of the displacements in 

discrete points at each loading step. From the calculated point cloud, the out-of-plane displacements of 

the specimen at different loading steps were calculated. The procedure is described in more detail in 

Grigillo et al. [29]. Due to the coded targets and painted point cloud, the position of strain gauges was 

limited to the back side of the panel. 
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Fig. 10. Specimen painted in random speckle pattern and coded targets. 

 

2.4 Test results 

Some of the main test results are presented in the following sections. The applied load F and measured 

vertical displacement v plotted in the graphs of the following sections are displayed in Fig. 8. For a 

clearer description of the failure modes, subpanels of the specimens are numbered.  

2.4.1 Load-shortening curves and ultimate resistance 

The response curves for all nine tests are presented in Fig. 11, where the ultimate resistance of each 

specimen is determined as the maximum of the load-shortening curve. The specimens with a panel 

thickness of 6 mm are presented on the left and the specimens with a panel thickness of 4 mm are 

presented on the right figure. Vertical displacement v at the load application point is plotted on the 

abscissa and the applied load F on the ordinate axis. Due to the load application stops, the curves are 

not completely smooth. 

The initial inclination of the curves for specimens with plate thickness t = 6 mm, i.e. the initial stiffness 

of the panels, is comparable. Slightly lower stiffness is observed for specimen 2C. The difference may 

be attributed to a thinner longitudinal stiffener. All specimens showed a linear elastic response up to a 

high load level. The stiffness gradually decreased as the plates passed over to the plastic range. The 

highest capacity was attained for specimen 1C-2, followed by 1C-1 with a 4.6 % lower capacity. The 

two specimens had the exact same nominal geometry and material, so the difference in the ultimate 

resistance may be attributed to different geometric imperfections (Fig. 7) and to the inevitable minor 

variation in the position of the applied force. The two flat panels, namely 1F-1 and 1F-2, had the same 

nominal geometry and material as 1C-1 and 1C-2, and consequently the same cross-section area, the 

only difference was the curvature. The ultimate force obtained by the flat panels was 13 % to 19 % lower 

compared to the curved panels. This confirms the observations made by previous authors [7,16]  that 

curvature increases the ultimate strength of panels.  

The initial stiffnesses of slender panels, e.g. specimens with plate thickness t = 4 mm, slightly differ, 

since all four specimens have some differences in the nominal geometry and material. In all cases, an 

almost instantaneous drop of resistance is observed, due to local instability of subpanels. The first drop 

is followed by an increased resistance and finally, the ultimate resistance is reached due to local buckling 
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of several subpanels and longitudinal stiffeners. The highest capacity was reached by specimen 4C due 

to the highest steel grade, followed by the other three specimens that had similar capacity. Both cases 

with larger aspect ratios, namely 5C and 6C, yielded a similar resistance compared to specimen 3C, 

regardless of the doubled value of aspect ratio. This is in line with the conclusions made by the authors 

in the previous numerical study [6], where it was shown that by increasing the aspect ratio above α = 1,  

the ultimate resistance remains nearly constant or slightly decreases. 

  

a) Specimens with panel thicness t = 6 mm   b) Specimens with panel thickness t = 4 mm 

Fig. 11. Experimental load-shortening curves for all nine specimens 

 

2.4.2 Out-of-plane deflections and collapse mechanisms 

Fig. 12 shows the evolution of the out-of-plane displacements in contour plots for specimen 2C. The 

loading steps are marked on the load-shortening curve. In Fig. 13, the out-of-plane deformation lines at 

the cross-section with the largest displacements are plotted. The results were obtained by 

photogrammetric method and do not contain the initial imperfections. After a small global deformation 

of the panel, the specimen resistance is exhausted due to local buckling of subpanels 10, 11 and 12 (see 

Fig. 8). In addition, torsional buckling of longitudinal stiffeners may also be observed in Fig. 14, 

showing failed specimen 2C after unloading.  

Out-of-plane displacements of specimen 3C are presented in Figs. 15, 16. The results indicate that the 

local type of buckling shape prevails. In addition to the local buckles in nearly all the subpanels, there 

is a certain degree of stiffener deflection. The first drop in the load-shortening curve happened after the 

first half-wave due to the buckling of subpanel 4. After the drop, the resistance of the specimen increased 

again. The failure occurred after the buckling of the adjacent subpanels. 
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According to [12], similarly to flat plates, stiffened cylindrically curved plates may exhibit four different 

buckling modes, namely global buckling of the curved panel, beam-column-type buckling of the panel-

stiffener system, local buckling of the unstiffened subpanel between stiffeners and local buckling of 

stiffeners. The experimental results for curved specimens indicate that a local collapse mechanism 

prevailed in all cases, in combination with torsional buckling of longitudinal stiffeners. The stiffeners 

possessed sufficient bending stiffness to induce local buckling of subpanels for all specimens. Before 

the failure, a small global deflection of the stiffened plate was observed for specimens with higher panel 

thickness, e.g. 1C-1, 1C-2 and 2C (Fig. 13), but the amplitude was approximately 5 times smaller 

compared to local buckling deflections after failure. The local failure mechanism is in all cases very 

similar to the so-called “Roof-shape mechanism”, typically encountered in flat plates subjected to in-

plane compressive stresses [30,31], see Fig. 17. 

Figs. 18 and 19 show the evolution of the out-of-plane displacements for the flat specimen 1F-1. 

Buckling patterns were starting to form from the 9th loading step up to the maximum resistance that was 

met short after the 11th loading step. After that, the buckling patterns induced a shift of the centroid of 

the deformed shape of cross-section relative to the centre of gravity of the undeformed cross-section. 

With the increasing deformations, shift eN increased, resulting in an additional bending moment 

NM e F = , finally leading to bending deformation. After the specimen failure, the bending moment 

induced relatively large lateral reaction forces that led to the rotation of linear supports, allowing a global 

failure of the vertically unsupported specimen 1F-1. The bending failure mechanism may be observed 

in Fig. 20 together with the torsional buckling of the longitudinal and the transverse stiffeners. Very 

similar behaviour was observed for specimen 1F-2. 

Bending failure was observed only for flat specimens, while for curved specimens, the additional 

bending moment due to load eccentricity ΔM did not have any significant effect on the cross-sectional 

resistance. In point of fact, due to its curved geometry, section modulus Wy of a curved cross-section is 

considerably higher compared to a flat one, resulting in a higher bending resistance. Comparing 1C-1 to 

1F-1, it is approximately five times higher.  
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Fig. 12. Evolution of out-of-plane displacements [mm], specimen 2C. 

 

Fig. 13. Out-of-plane deformation lines at different load levels, specimen 2C.   

 

Fig. 14. Specimen 2C after unloading. 
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Fig. 15. Evolution of out-of-plane displacements [mm], specimen 3C. 

 

Fig. 16. Out-of-plane deformation lines at different load levels, specimen 3C.   

 

Fig. 17. Specimen 3C after unloading. 
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Fig. 18. Evolution of out-of-plane displacements during loading [mm], specimen 1F-1. 

  

Fig. 19. Out-of-plane deformation lines at different load levels, specimen 1F-1.   

 

Fig. 20. Specimen 1F-1 after unloading. 
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2.4.3 Strains 

Strain development was measured with one-dimensional strain gauges (SGs) in 18 characteristic points 

(Fig. 9) of stiffeners and subpanels 4 and 6 (Fig. 8). In most cases, the location of SGs did not coincide 

with the subpanels where failure had occurred. Fig. 21 presents the strains and the position of SGs in 

specimen 1C-1. The failure was concentrated in subpanel 1. In the first phase, the measured compression 

strains are elastic and almost constant along the panel cross-section. At the ultimate force, the strain in 

DZ8 and DZ9 is around 5.5 ‰, which is rather above the yield strain of 2.6 ‰. In the longitudinal 

stiffeners, the upper two SGs, namely DS1 and DS3, show the highest strains that also exceed the yield 

strain. Similar results were observed for all specimens with panel thickness 6 mm, namely 1C-2, 2C, 

1F-1 and 1F-2. At ultimate force, in some parts of the plate the strains exceeded the yield strain. In these 

cases, global failure can be associated with the combination of local buckling and yield of material.  

 

Fig. 21. Strain measurement, specimen 1C-1. 

 

Vice-versa, for specimens with higher panel slenderness, namely 3C, 4C, 5C and 6C, the majority of the 

measured strains did not exceed the yield strain. In Fig. 22 the strains vs. vertical displacement for 

specimen 3C are plotted. In this case, buckling happened exactly in the panel where strains were 

measured. In the first phase, the compression strains are again elastic and almost constant through the 

whole cross-section, increasing gradually with the increased vertical displacement. The first half-wave 

due to buckling occurred in subpanel 4 affecting strains DZ8-DZ10 that instantaneously changed from 

compressive to tensile. After the ultimate force had been reached, the same occurred in subpanel 6, 

where the second half-wave appeared. The highest strain was reached in DZ8, where the yield strain of 

2.8 ‰ was exceeded only after the global failure of the specimen. The majority of the measured strains 

showed that also in the post-buckling phase, the panel was in the elastic region. Consequently, for 
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specimens with thinner panels, failure may be associated mostly to local buckling of subpanels in 

combination with torsional buckling of longitudinal stiffeners. 

 

Fig. 22. Strain measurement, specimen 3C. 

 

3 Numerical simulations 

3.1 Numerical model 

The numerical model for the experimental test simulation was built in the finite element software 

ABAQUS [32], where a fully nonlinear analysis with initial imperfections (GMNIA) and realistic 

boundary conditions was performed. Both buckling and collapse behaviour are involved in the specimen 

response; therefore, static equilibrium in the analysis was found by using arc length method. The test 

specimens were discretized using four node shell elements with reduced integration (S4R). The size of 

the finite elements was defined based on a preliminary convergence study and set up to approximately 
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The structural steel was modelled with an elasto-plastic material model defined according to static values 

of tension tests (Table 2). For the application in the FE model, the stress-strain diagrams of the five 

different materials were transformed in the form of Cauchy stress and logarithmic strain, see Fig. 23. 
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The elastic modulus was set to E = 210 GPa and Poisson’s ratio to ν = 0.3. The material model was 

verified with an FE simulation of the standard tension test and very good correlation between numerical 

and experimental results was achieved, except for the deviation in the rounded part of the curve that is 

presented on the enlarged diagram in Fig. 24. To account for a rounded stress-strain curve, which is 

typical for HSS and stainless steels, the two-stage Ramberg-Osgood model might be used, as in [33], 

but Abaqus includes only a one-stage model that is not properly accounting for the HSS strain hardening.  

 

Fig. 23. Stress-strain curves for two of the five materials. 

 

Fig. 24. Enlarged diagram of the rounded stress-strain curve for S500-1. 
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equivalent geometric imperfections were applied according to the recommendations from Annex C in 

EN 1993-1-5. 

The initial geometry of the tested panels was measured using a 3D scanner. The result of the scanning 

was a matrix of approximately 2×106 points that represent the difference between the nominal and the 

realistic geometry of the specimens. Geometrical imperfections were introduced in the shell finite 

element model by means of appropriate modifications of node coordinates. As the experimental grid 

used for the initial geometry measurement was very dense and did not coincide with the adopted finite 

element mesh, an interpolation procedure was performed to determine the nodal values. For this purpose, 

the kriging method that can handle unevenly distributed spaced data was performed for all nine 

specimens. An in-depth description of the method is given in [34,35]. The geometry of the stiffeners 

was considered as perfect. Two examples of the amplified estimates on the finite element mesh are 

presented in Fig. 25. 

 

a) Specimen 1F-1     b) Specimen 3C 

Fig. 25. Modelled initial geometry estimated with kriging (amplification factor 20). 

In stiffened plated structures, residual stresses are mainly caused by welding, but in the case of curved 

plates, they also arise during the curving process. In the numerical model, only the longitudinal residual 

stresses caused by welding were considered by an idealized uniform stress distribution according to 

Smith [36], as shown in Fig. 26. The amplitude of tensile residual stresses near the weld is denoted with 

σy, while σc denotes the amplitude of compressive residual stresses. The total width of tensile residual 

stress zone is defined as 2ηt, where t is the thickness of the plate and η is a variable parameter depending 

on the geometry and welding conditions and usually ranges between 0.75 and 5 [36–40]. A recent 

investigation on HSS welded box section members performed by Somodi and Kövesdi [41] concluded 

that the amplitude of the tensile residual stress may be assumed equal to the yield strength for all steel 

grades up to S960. Hence, in the numerical model, equality σy = fy was assumed and compressive residual 

stresses σc were adequately calculated considering stress equilibrium in the cross-section. The residual 

stresses on the stiffeners were neglected. Parameter η was defined as η = 1.25, based on a simplification 

of the trapezoidal stress distribution proposed in the Swedish design code [39]. In a parametric study by 

Degée et al. [40], no obvious dependency of local slenderness on the influence of residual stresses on 

the overall member capacity was distinguished. Based on this observation, the parameter η was kept 
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constant for all plate configurations. The described residual stress distribution was implemented in the 

FE model by defining an initial stress condition and performing an equilibrating step before the static 

analysis.  

 

Fig. 26. Idealized longitudinal residual stress distribution in welded stiffened plate. 

In Model 2, equivalent geometric imperfections were applied according to the recommendations from 

Annex C in EN 1993-1-5 [1]. The imperfection shapes were obtained from the buckling modes of the 

structure taken from a preliminary linear bifurcation analysis (LBA). For specimens with smaller aspect 

ratio α, the first buckling mode (local buckling of subpanels and stiffeners) was considered (two 

examples are given in Fig. 27). The magnitude of the imperfection was taken as w0 = min (a/200, 

bloc/200) = 0.95 mm. For specimens 5C and 6C, a combination of global buckling mode as leading 

imperfection with magnitude w0 = min (a/400, b/400) = 1.5 mm and local buckling mode as 

accompanying imperfection reduced by 70% (w0 = 0.67 mm) was considered. First elastic critical 

buckling loads Fcr,LBA from LBA are listed in Table 3 for all specimens.  

    

a) Specimen 1F-1     b) Specimen 3C 

Fig. 27. First buckling mode shapes (amplification factor 20). 

 

3.3 FEA results 

3.3.1 Load versus axial shortening curves and ultimate resistance 

Fig. 28 shows the load-shortening curves of the numerical simulations in comparison to the experimental 

ones. It has to be noted that vertical displacement v at the load application point plotted on the x axis is 

relatively small (around 4 mm at failure) and for this reason difficult to compare. In the numerical 

simulations, two models were considered, namely Model 1 and Model 2. In general, the achieved 

correlations of the global responses are reasonably good and the initial stiffnesses of the numerical 

models are more or less the same as those obtained from the tests. For curved specimens with the lowest 

relative slenderness, namely 1C-1, 1C-2 and 2C, both Model 1 and the experimental curve showed 
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ductile behaviour before failure. For all other specimens, however, the experimental ductile behaviour 

was not achieved with numerical simulations. Unlike experimental curves, the numerical response 

showed almost no post-critical strength reserve for specimens with slender subpanels, namely 3C-6C. 

A more detailed material model accounting for the curved part of the stress-strain curve (Fig. 24) would 

probably lead to better agreement between the results. The material model has more influence on the 

global response and ultimate resistance for plates with higher slenderness, where failure is mostly 

associated to buckling. The nonlinear elastic part of the standard tension test stress-strain curve is the 

consequence of a lower elastic modulus, leading to a plate more prone to buckling. This explains higher 

numerical capacity compared to test capacity for specimens 3C, 4C, 5C and 6C. Therefore, for HSS 

plated structures prone to stability phenomena, special attention has to be paid to the material model.   

After reaching the ultimate strength, in most cases the discrepancy between the numerical and 

experimental curves was even larger. Numerical simulations were performed using arc-length method 

that allows to follow the load-shortening curve also in the post-buckling regime, where the load and 

displacement may both decrease along the loading path. On the other hand, the experimental tests were 

displacement controlled, resulting in an inevitable increase of the displacement.  

In Table 3, the experimental test capacity (Ftest) is compared against the ultimate resistances achieved 

by numerical simulations (Fmodel1, Fmodel2). In general, an overestimation of the ultimate resistance is 

achieved by numerical simulations, except for 1C-1 and 1C-2, where the maximum load obtained with 

Model 1 is in good correlation with the experimental value (difference is less than 2%). The average 

difference of 12 % between Model 1 and test results might be attributed also to additional imperfections 

that were not included in the modelling of realistic imperfections, such as stiffeners imperfections, 

uneven thickness of the plates, adjustments of the test layout during loading and imperfections at the 

level of boundary conditions that are difficult to measure. In most cases, the difference is smaller for 

Model 2, where the capacity is usually exhausted at smaller vertical deflection compared to the test 

results. Very good correlation is also achieved for flat specimens, namely 1F-1- and 1F-2, where the 

difference is 8 % for Model 1 and less than 3 % for Model 2. It may be concluded that the equivalent 

geometric imperfections give a good approximation of the realistic imperfections and can be considered 

in the finite element analysis of stiffened curved plates. However, it is sometimes difficult to find the 

most critical initial imperfection mode for stiffened plates without a detailed study of all possible modes.  

Table 3. Load carrying capacity – comparison between experimental tests and numerical simulations. 

Specimen 

 

Ftest [kN] Fcr,LBA [kN] Fmodel1[kN] Fmodel1/Ftest Fmodel2[kN] Fmodel2/Ftest 

1C-1 2050 5085 2100 1.02 2031 0.99 

1C-2 2145 5085 2129 0.99 2031 0.95 

2C 1938 4990 2131 1.10 2043 1.05 

3C 1138 2262 1419 1.25 1272 1.12 

4C 1353 2385 1559 

 

1.15 1417 1.05 

5C 1113 2406 1336 1.20 1171 1.05 
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6C 1122 2519 1348 1.20 1244 1.11 

1F-1 1805 2672 1923 1.07 1853 1.03 

1F-2 1813 2672 1953 1.08 1853 1.02 

   Average: 1.12 Average: 1.04 

   St. dev.: 0.09 St. dev.: 0.05 

 

   

    

   

Fig. 28. Comparison of load-shortening curves. 
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3.3.2 Out-of-plane deflections and collapse mechanisms 

In Fig. 29 the experimental and numerical collapse mechanisms are visualized by displaying the out-of-

plane displacements at failure. The dots on the load-shortening curves in Fig. 28 denote the exact 

positions of the plotted displacements. With Model 1, which includes the realistic imperfections, a very 

good correlation with the experimental collapsed shapes is achieved, especially in the subpanels where 

higher deflections appear. Similar to experimental results, numerical analysis indicates that local 

collapse mechanism prevailed for all curved specimens in combination with torsional buckling of 

longitudinal stiffeners. For flat specimens 1F-1 and 1F-2, the bending failure mechanism may be 

observed as a consequence of the additional bending moment due to load eccentricity. Supported vertical 

edges of the numerical model attribute to the local bending mechanism, different from the global failure 

that arose in the experimental tests. 

Despite the good agreement of deformed shapes, the differences in the maximum and minimum 

amplitudes are relatively high. In general, higher values were achieved with experimental tests. The 

differences may be attributed to different reasons. Due to the deviation in the experimental and 

numerical response curves after failure, the out-of-plane displacements are presented at different values 

of vertical displacement (see Fig. 28) and are for this reason not perfectly comparable. Namely, a large 

out-of-plane displacement may develop due to a small difference in vertical displacement v.  

      

 Experimental Numerical  Experimental Numerical  Experimental Numerical 

a) Specimen 1C-1  b) Specimen 1C-2  c) Specimen 2C 
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Experimental Numerical  Experimental Numerical  Experimental Numerical 

a) Specimen 3C  b) Specimen 4C   c) Specimen 5C 

      

Experimental Numerical  Experimental Numerical  Experimental Numerical 

a) Specimen 6C  b) Specimen 1F-1  c) Specimen 1F-2 

Fig. 29. Out-of-plane displacements at failure [mm] - experimental (left figures); numerical simulations with 

Model 1 (right figures). 
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concentrated in subpanel 4.  

16.9 ..
-6.1

..
-6.1

. .-4.4

13.3
.

16.7 -3.1

..
10.8

-2.1

. .
9.9

-5.6

. .
3.7

-13.0

. .5.5

-9.9

.

.

-24.1

3.1

.

.6.6

-24.5

.

.

-22.6

4.7

.

.

2.3

-17.9



27 

 

For specimen 3C, both the experimental and the numerical failures were concentrated in subpanels 4-6. 

In this case, the strains coincide perfectly and the numerical results confirm that for specimens with 

thinner panels, failure may be associated mostly with local buckling of subpanels. Specifically, the yield 

strain of 2.8 ‰ was exceeded at some points of the panel only after the ultimate resistance had been 

reached.  

  

Fig. 30. Comparison of strain development, specimen 1C-1. 

  

Fig. 31. Comparison of strain development, specimen 3C. 

 

  

-6

-5

-4

-3

-2

-1

0

0 100 200 300 400 500 600

St
ra

in
 [

‰
]

Specimen width [mm]

F = 480 kN
F = 980 kN
F = 1480 kN
F = 1980 kN
After failure

FEM results:

SG
 

m
ea

su
re

m
en

ts

Z9
Z8

Z7 Z3
Z2

Z1

-6

-4

-2

0

2

4

6

St
ra

in
 [

‰
]

After failure

-4

-3

-2

-1

0

0 100 200 300 400 500 600

St
ra

in
 [

‰
]

Specimen width [mm]

F = 480 kN
F = 980 kN
F = 1480 kN
F = 1980 kN

FEM results: S
G

 m
e
a
su

re
m

e
n

s

Z9
Z8

Z7 Z3
Z2

Z1



28 

 

4 Verification of curved stiffened panels in pure compression 

4.1 Verification according to EN 1993-1-5 

The design of curved panels is not covered by the Structural Eurocodes. According to EN 1993-1-5, 

curved elements may be considered as flat, if the radius of curvature satisfies the limit given in Eq. (1).  

All curved panels included in this study exceed the limit considerably. Nevertheless, a comparison 

between experimental results and code provisions was performed in order to quantify the difference. 

The resistance was calculated according to the effective width method given in [1] for all specimens 

(Table 4). In the calculation, the curvature of the plate was neglected, the measured material values and 

plate thicknesses (Table 2) were considered and partial safety factors were omitted. According to [1], 

transverse stiffeners should provide a rigid support up to the ultimate limit state for a longitudinally 

stiffened plate by fulfilling the strength and the stiffness criteria. Numerical simulations showed that 

both criteria are met for all panels. Consequently, the buckling resistance to direct stresses might be 

restricted to longitudinally stiffened panels between transverse stiffeners, for which a two-step design 

procedure is proposed in [1]. Herein, the design rules for the resistance to direct stresses are briefly 

presented; more detail may be found in [42,43]. 

If the independent plated elements (subpanels, stiffeners) are class 4 sections, effective areas for local 

buckling of each plated element i need to be calculated: 

, , , , ,c eff loc i loc i c iA A=   (4) 

where ρloc,i is the reduction factor coming from a modified Winter formula [1]. Ac,i are parts of Ac, which 

is the gross area of the compression zone except the edge panels of the stiffened plate Aedge. For the 

calculation of the plate slenderness, coefficient ε was taken as ε = √(235/ReH [MPa]). In the second step, 

the reduction factors for plate-like ρp and column-like χc behaviour are calculated [1]. Finally, the 

reduction factor due to overall buckling of the whole stiffened panel ρc is interpolated between the 

respective reduction factors ρp and χc: 

( ) (2 )c p c c     = − − +    (5) 

For reduction factor χc, buckling curve c (α = 0.49) is selected. ξ is calculated from the elastic critical 

plate-like stress σcr,p and column-like buckling stress σcr,c: 

, ,( / ) 1cr p cr c  = −   (6) 

In Table 4, the critical plate buckling stress σcr,p corresponds to the occurrence of a one-wave global 

mode and was determined by using EBPlate freeware [44]. The critical column buckling stress σcr,c was 

calculated by the classic Euler formula (see Equation 4.9, EN1993-1-5), considering the length of the 

column equal to the distance between transverse stiffeners.  
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The final effective area of a longitudinally stiffened plate subjected to uniform compression is: 

, , , ,c eff c c eff loc edge effA A A= +   (7) 

The axial force acting on the cross-section retains its position during loading, whereas shift eN of the 

centroid of the effective area occurs relative to the centre of gravity of the gross cross-section. This shift 

results in an additional bending moment N uM e F =  that was also considered in the calculation of the 

ultimate resistance Fu,EN. 

Table 4. Estimated values of the design procedure according to EN 1993-1-5. 

Specimen 

 

Ac 

[cm2] 

Ac,eff,loc σcr,p ρp σcr,c χc ξ ρc Ac,eff Fu,EN 

 [cm2] [cm2] [kN/cm2]  [kN/cm2]    [cm2] [kN] 

1C 28.3 24.8 1561 1.0 1688 0.78 0.0 0.78 30.1 1629 

2C 27.5 23.2 1398 1.0 1523 0.77 0.0 0.77 28.5 1591 

3C 20.4 14.4 1647 1.0 1904 0.82 0.0 0.82 17.2 961 

4C 20.4 12.6 1498 1.0 1719 0.78 0.0 0.78 15.0 1143 

5C 21.4 15.8 456 0.80 501 0.55 0.0 0.55 14.0 795 

6C 21.4 15.7 559 0.86 625 0.62 0.0 0.62 15.1 874 

1F 28.3 24.8 1561 1.0 1688 0.78 0.0 0.78 30.1 1629 

 
 

4.2 Proposed verification procedure for curved stiffened panels in pure compression 

To follow the aforementioned design procedure by EN1993-1-5 and to account for the positive effects 

of panel curvature on the ultimate resistance, a combination of two different methodologies recently 

published by Martins et al. [15,16] and Tran et al. [7] is proposed.  

Martins et al. [16] proposed a method (see Aappendix) for computing the effective width of cylindrically 

curved panels based on a modified formula for the panel’s critical stress [15] and reduction factor ρloc
*. 

The method is limited to short (aspect ratio α ≤ 1.0) curved panels with longitudinal edges unconstrained 

and loaded edges constrained with curvature parameter Z up to 100. The effective areas of each 

independent curved panel are calculated according to: 

* *

, , , , ,c eff loc i loc i c iA A=   (8) 

The effective areas of the flat elements, e.g. stiffeners, follow Eq. (4).  

Tran et al. [7] proposed a methodology (see Appendix) neglecting the plate-like effects and considering 

only the column-like behaviour of the whole stiffened panel. The criterion provides an estimation of the 

ultimate strength on the safety side. The critical stress for column-like buckling σcr,c
*
  should be obtained 

from the area and second moment of inertia of the whole curved stiffened cross-section, resulting in a 

modified reduction factor χc
*. The final effective area may be written as: 

* * * *

, , , ,c eff c c eff loc edge effA A A= +   (9) 
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As the curvature has a very strong influence on the bending inertia of the stiffened panel, χc
* is higher 

compared to χc calculated according to [1], leading to a higher ultimate resistance Fu
*. According to 

Table 4, plate-like buckling does not have any effect on the ultimate resistance of the calculated cases. 

In Table 5, the values of the ultimate resistance according to the modified procedure are listed. It may 

be noticed that Ac,eff,loc
* is in some cases smaller than Ac,eff,loc, as a consequence of lower local reduction 

coefficient ρloc
* of curved plates. Namely, local curvature parameter Zloc of individual subpanels is in 

these cases relatively small. Thus, small curvature represents an additional imperfection of the plate that 

lowers the ultimate strength. This phenomenon is more pronounced for stockier panels and is covered 

in the modified formula for the panel’s reduction factor ρloc
* proposed by Martins et al. [16]. 

Table 5. Estimated values of the proposed design procedure. 

Specimen 

 

Ac,eff,loc
* σcr,c

* χc
*
 Fu

* 

 [cm2] [kN/cm2]  [kN] 

1C 23.4 6745 0.97 1786 

2C 21.8 6825 0.98 1759 

3C 14.7 6444 0.98 1143 

4C 12.9 6589 0.97 1373 

5C 16.2 1534 0.85 1090 

6C 16.1 1718 0.86 1117 

 

4.3 Comparison of test results and verification procedures 

In Table 6, the test capacity (Ftest) and the numerical capacity (Fmodel2) are compared against the 

verification procedures described in Sections 4.1 and 4.2. For flat specimens, namely 1F-1 and 1F-2, the 

verification procedure according to EN 1993-1-5 gives a 10 % underestimation of ultimate resistance, 

even though measured material values and plate thicknesses were considered. The differences come 

from the effectiveness of the cross-section computed with the Winter formula. The formula accounts for 

favourable effects resulting from post-buckling plate behaviour and for detrimental effects of 

imperfections [42] and was calibrated versus test results by a statistical evaluation. Due to the difficulty 

in assessing the magnitude of edge restraints of subpanels between stiffeners, the conservative 

assumption of simply supported edges is made, resulting in the underestimation of the ultimate 

resistance. Moreover, factor ξ, that measures the vicinity of the elastic critical plate buckling stress to 

the elastic critical column buckling stress (Eq. (6)) and affects the interpolation of the reduction factor 

(Eq. (5)), is in all cases equal to 0 (see Table 4). Although it is physically impossible for σcr,p to be 

smaller than σcr,c, the simplified concept of equivalent orthotropic plate used in EBPlate for σcr,p 

computation, allows for the violation of this requirement. Therefore, the effectiveness of the stiffened 

panel is obtained only from the column buckling reduction factor neglecting any plate post-buckling 

resistance. At last, also the conservative assumption of the column-like buckling itself contributes to the 

ultimate resistance underestimation.  
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With an average difference of 21 %, EN 1993-1-5 gives smaller resistances compared to curved 

specimens’ test results and 24 % lower results compared to numerical capacity. Therefore, current 

Eurocode rules are found safe in all the analysed cases and could cover the design of curved panels on 

the safety side by neglecting the curvature, as it was already numerically proven by Tran et al. [7].   

The proposed verification procedure described in Section 4.2 gives a good estimation of the specimens’ 

ultimate strength. In case of specimen 4C, a 1 % overestimation is calculated, while on average the 

difference is less than 6 %. Furthermore, compared to the numerical results, the proposed procedure is 

on the safe side for approximately 10 %. However, it has to be noted that a limited set of geometric 

parameters was included in the experimental study. Moreover, the method for computing the effective 

width of curved panels [16] is limited to aspect ratios α ≤ 1. Applying the method to subpanels of 

stiffened plates, like in the case of this study, the limit is easily exceeded. Hence, for the validation of 

the proposed procedure, an extensive parametric study has to be performed on a wide range of 

parameters.  

Table 6. Comparison of load carrying capacity. 

   EN1993-1-5 

(Section 4.1) 

Proposed procedure 

(Section 4.2) 

Specimen 

 

Ftest [kN] Fmodel2 

[kN[¤kN

[kN] 

Fu,EN [kN] Fu,EN/ Ftest Fu,EN/ Fmodel2 Fu
* [kN] Fu

*/ Ftest Fu
*/ Fmodel2 

1F-1* 1805 1853 1629 

 

0.90 0.88    

1F-2* 1813 1853 1629 0.90 0.88    

1C-1 2050 2031 1629 0.79 0.80 1786 0.87 0.88 

1C-2 2145 2031 1629 0.76 0.80 1786 0.83 0.88 

2C 1938 2043 1591 0.82 0.78 1759 0.91 0.86 

3C 1138 1272 961 0.84 0.76 1143 1.00 0.90 

4C 1353 1417 1143 0.84 0.81 1373 1.01 0.97 

5C 1113 1171 795 0.71 0.68 1090 0.98 0.93 

6C 1122 1244 874 0.78 0.70 1117 1.00 0.90 

   Average: 0.79 0.76 Average: 0.94 0.90 

   St. dev.: 0.05 0.05 St. dev.: 0.07 0.04 

* Flat specimens are omitted from the average and standard deviation. 
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5 Conclusions and future work 

Nine large scale panels stiffened with longitudinal and transverse stiffeners were tested under uniform 

compressive stresses. In practical bridge design this is a typical loading situation for bottom plates of 

box girders near internal supports. Both flat and curved panels were included in the study, all made of 

high strength steel. The aim of the tests was to examine the ultimate resistance and structural behaviour 

of transversally curved stiffened plates. In the range of the analysed parameters, the following remarks 

are made: 

• The collapse mechanism of stiffened curved plates under compressive loads represents a complex 

engineering problem due to a combination of material, stiffener behaviour that comes from curvature, 

boundary conditions and plate slenderness.  

• All specimens showed a linear elastic response up to a high load level. After local buckling failure, 

bending deformations were observed for flat panels due to the additional bending moment arising 

from load eccentricity.  Higher section modulus prevented bending failure of curved specimens, for 

which local collapse mechanism prevailed in all cases in combination with torsional buckling of 

longitudinal stiffeners.  

• For stockier panels, the ultimate load was mainly driven by the combination of local buckling and 

yielding of the material. For panels with higher slenderness, collapse behaviour was governed by 

elastic buckling and post-critical strength reserve.  

• The ultimate force obtained by the flat panels was 13 to 19 % lower compared to the curved panels. 

Thus, introduction of curvature can add a resistance reserve to the stiffened panels. Furthermore, the 

ultimate resistance remained nearly constant regardless of the increased aspect ratio.  

Two numerical models were built and verified against the test results. In general, reasonably good 

correlation is achieved between numerical and experimental results regarding initial stiffness and failure 

shape. The ultimate strength is in better agreement with the numerical model where equivalent geometric 

imperfections were assumed (Model 2). Thus, equivalent geometric imperfections give a good 

approximation of the realistic imperfections and they will be further considered in the finite element 

analysis of stiffened curved plates. For further work, a more accurate material model has to be used to 

account for nonlinear effects typical for HSS, especially when plated structures prone to stability 

phenomena are under consideration.  

The verification according to the effective width method given in EN 1993-1-5 proves to be conservative 

for all tested configurations. Therefore, with a significant underestimation, current Eurocode rules could 

cover the design of curved panels by neglecting the curvature. For the two flat specimens, a 10 % 

underestimation by the method was found, arising from some conservative assumptions and simplified 

concepts included in the verification procedure. An alternative verification procedure for curved 

stiffened panels is proposed that is in line with the original concept of EN1993-1-5, accounting for panel 
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curvature. The procedure gives a good estimation of the specimens’ ultimate strength with an average 

difference less than 6 %.  

The conclusions are made based on the test data obtained from the experiments and are therefore limited 

to specimens similar to those used in this study. To verify the procedure for an arbitrary stiffened curved 

panel, an extensive parametric study will be carried out. Future trends of bridge structures are oriented 

to even fewer longitudinal stiffeners with higher flexural and torsional rigidity. Therefore, trapezoidal 

stiffeners will be included in the parametric study together with a wide range of other significant 

geometric parameters. 
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Appendix 

According to Martins et al. [15], the elastic critical stress of cylindrically curved panels subjected to 

uniform compression is obtained with:  

( )

22

212 1
cr l

E t
C k

b







 
=  

−  
  (A.1) 

where kσ is the elastic buckling coefficient defined in Table A.1 and Cl is a correction factor for long 

panels defined in Table A.2.   

Table A.1. Elastic buckling coefficient for short curved panels under uniform compression 

 

2

1 2 3

2

1 2 3

a a Z a Z
k

b b Z b Z


+ +
=

+ +
 

0 < Z ≤ 23 

1 8.2a =  

2 0.0704a =  

3 0.0163a =  

1 1.05b =  

2 0.0002b = −  

3 0.0003b =  

23 < Z ≤ 100 

1 3.214a =  

2 0.5976a =  

3 0.0028a =  

1 0.961b =  

2 0.0104b =  

3 0b =  
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Table A.2. Correction factor Cl 

 α > 1 α ≤ 1 

Z = 5 1.00  

Z = 40 1.08 1.00 

Z = 100 1.13  

 

In Martins et al. [16], the effective width reduction factor is evaluated from the following formulae: 

*

, 1loc i =      if 0,Z   

( )0, 0, 0,*

,

0, 0,

p Z Z

loc i

p Z

    


 

− + −
=

−
 if 0, 0,Z p         (A.2) 

*

, 2

0.22 Z
loc i Z

Z

a
S

c






−
= +   if 0, p   

where: 

y

cr

f



=            (A.3) 

0,

0, 2

0,

0.22p Z

Z Z

Z p

a
S

c






−
= +          (A.4) 

and 0, 0.673p = . All other parameters are listed in Table A.3 and are obtained by a linear interpolation. 

According to Tran et al. [45], 0,Z is defined as: 

( )0, 0.2 0.473 0.95Z

Z = +          (A.5) 

Table A.3. Values of numerical parameters az, cz and SZ.  

 Z = 0 Z = 10 Z = 23 Z = 100 

az 1.000 1.000 1.000 0.545 

cz 1.000 1.290 1.150 1.700 

SZ 0.000 0.060 -0.040 -0.040 

 

Following the methodology proposed by Tran et al. [7] and accounting for the effective area of the 

curved panel 
*

, ,c eff locA  calculated in the previous step, the modified column buckling reduction factor 

*

c  is obtained from:  

*

2 2

1
c

c


  

=
+ −

 with ( ) 20.5 1 0.2e c c    = + − +
 

     (A.6) 

where e  is evaluated from the standard Eurocode procedure and the buckling curve is selected 

according to the shape of longitudinal stiffeners. The reduced column slenderness 
c  is calculated from 

the elastic critical column buckling stress 
*

,cr c . 
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*

, ,

* *

,

c eff loc y

c

cr c

A f

A



=           (A.7) 

2 *

*

, * 2

y

cr c

EI

A a


 =            (A.8) 

The length of the column a equals the distance between transverse stiffeners. The area 
*A  and second 

moment of inertia 
*

yI  must be evaluated on the whole cross-section as shown in Fig. A.1. 

 

Fig. A.1. Geometric parameters of the whole stiffened curved cross-section. 
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