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Abstract

In this work we study the time-stepping schemes for shell models which describe the shell
director vector motion by the �nite rotations. Di�erent possibilities for choosing director
rotations are examined and their relationships are cast in terms of the commutative diagram.
The Newmark time-stepping schemes, making use of di�erent rotation parameters, are then
developed. The mid-point scheme modi�ed to either conserve or dissipate the total energy is
further examined. Several numerical simulations are presented to illustrate the performance
of each developed scheme.

Key words: shells, �nite rotations, nonlinear dynamics, �nite elements, time-stepping schemes

1. Introduction

Thin shell structures can �nd very interesting applications in civil, mechanical or aerospace
engineering as an optimal structural form allowing for the most e�cient use of a given material.
Slender thin shells will in general experience motion with large displacements and large rota-
tions, while the strains will be usually left small allowing us to model linear elastic constitutive
equations. The shell problem complexity thus steams mostly from the nonlinear kinematics of
large rotations.
Of particular interest of this work are applications in dynamics of shells. Examples are

wind or earthquake loading induced shell vibrations or snap-through instability phenomena,
which ought to be placed within the context of dynamics to provide proper interpretation. In
short, we herein deal with nonlinear dynamics of elastic shells undergoing large rotations. The
time-stepping solution is often the only way to solve such problems.



The nonlinear behavior of thin shell can be captured by the Cosserat surface theory (e.g. see
Naghdi [19]), which is assumed to be a smooth surface with a so-called director vector attached
at each point. The small strain assumption is further corroborated by assuming that shell
remains of constant thickness and that the director vector can be chosen as an inextensible unit
vector indicating the current position of the corresponding �ber. The large rotation of a unit
vector can be fully mastered by exploiting the analogy with the space of constrained rotation
tensors (e.g. see Simo and Fox [23]), which allows one to construct singularity-free large rotations
updates. This kind of analogy can be developed further (e.g. see Ibrahimbegovi�c, Brank and
Courtois [15]) in order to provide a computationally more convenient additive rotation updates
which remain singularity-free. Contrary to the works using Euler angles (e.g. see Ramm and
Matzenmiller [20], Hughes and Pister [9]) we employ the incremental rotation vector
In this work we present a detailed analysis of di�erent choices for rotation vector parameters

(e.g. Ibrahimbegovi�c [13], Brank and Ibrahimbegovi�c [7], Betsch, Menzel and Stein [3]) to bear on
the problem of constructory the most suitable for the standard Newmark time-stepping scheme
when applied to shells. Moreover, we examine an alternative time-stepping scheme based on
mid-point rule and pertinent modi�cations of that scheme designed to either conserve or decay
the total energy. The main idea is to modify the computation of the algoritmic stress resultants
and the velocity updates so that the energy can be either conserved or decayed in a controllable
manner. The energy decaying scheme is an extension of the energy conserving scheme for shells
proposed by Simo and Tarnow [24], and further elaborated by Kuhl and Ramm [18], Sansour,
Wriggers and Sansour [21], Brank, Briseghella, Tonello and Damjani�c [6], Bottaso, Bauchau and
Choi [4], and others. Majority of these works is related to the extensional shell-director models
consequently avoiding large rotation complexities.
The outline of the paper is as follows. In Section 2 we briey present the equations governing

the nonlinear dynamics of the chosen shell model. In Section 3 we discuss construction of the
corresponding constrained �nite rotation. Two families of time-stepping schemes, Newmark and
mid-point, are discussed in Section 4. Several numerical examples presented in Section 5, are
followed by conclusions in Section 6.

2. Dynamics of geometrically exact shell

We begin with a brief account of the evolution equations governing nonlinear dynamics of shell
undergoing large displacements and rotations. The chosen shell model represents a single director
Cosserat surface (see e.g. Naghdi [19], Simo and Fox [23] or Ibrahimbegovi�c [12]) with the
position vector in a shell deformed con�guration assumed to be de�ned as

'
�
�1; �2; t

�
+ �t

�
�1; �2; t

�
;
�
�1; �2

�
2 A; � 2 F :=

�
h�; h+

	
(2.1)

In (2.1) above A de�nes the domain of the mid-surface parametrization, h = h+ � h� is the
thickness of the shell, �1 and �2 are convected curvilinear coordinates, � is through-the-thickness
coordinate and t is time parameter de�ned within the interval of interest t 2 [t0; T ]. It is
assumed that the director vector t is a unit vector. It thus follows from (2.1) that all deformed
con�gurations of the shell are determined by pairs ('; t) and that the con�guration space is
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de�ned by

C :=
n
('; t) : A ! R3 � S2 j 'j@A'

= �'; tj@At
= �t

o
(2.2)

Here S2 is a unit sphere, while @A' and @At are parts of the boundary where the displacement
and the director �eld are speci�ed, respectively. The shell initial con�guration is de�ned by a
pair ('0; t0).
The kinematic equations of the shell are then developed as follows. We de�ne at each point

of the mid-surface the convected frame ftig, which is obtained by mapping of the frame fgig
constructed at time t0 (see Figure 1)

ft1; t2; t3g :=
�
';1;';2; t

	
; fg1;g2;g3g :=

�
'0;1;'0;2; t0

	
(2.3)

where (�);� � @
@� � (�). It is assumed that the director vector is initially orthogonal to the

shell mid-surface, but it need not remain orthogonal to the deformed mid-surface, which allows
us to account for shear deformation. The relative deformation gradient at '0 is a linear map
F :T'0C ! T'C, given as

F = ti 
 gi = t � 
 g � + t3 
 t0 (2.4)

where g� are the dual base vectors (g� �g� = ��� ). The Green-Lagrange strain measures for the
shell may then be de�ned as

Em;s =
1

2

�
FTF� 1

�
(2.5)

where 1 is a unit tensor relative to the reference con�guration. It follows from (2.4) and (2.5)
that the components of the strain tensor Em;s in the gi basis can be written as

"�� =
1

2

�
';� �';� �'0;� �'0;�

�
; 2"�3 = � = ';� � t�'0;� � t0 (2.6)

where "�� and � are the classical expressions for the membrane and the shear strains; e.g. see
Naghdi [19]. The Green-Lagrange strain measures for the bending strains can be developed by
making use of the director gradient, de�ned as the G = t;� 
 g�, which allows us to write

Eb = FTG�B (2.7)

where B = (g� �g;�)g�
g � is the curvature tensor in the initial con�guration. The components
of the strain tensor Eb in the gi basis can be written as

��� = ';� � t;� �'0;� � t0;� (2.8)

which are the classical expressions for the shell bending strains; e.g. see Naghdi [19].
In order to specify the constitutive behavior of the shell with the strain measures (2.6) and

(2.8), we can de�ne the strain energy function

� ("�� ; �; ��� ; �) (2.9)
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An empty slot in (2.9) indicates that such a strain energy function should also depend in gen-
eral upon the �rst and the second fundamental forms of the mid-surface. The e�ective stress
resultants can be obtained as the corresponding partial derivatives of the strain energy, i.e.

n�� =
@�

@"��
; q � =

@�

@�
; m�� =

@�

@���
(2.10)

where n�� and q � are e�ective membrane and shear stress resultants and m�� are couples. The
simplest properly invariant constitutive relations for shells are obtained by postulating the linear
elastic and isotropic response and by neglecting a variation of metric tensor through the shell
thickness which leads to a quadratic form of the strain energy given as:

n�� =
Eh

1� �2H
���"�; m�� =

Eh3

12 (1� �2)H
�����; q � = {Ghg�� �

(2.11)

where E is Young's modulus, G is shear modulus, � is Poisson's ratio, { is shear correction
factor, g�� = g� � g � , and

H��� = �g��g� +
1

2
(1� �)

�
g�g�� + g��g�

�
(2.12)

In order to complete the description of the chosen shell problem we write the two-dimensional
momentum balance equations in the vector form (e.g. Simo and Fox [23])

A��' =
1p
a

�p
an�

�
;�
+ n; I�

�
t��t

�
=

1p
a

�p
am�

�
;�
+';� � n� +m

(2.13)

where n� and m� are stress resultant and stress couple vectors1, n and m are the applied
external force and couple, respectively, and

p
a = kt 1 � t 2k is the surface Jacobian at the

deformed con�guration; a = det [t� � t� ]. In (2.13) above A � and I � are the surface mass
density and the rotation inertia of the shell-director at the deformed con�guration, respectively.
In the spirit of d'Alambert principle, we can derive the corresponding weak form of the balance
equations by introducing the inertia forces, multiplying the equations by test functions �' and
�t and making use of the integration by parts; e.g. see Hughes [10]. The weak form of the
equations of motion can then be written with respect to the reference con�guration as

�� ('; t;�'; �t) =

Z
A

�
A ��' � �'+ I ��t � �t

�
dA+ ��('; t;�'; �t) = �K + �� = 0

(2.14)

where �K is the variation of the shell kinetic energy, and

A� =

p
a

p
g
A � = �h; I� =

p
a

p
g
I � =

�h3

12
(2.15)

1The components of n� are n�� and n�3 = q�, whereas the components of m� are m�� and m�3 = 0.
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where
p
g and � are the surface Jacobian and the 3-d mass density at the initial con�guration.

In (2.14) above �� is the weak form of the static equilibrium equations which can be written as

��('; t;�'; �t) =
R
A

�
n�� 12

�
�';� �';� +';� � �';�

�
+ q �

�
�';� � t+';� � �t

�
+

R
A
m��

�
�';� � t;� +';� � �t;�

��
dA� ��ext ('; t;�'; �t) (2.16)

where the terms multiplied with the membrane and the shear stress resultants and the couples
(2.10) are variations of strains given in (2.6) and (2.8), and ��ext is the virtual work of the
applied external forces.
For the shell problem with an elastic behavior considered herein, the weak form in (2.14)

can also be obtained as the �rst variation of the total energy, which, in accordance with (2.9),
can be written as

�('; t) = �('; t) +K('; t) (2.17)

�('; t) =

Z
A

� ("�� ; �; ��� ; �) dA��ext ('; t) (2.18)

K('; t) =
1

2

Z
A

�
A � _' � _'+ I � _t � _t

�
dA (2.19)

where � and K are, respectively, the total potential and the total kinetic energy of the shell.
In solving this highly nonlinear problem of shell dynamics at �nite rotations we make use

of the Newton incremental-iterative method, which solves successively in each iteration the
linearized form of equation (2.14) given as

Lin[�� (�)] = [�� (�)]
+

R
A

h
1
2

�
�';� �';� +';� � �';�

�
@2�

@"��@"�
1
2

�
�'; �';� +'; ��';�

�
+

�
�';� � t+';� � �t

�
@2�

@�@�

�
�';� � t+';� ��t

�
+

�
�';� � t;� +';� � �t;�

�
@2�

@���@��

�
�'; � t;� +'; ��t;�

�i
dA

+
R
A

�
n��

�
�';� ��';�

�
+ q�

�
�';� ��t+�';� � �t

�
+ m��

�
�';� ��t;� +�';� � �t;�

�
+ q�

�
';� ���t

�
+m��

�
';� ���t;�

��
dA

+
R
A

�
A�� �' � �'+ I���t � �t+ I��t ���t

�
dA = 0

(2.20)

Here �' is an incremental displacement vector and �t is an incremental director vector. Note
that ��' is zero, while ��t is generally not, due to chosen rotation parametrization of the shell
con�guration space in (2.2), (e.g. see Ibrahimbegovi�c, Brank and Courtois [15] and Brank and
Ibrahimbegovi�c [7] for discussion of these issues). The integrals given in (2.20) provide the basis
for computing the material and the geometric part of the tangent sti�ness and the tangent mass
matrix, which provide jointly the tangent operator.
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The spatial discretization of the problem is performed by using the isoparametric �nite
element approximations yet referred to as the continuum-consistent (e.g. see Ibrahimbegovi�c
[12]). They ensure that the linearization and discretisation of a nonlinear shell problem can be
carried out in an arbitrary order leading always to the same end results. More precisely, we use
the standard procedure (e.g. see Bathe [1] or Zienkiewicz and Taylor [25]) based on the parent
element to approximate the shell geometry

'
�
�1; �2; t

�
=

nenX
a=1

Na
�
�1; �2

�
'a (t) ; t

�
�1; �2; t

�
=

nenX
a=1

Na
�
�1; �2

�
ta (t)

(2.21)

where Na
�
�1; �2

�
are the corresponding shape functions for a shell element with nen nodes,�

�1; �2
�
2 [�1; 1]� [�1; 1] are natural coordinates, and (�)a is used to denote the corresponding

nodal values. The virtual and incremental quantities at any time t 2 [0; T ] are interpolated in
the same manner with

�'
�
�1; �2

�
=

nenX
a=1

Na
�
�1; �2

�
�'a; �t

�
�1; �2

�
=

nenX
a=1

Na
�
�1; �2

�
�ta (2.22)

�'
�
�1; �2

�
=

nenX
a=1

Na
�
�1; �2

�
�'a; �t

�
�1; �2

�
=

nenX
a=1

Na
�
�1; �2

�
�ta (2.23)

��t
�
�1; �2

�
=

nenX
a=1

Na
�
�1; �2

�
��ta

The derivatives of the above interpolated functions with respect to time, t, or coordinates �1

and �2 may be easily obtained in order to write the discrete approximations of the weak form
(2.14) or its linearized counterpart in (2.20). An exception to this is the interpolation of the
transverse shear �elds, which is based on the assumed strain method as suggested by Bathe and
Dvorkin [2].

3. Finite rotations of the shell director

We consider a general motion of the director vector attached to a particular point of the shell
mid-surface. Since t is a unit vector, its position may be given by a �nite rotation of the base
vector e � e3 = f0; 0; 1gT , thus having at time t 6= t0 and time t0

t = �e; t0 = �0e (3.1)

for the current and the initial con�guration, respectively. In (3.1) � 2 SO(3) is a rotation tensor
de�ned as2

� = e� (#) = exp [�] = cos#I+ sin#
#
�+

1� cos#
#2

#
 # (3.2)

2We use notation e� (�) to denote explicitly that � is a function of a rotation vector �.
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where # is an eigenvector of � (referred to as rotation vector, e.g. Ibrahimbegovi�c, Frey and
Ko�zar [11]) and �b = #� b for any b 2 R3. We assume that tensor � will rotate e to t without
making use of the drilling rotation (e.g. see Ibrahimbegovi�c, Brank and Courtois [15], Brank
and Ibrahimbegovi�c [7]). More precisely, rotation tensor � is constructed by requiring that the
rotation vector component along the rotated vector plays no role in the theory, which can be
expressed with

# � e = 0; t � _t = 0 (3.3)

The time derivation of the shell-director vector t may be obtained as

_t =
d

dt
jt=0 t t =

d

dt
jt=0 � t e (3.4)

where t t and � t represent the time evolution with respect to the shell deformed con�guration.

To compute the latter we multiply � from the right by an orthogonal tensor exp
h
t _	
i

t t = � te = �exp
h
t _	
i
e (3.5)

or we multiply � from the left by an orthogonal tensor exp
h
t _W

i
t t = � te = exp

h
t _W

i
�e = exp

h
t _W

i
t (3.6)

where _	 and _W are skew-symmetric tensors de�ning material and spatial angular velocities
of the shell-director, respectively. Relationship between _	 and _W and their axial vectors can
easily be obtained (see Ibrahimbegovi�c, Fray and Ko�zar [11])

_	 = �T _W�; _W = � _	�
T
; _ = �T _w; _w = � _ (3.7)

By using the results in (3.5) and (3.6) we get from (3.4) the following expressions for the shell-
director velocity in terms of _ and _w

_t = �
�
_ � e

�
; _t = _w � �e = _w � t (3.8)

Moreover, we can conclude from the above that the angular velocities _ and _w are constrained
according to

_ � e = 0; _w � t = 0) _w = t� _t (3.9)

An alternative possibility for constructing t t exploits the rotation vector with an additive update
of the rotation parameters. By using the material rotation vector # we have3

t t = e��#+ t _#� e (3.10)

3Eq. (3.10) de�nes rotation from e to tt consequently including the initial rotation from e to t0. The material
rotation vector # is thus having a non-zero initial value for any initially curved shell. This can be avoided by
de�ning t t as

t t = �0~�
�
#+ t _#

�
e

which sets the material rotation vector at the initial con�guration to zero. The former approach is discussed in
Ibrahimbegovi�c Brank and Courtois [15], while the later is presented in Brank and Ibrahimbegovi�c [7].
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Time derivative of (3.10) gives

_t = A (#) _# (3.11)

where

A (#) =

�
� sin#

#
(e
 #+E) + # cos#� sin#

#3
(#� e)
 #

�
(3.12)

and # = k#k, Eb = e� b. It also follows from (3.3) that

_# � e = 0 (3.13)

Similar developments and constraints on rotation vector can be carried out in the spatial repre-
sentation (see Brank, Mamouri and Ibrahimbegovi�c [8] and Brank and Ibrahimbegovi�c [7]) with
the spatial rotation vector �. The natural relationship of di�erent velocity parameters can be
expressed by the commutative diagram in Figure 2, where

B (#) = E�T A (#) ; D (�) = �E�T A (#) (3.14)

In closing this section we turn to deriving expressions for the shell-director acceleration, where
by taking time derivative of (3.8) and (3.11), we get (see Brank, Mamouri and Ibrahimbegovi�c
[8])

�t = �
h
�e _ 2 + � � e

i
(3.15)

�t = �t _w2 + �w � t (3.16)

where _ =
 _  = _w = k _wk or yet

�t = Y
�
#; _#

�
_#+A (#) �# (3.17)

where Y
�
#; _#

�
is given as

Y
�
#; _#

�
= � sin#

#
e
 _# (3.18)

+
# cos#� sin#

#3

h
�# � _# (e
 #+E) +

�
_#� e

�

 #+ (#� e)
 _#

i
+
�#2 sin#� 3# cos#+ 3 sin#

#5

�
# � _#

�
(#� e)
 #

By making use of the relationship �w = �� (e.g. see Ibrahimbegovi�c and Al Mikdad [14]) we
can show that the following constraints hold

� � e = 0; �w � t = 0 (3.19)
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which can be supplemented with

�# � e = 0 (3.20)

In the coordinate representation of the above introduced vectors and tensors one can exploit
the constraints to obtain the reduced coordinate representation. Namely, the material rotational
vectors can be presented by two components, while their spatial counterparts have to be ex-
pressed by three components which remain linearly dependent. Material and spatial vector-like
objects associated with the rotation, velocity and acceleration of the shell-director vector are
summarized in Table 1.

4. Implicit time integration schemes for shells with rotations

In the computational dynamics we partition the time interval of interest in a chosen number
of time steps as [t0; T ] =

SN
n=0 [tn; tn+1]. In order to avoid the singularity problems (see e.g.

Ibrahimbegovi�c, Brank and Courtois [15], Betsch, Menzel and Stein [3]), the total rotation
vectors # and � introduced above can be replaced by the corresponding incremental rotation
vectors #n+1 and �n+1 (e.g. see Ibrahimbegovi�c [13]), which are reset to zero at the beginning
of each time step. The rotation tensor at time tn+1 is then computed as

�n+1 = e� (�n+1) �n (4.1)

= �ne� (#n+1)
where

�n+1 = �n#n+1 (4.2)

which leads to two possibilities to de�ne tn+1 in terms of the incremental rotation vector

tn+1 = �ne� (#n+1) e = e� (�n+1) �ne = e� (�n+1) tn (4.3)

By exploiting analogy with the total rotation vector we can conclude that the incremental
rotation vectors #n+1 and �n+1 are subjected to the following constraints:

#n+1 � e = 0; _#n+1 � e = 0; �#n+1 � e = 0 (4.4)

and (see Brank, Mamouri and Ibrahimbegovi�c [8])

�n+1 � tn+1 = 0; _�n+1 � tn+1 = 0; �n+1 � _tn+1 = 0 (4.5)

��n+1 � tn+1 = 0; _�n+1 � _tn+1 = 0; �n+1 ��tn+1 = 0
Additional advantage of the incremental rotation vector is that it �ts nicely with the time-
stepping schemes, which we employed to obtain the evolution of the state variables for beams
(Ibrahimbegovi�c and Al Mikdad [14]) and shells (Brank, Mamouri and Ibrahimbegovi�c [8]).
For a couple of one-step time-stepping schemes examined subsequently - the Newmark scheme

and the energy conserving/decaying mid-point scheme - the central problem reduces to

given : 'n; _'n; �'n and tn; _tn;�tn (4.6)

�nd : 'n+1; _'n+1; �'n+1 and tn+1; _tn+1;�tn+1
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4.1. Newmark scheme

The Newmark family of algorithms (e.g. see Hughes [10], Bathe [1]) seeks to solve the central
problem in (4.6) by imposing that the equations of motion are satis�ed at the end of each
considered step

�Kn+1 + ��n+1 = 0 (4.7)

In order to make this problem well-posed we also need to provide the corresponding evolution
of velocities and accelerations. In particular, for mid-surface displacement the standard imple-
mentation of the Newmark algorithm can be used to compute velocities and accelerations at
time tn+1 with

_'n+1 =


��t
un+1 +

� � 
�

_'n +
(� � 0:5)�t

�
�'n (4.8)

�'n+1 =
1

� (�t)
2un+1 �

1

��t
_'n �

0:5� �
�

�'n (4.9)

where un+1 = 'n+1 � 'n is incremental displacement, �t = tn+1 � tn, whereas � and  are
the Newmark parameters. Typical choice for � = 1=4 and  = 1=2 leads to the scheme of
second-order accuracy.
As noted by Simo and Vu-Quoc [22] and Ibrahimbegovi�c and Al Mikdad [14] in their work

on beams, the same kind of Newmark approximations for angular velocity and acceleration can
directly be applied only in the material representation according to

_ n+1 =


��t
#n+1 +

� � 
�

_ n +
(� � 0:5)�t

�
� n (4.10)

� n+1 =
1

� (�t)
2#n+1 �

1

��t
_ n �

0:5� �
�

� n (4.11)

where #n+1 is the material incremental rotation vector which is zero at time tn, while _ n
and � n are the material shell director angular velocity and the material shell director angular
acceleration at time tn. The same approximations can be retained for smooth shells, since all
vectors in (4.10) and (4.11) are constrained by lying in the tangent plane containing the vectors
perpendicular to the �xed base vector e, see (4.4). The shell-director velocity and acceleration
follow from (3.8) and (3.15)

_tn+1 = �n+1

�
_ n+1 � e

�
; �tn+1 = �n+1

�
�e _ 2n+1 + � n+1 � e

�
(4.12)

By inserting these Newmark approximations for velocities and accelerations into the weak form
(4.7), we can obtain a system of non-linear algebraic equations with the incremental displace-
ments un+1 and the incremental material rotation vector #n+1 as the unknowns. The central
problem (4.6) can for this case be written as

given : 'n; _'n; �'n and tn; _ n; � n (4.13)

�nd : 'n+1; _'n+1; �'n+1 and tn+1; _tn+1;�tn+1 satisfying (4.7)
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One can also obtain the spatial form of the Newmark approximations for angular velocities
and accelerations (see Ibrahimbegovi�c and Al Mikdad [14], Brank, Mamouri and Ibrahimbegovi�c
[8]) according to

_wn+1 = �(�n+1)

�


��t
�n+1 +

� � 
�

_wn +
(� � 0:5)�t

�
�wn

�
(4.14)

�wn+1 = �(�n+1)

"
1

� (�t)
2 �n+1 �

1

��t
_wn �

0:5� �
�

�wn

#
(4.15)

where �n+1 is the spatial incremental rotation vector which is zero at time tn, while _wn and �wn
are the spatial angular velocity and the spatial angular acceleration at time tn. Shell-director
velocity and acceleration follow from (3.8) and (3.16) as

_tn+1 = _wn+1 � tn+1; �tn+1 = �wn+1 � tn+1 � tn+1 _w2n+1 (4.16)

By replacing the spatial form of the Newmark approximations into the weak form of the mo-
mentum balance equation (4.7) we obtain a system of non-linear equations in the incremental
displacements un+1 and the incremental spatial rotation vector �n+1 as the unknowns. The
central problem (4.6) transforms to

given : 'n; _'n; �'n and tn; _wn; �wn (4.17)

�nd : 'n+1; _'n+1; �'n+1 and tn+1; _tn+1;�tn+1 satisfying (4.7)

Yet another possibility to obtain the shell-director velocity and acceleration at time tn+1 is to
use the Newmark approximations directly in terms of the shell-director vector time derivatives
as

_tn+1 =


��t
(tn+1 � tn) +

� � 
�

_tn +
� � 0:5

�
�t�tn (4.18)

�tn+1 =
1

� (�t)
2 (tn+1 � tn)�

1

��t
_tn �

0:5� �
�

�tn (4.19)

Approximations (4.18) and (4.19) can be desirable to use for simplicity despite the fact that
such a version does not have a clear geometric representation.
Detailed presentation of the corresponding linearization form of the momentum balance

equation for Newmark scheme is given in Brank, Mamouri and Ibrahimbegovi�c [8].

4.2. Energy conserving/decaying mid-point scheme

The standard mid-point scheme would seek to solve the central problem in (4.6) by imposing
that the momentum balance equations of shell are satis�ed at time tn+1=2 =

1
2 (tn + tn+1), which

is denoted as

�Kn+1=2 + ��n+1=2 = 0 (4.20)
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where

�Kn+1=2 =

Z
A

�
�' �A��'n+1=2 + �t � I��tn+1=2

�
dA (4.21)

=

Z
A

�
�' � _pn+1=2 + �t � _�n+1=2

�
dA

=
1

�t

Z
A

[�' � (pn+1 � pn) + �t � (�n+1 � �n)] dA

In (4.20) and (4.21) above

p = A� _' and � = I� _t (4.22)

denote, respectively, the linear and the angular momenta of the shell, whereas

��n+1=2 =

Z
A

h
n��n+1=2 �"�� + q

�
n+1=2 �� +m

��
n+1=2 ����

i
dA� ��ext;n+1=2

(4.23)

where �"�� , �� and ���� are variations of the strain measures of the shell con�guration at the
middle of the time step, which is de�ned as

'n+1=2 =
1

2

�
'n +'n+1

�
; tn+1=2 =

1

2
(tn + tn+1) (4.24)

No accelerations appear in the �nal form of �Kn+1=2. It is important to note that the shell-
director variation �t has to satisfy constraint condition tn+1=2 ��t = 0: The linear and the angular
momenta in (4.21) can be obtained from the mid-point approximation of the corresponding
evolution equations according to

'n+1 �'n =
�t

2

�
_'n + _'n+1

�
=
�t

2A�
(pn + pn+1) =

�t

A�
pn+1=2 ) (4.25)

_'n+1 =
2

�t

�
'n+1 �'n

�
� _'n

for the displacement and

tn+1 � tn =
�t

2

�
_tn + _tn+1

�
=
�t

2I�
(�n + �n+1) =

�t

I�
�n+1=2 ) (4.26)

_tn+1 =
2

�t
(tn+1 � tn)� _tn

for the shell director rotation. With the above approximations the central problem in (4.6)
transforms to

given : 'n; _'n and tn; _tn (4.27)

�nd : 'n+1; _'n+1and tn+1; _tn+1 satisfying (4.20)
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Accelerations �'n+1 and �tn+1 are obtained from post-processing as

_'n+1 � _'n =
�t

2

�
�'n + �'n+1

�
)

�'n+1 =
2

�t

�
_'n+1 � _'n

�
� �'n =

4

(�t)
2

�
'n+1 �'n

�
� 4

�t
_'n � �'n

_tn+1 � _tn =
�t

2

�
�tn +�tn+1

�
) (4.28)

�tn+1 =
2

�t

�
_tn+1 � _tn

�
��tn =

4

(�t)
2 (tn+1 � tn)�

4

�t
_tn ��tn

It turns out that mid-point approximations (4.25), (4.26) and (4.28) can be obtained by setting
=� = 2 and � = 1=4 in Newmark formulas (4.8), (4.9), (4.18) and (4.19).
We note that the mid-point approximation in (4.25) and (4.26) above can be employed to

express the kinetic energy variation as the di�erence of the corresponding values at the ends
of the step. Namely, by choosing the virtual displacements and rotations as �' = 'n+1 �
'n; �t = tn+1 � tn we obtain from (4.21), (4.25) and (4.26) that

�Kn+1=2 =
1

2

Z
A

�
1

A�
pn+1 � pn+1 +

1

I�
�n+1 � �n+1 �

1

A�
pn � pn �

1

I�
�n � �n

�
dA

= K
�
'n+1; tn+1

�
�K ('n; tn) (4.29)

We note in passing that the choice we made for variation of the director vector satis�es the
constraint condition in the middle of the time step with

tn+1=2 � �t =
1

2
(tn + tn+1) � (tn+1 � tn) = 0) tn+1 � tn+1 = tn � tn (4.30)

The same choice of virtual displacements and rotations allows us to express the virtual strain
measures as the corresponding di�erence of the real strain measures at the end of the time step,
since with respect to (2.6) we can write

�"�� =
1

2

�
�';� �'n+1=2;� +'n+1=2;� � �';�

�
(4.31)

=
1

2

�
'n+1;� �'n+1;� �'n;� �'n;�

�
= "��;n+1 � "��;n

and

�� = �';� � tn+1=2 +'n+1=2;� � �t (4.32)

= 'n+1;� �'n+1;� �'n;� �'n;�
= �;n+1 � �;n

Similarly, in accordance with (2.8) we can obtain that

���� = �';� � tn+1=2;� +'n+1=2;� � �t;� (4.33)

= 'n+1;� � tn+1;� �'n;� � tn;�
= ���;n+1 � ���;n
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The interpretation of the constitutive equations (2.11) in (4.23) is now made in an algorithmic
sense (see Simo and Tarnow [24]) with

n��n+1=2 ! n�� =
Eh

1� �2H
��� 1

2
["�;n+1 + "�;n] (4.34)

q �n+1=2 ! q � = {Ghg��
1

2
[�;n+1 + �;n] (4.35)

and

m��
n+1=2 ! m�� =

Eh3

12 (1� �2)H
��� 1

2
[��;n+1 + ��;n] (4.36)

which allows us to express the internal energy variation in (4.23) as

��n+1=2 =
1

2

Z
A

h
n��n+1 "��;n+1 + q

�
n+1 �;n+1 +m

��
n+1 ���;n+1 (4.37)

�n��n "��;n � q �n �;n �m��
n ���;n

�
dA

= �
�
'n+1; tn+1

�
��('n; tn)

With the results in (4.29) and (4.37) we can see that the above algorithm is designed so that
the total energy remains preserved in any free vibration phase.
An alternative modi�cation of the mid-point scheme to the one given in (4.25) and (4.26)

- which conserves the total energy - is the scheme described subsequently which is capable of
assuring that the total energy is always dissipated. To that end we can modify the algorithmic
constitutive equations in (4.34) to (4.36) in order to include the dissipating term according to

n�� =
Eh

1� �2H
���

�
1

2
("�;n+1 + "�;n) + e� ("�;n+1 � "�;n)� (4.38)

q � = {Ghg��
�
1

2
(�;n+1 + �;n) + e� (�;n+1 � �;n)� (4.39)

and

m�� =
Eh3

12 (1� �2)H
���

�
1

2
(��;n+1 + ��;n) + e� (��;n+1 � ��;n)� (4.40)

where e� 2 [0; 1] is the chosen coe�cient which controls the potential energy dissipation DM � 0,
as can easily be seen from expressing the variation in (4.20) as

��n+1=2 = �
�
'n+1; tn+1

�
��('n; tn) +DM (4.41)

where

DM = e� Z
A

�
("��;n+1 � "��;n)

Eh

1� �2H
��� ("�;n+1 � "�;n) (4.42)

+ (�;n+1 � �;n){Ghg�� (�;n+1 � �;n)
�

+ (���;n+1 � ���;n)
Eh3

12 (1� �2)H
��� (��;n+1 � ��;n)

�
dA

14



It is also interesting to note that the proposed modi�cations of algorithmic constitutive equations
in (4.38) to (4.40) di�ers signi�cantly from the energy conserving counterparts in (4.34) to
(4.36) mostly for high frequency modes where the numerical values of strains at the ends of the
time interval can be quite apart. The dissipation is thus introduced mainly for these higher
modes, which reduces their contribution and proves helpful for stability of the computation.
Similar modi�cation is introduced for the evolution equation in (4.25) and (4.26) used for energy-
conserving scheme, leading to

'n+1 �'n =
�t

2

�
_'n + _'n+1

�
+ e��t � _'n+1 � _'n

�
) (4.43)

_'n+1 =
1�

�t=2 + e��t�
�
'n+1 �'n � _'n

�
�t

2
� e��t��

and

tn+1 � tn =
�t

2

�
_tn + _tn+1

�
+ e��t �_tn+1 � _tn�) (4.44)

_tn+1 =
1�

�t=2 + e��t�
�
tn+1 � tn � _tn

�
�t

2
� e��t��

With these approximations on hand the variation of kinetic energy in (4.21) reduces to

�Kn+1=2 = Kn+1 �Kn +DK ; DK � 0 (4.45)

where

DK = e� Z
A

��
_'n+1 � _'n

�
A�
�
_'n+1 � _'n

�
+
�
_tn+1 � _tn

�
I�
�
_tn+1 � _tn

��
dA

(4.46)

which shows that parameter e� 2 [0; 1] can be used to control the introduced dissipation in the
kinetic energy term.

5. Numerical examples

In this section we present results obtained in numerical simulations. The computations with the
Newmark time stepping scheme were carried out by a research version of the computer program
FEAP, developed by Prof. R. L. Taylor at UC Berkeley (see Zienkiewicz and Taylor [25]).
The computations with the energy conserving/decaying scheme were carried out by a research
version of the computer program AceGen (see Korelc [16], [17]).
A four-noded isoparametric shell �nite element with assumed strain interpolations for trans-

verse strains (see e.g. Brank, Peri�c and Damjani�c [5]) was used to that end with either the
incremental material rotation vector or the total rotation vector chosen for the parametrization
of the shell-director motion (see Table 2). Numerical 2-point Gauss through-the-thickness inte-
gration was performed (although variation of metrics along the � coordinate was not taken into
account) for the �nite element used with the energy conserving (EC) and the energy decaying
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(ED) schemes, while the �nite element formulation with the Newmark (N) scheme employed an
analytical through-the-thickness integration.
Two forms of the Newmark approximations (with � = 1=4 and  = 1=2) for the shell-director

velocity and acceleration were examined (see Table 2). As shown in the previous section, the EC
and the ED schemes were both constructed directly in terms of the shell-director vector time
derivatives which correspond to "version 2" of the Newmark scheme. The convergence tolerance
of 10�9 for the norm of the residual vector was used in all examples.
In all �gures X;Y; Z and tX; tY; tZ de�ne the mid-surface and the shell director-vector

quantities, respectively, in directions de�ned by the coordinate axes.

Example 1: Motion of a short cylinder This example was considered by Simo and Tarnow
[24] and Brank, Briseghella, Tonello and Damjani�c [6] to show the stability of the EC scheme for
long-term computations. We note that the rotation parameters used in those two works, which
were _ � e, are di�erent of the rotation parameters employed in the present work (see Brank
and Ibrahimbegovi�c [7] for the relationships between di�erent �nite rotation parametrizations).
Geometry of the short cylinder is de�ned with radius R = 7:5, height H = 3 and thickness

h = 0:02. The material characteristics are: Young's modulus E = 2 � 108, Poisson's ratio
� = 0:5 and mass density � = 1. The mid-surface mass density and the inertia term with

respect to the mid-surface are A� = h� = 0:02 and I� =
�h3

12 = 6:667 � 10�7, respectively.
Displacements, rotations, velocities and accelerations at the initial time t = 0 are all zero. The
loading conditions are presented in Figure 3 and Table 3. The response of the shell, meshed by
28 � 3 elements, is calculated with �t = 0:05 for the Newmark scheme, and with initial �t =
0:1 for the EC and the ED schemes.
Results are presented for "version 1" of the Newmark scheme, the EC scheme and the ED

scheme with e� = e� = 0:2 (in �gures denoted as N, EC and 0:2, respectively). When the loads are
removed (at time t = 1) the structure exhibits complex free motion in the 3d space. Evolutions
of displacements and velocities of a point, which is initially located at (R; 0; 0), are presented
in Figures 4, 5 and 6 for t 2 [0; 5:5]. It can be observed that the displacement curves of the
Newmark scheme are practically identical to the EC solutions (Fig 4), and that the Newmark
and the EC mid-surface velocity curves di�er only slightly (Fig 5) from each other. On the
other hand, a sharp di�erence in smoothness can be observed between the EC and the ED
results shown in Figures 5 and 6. This is specially true for the shell-director velocities in the
direction of X and Y coordinates (Fig. 6). It can be also observed from the displacement and
the velocity curves that the ED scheme produces phase shift e�ect. This e�ect is due to the
introduction of damping parameter e� in the evolution equations for velocities. In general, the
bigger the ratio between the kinetic and the potential energy is, the more signi�cant phase shift
is expected if the same numerical value is used for both e� and e� parameters. Figure 7 shows that
the ration between the kinetic and the potential energy is for the present case approximately
5 : 1, which leads to a considerable phase shift. We can therefore conclude for this example
that the ED scheme, with relatively high introduced energy dissipation (e� = e� = 0:2), smooths
velocity curves, yet at the some time produces phase shift in displacements and velocities, so that
the ED results eventually di�er relatively signi�cantly from the Newmark and the EC solutions.
Energy curves are presented in Figure 7. It can be seen that the EC scheme conserves the total
energy of the shell when the forces are removed. It can be also seen that relatively big energy
dissipation is introduced for the chosen value of dissipation parameters e� = e� = 0:2.
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Although not shown in Figures, the present EC solutions are identical to those reported by
Brank, Briseghella, Tonello and Damjani�c [6], and are very close to those of Simo and Tarnow
[24] (see [6] for further comments). This numerically con�rms theoretical conclusions (see Brank
and Ibrahimbegovi�c [7]) that a choice of the rotational parameters has no inuence on the results
in the domain where speci�c parametrization is to provide solution.

Example 2: Dynamic buckling of a spherical cup The geometry and the material char-
acteristics of one half of a sphere with a top hole are de�ned in Figure 8. The shell is meshed
into 32� 8 �nite elements. Vertical displacements (in Z direction) are set to zero at the nodes
of the bottom ring. Force f(t) = 1:5p (t), where p(t) is de�ned in Figure 8, is applied at each
node of the top ring in the �Z direction. The time step for the Newmark scheme is �t = 0:01
and the initial time step for the EC and the ED scheme is �t = 0:1.
Two di�erent Newmark schemes are used to compute this example, referred as "version 1"

and "version2" in Table 2. Figure 9 shows vertical displacement of a node initially located at
A = (R sin�1; 0; R cos�1) for both versions. It can be seen that they produce identical results
up to approximately t = 4, when the scheme which interpolates the time derivatives of the shell-
director vector ("version 2") diverges for the chosen time step. This can lead to the conclusion
that the scheme which interpolates the angular velocities and accelerations ("version 1") allows
for bigger time steps.
The EC and the ED predictions (for e� = e� = 0:01; e� = e� = 0:1; e� = e� = 0:2) of

the displacements, the middle-surface velocities and the shell-director velocities of point A are
presented in Figures 10, 11 and 12, respectively. Again the introduced dissipation smooths
considerably displacement and velocity curves even for the smallest introduced dissipation (e� =e� = 0:01). Figs. 10 and 11 show that the amount of a phase shift relates directly to the value
of dissipation parameters. The time evolution of the kinetic, the potential and the total energy
is further presented in Figures 13, 14 and 15, respectively. It can be observed that even the
smallest introduced energy dissipation produces considerable dissipation of the total energy at
the �nal calculation time t = 10. Figure 16 further shows time dependency of the vertical
reaction force at node A. Again, the introduced dissipation smooths the response curve.
Figure 17 presents the size of the time step �t, which is needed for the convergence to occur

between 4 and 11 iterations. If the convergence is not reached within this number of iterations,
the time step size is either doubled or reduced by one half. It can be seen that if more dissipation
is induced, the larger the time step can be, which can lead to the conclusion that the controlled
energy dissipation is numerically desirable. A sequence of deformed con�gurations is compared
in Figure 18.

Example 3: Dynamic buckling of an ellipsoidal cup This example was considered by
Brank, Briseghella, Tonello and Damjani�c [6] and it is similar to the Example 2, except that
the shell is more shallow and that its mass density is much smaller. The geometry, the material
characteristics and the loading for this problem are given in Figure 19. The initial shell mid-
surface is de�ned in spherical coordinates as X = R cos � cos', Y = R cos � sin', Z = 1

2R cos �,
where � 2 [arcsin(Rmin=Rmax); �=2], ' 2 [0; 2�] and R = Rmax. The initial shell normal of
point with coordinates X;Y; Z is in the direction given by X=2; Y=2; 2Z. The shell is discretised
by 32 � 8 �nite elements with vertical nodal displacements at Z = 0 set to zero. Response is
calculated with the EC and the ED schemes with the initial time step �t = 0:05.
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Figure 20 shows evolution of X and Z displacements of a node with the initial position
B = (Rmin; 0;H). Very similar responses are obtained both with the EC and the ED scheme

(with e� = e� = 0:1 and e� = e� = 0:2). However, the EC scheme shows short-wave oscillations,
which are dumped if the ED scheme is used. Figure 21 shows the bigger rotation component
of the shell-director vector initially located at B. Large oscillations can be observed again from
the EC solutions, which are smoothed when energy dissipation is introduced. Time history of
energies is given in Figures 22, 23 and 24. We note that the kinetic energy is negligible up to the
snap-through (Fig. 22) and that the ED scheme dissipates all the kinetic energy immediately

(both for e� = e� = 0:1 and e� = e� = 0:2) after new stable con�guration is reached. On the
other hand the EC scheme predicts in�nite small vibrations, never setting them to zero. For
the con�gurations following the snap-through a considerable di�erence between the EC and the
ED predictions (both for e� = e� = 0:1 and e� = e� = 0:2) of the total energy is evident (Fig.
24). A sequence of deformed con�gurations in Figure 26 shows that the EC scheme predicts
non symmetric vibrations towards the end of the buckling process, which may be more realistic
than the ED scheme results predicting very smooth symmetric deformations. From the above
we may conclude that the dissipation parameters used in this case are too big.
Figure 25 presents the size of the time step �t, which is needed for the convergence to

occur between 4 and 11 iterations for the ED scheme and between 4 to 15 iterations for the EC
scheme. A consequence of undamped vibrations is very small �t, which causes problems getting
results for a long-term response. For this reason the results of the EC scheme are calculated
and presented only to approximately t = 1:8.
Although not shown in �gures the present EC solutions are very close to those reported by

Brank, Briseghella, Tonello and Damjani�c [6], where the response was calculated up to t = 4:5
with �t = 0:0015.

6. Conclusions

In this work we elaborated upon the time-stepping schemes for nonlinear dynamics of smooth
shells. The �rst issue which was clari�ed pertains the choice of the �nite rotation parameters
for the shell model of this kind, with the commutative diagram of the shell director velocity
presenting relations among all the di�erent representations. The latter proved to be of great
interest for constructing three di�erent versions of the Newmark time stepping scheme, and
identifying the one employing the material representation of the incremental rotation vector as
the most suitable for smooth shells.
The second type of time-stepping scheme for nonlinear dynamics of elastic shells, the mid-

point rule, is explored herein in two di�erent variants capable of ensuring either energy conserv-
ing or energy decaying computed response. The latter is proved to be particularly useful for
damping out high frequency modes and thus assuring the stability of the computed response
and more smooth time history of displacements, velocities and stress resultant components.
However, one has to carefully choose the values of the introduced damping parameters.
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Figure captions

Figure 1: Base vectors in reference and current con�guration.
Figure 2: Commutative diagram of the shell-director velocities.
Figure 3: Short cylinder: geometry and loading.
Figure 4: Short cylinder: mid-surface displacements of a point initially lying at (R; 0; 0).
Figure 5: Short cylinder: mid-surface velocities of a point initially lying at (R; 0; 0).
Figure 6: Short cylinder: velocities of a shell-director initially positioned at (R; 0; 0).
Figure 7: Short cylinder: kinetic, potential and total energies.
Figure 8: Spherical cup: geometry, material and loading conditions.
Figure 9: Spherical cup: vertical displacement of node A; Newmark scheme.
Figure 10: Spherical cup: displacements of node A; EC and EC schemes.
Figure 11: Spherical cup: vertical component of mid-surface vertical velocity at node A.
Figure 12: Spherical cup: velocity of a shell-director initially positioned at node A.
Figure 13: Spherical cup: kinetic energy.
Figure 14: Spherical cup: potential energy.
Figure 15: Spherical cup: total energy.
Figure 16: Spherical cup: vertical reaction at a node initially lying at (R sin�1; 0; 0).
Figure 17: Spherical cup: time-step size.
Figure 18: Spherical cup: sequence of con�gurations at t = 0:9, 1:9, 2:3, 2:7, 2:9, 3:3, 5:0.
Figure 19: Ellipsoidal cup: geometry, material and loading conditions.
Figure 20: Ellipsoidal cup: mid-surface displacements of node B.
Figure 21: Ellipsoidal cup: bigger component of the total rotation of a shell-director initially

positioned at node B.
Figure 22: Ellipsoidal cup: kinetic energy.
Figure 23: Ellipsoidal cup: potential energy.
Figure 24: Ellipsoidal cup: total energy.
Figure 25: Ellipsoidal cup: time-step size.
Figure 26: Ellipsoidal cup: sequence of con�gurations at t = 0:3, 0:75, 0:9,� 1:1,� 1:5.
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Table 1. Parameters of the shell-director rotation, velocity and acceleration, and related
constraints.

Material Constraint Spatial Constraint

Rotation vector # # � e = 0 � � � t = 0
Angular velocity _ _ � e = 0 _w _w � t = 0

Angular acceleration � � � e = 0 �w �w � t = 0
Rotation vector velocity _# _# � e = 0 _� see [8]

Rotation vector acceleration �# �# � e = 0 �� see [8]

Table 2. Rotation parameters and updating schemes for the shell-director velocity and
acceleration used in numerical examples.

Integration scheme Rotation parameter Evolution equations
Newmark (N); "version 1" incremental, material: #n+1 (4.14), (4.15) with (4.2)
Newmark (N); "version 2" incremental, material: #n+1 (4.18), (4.19)
Energy conserving (EC) total, material: # (4.26)
Energy decaying (ED) total, material: # (4.44)

Table 3. Short cylinder: Loading data.

Angle � 0 �=2 � 3�=2

Nodal loads

8<: 0
�1
�1

9=; p(t)

8<: 1
1
1

9=; p(t)

8<: 1
1
1

9=; p(t)

8<: 0
�1
�1

9=; p(t)
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Figure 6.1: This is Figure 1
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Figure 6.2: This is Figure 2.
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